MULTIVARIATE HIGH ORDER STATISTICS OF MEASUREMENTS OF THE TEMPORAL EVOLUTION OF FISSION CHAIN-REACTIONS

J. K. MATTINGLY

MARCH 2001
DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Multivariate High Order Statistics of Measurements of the Temporal Evolution of Fission Chain-Reactions

J. K. Mattingly

March 2001

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6004
managed by
UT-BATTELLE, LLC.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725
CONTENTS

1. INTRODUCTION .. 1

2. THEORETICAL MODELS OF STATISTICS OF MEASUREMENTS
 OF FISSION CHAIN-REACTION EVOLUTION .. 4

3. GENERAL PROPERTIES OF HIGH ORDER STATISTICS AND THEIR POTENTIAL UTILITY 21

4. CONCLUSIONS ... 26

ACKNOWLEDGMENTS ... 26

REFERENCES ... 26
LIST OF FIGURES

Figure 1 One possible chain-reaction that can occur during an active measurement of a fissile system; closed circles denote observable events including detector counts and detected source emissions, open circles denote unobservable induced fission events, and each line indicates a neutron .. 28

Figure 2 Diagram representing chain-reaction shown in Fig. 1; each line now indicates a series of “chain-related” neutrons, and the label associated with each line indicates the number of neutrons available to sustain that branch in the chain-reaction ... 28

Figure 3 Diagram representing a chain-reaction terminating in one detector count ... 29

Figure 4 Diagram representing chain-reactions terminating in two correlated detector counts; the notation indicating each process denotes the neutron economy of the chain-reaction ... 29

Figure 5 Diagram representing chain-reactions terminating in three correlated detector counts; the notation indicating each process again denotes the neutron economy of the chain-reaction ... 29

Figure 6 Diagrammatic representation of all chain-reactions terminating in from one to five detector counts; diagrams in the leftmost column are minimal because they are formed from one symbol, and all subsequent diagrams are composites formed by concatenation of minimal symbols. Diagrams beginning with “(1-1)” are not shown here because they are identical to the diagrams Shown right-concatenated to the symbol for “1.” ... 30
Multivariate High Order Statistics of Measurements of the Temporal Evolution of Fission Chain-Reactions

J. K. Mattingly
Oak Ridge National Laboratory, Instrumentation and Controls Division
Oak Ridge, Tennessee 37831-6004

Abstract – The development of high order statistical analyses applied to measurements of the temporal evolution of fission chain-reactions is described. These statistics are derived via application of Bayes’ rule to conditional probabilities describing a sequence of events in a fissile system beginning with the initiation of a chain-reaction by source neutrons and ending with counting events in a collection of neutron-sensitive detectors. Two types of initiating neutron sources are considered: (1) a directly observable source introduced by the experimenter (active initiation), and (2) a source that is intrinsic to the system and is not directly observable (passive initiation). The resulting statistics describe the temporal distribution of the population of prompt neutrons in terms of the time-delays between members of a collection (an n-tuplet) of correlated detector counts, that, in turn, may be collectively correlated with a detected active source neutron emission. These developments are a unification and extension of Rossi-α, pulsed neutron, and neutron noise methods, each of which measure the temporal distribution of pairs of correlated events, to produce a method that measures the temporal distribution of n-tuplets of correlated counts of arbitrary dimension n. In general the technique should expand present capabilities in the analysis of neutron counting measurements.

1. INTRODUCTION

The present work focuses on multivariate statistics derived from counting measurements performed on fissile systems driven by a neutron source that is introduced by the experimenter or is intrinsic or inherent to the system. Measurements performed using an introduced source to initiate fission chain-reactions are described as “active,” and measurements that rely solely upon an intrinsic source to initiate fission are described as “passive.” It should be noted that the introduction of an active source does not necessarily preclude the presence of an intrinsic source; in many applications of interest, the two will be present simultaneously. Instead, the active source is introduced to provide a means of observing the time of initiation of some chain-reactions. In particular, it is assumed that the active neutron source is directly observable in that it is instrumented in such a way that individual neutron emission events may be counted.

For example, one candidate active source is the \(^{252}\text{Cf}\) ionization chamber. This device detects the fragments of individual spontaneous fissions of \(^{252}\text{Cf}\) nuclei such that the ionization chamber signal, when acquired by pulse processing instrumentation, registers the time of neutron emission events. Note that the number of neutrons emitted during a given spontaneous fission is not observable by this instrument.[1] Another candidate active source is the associated-particle neutron generator (APNG) that accelerates a projectile ion (typically a deuteron) into a target (typically deuterium, as in a D-D generator, or tritium, as in a D-T generator) to produce a single neutron per collision. The neutron emission event is registered by detection of the collision product ion (a.k.a., the associated-particle, a He nucleus from a D-D reaction or an He nucleus from a D-T reaction).[2] In the subsequent development, an observable neutron source is treated generically as a device that registers the time of individual neutron emission events, that is in general capable of emitting multiple neutrons per event, but that is incapable of registering the number of neutrons emitted during a single event. Note that an APNG is simply a special case of this generic active source because only a single neutron is emitted per projectile-target collision.

Passive sources, on the other hand, are intrinsic to the fissile system and are not directly instrumented like active sources. Consequently, neither the time of a particular neutron emission event nor the number of neutrons emitted during the event is in general observable. For example, \(^{240}\text{Pu}\) and \(^{241}\text{Pu}\) are spontaneous fission sources that are typically present in any...
system containing 239Pu; 9Be in the presence of plutonium, by virtue of plutonium α-decay, can form a Pu-Be source that emits a single neutron per (α,n) reaction in 9Be. Other examples of intrinsic neutron sources are 242Cm and 244Cm which appear as fission products in burnt UO$_2$ (and other 235U-containing) nuclear fuels. Measurements of systems containing such intrinsic sources may be performed passively by relying solely upon these sources to initiate fission chain-reactions, or they may be performed actively such that fission chain-reactions are initiated by both the introduced source and intrinsic sources. The choice of active versus passive measurement depends upon the application and upon practical considerations like the relative strengths of the active and intrinsic sources.

Finally, it is important to note that every fissile system contains an inherent delayed neutron source. Technically, delayed neutrons are correlated progeny of a fission chain-reaction just as are prompt neutrons. However, generations of delayed neutrons typically reproduce much more slowly than do generations of prompt neutrons. Consequently, relative to the time-scale of a prompt neutron “fission-chain”, delayed neutrons typically behave as a source inherent to the system that is uncorrelated with the prompt progeny of the chain-reaction.

The response of the fissile system to the preceding sources is observed by a collection of neutron-sensitive detectors whose signals are acquired by pulse processing instrumentation such that the time of each neutron detection event is registered. These detectors in principle may operate via any number of physical processes; however, to keep the subsequent development simple, it is assumed that the detectors operate via neutron absorption such that a detection event is always a terminus in a chain-reaction. In other words, the detector removes the detected neutron from the population and does not return any further neutrons to the population. Consequently, the following developments do not immediately encompass scatter detectors (e.g., plastic scintillators) or fission detectors. However, modifications to the theory required to address these kinds of detectors have been described in the context of previous theories and can be readily extended to apply to the present work.

Previous developments including the Rossi-α, pulsed neutron, and neutron noise methods measure the distribution of two-way coincidence between pairs of events including detector counts and, if an active source is employed, detected source emissions. Central to (although sometimes implicit in) these methods is the concept of the covariance

$$R_{12}(J) \equiv C_{12}(J) \& \overline{x_1 x_2} E\left[x_1(t_1) x_2(t_2)\right]$$

between a pair of signals (x_1, x_2) as a function of the time-delay J between an event in channel 1 and an event in channel 2. Above, both “$E[\cdots]$” and “$\overline{\cdots}$” denote the expected value, or mean, such that $C_{12}(J)$ is the mean total coincidence rate between signals x_1 and x_2 when channel 2 is delayed by J relative to channel 1. The mean rate of “accidental” coincidence, i.e., the rate of uncorrelated coincident events is the product of mean count rates $\overline{x_1 x_2}$. Consequently, $R_{12}(J)$ is the rate of “real” coincidence, i.e., the rate of events coincident at a relative delay of J that are correlated between channels 1 and 2.

In the context of the Rossi-α method, both signals are acquired from radiation detectors such that $R_{12}(J)$ is the distribution of correlated pairs of counts over the relative delay J between the counts in the (x_1, x_2) pair. [5-8] In the context of a pulsed neutron measurement, channel 1 is a “trigger” signal acquired from an instrumented active source and channel 2 is a radiation detector signal. Consequently in this context $R_{21}(J)$ is the distribution of “source-correlated” detector counts over the delay J following an initial source emission. [9] An active neutron noise measurement employing two or more radiation detectors is essentially a simultaneous Rossi-α and pulsed neutron measurement in that it measures the distribution of two-way coincidence between all pairs of signals; a passive neutron noise measurement is essentially the same as a Rossi-α measurement. The only distinction between neutron noise measurements and Rossi-α/pulsed neutron measurements is the way in which the distributions of pairs are analyzed. Neutron noise measurements often employ digital signal processing methods to acquire each distribution of pairs in the frequency- (i.e., Fourier- or Laplace-) domain:

$$D_{12}(s) \equiv \int \frac{dJ}{\pi} e^{i\omega J} C_{12}(J) \quad \int \frac{dJ}{\pi} e^{i\omega J} R_{12}(J) \% j2B \overline{x_1 x_2} *x(s) \quad S_{12}(s) \% j2B \overline{x_1 x_2} *x(s) \quad .$$

\[1\] A Rossi-α measurement may use only a single detector such that x_1 and x_2 are actually the same signal. [5-8]
The spectral density $D_{ij}(s \cdot jT)$ is simply the decomposition of the total coincidence rate distribution $C_{ij}(j)$ into harmonic components $e^{s \cdot jT}$.

The principal reasons (among others) for the use of the frequency-domain representation are (1) to permit digital acquisition and analysis of analog signals (e.g., current-mode signals from an active source and/or detectors) and (2) to facilitate rapid processing of the signals by taking advantage of fast Fourier transform (FFT) algorithms. [10] However, because in this application the transformation is isomorphic (if the signals are processed correctly), the covariance between signals $R_{ij}(j)$ can always be synthesized by inverse transformation of the harmonic spectrum $S_{ij}(s)$.[13-15] Consequently, Rossi-α, pulsed neutron, and neutron noise measurements can be grouped as a single method that measures the distribution of real two-way coincidence between pairs of observed events.

The present work extends this method to measure distributions of n-way coincidence between an arbitrary number n of observed events.4 Central to the method is the notion of a total poly-coincidence distribution

$$C_{12, \ldots, n}(J_1, J_2, \ldots, J_n) \propto \mathbb{E}\left[x_1(t_1) x_2(t_2) \cdots x_n(t_n) \right]_{t_1 \& t_2 \& \ldots \& t_n},$$

from which a corresponding poly-covariance can be obtained by subtracting the relevant accidental poly-coincidence. The form of the accidental poly-coincidence depends upon the order n of the total distribution; for example the accidental poly-coincidence for a third-order statistic is

$$\overline{x_1 R_{23}(J_3 & J_1)} \% \overline{x_2 R_{13}(J_2)} \% \overline{x_3 R_{12}(J_1)} \% \overline{x_1 x_2 x_3},$$

while for a fourth-order statistic it is

$$\overline{x_1 R_{23}(J_3 & J_1)} \% \overline{x_2 R_{13}(J_2)} \% \overline{x_3 R_{12}(J_1)} \% \overline{x_4 R_{134}(J_1, J_2)} \% \overline{x_1 x_2 x_3 x_4}.$$

2Elsewhere this quantity has been referred to as a cross-power spectral density (CPSD), a power spectral density (PSD), or a power spectrum.[10] Subsequently the Laplace transform of a covariance R (not a total coincidence distribution C) shall be simply termed a spectrum S; the context of use will clearly distinguish this harmonic spectrum from an energy spectrum, e.g., a fission neutron spectrum. The Laplace-domain representation shall be used exclusive of the Fourier representation; the latter is simply a special case (i.e., $s \equiv jT$) of the former.

3It is interesting to note that some neutron noise measurements in fact pre-date the development of the FFT.[11,12]

4This is not a new concept in counting measurements; n-way coincidence gates have been available for some time.[16]
Observe that they simply represent the different ways that \(n \) uncorrelated events can be \(n \)-way coincident. A second central concept in the method is that of a poly-spectrum

\[
S_{12...n}(s_1, s_2, ..., s_n) = \int dJ_1 e^{i\epsilon s_1 J_1} \cdot \int dJ_2 e^{i\epsilon s_2 J_2} \cdot \int dJ_n e^{i\epsilon s_n J_n} R_{12...n}(J_1, J_2, ..., J_n) ,
\]

that is simply an \(n \)-dimensional harmonic decomposition of the poly-covariance. Because of the dual nature of convolution in the time-domain (J) and multiplication in the frequency-domain (s), it will prove easier to generalize the subsequent models of high order statistics to arbitrary order \(n \) in the frequency-domain.

These concepts have been "borrowed" from the broader field of high order statistical analysis to be applied to measurements of the temporal evolution of fission chain-reactions. Research into this extension is presented in the remainder of the paper as follows. Section II describes a probabilistic representation of the sequence of events that can give rise to a family of \(n \) correlated neutron counts. Application of Bayes’ rule to conditional probabilities relating each event in the sequence to its predecessors yields the joint probability of the sequence of events. From such joint probabilities the poly-covariance for each specific sequence of events is immediately obtained. Inductive reasoning is subsequently applied to a diagrammatic representation of sequences of events to yield a "prescription" to obtain statistics of arbitrary order. Section III describes properties of the derived high order statistics and emphasizes their progressively higher sensitivity to reactivity. Most of the observations made here transcend the limitations of the simple point model used to derive the statistics in Section II. Several applications taking advantage of the properties of high order statistics are also suggested in Section III. Concluding remarks are made at the close of the paper in Section IV.

2. THEORETICAL MODELS OF STATISTICS OF MEASUREMENTS OF FISSION CHAIN-REACTION EVOLUTION

Figure 1 diagrammatically depicts one possible chain-reaction that can occur during an active measurement of a fissile system. In the figure observable events, i.e., the active source emission \(x_0(t_0) \) (the initiating event) and each of the detection events \(x_j(t_j) \) through \(x_n(t_n) \) (the terminal events), are represented by closed circles. The induced fission events (intermediate events) are in general unobservable and are represented by open circles. Each line connecting events in the sequence represents a single neutron. Observe that the terminal events are collectively “chain-related,” or correlated, to the initiating event by the depicted sequence of intermediate events. Consider that only the branching points in the chain-reaction determine the nature of the correlation between the detection events and the initiating source emission. The intermediate induced fissions along any single branch simply serve to sustain the chain-reaction to a detection event. Consequently, this chain-reaction can be represented by the simpler equivalent diagram shown in Fig. 2. In this figure, each line connecting events in the sequence represents a series of chain-related neutrons (and not a single neutron as in Fig. 1). The label (e.g. “\(<t_0> \), “\(<s_1> \), “\(<d_2> \), etc.) associated with each line denotes the number of neutrons available to sustain that branch in the chain-reaction.

The joint probability of the sequence of events represented by the diagram prescribes the nature of the correlation between the initiating and terminal events. By using Bayes’ rule, such joint probabilities can be generated from the marginal probability of the initiating event, the conditional probability for each intermediate event given the preceding initiating or intermediate events, and the conditional probability for each terminal event given the preceding initiating or intermediate events. For example, the joint probability of a sequence of events \((A,B,C,D,E) \) is just

\[P(A,B,C,D,E) = P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D) \]

Although the binomial expansion of an \(n \)th-order central moment of the form \(E[(x_1 \& x_2) (x_3 \& x_4) ... (x_n \& x_n)] \) yields the accidental poly-coincidence for second- and third-order statistics, this is not true of higher order statistics. In general, for an \(n \)th-order statistic, the form of the accidental poly-coincidence can be obtained by partitioning the set \(\{x_1, x_2, ..., x_n\} \) into all permutations of two, three, ..., and \(n \) non-empty subsets. The beginning of this progression is illustrated in (5). However, because the accidental poly-coincidence can always be obtained from lower order statistics, and because it arises due to uncorrelated coincident events such that it is of no real interest, there will no subsequent mention of accidental poly-coincidence. Our real interest lies in the distribution of correlated events, the poly-covariance.

\[^5\] Although the binomial expansion of an \(n \)th-order central moment of the form \(E[(x_1 \& x_2) (x_3 \& x_4) ... (x_n \& x_n)] \) yields the accidental poly-coincidence for second- and third-order statistics, this is not true of higher order statistics. In general, for an \(n \)th-order statistic, the form of the accidental poly-coincidence can be obtained by partitioning the set \(\{x_1, x_2, ..., x_n\} \) into all permutations of two, three, ..., and \(n \) non-empty subsets. The beginning of this progression is illustrated in (5). However, because the accidental poly-coincidence can always be obtained from lower order statistics, and because it arises due to uncorrelated coincident events such that it is of no real interest, there will no subsequent mention of accidental poly-coincidence. Our real interest lies in the distribution of correlated events, the poly-covariance.
\[p_{ABCDE}(A, B, C, D, E) = p_{E,DCBA}(E*D, C, B, A) \otimes_D p_{DCBA}(D*C, B, A) \otimes_C p_{C*B,A}(C*B, A) \otimes_B p_{B*A}(B*A) \otimes_A(A). \]

where \(A \) is the initial event, and \(B, C, D, \) and \(E \) are either intermediate or terminal events. This is the nature of the subsequent developments that describe first- through third-order statistics. Diagrammatic representations like that depicted in Fig. 2 are eventually used to generalize these statistics to arbitrary order \(n \).

The statistics of interest are the poly-covariances between a collection of \(n \) signals, which may include a signal acquired from an instrumented active source. Once the joint probability \(p_{12...(n)}(t_1, \ldots, t_n) \) of a sequence of \(n \) chain-related observable events has been determined, the corresponding poly-covariance is simply

\[
R_{12...(n)}(J_1, J_2, \ldots, J_{n\&k}) = p_{12...(n)}(t_1, \ldots, t_n) \text{ if } t_k, t_{k+1}, \ldots, t_n, t_{k-1}, \ldots, t_{n-1} \text{ were respectively delayed by } J_1, \ldots, J_{n\&k}.
\]

In other words, the poly-covariance is the expected rate of poly-coincidence between \(n \) correlated events when the second through \(n \)th events are respectively delayed by \(J_1 \) through \(J_{n\&k} \) relative to the first event.

In order to model the probability of a series of chain-related prompt neutrons, the point reactor impulse response

\[
p_*(t) \, dt = \frac{e^{\gamma t}}{7} u(t) \, dt
\]

is used to approximately represent the probable number of neutrons present at time \(t \) per neutron injected into the fissile system at time \(t \). [19] Above, \(u \) represents the causal function (the Heaviside step function), \(\gamma \) denotes the decay constant for prompt-neutron-induced fission chain-reactions (the Rossi-\(\alpha \)), and \(T \) denotes the prompt neutron generation time, i.e., the mean time between generations of prompt neutrons.\(^6\) Subsequently, given that \(\leq \)neutrons were injected at \(t \), the probability that a detection event \(M \) (a count) will occur at \(t_M \) is

\[
p_{M*}(t_M*) \, dt_M = \frac{e^{\gamma t_M}}{7} u(t_M) \, dt_M <.
\]

where \(\gamma_M \) denotes the efficiency of detector \(M \), i.e., the probability per neutron of a count in detector \(M \). Furthermore, given that the mean time between prompt-neutron-induced fissions is \(\tau/T \), where \(\tau \) is the mean number of prompt neutrons emitted per induced fission, the probable number of induced fissions at time \(t \) per neutron injected at time \(t \) is

\[
q_*(t) \, dt = \frac{e^{\gamma t}}{\tau/T} u(t) \, dt <.
\]

Subsequently, given that \(\leq \)neutrons were injected at \(t \), the probability that an induced fission \(F \) will occur at \(t_F \) and emit \(\leq \) neutrons is

\[
q_{F*}(t_F) \, dt = \frac{e^{\gamma t_F}}{\leq/T} u(t_F) \, dt <.
\]

where \(p_F(\leq) \) denotes the probability that \(\leq \) prompt neutrons will emerge from the induced fission \(F \).

Observe that the joint probability of multiple detection events chain-related to a single emission can be expressed as a product of conditional probabilities using Bayes’ rule. For example, the probability of two detection events \(M \) and \(M' \) chain-related to the same neutron emission is

\[\text{Recall that prompt reactivity } D' = k / k' \text{ and } 7, \text{ where } k \text{ denotes the prompt multiplication factor.} \]
because the first detection event leaves only neutrons to induce the second detection event. In general, the probability of detection events correlated to a single emission is

\[p_{12, n^*}(t_1, t_2, \ldots, t_n^*, t) \]

where is the probability that neutrons will emerge from an active source emission, \(t \) denotes the efficiency of the active source, i.e., the probability that a source emission will be detected, and \(Q_0 \) denotes the active source emission rate. \(^7\) Recall that it is assumed that the active source is in general capable of producing multiple neutrons per emission, but that only the emission event itself, and not the number of neutrons produced, can be detected. Consequently, the active source has an observable mean emission rate of

\[\overline{\lambda}_0 = 0 Q_0 \]

However, unobserved source emissions may also initiate fission-chains, and the probability that an undetected active source emission will inject neutrons at \(t_0 \) is \(^8\)

\[q_0^t_0, \xi_0 dt_0 \]

Finally, intrinsic neutron sources, which are collectively denoted by "G", may also initiate fission-chains such that the probability of an intrinsic source emission at \(t_G \) that injects neutrons is

\[q_G^t_G, \xi_G dt_G \]

Each of the preceding independent sources serves to induce fission in the system such that the marginal probability of an induced fission at \(t \) that produces neutrons is

\(^7\)In general, the source emission rate may decay with time as, e.g., \(Q_0 \exp(-\lambda t) \). However, because the duration of a typical measurement is short compared to the decay time of a typical active source (e.g., the half-life of \(^{252} \text{Cf} \) is roughly 2.6 years), decay of the source will be neglected.

\(^8\)Note that a non-instrumented active source can be represented by letting \(t_0 = 0 \), and a passive measurement can be represented by letting \(Q_0 = 0 \).
This is the quantity measured by a pulsed neutron experiment; it is the distribution of detector counts chain-related to some detected active source emissions. Observe that the joint probability of a detection event chain-related to a detected active source emission is simply

\[
p_{00}(t_0, t_1) dt_0 dt_1 \quad \int_\mathbb{R} \int_\mathbb{R} p_{10}(t_1 \ast t_0, \gamma_0) dt_1 \otimes q_{00}(t_0, \gamma_0) dt_0
\]

Subsequently, the covariance between the detector and active source signals is

\[
R_{01}(j) \quad \int_\mathbb{R} p_{00}(t_0, t_1) \int_\mathbb{R} \sum_{n=0}^{\infty} \frac{Q_0}{n!} e^{\frac{j n}{7}} u(t_1 \ast t_0) dt_0 \quad \int_\mathbb{R} \sum_{n=0}^{\infty} \frac{Q_0}{n!} e^{\frac{j n}{7}} u(t_1 \ast t_0) dt_0
\]

The (almost trivial) diagram for this joint probability is shown in Fig. 3. Subsequently, the covariance between the detector and active source signals is

\[
S_{01}(s) \quad \int_\mathbb{R} e^{\frac{j s}{7}} R_{01}(j) \int_\mathbb{R} \sum_{n=0}^{\infty} \frac{Q_0}{n!} e^{\frac{j n}{7}} u(j)
\]

However, some detector counts may instead be chain-related to an undetected active source emission with probability

\[
p_{1}^d(t_1) dt_1 \quad \int_\mathbb{R} \int_\mathbb{R} p_{10}(t_1 \ast t_0, \gamma_0) dt_1 \otimes q_{0}^d(t_0, \gamma_0)
\]
or to an intrinsic source emission with probability

$$ p_1^G(t_1) dt_1 = \int \frac{j_1}{n} dt_G p_1^* e^{i(t_1 - t_G)} dt_1 \left(\frac{Q_0}{Q} \right) $$

such that the total marginal probability of a detector count is

$$ p_1(t_1) dt_1 = \left\{ \left[p_0^0(t_1) \% p_1^0(t_1) \% p_1^G(t_1) \% B_1 \right] dt_1 \right\} $$

where B_1 denotes the background count rate observed in the absence of any source. Consequently,

$$ p_1(t_1) dt_1 = \left\{ \left(\frac{Q_0}{Q} \% \frac{Q_0}{Q} \right) \right\} dt_1 \% B_1 dt_1 = \left\{ \left(\frac{Q_0}{Q} \% \frac{Q_0}{Q} \right) \right\} dt_1 \% B_1 dt_1 $$

such that the mean detector count rate is

$$ \bar{x}_1 = p_1 \left(\frac{Q_0}{Q} \% \frac{Q_0}{Q} \right) \% B_1. $$

In accordance with (26), the count rate is comprised of components arising from counts chain-related to each contributing source described in (15), (17), and (18):

$$ \bar{x}_1 = \bar{x}_1 \% \bar{x}_1 \% \bar{x}_1 \% \bar{x}_1 \% B_1 $$

where R_{θ}^θ and R_{θ}^G are the analogs to R_{θ} respectively obtained by substituting the sources “0” and “G” for the source “0” in (20). Subsequently, a “source-conditional” covariance $R_{\theta \theta}$ may be defined

$$ R_{\theta \theta} = \left(\bar{x}_1 \% \bar{x}_1 \% \bar{x}_1 \% \bar{x}_1 \% B_1 \right) $$

such that the corresponding conditional mean is

$$ \bar{x}_1 = \bar{x}_1 \% \bar{x}_1 \% \bar{x}_1 \% \bar{x}_1 \% B_1 $$

This is the mean number of counts correlated to a detected source emission per detected source emission. Consequently, the fraction of all counts that are chain-related to detected active source emissions is

$$ \frac{\bar{x}_1}{\bar{x}_1 / \bar{x}_1} = \left(\frac{Q_0}{Q} \% \frac{Q_0}{Q} \right) $$

9The quantities R_{θ}^θ and R_{θ}^G (and consequently x_1^θ, x_1^G, S_{θ}^θ, and S_{θ}^G) are entirely conceptual; they cannot be directly measured since the sources “0” and “G” are not directly observable.
In other words, because the covariance between the active source and detector signals is the distribution of counts chain-related to the active source, it can be used in conjunction with the detector count rate to distinguish the count rate arising from detected active source emissions from that arising from unobservable sources.

2.2 SECOND-ORDER STATISTICS

Second-order statistics describe the mean rate of correlated pairs of neutron counting events, which may in turn be collectively correlated to detected active source emissions. Two unique processes can give rise to a correlated pair of counts chain-related to an initial source emission as depicted in Fig. 4. The notation used to denote each process indicates the neutron “economy” of the process. The process labeled “2” begins with the injection of source neutrons which each initiate at least two separate branches in the chain-reaction that in turn terminate in at least two counts. The process labeled “(1-1)+2” begins with the injection of source neutrons that successfully initiate only one branch in the chain-reaction that in turn terminates in at least one induced fission (hence the notation “(1-1)”). This induced fission subsequently injects at least two more neutrons (hence the notation “+2”) into the system that initiate at least two separate branches in the chain-reaction that in turn terminate in at least two counts. These two processes are mutually exclusive such that

\[p_{012}(t_0, t_1, t_2) dt_0 dt_1 dt_2 \cdot \left(p_{012}(t_0, t_1, t_2) \right) \frac{\partial}{\partial t_0} \frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} \cdot \left(p_{012}(t_0, t_1, t_2) \right) \]

\[\left(p_{012}(t_0, t_1, t_2) \right) \frac{\partial}{\partial t_0} \frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} \cdot \left(p_{012}(t_0, t_1, t_2) \right) \]

The joint probability of process 2 is

\[j \frac{e^{\frac{\partial t_0 \partial t_1 \partial t_2}{7}}}{u(t_2 \& t_1)} \left(j < \right) \frac{\partial}{\partial t_0} \frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} \cdot \left(p_{012}(t_0, t_1, t_2) \right) \frac{\partial}{\partial t_0} \frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} \cdot \left(p_{012}(t_0, t_1, t_2) \right) \]

\[j \frac{e^{\frac{\partial t_0 \partial t_1 \partial t_2}{7}}}{u(t_2 \& t_1)} \left(j < \right) \frac{\partial}{\partial t_0} \frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} \cdot \left(p_{012}(t_0, t_1, t_2) \right) \frac{\partial}{\partial t_0} \frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} \cdot \left(p_{012}(t_0, t_1, t_2) \right) \]

and is invariant over a permutation in the sequence of counts \((x_1, x_2)\). That is, the probability of process 2 is the same regardless of which detector count occurs first. On the other hand,

\[\left(p_{012}(t_0, t_1, t_2) \right) \frac{\partial}{\partial t_0} \frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} \cdot \left(p_{012}(t_0, t_1, t_2) \right) \]

\[\left(p_{012}(t_0, t_1, t_2) \right) \frac{\partial}{\partial t_0} \frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} \cdot \left(p_{012}(t_0, t_1, t_2) \right) \]

i.e., the probability of the pair of counts \((x_1, x_2)\) under process (1-1)+2 varies depending upon the order of the two counts. This is so because the induced fission at \(t\) must occur sometime between the source emission at \(t_0\) and the first of the two counts. Consequently,

\[\left(p_{012}(t_0, t_1, t_2) \right) \frac{\partial}{\partial t_0} \frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} \cdot \left(p_{012}(t_0, t_1, t_2) \right) \]

\[\left(p_{012}(t_0, t_1, t_2) \right) \frac{\partial}{\partial t_0} \frac{\partial}{\partial t_1} \frac{\partial}{\partial t_2} \cdot \left(p_{012}(t_0, t_1, t_2) \right) \]
while
\[
(165) \quad \mathcal{P}_{012}(t_0, t_1, t_2) \quad \int_{t_0}^{t_2} \frac{1}{7^2} \frac{e^{\mathcal{G}_j(t_1, t_0) \xi_2}}{\xi_2 \xi_1 \xi_0} e^{\mathcal{G}_j(t_2, t_0) \xi_0} u(t_2) u(t_0) \left\{ e^{\mathcal{G}_j(t_2, t_0) \xi_0} u(t_2) \right\} .
\]

Note that a reversal in the order of the counts results in probabilities that are simply “mirror images” of one another. This is so because reversing the order of the counts simply reverses the relative delays \(j_1, t_1, t_0\) and \(j_2, t_2, t_0\) between each count and the initial source emission such that
\[
(x_0, x_1, x_2) : t_2 > t_1 > t_0 : J_1 > J_2 > 0,
\]
\[
(x_0, x_1, x_2) : t_1 > t_2 > t_0 : J_1 > J_2 > 0 .
\]

In other words, the joint probability of two counts collectively chain-related to a source emission is reflexive over a permutation in the order of counts, as is the bicovariance \(R_{012}\) between the source and detector signals:
\[
(38) \quad p_{012}(t_0, t_1, t_2) = p_{021}(t_0, t_2, t_1) = R_{012}(J_1, J_2) = R_{021}(J_2, J_1) .
\]

Consequently,
\[
(39) \quad R_{012}(J_1, J_2) = p_{012}(t_0, t_1, t_2) \quad \int_{t_0}^{t_2} \frac{1}{7^2} \frac{e^{\mathcal{G}_j(t_1, t_0) \xi_2}}{\xi_2 \xi_1 \xi_0} e^{\mathcal{G}_j(t_2, t_0) \xi_0} u(t_2) u(t_0) \left\{ e^{\mathcal{G}_j(t_2, t_0) \xi_0} u(t_2) \right\} .
\]

is the distribution of correlated pairs of counts collectively chain-related to some detected active source emission over the relative delays \(J_1\) and \(J_2\) between each count in the pair and the initial source emission. The bispectrum between the source and detector signals is just the two-dimensional Laplace transform of the bicovariance:
\[
(40) \quad S_{012}(s_1, s_2) \quad \frac{m J_1 e^{\mathcal{G}_j(t_1, t_0) \xi_2}}{m J_2 e^{\mathcal{G}_j(t_2, t_0) \xi_0}} R_{012}(J_1, J_2) .
\]

Observe that the bispectrum clearly distinguishes between the two processes that produce source-correlated pairs.

Recognize that correlated pairs of counts can arise from any of the three sources “0”, “(j)”, and “G”, such that
\[
(42) \quad \min_{t_1, t_2} \quad p_{ij}(t_1, t_2) \quad \frac{m \mathcal{P}_{012}(t_0, t_1, t_2)}{m \mathcal{P}_{012}(t_0, t_1, t_2)} \quad \min_{t_1, t_2} \quad p_{ij}(t_1, t_2) \quad \frac{m \mathcal{P}_{012}(t_0, t_1, t_2)}{m \mathcal{P}_{012}(t_0, t_1, t_2)} .
\]

\(^{10}\)There is no reason to consider permutations under which the source emission does not occur first; the probability of a chain-related correlated pair of counts under such a permutation is zero because the source emission must initiate the chain-reaction.
where $p_{\phi 12}$ and p_{G12} are the analogs to p_{012} respectively obtained by substituting the sources “ϕ” and “G” for the source “0” in (34), (36), and (37). Subsequently, the covariance between two detector signals

$$R_{12}(j) = p_{12}(i_1, i_2) \cdot e^{\mathcal{G}j} u(i_1) \cdot e^{-\mathcal{G}j} u(i_2)$$

(43)

is the distribution of correlated pairs of counts over the delay j between the two counts in the pair. This is the quantity measured by a Rossi-\alpha experiment.$[5-8]$

Observe that the covariance between detectors is comprised of components arising from each of the three sources

$$R_{12}(j) = R_{12}^{\phi}(j) \cdot R_{12}^{G}(j) \cdot R_{12}^{0}(j)$$

(44)

Subsequently, the spectrum between detectors is

$$S_{12}(s) = m \left\{ \frac{d_{12} e^{\mathcal{G}j} R_{12}(j)}{7^2 (\mathcal{G} + s)^{m \alpha}} \right\}$$

(45)

that, in accordance with (44), is comprised of contributions arising from each of the three sources

$$S_{12}(s) = S_{12}^{\phi}(s) \cdot S_{12}^{G}(s) \cdot S_{12}^{0}(s)$$

(46)

Finally, note that one can define a source-conditional covariance $R_{12\phi 0}$ between detectors

$$R_{012}(J_1, J_2) = R_{12\phi 0}(J_1, J_2) \cdot \mathcal{G}_{0}$$

(47)

and a corresponding conditional mean $(x_1, x_2)_{s_0}$ such that

$$\begin{align*}
\frac{(x_1, x_2)_{s_0}}{(x_1, x_2)_{s_0}} & = \frac{n \sum_{i=1}^{n} d_{1} \sum_{j=1}^{n} d_{2} R_{12\phi 0}(J_1, J_2)}{m \sum_{i=1}^{m} d_{1} \sum_{j=1}^{m} d_{2} R_{12}(J)} \cdot \frac{n \sum_{i=1}^{n} d_{1} \sum_{j=1}^{n} d_{2} R_{012}(J_1, J_2)}{m \sum_{i=1}^{m} d_{1} \sum_{j=1}^{m} d_{2} R_{12}(J)} \cdot \frac{S_{12}(0, 0)}{S_{12}(0)} \\
& = \frac{\sum_{i=1}^{n} \left(\frac{\mathcal{G}_{0}}{\mathcal{G}_{0}} \right) \mathcal{G}_{0}}{\sum_{i=1}^{n} \left(\frac{\mathcal{G}_{0}}{\mathcal{G}_{0}} \right) \mathcal{G}_{0}} \cdot \frac{\sum_{i=1}^{n} \left(\frac{\mathcal{G}_{0}}{\mathcal{G}_{0}} \right) \mathcal{G}_{0}}{\sum_{i=1}^{n} \left(\frac{\mathcal{G}_{0}}{\mathcal{G}_{0}} \right) \mathcal{G}_{0}} \cdot \frac{\sum_{i=1}^{n} \left(\frac{\mathcal{G}_{0}}{\mathcal{G}_{0}} \right) \mathcal{G}_{0}}{\sum_{i=1}^{n} \left(\frac{\mathcal{G}_{0}}{\mathcal{G}_{0}} \right) \mathcal{G}_{0}}
\end{align*}$$

(48)
where \((x_1, x_2)_{0}\) denotes the number of correlated pairs chain-related to a detected source emission per detected source emission and \(\frac{(x_1, x_2)}{x_0}\) denotes the total number of correlated pairs per detected source emission. Consequently, (48) is the fraction of all correlated pairs that are chain-related to a detected active source emission. So the bicovariance between the source and detector signals can be used in conjunction with the covariance between detector signals to distinguish the correlated pairs rate arising from detected active source emissions from that arising from unobservable sources.

2.3 THIRD-ORDER STATISTICS

Third-order statistics describe the mean rate of correlated triplets of neutron counting events, which may in turn be collectively correlated to detected active source emissions. Four processes can give rise to a correlated triplet of counts chain-related to an initial source emission, and these processes are illustrated in Fig. 5. Again the notation used to denote each process indicates the neutron economy of the process. Process “3” is initiated by the injection of at least three source neutrons and terminates in at least three chain-related counts. The joint probability of process (2-1)+2 has three components corresponding to the three mutually exclusive conditions: (1) counts \(x_1\) and \(x_2\) are chain-related to the induced fission \(x\); (2) counts \(x_1\) and \(x_3\) are chain-related to the induced fission \(x\); and (3) counts \(x_1\) and \(x_2\) are chain-related to the induced fission \(x\). Consequently, the bicovariance between the source and detector signals can be used in conjunction with the covariance between detector signals to distinguish the correlated pairs rate arising from detected active source emissions from that arising from unobservable sources.
\[
\begin{align*}
\int_{t_0}^{t_1} \frac{d\mathcal{T}}{\mathcal{m}} & = \int_{t_0}^{t_1} \frac{e^{\mathcal{E} (t_1 \& \mathcal{T})}}{7} u(t_2 \& \mathcal{T}) < \mathcal{Q} \left(\frac{e^{\mathcal{E} (t_1 \& \mathcal{T})}}{7} u(t_1 \& \mathcal{T}) < \mathcal{Q} \right) \frac{e^{\mathcal{E} (t_1 \& \mathcal{T})}}{7} u(t_2 \& \mathcal{T}) < \mathcal{Q} \right) \frac{e^{\mathcal{E} (t_1 \& \mathcal{T})}}{7} u(t_3 \& \mathcal{T}) < \mathcal{Q} \right)
\end{align*}
\]

Process (1-1)+3 is similar to process 3 except that the induced fission at \(t \) must occur between the source emission at \(t_0 \) and the first count at \(t_1 \), such that

\[
\begin{align*}
\int_{t_0}^{t_1} \frac{d\mathcal{T}}{\mathcal{m}} & = \int_{t_0}^{t_1} \frac{e^{\mathcal{E} (t_1 \& \mathcal{T})}}{7} u(t_2 \& \mathcal{T}) < \mathcal{Q} \left(\frac{e^{\mathcal{E} (t_1 \& \mathcal{T})}}{7} u(t_1 \& \mathcal{T}) < \mathcal{Q} \right) \frac{e^{\mathcal{E} (t_1 \& \mathcal{T})}}{7} u(t_2 \& \mathcal{T}) < \mathcal{Q} \right) \frac{e^{\mathcal{E} (t_1 \& \mathcal{T})}}{7} u(t_3 \& \mathcal{T}) < \mathcal{Q} \right)
\end{align*}
\]

Finally, process (1-1)+(2-1)+2 is similar to process (2-1)+2 except that again the induced fission \(x(t) \) must occur between \(x(t_0) \) and \(x(t_1) \). Therefore,
\[
\begin{align*}
\frac{t_1}{n} & \sim \frac{t_2}{m}
\end{align*}
\]

The other five permutations in the sequence of detector counts simply correspond to permutations in the delays \(J_1, t_1 \& t_0, J_2, t_2 \& t_0, \) and \(J_3, t_3 \& t_0, \) between each count and the initial source emission:

\[
(x_0, x_1, x_2, x_3) : J_3 > J_2 > J_1 > 0 ,
\]

\[
(x_0, x_1, x_3, x_2) : J_2 > J_3 > J_1 > 0 ,
\]

\[
(x_0, x_2, x_1, x_3) : J_3 > J_1 > J_2 > 0 ,
\]

\[
(x_0, x_3, x_2, x_1) : J_1 > J_3 > J_2 > 0 ,
\]

\[
(x_0, x_2, x_3, x_1) : J_1 > J_3 > J_2 > 0 ,
\]

\[
(x_0, x_3, x_1, x_2) : J_2 > J_1 > J_3 > 0 ,
\]

\[
(x_0, x_3, x_2, x_1) : J_1 > J_2 > J_3 > 0 ,
\]

such that the tricovariance \(R_{0123} \) between the source and detector signals obeys the permutation relations

\[
R_{0123}(J_1, J_2, J_3) = \begin{cases} R_{0132}(J_1, J_3, J_2) \\ R_{0213}(J_2, J_1, J_3) \\ R_{0231}(J_2, J_3, J_1) \\ R_{0312}(J_3, J_1, J_2) \\ R_{0321}(J_3, J_2, J_1) \end{cases}
\]
Consequently the tricovariance

\[
R_{012}(j_1,j_2,j_3) = \frac{1}{7^3} \left(\begin{array}{c}
\rho_{000}^0(j_1+j_2) \rho_{000}^0(j_1+j_3) \\
\rho_{000}^0(j_1+j_2) \rho_{000}^0(j_2+j_3) \\
\rho_{000}^0(j_1+j_3) \rho_{000}^0(j_2+j_3)
\end{array} \right)
\]

is the distribution of correlated triplets of counts collectively chain-related to some detected active source emission over the delays \(j_1, j_2,\) and \(j_3\) between each individual count in the triplet and the initial source emission. The corresponding \textit{trispectrum} between the source and detector signals is the three-dimensional Laplace transform of the tricovariance:

\[
S_{012}(s_1,s_2,s_3) = \sum_{n_1} d_{1} e^{s_{1}j_{1}} \sum_{n_2} d_{2} e^{s_{2}j_{2}} \sum_{n_3} d_{3} e^{s_{3}j_{3}} R_{012}(j_1,j_2,j_3)
\]

\[
\left(\begin{array}{c}
\frac{\rho_{000}^0(j_1+j_2) \rho_{000}^0(j_1+j_3)}{7^3} \\
\frac{\rho_{000}^0(j_1+j_2) \rho_{000}^0(j_2+j_3)}{7^3} \\
\frac{\rho_{000}^0(j_1+j_3) \rho_{000}^0(j_2+j_3)}{7^3}
\end{array} \right) \left(\begin{array}{c}
\frac{Q_{0}}{7^3} \\
\frac{Q_{0}}{7^3} \\
\frac{Q_{0}}{7^3}
\end{array} \right)
\]

Observe that the trispectrum clearly distinguishes between the four processes that produce source-correlated triplets.

Next consider that correlated triplets can also arise from chain-reactions initiated by the unobservable sources "0" and "G" in addition to the source "0" such that

\[
R_{123}(j_1, j_2) = R_{012}(j_1, j_2) + R_{012}(j_1, j_2) R_{123}(j_1, j_2) + R_{123}(j_1, j_2)
\]

\[
R_{123}(j_1, j_2) = R_{012}(j_1, j_2) + R_{012}(j_1, j_2) R_{123}(j_1, j_2) + R_{123}(j_1, j_2)
\]

\[
R_{123}(j_1, j_2) = R_{012}(j_1, j_2) + R_{012}(j_1, j_2) R_{123}(j_1, j_2) + R_{123}(j_1, j_2)
\]
where the distribution of triplets chain-related to detected active source emissions can be obtained from the tricovariance according to

\[R_{123}(j_1, j_2) = m d_j^1 R_{0123}(j_1, j_2, j_1, j_1, j_2) \]

The distribution of triplets chain-related to the two other sources can be obtained by simply substituting them for the source “0” in (50) through (53) and (59). Consequently, the bicovariance between detector signals

\[R_{123}(j_1, j_2) = \begin{pmatrix} \frac{1}{7} \left(\frac{\left< <0 &<1 \right>(<0 &<2)}{Q_{0} \%Q_{G}} \right) \right) \end{pmatrix} \]

\[e^{-1} u(j_2) \frac{e^{-(1)}}{u(j_1) u(j_2)} e^{-1} u(j_1) u(j_2) \]

is the distribution of all correlated triplets of counts over the delay \(j_1 \) between the first and second count and \(j_2 \) between the first and third count (see also [7]). The bispectrum between detectors is the two-dimensional Laplace transform of the bicovariance; like the bicovariance, the bispectrum has components corresponding to each of the three sources “0”, “0^1”, and “G”:

\[S_{123}(s_1, s_2) = m d_j^1 e^{S_1 J_1} m d_j^2 e^{S_2 J_2} R_{123}(j_1, j_2) \]

In accordance with (59), the bispectrum component corresponding to detected active source emissions

\[S_{123}^0(s_1, s_2) = m d_j^1 e^{S_1 J_1} m d_j^2 e^{S_2 J_2} R_{123}^0(j_1, j_2) \]

and the other two components can be obtained by substitution such that

\[S_{123}(s_1, s_2) = m d_j^1 e^{S_1 J_1} m d_j^2 e^{S_2 J_2} R_{123}(j_1, j_2) \]

Next consider that one can define a source-conditional bicovariance \(R_{123|0} \) between detectors
yields the integer less than or equal to its operand. For example, for the composite
"(2-2)+2+3",
where \(n \) denotes the equivalent value of the symbol with \(n \) branches, and " \(\lfloor \cdot \rfloor \)" denotes the "floor" operator that yields the integer less than or equal to its operand. For example, for the composite "(2-2)+2+3", \(n = 5, m = 2 \), and \(R = 3 \).

\[
R_{023}(J_1, J_2, J_3) \quad \text{and} \quad R_{123}(J_1, J_2, J_3) \quad \text{such that} \]

\[
\frac{R_{023}(J_1, J_2, J_3)}{R_{123}(J_1, J_2, J_3)} = \frac{S_{023}(0, 0, 0)}{S_{123}(0, 0, 0)}
\]

is the fraction of all correlated triplets of counts that are collectively chain-related to a detected source emission. Hence it possible to distinguish triplets chain-related to the active source from those chain-related to other sources.

\[\frac{S_{023}(0, 0, 0)}{S_{123}(0, 0, 0)} \]

is the fraction of all correlated triplets of counts that are collectively chain-related to a detected source emission. Hence it possible to distinguish triplets chain-related to the active source from those chain-related to other sources.

2.4 GENERALIZATION TO ARBITRARY ORDER

For obvious reasons, it is desirable to develop a simple “prescription” to predict statistics of arbitrary order \(n \). Because, for a given order \(n \), the mutually exclusive processes that lead to \(n \) correlated counts can be represented diagrammatically, the first step in this development will be a procedure to ensure that all diagrams representing a particular order are generated.

If the individual symbols in each diagram are thought of as “words,” then there are some simple recursive rules of composition to form all “sentences” that represent a given order. This is illustrated in Fig. 6 for orders one through five. First observe that the notation for each diagram is equivalent to that diagram’s order (e.g., "(2-2)+2+3" = order 5). Next consider that the diagrams along the leftmost column are “minimal” symbols representing each order. Each of these symbols has \(n \) branches and so is defined to be equivalent to the number \(n \). They are called “minimal” because, for each order, the minimal symbols are the only diagrams composed of one symbol representing that order. Subsequent to these are composite (i.e., non-minimal) diagrams formed by concatenation of minimal symbols. Note that composite diagrams of order \(n \) contain only minimal symbols with equivalent values less than or equal to \(n \).

Observe that each right-concatenated symbol is defined to be equivalent to its number of branches, while each left-concatenated symbol is defined to be equivalent to its number of branches minus the number of symbols right-concatenated to it. Consider all the “two-stage” composite diagrams (e.g., "(2-2)+2+3") formed by right-concatenating \(n \) minimal symbols to a single minimal symbol on the left with \(n \) \& \(R \) branches. The basic rule of composition for these diagrams is

\[
\begin{align*}
\frac{1}{n} \left\{ \frac{1}{n \& R} \& m \right\} & \% E_m, \\
m \& \left\{ 1, \ldots, \left\lfloor \frac{n}{2} \right\rfloor \right\} & \quad \text{RO} \left\{ m, \ldots, n \& m \right\},
\end{align*}
\]

where \(\{ n \& R \} \) denotes the equivalent value of the symbol with \(n \& R \) branches, and \(\left\lfloor \cdot \right\rfloor \) denotes the “floor” operator that yields the integer less than or equal to its operand. For example, for the composite "(2-2)+2+3", \(n = 5, m = 2 \), and \(R = 3 \).

\[\frac{S_{023}(0, 0, 0)}{S_{123}(0, 0, 0)} \]

The diagrams beginning with “(1-1)” are not shown in Fig. 6 because they are simply composed of the symbol for “1” left-concatenated to the diagrams already shown.
is a sum with \(m \) terms, each corresponding to the equivalent value of one right-concatenated symbol, such that \(E_m \) sums to
\[
E_m = k_1 \% k_2 \% \ldots \% k_m \% E_m \% m \% R ,
\]
\[
k_m \& k_{m+1} \& \ldots \& k_1 \& 2.
\]

For example, for the composite “(2-2)+2+3”, \(k_1 = 2 \) and \(k_2 = 3 \). For \(R \) and \(m \) restricted to the ranges listed in (66), it will always be possible to construct \(E_m \) from \(m \) terms each greater than or equal to two because
\[
2m \# E_m \# n .
\]

Finally, each term of \(E_m \) with an equivalent value greater than two can be recursively expanded in the composite diagrams for the order equal to its equivalent value. For example, because “(2-1)+2” is the composite diagram for order 3, “(2-2)+2+3” can be expanded into “(2-2)+2+(2-1)+2”. This recursive rule includes composite diagrams of the form “(1-1)+n”. The single term, \(n \), of \(E_{m-1} \) can be expanded into all the preceding composite diagrams representing order \(n \). In this manner all composite diagrams with more than two stages can be recursively generated. This recursive feature of the composition rules results in the complete and non-redundant generation of all diagrams of a given order. Table 1 lists the resulting expansions for all diagrams of order one through six. Note in particular that successive application of the recursion rule always terminates in a composite of the form “(1-1)+(2-1)+(2-1)+\ldots+(2-1)+2”. This “maximal” word represents the longest composite diagram representing a given order. Later, both the minimal and maximal diagrams will be used to prescribe bounds on the behavior of statistics of arbitrary order.

For a given order \(n \), each diagram is equivalent to the joint probability for a particular sequence of events terminating in an \(n \)-tuple of detector counts. Because all the diagrams for a particular order represent mutually exclusive sequences of events, the total joint probability for that order is simply the sum of the joint probabilities represented by the diagrams. Furthermore, due to the equivalence between the \(n \)th-order poly-covariance and the joint probability for that order, the diagrams are equivalent to the \(n \)th-order poly-covariance. Finally, because there is an isomorphism between the \(n \)th-order poly-spectrum and poly-covariance, the diagrams are equivalent to the \(n \)th-order poly-spectrum. The rules for expressing a particular diagram as a poly-spectrum are fairly simple.

First consider the \(n \)th-order poly-spectrum between an active source signal and \(n \) detector signals. Each event in a particular permutation of a sequence contributes a factor to the poly-spectrum. The \(i \)th terminal (detection) event contributes a factor of
\[
\frac{1}{7} ^i \{ a_j \# i \}, \quad i \in \{1, \ldots, n\} .
\]

Each intermediate (induced fission) event contributes a factor of
\[
\frac{1}{7} ^{\ell \{ s_j \}} ,
\]
where \(\ell \{ s_j \} \) denotes the set of terminal events traceable through the diagram to that particular intermediate event. The \(j \)th factorial moment of \(p(\ell) \) is denoted by
\[
\frac{1}{7} ^{\ell \{ \alpha \}} j \in p(\ell) \& \ell \{ \alpha \} \& 1 , \quad (\ell \{ \alpha \} \% \ell) , \quad j \in p(\ell) \& \ell \{ \alpha \} \& C_j , \quad j \in p(\ell) \& \ell \{ \alpha \} \& P_j .
\]

where \(j \) is the number of branches in the symbol representing the induced fission event. Note also that all possible permutations of the subset \(\ell \{ 1, \ldots, n \} \) must be included as additive terms and that multiple intermediate events in the
same stage trace to mutually exclusive sets of terminal events (i.e., multiple fissions events cannot cause the same detection event). Finally, the initial (source emission) event contributes a factor of

\[P_k, 0, Q_0 \] \[(72) \]

where \(k \) is the number of branches in the initial symbol in the diagram. For example, the fourth-order diagram “(2-1)+(2-1)+2” is equivalent to the term

\[S_{0123}(s_1, s_2, s_3, s_4) \cdot \frac{1}{7^4} \left(\begin{array}{cccc}
\frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} \\
\end{array} \right) \]

\[(73) \]

in the fourth-order poly-spectrum between the active source and detector signals, and the diagram “(2-2)+2+2” is equivalent to the term

\[S_{0123}(s_1, s_2, s_3, s_4) \cdot \frac{1}{7^4} \left(\begin{array}{cccc}
\frac{1}{n} & \frac{1}{n} & \frac{1}{n} & \frac{1}{n} \\
\end{array} \right) \]

\[(74) \]

in this same poly-spectrum.

Once the \(n \)th-order poly-spectrum between the active source and detector signals has been determined, it is easy to generate the \(n \)th-order poly-spectrum between only the detector signals. This is done via two substitutions. First, because all active and intrinsic source emissions can potentially produce a correlated \(n \)-tuplet of detector counts. Second, due to the integral relation ship between \(R_{12,n} \) and \(R_{10^1,\sim G;12,n} \) (compare (29), (46), and (62)),

\[s_1 \% s_2 \% s_n \ 6 \ 0 : s_1 \ 6 \ \& s_1 \ \& s_2 \ \& s_n \& s_1 \\
\ 6 \ s_1 \\
\ 6 \ s_2 \\
\ 6 \ s_n \& s_1 \]

\[(76) \]

For example, the fourth-order diagram “(2-1)+(2-1)+2” is equivalent to the term
detected active source emission (see (32), (48), and (65)). This is because the poly-covariance conjunction with a poly-covariance between mass.

progressively higher sensitivity to changes in reactivity and hence to changes in composition, configuration, and fissile

are chain-related to an intrinsic source that is otherwise unobservable. Second, successively higher order statistics possess

between the temporal distribution of detectors can be used in potentially useful general properties of higher order statistics have been identified. First, they can be used to distinguish comparisons of applications of the new statistics to similar applications using previously developed ones. To date, two

Furthermore, because “newness” is only a state relative to preceding developments, the following contains several

fairly easily described in terms of poly-spectra.

not absolutely necessary to possess such a procedure. The subsequent general features of higher order statistics can be

order poly-covariances, although implicit in the preceding procedure, has not yet been explicitly formulated. However, it is

in this same poly-spectrum.

in the fourth-order poly-spectrum between detector signals, and the diagram “(2-2)+2+2” is equivalent to the term

in this same poly-spectrum.

So the preceding is the prescription required to predict poly-spectra of arbitrary order. The corresponding poly-
covariances can be synthesized via application of the inverse-Laplace transform. Unfortunately, a prescription to predict nth-
order poly-covariances, although implicit in the preceding procedure, has not yet been explicitly formulated.\(^{12}\) However, it is

not absolutely necessary to possess such a procedure. The subsequent general features of higher order statistics can be fairly easily described in terms of poly-spectra.

3. GENERAL PROPERTIES OF HIGH ORDER STATISTICS AND THEIR POTENTIAL UTILITY

Frequently it is easier to describe the properties of something new in terms of the new things that can be done with it. Furthermore, because “newness” is only a state relative to preceding developments, the following contains several comparisons of applications of the new statistics to similar applications using previously developed ones. To date, two potentially useful general properties of higher order statistics have been identified. First, they can be used to distinguish between the temporal distribution of n-tuplets that are chain-related to an introduced active source from that of n-tuplets that are chain-related to an intrinsic source that is otherwise unobservable. Second, successively higher order statistics possess progressively higher sensitivity to changes in reactivity and hence to changes in composition, configuration, and fissile mass.

On several occasions it has been noted that a poly-covariance between an active source and n detectors can be used in conjunction with a poly-covariance between n detectors to determine the fraction of all n-tuplets that are correlated to a detected active source emission (see (32), (48), and (65)). This is because the poly-covariance

\[
R_{12}^{0}(J_{1}, J_{2}, \ldots, J_{n \&}) = n! \sum_{0}^{n} R_{012}^{0}(J_{1}, J_{2}, \ldots, J_{n \&})
\]

\[
(79)
\]

\(^{12}\)Hopefully, this desired formulation will be evident to some interested reader.

20
is the temporal distribution of \(n \)-tuplets that are correlated to a detected active source emission while the poly-covariance \(R_{12,n} \) is the temporal distribution of all \(n \)-tuplets. In principle, this relationship could be used to distinguish between the distribution of \(n \)-tuplets chain-related to the active source from that of \(n \)-tuplets chain-related to the intrinsic source, if one is present, because

\[
R_{12,n}(j_1, j_2, \ldots, j_{n+1}) = R_{12,n}^{0}(j_1, j_2, \ldots, j_{n+1}) \%R_{12,n}^{G}(j_1, j_2, \ldots, j_{n+1}) . \quad (80)
\]

In other words, the marginal distribution \(R_{12,n} \) is comprised of one component \(R_{12,n}^{0} \) that is due to detected active source emissions and one component \(R_{12,n}^{G} \) that is not. One problem in the implementation of this principle is that the active source may not be 100% efficient, and the efficiency of the active source may be unknown. That is

\[
R_{12,n}^{G}(j_1, j_2, \ldots, j_{n+1}) = R_{12,n}^{G}(j_1, j_2, \ldots, j_{n+1}) , \quad (81)
\]

where \(R_{12,n}^{G} \) is due to undetected active source emissions and \(R_{12,n}^{G} \) is due to the intrinsic source.

However, a solution to this problem lies within the principle itself. If the poly-covariance between the active source and detectors and the poly-covariance between just the detectors are measured simultaneously in the absence of any fissile system or intrinsic source, then

\[
R_{12}^{0}(j_1, j_2, \ldots, j_{n+1}) \%R_{12,n}^{G}(j_1, j_2, \ldots, j_{n+1}) , \quad (83)
\]

For example, the efficiency of a \(^{252}\)Cf ionization chamber can be measured by using two detectors and acquiring the bicovariance between the source and detectors and the covariance between the detectors when the two detectors are exposed to the source in air in the absence of any other spontaneous fission sources.\(^1\) The author and colleagues at the Oak Ridge National Laboratory have performed such measurements using plastic scintillators and constant fraction discrimination pulse processing instrumentation to optimize the discriminator threshold for \(^{252}\)Cf ionization chambers and achieve maximum efficiency.\(^4\) During these measurements it was noted that the efficiency measured for any particular source threshold was completely insensitive to changes in the detector thresholds, the high voltage applied to the detector photomultiplier tubes, the coincidence gate width used to collect the covariance and bicovariance, and the physical location of the detectors and their proximity to the \(^{252}\)Cf source. So, for this particular method, the conclusion (82) drawn from the supporting theory extends beyond the limitations of the point models used to develop the theory.

Once the source efficiency has been measured, subsequent measurements of a fissile system containing intrinsic sources can partition the distribution of \(n \)-tuplets \(R_{12,n} \) into one component \(R_{12,n}^{0} \) that is due to all active source emissions

\[
R_{12,n}(j_1, j_2, \ldots, j_{n+1}) = R_{12,n}^{0}(j_1, j_2, \ldots, j_{n+1}) %R_{12,n}^{G}(j_1, j_2, \ldots, j_{n+1}) \quad \frac{1}{n}R_{12,n}^{0}(j_1, j_2, \ldots, j_{n+1}) \quad (83)
\]

\(^1\)Observe that only first-order statistics (i.e., the covariance between the source and a detector and the detector count rate) can be used to measure the efficiency of an active source that emits only one neutron per source event (e.g., an APNG) because \(p(d < 1) < 0 \), and then the measurement must be performed in the absence of significant background.

\(^4\)Sometimes it is not possible to select a threshold to achieve 100% counting efficiency for \(^{252}\)Cf fission-fragments because it is necessary to ensure that all counts due to \(\alpha \)-decay of \(^{252}\)Cf are discriminated. This often discriminates some low energy fission-fragment counts as well.\([1]\)
and one component $R_{12,n}^G$ that is due only to intrinsic source emissions such that

$$R_{12,n}(j_1,j_2,\ldots,j_{n+1}) = R_{12,n}^G(j_1,j_2,\ldots,j_{n+1}) \times R_{12,n}^0(j_1,j_2,\ldots,j_{n+1}) \% R_{12,n}^G(j_1,j_2,\ldots,j_{n+1}). \quad (84)$$

Consequently, the distribution of n-tuplets chain-related to intrinsic source emissions can be indirectly measured. This means that active measurements performed on fissile systems containing intrinsic sources, e.g., plutonium assemblies or spent nuclear fuel, can now use this technique to measure properties of the otherwise unobservable intrinsic sources.

Sometimes, however, the properties of intrinsic sources are of no real interest. In such applications, it is desirable to construct quantities that are independent of the presence and/or strength of intrinsic sources. Furthermore, it is also desirable to construct quantities that are as well independent of detection efficiency and the response of associated counting instrumentation.

Discussion of the effects of instrumentation response has been deferred up to this point. Now consider that the signal $x_{m}(t_{m})$ that is actually acquired from channel m (which can be either an active source or a radiation detector) is related to the actual sequence of counting events $x_{m}(t_{m})$ by

$$x_{m}(t_{m}) = \int_{t_m}^\infty dx_{m}(t_{m}) h_m(t_{m}) dt_{m} x_{m}(t_{m} \& t_{m}) \quad , \quad (85)$$

where h_{m} is the impulse response of the electronics associated with channel m. Subsequently, the transfer function of the electronics associated with channel m is

$$H_{m}(s) = \int_{t_m}^\infty dt e^{st} h_m(t_{m}) \quad . \quad (86)$$

Upon inclusion of the electronics transfer functions, the acquired poly-spectrum between the source and detectors becomes

$$S_{012,n}(s_1,s_2,\ldots,s_n) = H_{0}(s_1) H_{1}(s_1) H_{2}(s_2) \ldots H_{n}(s_n) \quad , \quad (87)$$

and the acquired poly-spectrum between detectors becomes15

$$S_{12,n}(s_1,s_2,\ldots,s_{n+1}) = H_{1}(s_1) H_{2}(s_2) H_{3}(s_3) \ldots H_{n}(s_n) \quad , \quad (88)$$

Consequently, if the impulse response of the electronics associated with any channel changes, as can occur due to changes in gain or timing resolution, these statistics will change accordingly.

In order to construct a quantity that would be robust to changes in detection efficiency and electronics response, Mihalczo and Paré introduced the spectral ratio10

$$\frac{S_{01}(s)}{S_{02}(s)} \left[\frac{S_{01}(s)}{S_{02}(s)}\right]^* \quad (89)$$

where S_{α} is the source autospectrum (a univariate statistic)

$$S_{\alpha}(s) = \int d\beta e^{\beta s} R_{0\alpha}(\beta) \quad , \quad H_{\beta}(s) H_{\beta}(s) \quad , \quad (90)$$

15Observe that upon inclusion of the source and detector transfer functions, (82) yields $\rho H_{\beta}(0)$, where $H_{\beta}(0)$ is essentially the gain of the source electronics. However (82) still yields the fraction of all active source events that are actually counted.

10In earlier publications, this quantity has been referred to as the ratio of spectral densities; more recent publications refer to it as the spectral ratio.10
where \(R_{\text{ac}} \) denotes the source autocovariance (another univariate statistic), that, upon inclusion of the source impulse response, is

\[
R_{\text{ac}}(\tau) = \frac{1}{\pi} \int_{-\infty}^{\infty} \text{d}t_0 \int_{-\infty}^{\infty} \text{d}t_0' \ h(t_0) h(t_0') \ R_{\text{ac}}(\tau) \ % t_0 & t_0'.
\]

(91)

Observe that although the spectral ratio is independent of the detectors’ efficiencies and the impulse response of any associated electronics, it does depend upon the source efficiency and upon the presence and strength of intrinsic sources

\[
\begin{align*}
\frac{\sum_{1}^{2} \left(\begin{array}{c} 1 \ % Q_0 \ & t_0 \ Q_0 \ % t_0 \end{array} \right)}{\left(\begin{array}{c} 1 \ % Q_0 \ & t_0 \ Q_0 \ % t_0 \end{array} \right)} & = \left(\begin{array}{c} 1 \ % Q_0 \ & t_0 \ Q_0 \ % t_0 \end{array} \right) \ \ % \left(\begin{array}{c} 1 \ % Q_0 \ & t_0 \ Q_0 \ % t_0 \end{array} \right).
\end{align*}
\]

(92)

where \(*D^* \ & Q^* \) denotes subcritical prompt reactivity. Furthermore, although not explicitly shown, the inherent delayed neutron source will as well affect the spectral ratio according to

\[
\left(\begin{array}{c} 1 \ % \$ \ & \$ \ Q_0 \ & \$ \ Q_0 \end{array} \right) \ \ % \left(\begin{array}{c} 1 \ % \$ \ & \$ \ Q_0 \ & \$ \ Q_0 \end{array} \right).
\]

(93)

where \$ denotes the system’s effective delayed neutron fraction.

Consider as a modification to the spectral ratio the quantity

\[
Q_1 \ % \left(\begin{array}{c} S_{\text{ac}}(0) S_{\text{ac}}(0) \ \ % \end{array} \right) \ \ % \left(\begin{array}{c} S_{\text{ac}}(0) S_{\text{ac}}(0) \ \ % \end{array} \right).
\]

(94)

that, for lack of a better name, will be called the bispectral ratio. Observe that

\[
Q_1 \ % \left(\begin{array}{c} \ % \ \ % \ d \\ t_1 \ \ % \ \ % \ d \\ t_1 \ \ % \ \ % \ end{array} \right) \ \ % \left(\begin{array}{c} \ % \ \ % \ d \\ t_1 \ \ % \ \ % \ end{array} \right).
\]

(95)

such that the bispectral ratio can be thought of as the number of independent pairs whose individual members are chain-related to the active source per correlated pair that is collectively chain-related to the active source. This quantity,

\[
Q_1 \ % \left(\begin{array}{c} \ % \ \ % \ d \\ t_1 \ \ % \ \ % \ end{array} \right) \ \ % \left(\begin{array}{c} \ % \ \ % \ d \\ t_1 \ \ % \ \ % \ end{array} \right).
\]

(96)

is independent of both the detectors’ efficiencies and the source efficiency as well as the impulse response of any associated electronics. Furthermore, because all quantities in the bispectral ratio are correlated to the active source, it is completely independent of the presence and/or strength of any intrinsic sources. Finally, because the inherent delayed neutron source is essentially uncorrelated with active source emissions, the bispectral ratio is also independent of the strength of the inherent delayed neutron source.

Further observe that as a subcritical fissile system approaches prompt critical,
i.e., the bispectral ratio is directly proportional to subcritical prompt reactivity for systems close to prompt critical. Next observe that for extremely subcritical systems, the bispectral ratio asymptotically approaches the source Diven factor:

$$Q_{1 @ 0} \frac{x_{0}^{2}}{D_{0} \&} \frac{\xi_{0}^{*} D^{*}}{\xi_{0}^{*}} (\xi_{0} \& 1)$$ \hspace{1cm} (98)$$

if an active source capable of emitting multiple neutrons per event is used. Monte Carlo calculational models of 252Cf source-driven measurements of simple uranium-metal systems indicate that the transition between asymptotic behaviors (97) and (98) occur in the region where the prompt multiplication factor $k - 0.5$. Consequently, it may be possible to use the bispectral ratio to estimate subcritical prompt reactivity for $k / 0.5$.

If, on the other hand, an active source that emits only a single neutron per event (e.g., an APNG) is used, then the bispectral ratio is directly proportional to subcritical prompt reactivity for all values of subcritical reactivity. Consequently, it may be possible to use the bispectral ratio to estimate subcritical prompt reactivity over a broad range if an APNG is used as the active source. Furthermore, measurements of uranium-metal systems have shown that not only is the bispectral ratio independent of detection efficiency but that it is also fairly robust to changes in the position of the source and detectors relative to one another and to the fissile system. So, although only a few measurements of this quantity have as yet been conducted, it is reasonable to speculate that the bispectral ratio may be of significant utility for monitoring subcritical reactivity even in fissile systems containing unknown intrinsic sources, e.g., spent nuclear fuel and plutonium assemblies.

Observe in addition that it is also possible to construct higher order poly-spectral ratios of the form

$$Q_{1 @ @ @ @ 0} \frac{k_{m+1}^{n}}{m!} S_{0}^{(0)}(0,0,0,0) \frac{k_{m}^{d} R_{n}^{*}}{m!} \frac{d^{n}}{m!} \frac{d^{n}}{m!} \frac{d^{n}}{m!} R_{12, n}^{*} J_{1, J_{2}, \ldots J_{n}}$$ \hspace{1cm} (100)$$

In so doing, it is prudent to ask, “How will these poly-spectral ratios depend upon reactivity?” It can and subsequently will be shown that, for extremely subcritical fissile systems, the nth-order poly-spectral ratio will asymptotically approach

$$Q_{1 @ @ @ @ 0} \frac{x_{0}^{n}}{D_{0} \&} \frac{\xi_{0}^{*} D^{*}}{\xi_{0}^{*}} (\xi_{0} \& n \% 1)$$ \hspace{1cm} (101)$$

On the other hand, for fissile systems approaching prompt critical, the nth-order poly-spectral ratio will asymptotically behave as

$$Q_{1 @ @ @ @ 0} \frac{x_{0}^{n}}{D_{0} \&} \frac{\xi_{0}^{*} D^{*}}{\xi_{0}^{*}} (\xi_{0} \& n \% 1)$$ \hspace{1cm} (102)$$

Monte Carlo calculational models of 252Cf-driven active measurements of simple uranium-metal systems have shown that the transition between these asymptotic behaviors in the trispectral (i.e., third-order) ratio occurs in the same region, $k - 0.5$, as the transition observed in the bispectral ratio.[20] It is therefore reasonable to speculate that yet higher order spectral ratios will behave similarly.

The upper asymptotic behavior (102) of the poly-spectral ratios occurs due to a fundamental, and in retrospect obvious, property of higher order statistics. Successively higher order statistics are progressively more sensitive to reactivity. Recall
that among the possible sequences of events that lead to an n-tuplet of correlated counts is a minimal sequence that contributes to the nth-order poly-spectrum as

$$\left. \frac{\%}{D^n & 4} \right| \frac{S_{012, n}(0, 0, \gamma, 0) - S_{12, n}(0, 0, \gamma, 0)}{D^n & 6} \left. \frac{\%}{\left(\frac{n}{7} \right)^n} \right| \frac{\%}{\left(\frac{n}{6} & 1 \right)^n} \left(\frac{\%}{\left(\frac{n}{5} & 1 \right)^n} \right) \left(\frac{\%}{\left(\frac{n}{4} & 1 \right)^n} \right) \left(\frac{\%}{\left(\frac{n}{3} & 1 \right)^n} \right) \left(\frac{\%}{\left(\frac{n}{2} & 1 \right)^n} \right) \left(\frac{\%}{\left(\frac{n}{1} & 1 \right)^n} \right).$$

This sequence of events occurs when a source emits at least n neutrons that successfully initiate at least n branches in the chain-reaction. This is the shortest sequence of events. In extremely subcritical systems, it is also the most probable sequence of events, and it has the minimum sensitivity to reactivity characteristic of a given nth-order statistic. Further recall that for a given order n, there is also a characteristic maximal sequence that contributes to the poly-spectrum as

$$\left| \frac{\%}{D^n & 0} \right| \frac{\%}{\left(\frac{n}{7} \right)^n} \left| \frac{\%}{\left(\frac{n}{6} & 1 \right)^n} \right| \left| \frac{\%}{\left(\frac{n}{5} & 1 \right)^n} \right| \left| \frac{\%}{\left(\frac{n}{4} & 1 \right)^n} \right| \left| \frac{\%}{\left(\frac{n}{3} & 1 \right)^n} \right| \left| \frac{\%}{\left(\frac{n}{2} & 1 \right)^n} \right| \left| \frac{\%}{\left(\frac{n}{1} & 1 \right)^n} \right|.$$

This sequence of events occurs when a source emits neutrons that themselves successfully initiate only one branch in the chain-reaction. However, this first branch is followed by a succession of induced fissions that each initiate two branches in the chain-reaction, such that by its terminus the chain-reaction has branched $2n&1$ times. This is the longest sequence of events, and it is also the most probable sequence of events in fissile systems approaching prompt critical.

All other possible sequences of events leading to an n-tuplet of correlated counts will have sensitivity to reactivity somewhere between the lower and upper bounds (103) and (104). Monte Carlo calculational models of 252Cf active source measurements of simple uranium-metal systems have produced results that adhere closely to these conclusions.[20]

Finally, observe that both the upper and lower asymptotic sequences possess progressively higher sensitivity to reactivity for successively higher order statistics. This feature of the higher order statistics is the one that promises to have the greatest potential utility. It can be applied to detect progressively smaller changes in subcritical reactivity that occur due to changes in composition, configuration, and fissile mass. Therefore, it may prove useful in systems identification applications since it should be able to distinguish between very similar, but still different, fissile assemblies. It is expected that this technique may be of particular interest to experimenters developing methods to support nuclear materials control and accountability.

4. CONCLUSIONS

A probabilistic technique has been used to develop theoretical models of high order statistics acquired from measurements of the temporal evolution of fission chain-reactions. The models developed encompass statistics acquired from both active and passive measurements of fissile systems, and they describe the temporal distribution of n-tuplets of correlated detector counts that in turn may be collectively correlated to active source emissions. This development unifies the Rossi-α, pulsed neutron, and neutron noise analysis methods and generalizes them from a single method to measure pairs of correlated events to a single method to measure collections of an arbitrary number of correlated events.

It has been demonstrated that successively higher order statistics possess progressively higher sensitivity to reactivity. Consequently, these counting statistics are more sensitive to changes in the composition, configuration, and fissile mass of the system measured. Furthermore, it has been shown that this technique is capable of distinguishing the response of the fissile system to the active source from its response to intrinsic or inherent sources. It may in fact allow the measurement of properties of intrinsic sources that are otherwise difficult or impossible to observe directly. This ability in conjunction with their enhanced sensitivity indicates that these statistics may be of significant utility in a variety of applications. Potential applications include enhanced radiation signature identification of weapons components to support nuclear disarmament and safeguards efforts and augmented nondestructive analysis of spent nuclear fuel. In general, the technique should expand present capabilities in the analysis of neutron counting measurements.
ACKNOWLEDGMENTS

I am indebted to John Mihalczo for suggesting this course of research to me and for complementing my predilection for deductive reasoning with his for the intuitive kind. I also owe Tim Valentine thanks for his advice and direction in deciphering previous developments, particularly those of Gordon E. Hansen, in order to acquire a solid foundation for the theoretical models described herein.

REFERENCES

Figure 3. One possible chain-reaction that can occur during an active measurement of a fissile system; closed circles denote observable events including detector counts and detected source emissions, open circles denote unobservable induced fission events, and each line indicates a neutron.

\[t_{s} < t < t' < t_{c} \leq t_{s} \leq t \leq t_{c} \leq t_{s} \]

Figure 4. Diagram representing chain-reaction shown in Fig. 1; each line now indicates a series of "chain-related" neutrons, and the label associated with each line indicates the number of neutrons available to sustain that branch in the chain-reaction.
Figure 5. Diagram representing a chain-reaction terminating in one detector count (see also Fig. 2).

Figure 6. Diagram representing chain-reactions terminating in two correlated detector counts; the notation indicating each process denotes the neutron economy of the chain-reaction (see also Fig. 2).

Figure 7. Diagram representing chain-reactions terminating in three correlated detector counts; the notation indicating each process again denotes the neutron economy of the chain-reaction (see also Fig. 2).
Figure 8. Diagrammatic representation of all chain-reactions terminating in from one to five detector counts; diagrams in the leftmost column are minimal because they are formed from one symbol, and all subsequent diagrams are composites formed by concatenation of minimal symbols. Diagrams beginning with “(1-1)” are not shown here because they are identical to the diagrams shown right-concatenated to the symbol for “1”.
Table 1. Recursive expansions to generate all chain-reactions terminating in from one to six detector counts; notation indicates the neutron economy of each specific chain-reaction, the order indicates the number of detector counts, and the number of stages indicates the length of generated composite diagram formed from concatenating minimal symbols (see also Fig. 6).

<table>
<thead>
<tr>
<th>Order</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(1-1)x2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>(2-1)x2</td>
<td>(1-1)x2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>(3-1)x2</td>
<td>(2-1)x2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>(4-1)x2</td>
<td>(3-1)x3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>(5-1)x2</td>
<td>(4-1)x3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Stages