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ABSTRACT 

This document provides guidance to xLPR model developers on how they can more effectively 

design and communicate the requirements of their modules to the xLPR Computational Group (CG) 

by using Unified Modeling Language (UML) and Service-Oriented Architectural (SOA) design 

principles. This document gives an overview on the use of UML and SOA design principles to aid the 

analysis, design and implementation of xLPR modules as GS external functions.  

 



 

 

 

1 BACKGROUND ON GOLDSIM EXTERNAL FUNCTIONS 

GoldSim allows the user to develop separate program modules [1] (written in C, C++, Pascal, 

Fortran, or other compatible programming languages) which can then be directly coupled with the 

main GoldSim algorithms. These user-defined modules are referred to as external functions, and are 

linked into GoldSim as DLLs (Dynamic Link Libraries) at run time. Supporting both 32-bit and 64-

bit DLLs, GoldSim interfaces with the DLL via an External element. 

From Appendix C in the GoldSim User’s Guide [1], external functions work with external elements 

to do calculations or other manipulations that are not included in the standard capabilities of 

GoldSim. The external function facility allows special purpose calculations or manipulations to be 

accomplished with more flexibility, speed, or complexity than with the standard GoldSim element 

types. These external functions are bound to the GoldSim executable code at run time using DLL 

technology. The DLL files should be present in the same folder as the GoldSim.gsm file, in the same 

folder as the GoldSim executable file, or elsewhere in the user’s path. Note that these functions are 

external to GoldSim and are not covered by the standard GoldSim verification process. The user is 

responsible for any necessary testing of external functions. 

Every external function is called by GoldSim with specific requests. The requests include 

initialization, returning the function version number, performing a normal calculation, and “cleaning 

up” after a simulation. The function name and argument list (the set of input and output data for the 

function) are specified by the GoldSim user when setting up the external element.  

External functions should provide their own error handling, message handling, file management and 

memory management if required. It is essential that when it receives a “clean up” request, an external 

function should release any dynamically acquired memory and close any open files. In the case of an 

error condition, the external function should always return an error code to GoldSim, so that the user 

can be informed about the problem and the simulation can be terminated cleanly with no memory 

leaks. 

Figure 1 presents a sample of a GS diagram with external functions. Especifically, Figure 1 is a 

diagram from “INPAGN_Laucher General Algorithm, Implementation and Execution of Probabilistic 

Calculations Using GS” by D. Kalinich, P. Mattie, and C. Sallaberry from SNL, presentation on June 

10, 2010; Rockville, MD. 

 



 

 

 

xLPR modules are implemented as external functions in GoldSim.  

 

Figure 1 Sample GS Design of External Functions 



 

 

 

2 UML DIAGRAMS RELEVANT TO XLPR MODULE DESIGN 

 

2.1 What is the Unified Modeling Language or UML? 

From ref. [2], the Unified Modeling Language (UML) is the standard modeling language for software 

and systems development.  UML is a general-purpose notational language for specifying and 

visualizing large complex software projects and can be thought of as a more powerful and more 

general successor to the familiar software flowcharts used in the past. UML is very useful in 

describing, designing, documenting, and managing the evolution of software. While there are a 

number of ways of describing a model (including word descriptions, source code listings, tabulations 

of input and outputs) to be implemented into a computational framework, the application of UML as a 

communications tool between model developers and implementers has a number of advantages: 

UML is a formal language – Each element of the language has a strongly defined meaning. 

UML is concise – The entire language is made up of simple and straightforward notations. 

UML is comprehensive – UML is capable of describing all important aspects of a software system at a 

sufficiently high level of abstraction. 

UML is scalable – Where needed, the language is formal enough to handle large system modeling 

projects, but it also scales down to smaller elements. 

UML is built on lessons learned – UML is the culmination of best practices developed over the last 

20 years by the software community, where the ultimate technical imperative is the management of 

complexity [3]. 

UML is a standard – UML is controlled by an open standards group with active contributions from a 

worldwide group of software developers. The standard ensures UML’s transformability and 

interoperability, i.e., developers are not tied to any one commercial UML tool or product. 

UML was created by Object Management Group and UML 1.0 specification draft was proposed to 

the OMG in January 1997. Since then, it has become the standard for building Object Oriented 

Software. UML’s main versions since UML 1.0 are UML 1.5 and UML 2.0, the later was adopted on 

2005 

 



 

 

 

UML was developed to unify the notation of Object Oriented (OO) Languages. As most xLPR 

modules have been written in Fortran, the OO Diagrams of UML will not apply to them. However, 

the xLPR Developers can take advantage of the following diagrams which have a more general focus. 

 component diagrams, 

 deployment diagrams,  

 use case diagrams,  

 interaction diagrams 

 activity diagrams, and  

 state-chart diagrams. 

The following sections present those diagrams. 

2.2 Component Diagram 

A component diagram represents a set of components and their relationships. Figure 2 shows a 

sample component diagram. 



 

 

 

 

Figure 2 Component Diagram 

2.3 Deployment diagram 

A deployment diagram represents a set of nodes and their relationships. Figure 3 shows a sample 

deployment diagram. 



 

 

 

 

Figure 3 Deployment Diagram 

2.4 Behavioral Modeling Diagrams 

Behavioral Modeling Diagrams represent interaction between elements of a system. They represent 

activities, such as flow, communication, movement and change. UML behavioral modeling diagrams 

are defined below. 

2.4.1 Activity diagram 

An activity diagram represents a series of functions that visualize the entire flow in a system during 

execution. The flow can be sequential, concurrent or branched between the different components. 

Figure 4 shows a sample activity diagram. 

 

 

 



 

 

 

 

Figure 4 Activity Diagram 

2.4.2 Sequence diagram 

A sequence diagram represents sequential call flow from one element to another.  Figure 5 shows a 



 

 

 

sample sequence diagram. 

 

Figure 5 Sequence Diagram 

 

2.4.3 Collaboration Diagram 

Collaboration diagram show communication between objects. It is similar to the sequence diagram, 

with the added benefit that it shows the object organization. Figure 6 shows a sample collaboration 

diagram. 

 



 

 

 

 

Figure 6 Collaboration Diagram 

2.4.4 Use case diagram 

The use case represents a scenario of the system, i.e. they tell a story. In the scenario there are actors. 

The use case diagram describes how actors relate or communicate with one another. Figure 7 shows a 

sample use case diagram 

 

Figure 7 Use Case Diagram 



 

 

 

2.4.5 State-chart Diagram 

The state-chart diagram represents the change of states in a component of a system. It also describes 

the events that cause that change of states, which could be internal or external factors. Figure 8 

presents a sample state-chart diagram. 

 

Figure 8 State-chart Diagram 

2.4.6 Architectural Modeling Diagram  

The Architectural Modeling Diagram is a model that represents the overall framework of the system. 

It contains both structural and behavioral elements. A sample Architectural Modeling Diagram is 

shown on Figure 9. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Suggestions on Available UML Tools 

UML software modeling tools tend to be very expensive. The authors of this document have used: 

SmartDraw, on the commercial side, and ArgoUML,oin the open source side. Both, SmartDraw and 

Figure 9 Architectural Modeling Diagram 



 

 

 

ArgoUML, our experience with these tools was very good. However, any good text editor that allows 

insertion of shapes, as MS Word, will be enough to help describing a system using UML notation.  
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3 SERVICE ORIENTED ARCHITECTURE – DESIGNING EXTERNAL MODULES AS 

SERVICES 

Some of the main advantages of Service oriented architecture (SOA) are reusability, maintainability 

and scalability.  

3.1 What is Service-Oriented Architecture or SOA? 

SOA is an architecture for building applications as a set of loosely coupled black-box components 

orchestrated to deliver a well-defined level of service by linking together processes. SOA is defined 

by a set of principles and methodologies for designing and developing software in the form of 

interoperable services. These services are well-defined functionalities that are built as software 

components (discrete pieces of code and/or data structures) that can be reused for different purposes. 

SOA design principles are used during the phases of systems development and integration. SOA can 

be seen in a continuum, arising from older concepts of distributed computing and modular 

programming. 

 

SOA is a black-box component architecture. SOA deliberately hides complexity wherever 

possible, and the idea of the black box is integral to SOA. The black box enables the reuse of existing 

applications by adding a fairly simple adapter to them, no matter how they were built. 

 

SOA components are loosely coupled. The term loosely coupled refers to how two components 

interact within SOA. One component passes data to another component and makes a request. The 

second component carries out the request and, if necessary, passes data back to the first. The 

emphasis is on simplicity and autonomy. Each component offers a small range of simple services to 

other components. A set of loosely coupled components does the same work that used to be done 

inside tightly structured applications, but the components can be combined and recombined in myriad 

ways.  

 

SOA components are orchestrated to link together through processes to deliver a well-defined 

level of service. SOA creates a simple arrangement of components that can, collectively, deliver a 

very complex service. Simultaneously, SOA must provide acceptable service levels. 

SOA adheres to the following three requirements: 



 

 

 

1. Services must be safe. Safe means that the service itself is secure and doesn’t produce bugs 

and problems into the organization 

2. Services must be accurate. Accuracy means that the service itself executes the function it’s 

designed to execute. 

3. Services must be predictable. Predictable means that the service does what its’ expected to 

do. 

How services communicate with each other is responsibility of the integration framework where the 

services reside. A framework works as a pipe through which data and instructions flow. A service (or 

module or software component) connects to the framework and passes it a message by using a 

specified format, along with the address of the software component that needs to receive the message. 

The framework completes the job of getting the message from the sending component to the receiving 

component. 

SOA goes very well with the spiral and agile software development process approaches. SOA aims to 

deliver incremental functionality in a system that is expected to be in constant evolution. 

 

Don’t try to boil the ocean. Don’t attempt to do everything at once. Initially, prove 

your success with SOA by starting with a project that is small, achievable in a short 

time, and will have a significant impact — then build incrementally. 

3.2 SOA step by step 

In the following section, we have made an attempt to simply and describe the basic SOA principles. 

These principles can be applied to defining, designing and implementing a Service following basic 

SOA principles.  

 

Code designers and programmers need to try to answer the steps below to defining, designing and 

implementing their Module as a Service.  

 

1. What does your model do?  

 

2. Look for pre-integrated software components and pre-built reusable services that you can begin 

using right away. If you find this, you may be able to just write a software layer on top to access a 



 

 

 

well-tested module of software, otherwise, we will need to write our own. 

 

3. Identify the functions that your model is going to provide to the framework or other modules. 

 

4. Define an interface, i.e. a template that will serve as an index of the functions that your module 

(service) is going to provide. 

Comment: Leave the details of the implementation to lower level development, where greater 

details will be introduced. Those details should not be exposed at the interface level. 

 

5. For each function, identify inputs and outputs.  

 

6. For each input, identify where should it come from and the data type expected 

 

7. For each output, identify the resulting data type. 

 

3.2.1 Example 1: Model Simple Calculator 

1. What does your model do? A simple calculator which adds, subtracts, divides and multiplies two 

numbers. 

2. Look for pre-integrated software components and pre-built reusable services that you can begin 

using right away. 

 

3. Identify the functions that your model is going to provide to the framework or other modules. 

Functions: 

i. Addition 

ii. Subtraction 

iii. Division 

iv. Multiplication 

 

4. Define an interface, i.e. a template that will serve as an index of the functions that your module 

(service) is going to provide. 

a. Module Simple Calculator 

i. Function 1: Adding 

ii. Function 2: Subtracting 



 

 

 

iii. Function 3. Dividing 

iv. Function 4. Multiplying 

 

Comment: Leave the details of the implementation to lower level development, where greater details 

will be introduced. Those details should not be exposed at the interface level. 

 

For example, you can start thinking about creating two files as follows: 

a. File 1: Interface, i.e. an index of the functions to be provided 

b. File 2: Implementation of the details concerning those functions. 

 

5. For each function, identify inputs and outputs.  

a. Function 1: adding (input1: integer number1, input2: integer number2) output1: 

integer result 

b. Function 2: subtracting (integer number1, integer number2) output integer result or 

an error 

c. Function 3. Dividing(integer number1, integer number2) output integer result or an 

error 

d. Function 4. Multiplying (integer number1, integer number2) output integer result 

 

6. For each input, identify the source and the data type expected 

All inputs should come from the call to the service.  

The value expected is an integer for every input. 

7. For each output, identify the resulting data type:  

When the inputs are integers the resulting value will be an integer. 

When the inputs are other value than the expected integer value, an error message will be returned. 



 

 

 

4 EXAMPLE OF A SOA MODULE 

We are going to walk through a Charpy Service developed by Paul Williams at ORNL for the 

Embrittlement Database Project. We chose this sample because it was completely implemented by the 

time this document was requested.  

4.1.1 Example 2: Model Charpy Curve  

1. What does your model do?  

 

2. Look for pre-integrated software components and pre-built reusable services that you can begin 

using right away. 

 

3. Identify the functions that your model is going to provide to the framework or other modules. 

 

4. Define an interface, i.e. a template that will serve as an index of the functions that your module 

(service) is going to provide. 

 

5. Leave the details of the implementation to lower level development, those details should not be 

exposed at the interface level. 

 

6. For each function, identify inputs and outputs.  

Inputs: 

a. Un-irradiated data set. 

b. Irradiated data set. 

c. Upper shelf energy fitted or fixed value 

d. Lower shelf energy fitted or fixed value. 

Outputs: 

 Output report 

 

7. For each input, identify where should it come from and the data type expected 

8. For each output, identify the resulting data type: 

 



 

 

 

 

public static class CharpyService 

    { 

 

        /// <summary> 

        /// calculate value of the T30 = T40.7J for the fitted model 

        /// </summary> 

        /// <param name="model">CveModel.SYMTANH | CveModel.ASYMTANH | 

CveModel.MCEXPONENTIAL | CveModel.BURR</param> 

        /// <param name="FitUSe"></param> 

        /// <param name="FitLSE"></param> 

        /// <param name="parameters"></param> 

        /// <param name="CvTarget"></param> 

        /// <param name="T30"></param> 

        /// <returns></returns> 

        public static bool GetT30(CveModel model, bool FitUSe, bool FitLSE, 

double[] parameters, double CvTarget, ref double T30) 

        { 

            int model_option = GetModelFormID(model, FitUSe, FitLSE); 

            int debug  = 3; 

            int trmcod = 0; 

            double Cv = CvTarget; 

            double Tx = 0.0; 

 

            FortranDLLWrapper.get_Tx(ref model_option, ref debug, 

parameters, ref Cv, ref Tx, ref trmcod); 

            T30 = Tx; 

 

            if (trmcod > 0) 

                return true; 

            else 

                return false; 

        } // end of GetT30 

 

 

        /// <summary> 

        /// Determines the ModelID for the symmetric tanh Cve model form 

        /// </summary> 

        /// <param name="FitUSE">True if the upper shelf energy is to be 

fitted</param> 

        /// <param name="FitLSE">True if the lower shelf energy is to be 

fitted</param> 

        /// <returns>modelID</returns> 

        private static int GetTanhModelID ( bool FitUSE, bool FitLSE ) 

        { 

            int modelID = 0; 

 

            if (!FitUSE && !FitLSE) 

                modelID = 1; 

            else if (FitUSE && !FitLSE) 

                modelID = 3; 

            else if (FitUSE && FitLSE) 

                modelID = 5; 

            else if (!FitUSE && FitLSE) 

                modelID = 7; 

 

            return modelID; 

        } // end of GetTanhModelID 

 

        /// <summary> 

        /// Determines the ModelID for the Burr funtion model form 

        /// </summary> 

        /// <param name="FitUSE">True if the upper shelf energy is to be 

fitted</param> 

        /// <param name="FitLSE">True if the lower shelf energy is to be 

fitted</param> 

        /// <returns>modelID</returns> 

        private static int GetBurrModelID(bool FitUSE, bool FitLSE) 

        { 

            int modelID = 0; 



 

 

 

 

            if (!FitUSE && !FitLSE) 

                modelID = 10; 

            else if (FitUSE && !FitLSE) 

                modelID = 11; 

            else if (FitUSE && FitLSE) 

                modelID = 12; 

            else if (!FitUSE && FitLSE) 

                modelID = 13; 

 

            return modelID; 

        } // end of GetBurrModelID 

 

 

        /// <summary> 

        /// Returns the modelID for MCExponential, symmetric tanh, and 

asymmetric tanh model forms 

        /// </summary> 

        /// <param name="model"></param> 

        /// <param name="FitUSe"></param> 

        /// <param name="FitLSE"></param> 

        /// <returns></returns> 

        public static int GetModelFormID(CveModel model, bool FitUSe, bool 

FitLSE) 

        { 

            int modelID = 0; 

 

            switch (model) 

            { 

                case CveModel.MCEXPONENTIAL: 

                    modelID = 9; 

                    break; 

                case CveModel.SYMTANH: 

                    modelID = GetTanhModelID(FitUSe, FitLSE); 

                    break; 

                case CveModel.ASYMTANH: 

                    modelID = GetTanhModelID(FitUSe, FitLSE) + 1; 

                    break; 

                case CveModel.BURR: 

                    modelID = GetBurrModelID(FitUSe, FitLSE); 

                    break; 

            } 

 

            return modelID; 

        } // end of GetModelFormID 

 

        /// <summary> 

        /// Evaluate the fitted model and return double arrays of Cve 

versus temperature 

        /// </summary> 

        /// <param name="model"></param> 

        /// <param name="isDegF"></param> 

        /// <param name="tempMin"></param> 

        /// <param name="tempMax"></param> 

        /// <param name="parameters"></param> 

        /// <param name="temperature"></param> 

        /// <param name="cve"></param> 

        public static void GetModelCurve(CveModel model, double tempMin, 

double tempMax,  

                                         double[] parameters, List<double> 

temperature, List<double> cve) 

        { 

            double dtemp; 

            int ntemp = 200; 

            double temp; 

            double cvn; 

 

            dtemp = ( tempMax - tempMin ) / ((double)ntemp-1.0); 

            temp = tempMin - dtemp; 

 

            for (int i = 0; i < ntemp; i++) 



 

 

 

            { 

                temp += dtemp; 

                temperature.Add(temp); 

                switch (model) 

                { 

                    case CveModel.MCEXPONENTIAL: 

                        cvn = GetMCExponentialCurve(temp, parameters); 

                        cve.Add(cvn); 

                        break; 

                    case CveModel.SYMTANH: 

                        cvn = GetTanhCurve(temp, parameters); 

                        cve.Add(cvn); 

                        break; 

                    case CveModel.ASYMTANH: 

                        cvn = GetTanhCurve(temp, parameters); 

                        cve.Add(cvn); 

                        break; 

                    case CveModel.BURR: 

                        cvn = GetBurrCurve(temp, parameters); 

                        cve.Add(cvn); 

                        break; 

                } // end of switch branching logic 

            } // end of for loop 

        } // end of GetModelCurve 

 

        /// <summary> 

        /// Evaluate the generalized hyperbolic tangent model 

        /// </summary> 

        /// <param name="temp"></param> 

        /// <param name="parameters"></param> 

        /// <returns></returns> 

        private static double GetTanhCurve(double temp, double[] 

parameters) 

        { 

            double cvn; 

            double a1, a2, a3, a4, a5; 

 

            a1 = parameters[0]; 

            a2 = parameters[1]; 

            a3 = parameters[2]; 

            a4 = parameters[3]; 

            a5 = parameters[4]; 

 

            cvn = (0.5 * (a1 + a2)) + (0.5 * (a1 - a2) * Math.Tanh((temp - 

a3) / (a4 * temp + a5))); 

 

            return cvn; 

        } // end of GetTanhCurve 

 

        /// <summary> 

        /// Evaluate the Master curve exponential model 

        /// </summary> 

        /// <param name="temp"></param> 

        /// <param name="parameters"></param> 

        /// <returns></returns> 

        private static double GetMCExponentialCurve( double temp, double[] 

parameters) 

        { 

            double cvn; 

            double a1, a2, a3, a4; 

            a1 = parameters[0]; 

            a2 = parameters[1]; 

            a3 = parameters[2]; 

            a4 = parameters[3]; 

 

            cvn = a4 + (a3 * Math.Exp(a2 * (temp - a1))); 

 

            return cvn; 

         

        } // end of GetMCExponentialCurve 

 



 

 

 

 

        /// <summary> 

        /// Evaluate the Burr function model form 

        /// </summary> 

        /// <param name="temp"></param> 

        /// <param name="parameters"></param> 

        /// <returns></returns> 

        private static double GetBurrCurve(double temp, double[] 

parameters) 

        { 

            double cvn; 

            double a1, a2, a3, a4, a5; 

            double x1, x2, x3; 

            a1 = parameters[0]; 

            a2 = parameters[1]; 

            a3 = parameters[2]; 

            a4 = parameters[3]; 

            a5 = parameters[4]; 

 

            x1 = (temp - a3) / a5; 

            x2 = 1.0 + Math.Exp(-x1); 

            x3 = Math.Pow(x2, -a4); 

 

            cvn = a2 + (a1-a2)*x3; 

 

            return cvn; 

 

        } // end of GetBurrCurve 

 

 

        /// <summary> 

        /// Fits the Charpy data to one of three model forms: symmetric 

tanh, asymmetric tanh, master curve exponential 

        /// </summary> 

        /// <param name="model"></param> 

        /// <param name="method"></param> 

        /// <param name="FitUSE"></param> 

        /// <param name="FitLSE"></param> 

        /// <param name="x0"></param> 

        /// <param name="y0"></param> 

        /// <param name="shear"></param> 

        /// <param name="parameters"></param> 

        /// <returns></returns> 

        public static bool FitCharpyModel(CveModel model, RegressionMethod 

method, bool FitUSE, bool FitLSE, 

                                            double[] x0, double[] y0, 

double [] shear, double[] parameters ) 

        { 

            bool fitSucessful = true; 

 

            int soln_option = 0; 

            int modelID = 0; 

            int icode = 0; 

            int iDOF = 0; 

            int nparams = 5; 

            int nparms = 0; 

            double tStat = 0.0; 

            double wssEps = 0.0; 

            double wssDelta = 0.0; 

            double[] stdErr = new double[nparams]; 

 

            switch (method) 

            { 

                case RegressionMethod.OLS: 

                    soln_option = 1; 

                    break; 

                case RegressionMethod.ODR: 

                    soln_option = 2; 

                    break; 

            } 

 



 

 

 

            modelID = GetModelFormID(model, FitUSE, FitLSE); 

 

            int numData = x0.Length; 

            double[] xdata = new double[numData]; 

            double[] ydata = new double[numData]; 

 

            int n = 0; 

 

            if (modelID == 9) 

            { 

                for (int i = 0; i < numData; i++) 

                { 

                    if (shear[i] <= 60.0) 

                    { 

                        n++; 

                        xdata[i] = x0[i]; 

                        ydata[i] = y0[i]; 

                    } 

                } 

            } 

            else 

            { 

                for (int i = 0; i < numData; i++) 

                { 

                    n++; 

                    xdata[i] = x0[i]; 

                    ydata[i] = y0[i]; 

                } 

            } 

 

            FortranDLLWrapper.cve_model(ref n, ref modelID, ref 

soln_option, ref icode, 

                                        ref iDOF, ref nparms, ref tStat, 

ref wssEps, 

                                        ref wssDelta, xdata, ydata, 

parameters, stdErr); 

 

            if (icode <= 3) 

                fitSucessful = true; 

            else 

                fitSucessful = false; 

 

            return fitSucessful; 

 

        } // end of FitCharpyModel 

    } // end of static class CharpyService 

 

 

And in the Fortran file: 

 



 

 

 

module tanhModel_h 

  logical :: is_ODR 

  integer :: degrees_of_freedom 

  real(8) :: cv_USE, cv_LSE, cv_Tref, cv_Asymm, cv_Scale, cv_shape 

  real(8) :: cv_TCVE, cv_exponent, cv_scale1, cv_location 

  real(8) :: tvalue, wss_epsilon0, wss_delta0 

  real(8), dimension(5) :: standard_errors 

end module tanhModel_h 

 

module Tx_asymm_tanhModel_h 

  real(8)               :: Cv_x 

  real(8), dimension(5) :: a_coefficients 

end module Tx_asymm_tanhModel_h 

 

 

!**********************************************************************! 

!***                                                                 **! 

!***  Revision Log: Paul T. Williams, ORNL                           **! 

!***                                                                 **! 

!***  Date        |    Modification                                  **! 

!***  ============|==================================================**! 

!*** 08-18-2011   | created module                                   **! 

!***              |                                                  **! 

!***              |                                                  **! 

!**********************************************************************! 

!======================================================================= 

!*********************************************************************** 

!*********************************************************************** 

!***  Routine Description:                                           *** 

!***  ====================                                           *** 

!***                                                                 *** 

!***  Purpose:                                                       *** 

!***  Iterate to find solution for Tx for asymmetric tanh model.     *** 

!***  If model_option = 1, 3, 5, 7, or 9, then use closed forms.     *** 

!***                                                                 *** 

!***  ---------------                                                *** 

!***  Data Dictionary                                                *** 

!***  ---------------                                                *** 

!***  INPUT:                                                         *** 

!***  model_option   flag to set model to be used  integer(4)        *** 

!***   All options require fitting the reference temperature and     *** 

!***   scaling parameter.                                            *** 

!***  model_option = 1 symmetric tanh                                *** 

!***  model_option = 2 asymmetric tanh                               *** 

!***  model_option = 3 fit USE with symmetric tanh                   *** 

!***  model_option = 4 fit USE with asymmetric tanh                  *** 

!***  model_option = 5 fit USE and LSE with symmetric tanh           *** 

!***  model_option = 6 fit USE and LSE with asymmetric tanh          *** 

!***  model_option = 7 fit LSE with symmetric tanh                   *** 

!***  model_option = 8 fit LSE with asymmetric tanh                  *** 

!***  model_option = 9 fit MC exponential model form                 *** 

!***  model_option = 10 fit Burr functional form (USE/LSE fixed)     *** 

!***  debug  = integer(4)                                            *** 

!***  debug  = 0 - no debugging output                               *** 

!***  debug  = 1 - final answer only                                 *** 

!***  debug  = 2 - initial estimates and final answer                *** 

!***  debug  = 3 - input data and iteration summaries                *** 

!***  debug  = 4 - detailed summary of each step                     *** 

!***  debug  = 5 - no debugging output                               *** 

!***  Cv     = target Charpy impact energy real(8)[Joules or ft-lbf] *** 

!***  parameters(5) = a1,a2,a3,a4,a5 model-dependent parameters      *** 

!***                  real(8)                                        *** 

!***  OUTPUT:                                                        *** 

!***  Tx       = temperature at which Cv = x [Joules or ft-lbf]      *** 

!***  trmcod   = termination code                                    *** 

!***  trmcod   = 0  - problem not solved                             *** 

!***  trmcod   = 1  - step size criterion met                        *** 

!***  trmcod   = 12 - step size and function value met (stopcr=12)   *** 

!***  trmcod   = 2  - function value stopping criterion met          *** 

!***  trmcod   = 3  - step size and function value met (stopcr=3)    *** 



 

 

 

!***                                                                 *** 

!*********************************************************************** 

!======================================================================= 

!======================================================================= 

!  FUNCTIONS/SUBROUTINES exported from cve_model_dll.dll: 

!  get_Tx - subroutine  

 

subroutine get_Tx(model_option, debug, parameters, Cv, Tx, trmcod )  

 

!==========================================================================

============== 

!======================================================================= 

!DEC$ ATTRIBUTES DLLEXPORT, ALIAS:"get_Tx",c :: get_Tx 

!DEC$ ATTRIBUTES reference          :: model_option 

!DEC$ ATTRIBUTES reference          :: debug 

!DEC$ ATTRIBUTES reference          :: parameters 

!DEC$ ATTRIBUTES reference          :: Cv 

!DEC$ ATTRIBUTES reference          :: Tx 

!DEC$ ATTRIBUTES reference          :: trmcod 

!======================================================================= 

  



 

 

 

 



 

 

 

5 SUMMARY AND CONLUSIONS 

This document provides guidance to xLPR model developers on how they can more effectively 

design and communicate the requirements of their modules to the xLPR Computational Group (CG) 

by using Unified Modeling Language (UML) and Service-Oriented Architectural (SOA) design 

principles. This document gives an overview on the use of UML and SOA design principles to aid the 

analysis, design and implementation of xLPR modules as GS external functions.  

 



 

 

 

6 UML GLOSSARY 

 

 

6.1.1 UML Notations  

UML Notations are signs or symbols used to represent elements for visualizing, specifying, 

constructing and documenting software components and non-software systems. There can be 

structural elements and behavioral elements. The following sections describe structural and 

behavioral elements. 

6.1.1.1 Structural elements:  

UML’s structural elements are graphical notations used to represent nouns. In the following sections, 

UML’s structural elements are defined. 

6.1.1.1.1 Class Notation 

A class represents a group of objects with common attributes, characteristics and qualities. The class 

diagram is divided into four parts. 

 

•The top section is used to name the class. 

•The second one is used to show the attributes of the class. 

•The third section is used to describe the operations performed by the class. 

•The fourth section is optional to show any additional components. 

 

Figure 10 Class Notation is shown below.  

 

Figure 10 Class Notation 



 

 

 

Figure 2 shows an example of a class. 

 

 

Figure 11 Class Notation Example. 

6.1.1.1.2 Object Notation 

An object is a basically a noun in grammar sense. An object is a thing, person or matter to which 

action is directed. It is the implementation of a class. The notation is similar to the one of a class; the 

only difference is that the name is underlined as shown on Figure 12 Object Notation. 

 

 

Figure 12 Object Notation 

6.1.1.1.3 Active Class Notation 

An active class is used to represent simultaneous existence of several objects in a system. It probably 

is more appropriate to be named ‘active object’, instead of active class. 

 



 

 

 

 

Figure 13 Active Class Notation 

6.1.1.1.4 Interface Notation 

An interface is a template used to describe different functions without implementation details. When a 

class implements an interface, it also implements the functionality. An interface is represented by a 

circle. The name of the interface is generally written below the circle on UML 1.0 see Figure 14 

Interface Notation on UML 1.0.  On UML 2.0, is presented as a box with two sections: name and 

functions, See Figure 15 Interface Notation on UML 2.0. 

 

 

Figure 14 Interface Notation on UML 1.0 

 

Figure 15 Interface Notation on UML 2.0 

6.1.1.1.5 Collaboration Notation 

Collaboration represents responsibilities in a group. Collaboration is represented by a dotted eclipse. 

Its name is written inside the eclipse. Figure 16 Collaboration Notation shows this notation.  



 

 

 

 

Figure 16 Collaboration Notation 

 

 

6.1.1.1.6 Use Case Notation 

A use case represents a scenario. Use cases capture high level of functionalities of a system. Use case 

is represented as an eclipse with a name inside it. It may contain additional responsibilities. Figure 17 

Use Case Notation is shown below. 

 

 

Figure 17 Use Case Notation 

6.1.1.1.7 Actor Notation 

An actor diagram represents an internal or external entity that interacts with the system. Figure 18 

Actor Notation is shown below. 



 

 

 

 

 

Figure 18 Actor Notation 

6.1.1.1.8 Initial State Notation 

An initial state shows the start of a process. Figure 19 Initial State Notation, is shown below. 

 

 

Figure 19 Initial State Notation 

 

6.1.1.1.9 Final State Notation 

An final state shows the end of a process. Figure 20 Final State Notation, is shown below: 

 

Figure 20 Final State Notation 

 

6.1.1.1.10 Component Notation 

A component is a module of code with well-defined function. The component notation is shown 

below. Note that the name of the component is found inside of the main box. Figure 21 Component 

Notation is shown below 



 

 

 

 

 

Figure 21 Component Notation 

6.1.1.1.11 Node Notation 

A Node in UML represents a physical component of the system like a server or a network. The Figure 

22 Node Notation is shown below. 

 

Figure 22 Node Notation 

6.1.1.2 Behavioral Elements: 

UML’s behavioral elements consist of diagrams that represent dynamic events within the system. 

Examples of dynamic events are interactions and state machines. 

6.1.1.2.1 Interaction Notation: 

Interaction means communication. Interactions are message exchanges between UML components. 

Interaction Notations are the sequence diagram and the collaboration diagram. Figure 23 Interaction 

Notation is shown below. 

 

Figure 23 Interaction Notation 

 



 

 

 

Figure 24 below presents a sequence diagram and how it makes use of the message notation as the 

message flows as calls between the different components of the system in a given scenario. 

 

Figure 24 Interaction Notation in a Sequence Diagram 

6.1.1.2.2 State machine notation 

The state machine describes the phases of cases that a component goes through in its lifecycle. Figure 

25 shows the state notation. 

 

 

Figure 25 State Notation 

 



 

 

 

Figure 26 shows a sample state-chart diagram. See how the boxes represent changes of state given by 

different actions. 

 

Figure 26 State Machine Notation 

6.1.1.3 Grouping Elements: 

Grouping is an aggregation of elements that jointly serve a common purpose. 

6.1.1.3.1 Package Notation 

A package wraps components of a system. Figure 27 and Figure 28 show the package notation 

 

Figure 27 Package Notation Explained 

 



 

 

 

 

Figure 28 Package Notation 

6.1.1.4 Annotational Elements: 

An annotation refers to notes or comments. UML provides a notation to add comments within 

diagrams. 

6.1.1.4.1 Note Notation 

A note is a comment in a diagram. Figure 29 and Figure 30 present the note notation.  

 

Figure 29 Note Notation Explained 

 

 

Figure 30 Note Notation 

6.1.1.5 Relationships Elements 

Relationships between elements refers to the forms of interaction between elements. The types of 

relationships in UML follows: 

6.1.1.5.1 Dependency Notation 

Dependency refers to the need that an element has from another element. Dependency is represented 

by a dotted arrow. The arrow head represents the independent element and the other end the 

dependent element.  Figure 31 presents the dependency notation. 



 

 

 

 

 

Figure 31 Dependency Notation 

 

6.1.1.5.2 Association Notation 

Association describes how many elements take part in an interaction. Association is represented by a 

dotted line with or without arrows on both sides. The two ends represent two associated elements as 

shown below. The multiplicity is also mentioned at the ends (1, * etc.) to show how many objects are 

associated. Association is used to represent the relationship between two elements of a system. 

Figure 32 Association Notation is shown below. 

 

 

Figure 32 Association Notation 

 

6.1.1.5.3 Generalization Notation 

Generalization describes the inheritance relationship of the object oriented world. It is parent and 

child relationship. Generalization is used to describe parent-child relationship of two elements of a 



 

 

 

system. Generalization is represented by an arrow with hollow arrow head as shown below in Figure 

33 Generalization Notation Explained. One end represents the parent element and the other end child 

element. 

 

Figure 33 Generalization Notation Explained 

 

Figure 34 Generalization Notation 

 

6.1.1.5.4 Realization Notation 

It is used to represent interfaces in the OO point of view, in which one component describes some 

functionality which is not implemented by the element on the left of the dotted arrow. The element at 

the right side of the arrow implements that functionality. Figure 35 presents the realization notation. 

 

 

Figure 35 Realization Notation 

6.1.1.5.5 Extensibility Notation 

Additional elements used to represent some extra behavior of the system. These extra behaviors are 

not covered by the standard available notations. UML uses the following mechanisms to provide 

extensibility features: 

 Stereotypes (Represents new elements) 

 Tagged values (Represents new attributes) 

 Constraints (Represents the boundaries) 

Figure 36 presents the extensibility notation. 



 

 

 

 

Figure 36 Extensibility Notation 

 

 

 

 

6.1.2 UML Diagrams 

UML identifies two main types of diagrams to describe systems: a) structural diagrams and b) 

behavioral diagrams. 

6.1.2.1 Structural Modeling Diagrams 

Structural Modeling Diagrams help to represent components of the system in a static way. The 

structural diagrams are presented in the following sections. 

6.1.2.1.1 Class diagram 

This is the most common diagram in Object Oriented Architecture. It contains classes, interfaces, 

associations and collaborations. Figure 37 shows a sample class diagram. 



 

 

 

 

Figure 37 Class Diagram 

6.1.2.1.2 Object Diagram 

An object diagram represents a set of objects and their relationships. Figure 38 shows a sample Object 

Diagram. 

 



 

 

 

 

Figure 38 Object Diagram 

 

 

 

 

 

Scipy.stats Library 
 

 
Statistical Functions 

===================== 

 
This module contains a large number of probability distributions as 

well as a growing library of statistical functions. 

 
Each included distribution is an instance of the class rv_continous. 

For each given name the following methods are available.  See docstring for 
rv_continuous for more information 

 

:rvs: 
   random variates with the distribution 

:pdf: 
   probability density function 

:cdf: 

   cumulative distribution function 

:sf: 

   survival function (1.0 - cdf) 

:ppf: 

   percent-point function (inverse of cdf) 

:isf: 

   inverse survival function 

:stats: 

   mean, variance, and optionally skew and kurtosis 

 

Calling the instance as a function returns a frozen pdf whose shape, 

location, and scale parameters are fixed. 
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