

PREPARING FOR EXASCALE

ORNL Leadership Computing Facility

Application Requirements and Strategy

December 2009

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of
Energy (DOE) Information Bridge.

 Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source.

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
(ETDE) representatives, and International Nuclear Information System (INIS) representatives from
the following source.

 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Web site http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

ORNL/TM-2009/308

Oak Ridge Leadership Computing Facility

National Center for Computational Sciences

PREPARING FOR EXASCALE:

 ORNL Leadership Computing Facility

Application Requirements and Strategy

Wayne Joubert

Douglas Kothe

Hai Ah Nam

Date Published: December 2009

Prepared by

OAK RIDGE NATIONAL LABORATORY

P.O. Box 2008

Oak Ridge, Tennessee 37831-6254

managed by

UT-Battelle, LLC

for the

U.S. DEPARTMENT OF ENERGY

under contract DE-AC05-00OR22725

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Table of Contents iii

CONTENTS

TABLES .. v

FIGURES ... vi

EXECUTIVE SUMMARY .. vii

1. INTRODUCTION.. 1
1.1 Context .. 1

1.2 Hardware Drivers .. 1

1.3 Requirements Modeling .. 3

1.4 Organization of Report ... 4

2. SCIENCE DRIVERS AND IMPACT ... 5
2.1 Science for the Nation ... 5

2.2 Science Drivers ... 6

2.2.1 Aerodynamics .. 6

2.2.2 Astrophysics ... 7

2.2.3 Biology ... 8

2.2.4 Chemistry ... 8

2.2.5 Climate Modeling .. 9

2.2.6 Combustion .. 11

2.2.7 Fusion ... 12

2.2.8 Materials Science ... 13

2.2.9 Nuclear Energy .. 14

2.2.10 Nuclear Physics .. 15

2.2.11 Thermoelectric Materials Science .. 15

2.2.12 Turbomachinery ... 16

3. SCIENCE APPLICATION USAGE .. 17
3.1 User Demographics ... 18

3.2 Usage Statistics ... 21

3.2.1 Overall Usage ... 21

3.2.2 Job Size Distribution .. 23

3.2.3 Petascale Early Science Usage ... 25

3.2.4 Scaling .. 28

3.3 Summary ... 29

4. SCIENCE APPLICATION PERFORMANCE ... 30
4.1 Application Performance Modeling Procedure ... 31

4.2 Performance Indicators ... 32

4.3 Components of Application Performance ... 32

4.4 Computational Intensity and Percent of Peak ... 34

4.5 Communication ... 38

4.6 I/O ... 39

iv Figures

4.7 Power Consumption .. 41

4.8 Implications for Future HPC Systems .. 42

5. SCIENCE APPLICATION REQUIREMENTS ... 46
5.1 Science Model Requirements.. 46

5.2 Computational Algorithm Requirements .. 48

5.3 Parallelization and Compiler Software Requirements .. 52

5.3.1 Near-Term Requirements ... 52

5.3.2 Next-Generation Requirements .. 53

5.4 Scientific Library Requirements ... 55

5.4.1 Expanding the Range of Coverage for Scientific Libraries ... 55

5.5 System Software Requirements .. 59

5.6 Hardware Requirements .. 61

5.6.1 Accelerator Technology ... 65

5.7 Application Development Process Requirements ... 67

5.7.1 Software Defect Reduction Tools .. 68

5.7.2 Improved Software Engineering Practices ... 69

5.7.3 Parallel Programming Interfaces .. 71

5.7.4 Application Readiness.. 73

5.7.5 Software Optimization ... 74

5.8 Software SQA and V&V Requirements ... 75

5.9 Application Usage Workflow Requirements .. 76

5.10 Data Management Requirements .. 78

6. CONCLUSIONS AND RECOMMENDATIONS ... 81

ACKNOWLEDGEMENTS ... 83

REFERENCES .. 84

APPENDIX A. OLCF OVERVIEW ... 87

APPENDIX B. REQUIREMENTS ELICITATION .. 89

APPENDIX C. USER SUPPORT .. 95

APPENDIX D. SURVEY OF APPLICATIONS .. 97
D.1 Biology ... 98

D.2 Chemistry ... 101

D.3 Earth Science .. 105

D.4 Engineering .. 108

D.5 Fusion ... 109

D.6 Materials... 112

D.7 Nuclear Energy .. 117

D.8 Physics ... 119

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Tables v

TABLES

3.1. Research areas and science domains by INCITE categorization ... 19

3.2. Early Science projects on Jaguar XT5 ... 26

3.3. Maximum scaling to date of INCITE codes .. 28

5.1. Model requirements for next-generation science .. 47

5.2. Algorithm requirements for next-generation science .. 49

5.3. Employment of algorithm motifs by science areas.. 50

5.4. Anticipated change in use of algorithm motifs for next-generation science 51

5.5. Languages and parallel programming models for key applications .. 53

5.6. Application library usage .. 56

5.7. Estimated mathematical library runtime fraction .. 57

5.8. Software stack requirements .. 59

5.9. System software to satisfy software stack requirements ... 60

5.10. Impact of system attributes on algorithms and applications .. 62

5.11. Importance of hardware attributes to science domains .. 63

5.12. Future changes in demand for hardware characteristics .. 64

D.1. Representative applications ported to the Jaguar system .. 97

vi Figures

FIGURES

1.1 Predicted performance growth of leadership computing platforms... 1

1.2. Historic shifts in HPC platform architectures .. 2

3.1. OLCF 2009 total user demographics by science category ... 19

3.2. INCITE 2009 allocations by science category and research area .. 20

3.3. Allocated and used INCITE core-hours (CY 2006 - 2010) ... 22

3.4. Number of INCITE projects by science category (CY 2006 - 2010) .. 22

3.5. Utilization of Jaguar for INCITE projects (CY 2008 - 2009) and Early Science projects 23

3.6. Utilization of Jaguar XT4 by job size for 2009 INCITE projects by research area........................ 24

3.7. Early Science usage by science category .. 25

3.8. Utilization of Jaguar XT5 by job size for Early Science projects ... 27

4.1. Application runtime fraction by hardware subsystem ... 33

4.2. Impact of 2X hardware subsystem improvement on application performance 35

4.3. Application floating point operations per memory reference .. 36

4.4. Application flop rate percent of peak .. 37

4.5. Application computational intensity vs. fraction of peak .. 38

4.6. Application communication measures ... 39

4.7. Aggregate I/O bandwidth (mixed workload) ... 40

4.8. Aggregate IOPs (mixed workload) .. 41

4.9. Application power consumption .. 42

5.1. Growth rate of peak processor performance .. 66

5.2. Growth rate of peak memory bandwidth ... 66

5.3. OLCF archival storage growth .. 79

5.4. Parallel I/O environment data growth ... 79

file:///C:/Users/hmn/Documents/Projects/NCCSreport/2009ReqReport/NCCSRequirements2009_v16.docx%23_Toc252117776
file:///C:/Users/hmn/Documents/Projects/NCCSreport/2009ReqReport/NCCSRequirements2009_v16.docx%23_Toc252117784

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

EXECUTIVE SUMMARY

In 2009 the Oak Ridge Leadership Computing Facility (OLCF), a U.S. Department of Energy (DOE)

facility at the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences

(NCCS), elicited petascale computational science requirements from leading computational scientists in

the international science community. This effort targeted science teams whose projects received large

computer allocation awards on OLCF systems.

A clear finding of this process was that in order to reach their science goals over the next several

years, multiple projects will require computational resources in excess of an order of magnitude more

powerful than those currently available. Additionally, for the longer term, next-generation science will

require computing platforms of exascale capability in order to reach DOE science objectives over the next

decade.

It is generally recognized that achieving exascale in the proposed time frame will require disruptive

changes in computer hardware and software. Processor hardware will become necessarily heterogeneous

and will include accelerator technologies. Software must undergo the concomitant changes needed to

extract the available performance from this heterogeneous hardware. This disruption portends to be

substantial, not unlike the change to the message passing paradigm in the computational science

community over 20 years ago.

Since technological disruptions take time to assimilate, we must aggressively embark on this course

of change now, to insure that science applications and their underlying programming models are mature

and ready when exascale computing arrives. This includes initiation of application readiness efforts to

adapt existing codes to heterogeneous architectures, support of relevant software tools, and procurement

of next-generation hardware testbeds for porting and testing codes.

The 2009 OLCF requirements process identified numerous actions necessary to meet this challenge:

 Hardware capabilities must be advanced on multiple fronts, including peak flops, node memory

capacity, interconnect latency, interconnect bandwidth, and memory bandwidth.

 Effective parallel programming interfaces must be developed to exploit the power of emerging

hardware.

 Science application teams must now begin to adapt and reformulate application codes to the new

hardware and software, typified by hierarchical and disparate layers of compute, memory and

concurrency.

viii Executive Summary

 Algorithm research must be realigned to exploit this hierarchy.

 When possible, mathematical libraries must be used to encapsulate the required operations in an

efficient and useful way.

 Software tools must be developed to make the new hardware more usable.

 Science application software must be improved to cope with the increasing complexity of

computing systems.

 Data management efforts must be readied for the larger quantities of data generated by larger,

more accurate science models.

Requirements elicitation, analysis, validation, and management comprise a difficult and inexact

process, particularly in periods of technological change. Nonetheless, the OLCF requirements modeling

process is becoming increasingly quantitative and actionable, as the process becomes more developed and

mature, and the process this year has identified clear and concrete steps to be taken.

This report discloses (1) the fundamental science case driving the need for the next generation of

computer hardware, (2) application usage trends that illustrate the science need, (3) application

performance characteristics that drive the need for increased hardware capabilities, (4) resource and

process requirements that make the development and deployment of science applications on next-

generation hardware successful, and (5) summary recommendations for the required next steps within the

computer and computational science communities.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

1. INTRODUCTION

1.1 Context

The Advanced Scientific Computing Research (ASCR) program of the U.S. Department of Energy

(DOE) has identified key computational science goals vital to addressing fundamental national and global

concerns in domains such as energy assurance, environment and national security. This report details the

conclusions of the Oak Ridge Leadership Computing Facility (OLCF) requirements elicitation process

employed to identify specific resource

requirements for attaining these goals.

Reaching next-generation science

objectives requires computational

resources several orders of magnitude

beyond those currently available. A

commonly referenced milestone is an

exaflop system (capable of 10
18

 floating

point operations per second), which by

current trends will likely be built within

the 2015-2020 timeframe. To reach

exascale computing and beyond, major

disruptive changes will be required in

parallel computing hardware and

software. Some of these changes are already apparent, but adapting to these developments will take

conscious planning and purposeful action. This report identifies the supporting elements required for

transformational science progress in the 3-5 year timeframe while concurrently preparing for leadership

computational science at the exascale level.

1.2 Hardware Drivers

Historically, in the high performance computing (HPC) arena, technology trends and business factors

have made the economics of HPC hardware heavily dependent on broader trends in the commodity

hardware market. Planning for next-generation computational science must take into account the external

environmental factor of availability of the required computing resources.

Fig. 1.1 Predicted performance growth of

leadership computing platforms

1 Petaflop

20 Petaflops

100 Petaflops

1 Exaflop

2005 2010 2015 2020

1018

1017

1016

1015

YEAR

FLOPS

2 1. Introduction

In recent years limitations in clock speed, power consumption and instruction level parallelism have

led to the prevalence of multicore processors in the marketplace, in which a conventional processor core

is replicated on a single die. More recent developments however are trending toward processors that are

many-core and heterogeneous, in which one or more conventional cores are augmented with multiple

streaming processor cores. This new direction in processor design is likely to radically impact parallel

scientific computing. ―Recent activities of major chip manufacturers, such as Intel, AMD, IBM and

NVIDIA, make it more evident than ever that future designs of microprocessors and large HPC systems

will be heterogeneous in nature‖ [Agullo et al. 2009].

The typical processor of the future will likely be composed of multiple processor cores of a more

conventional nature supplemented by an attached set of multiple SIMD-like stream processing units used

to offload local compute-intensive work. Programming these processors to exploit potential performance

gains will require significant new software approaches. These changes will likely substantially affect

parallel scientific applications. It has been noted that ―many familiar and widely used algorithms and

libraries will become obsolete and will have to be rethought and rewritten in order to take advantage of

the new architectures‖ [Tomov et al. 2008, p. 1]. As a result, ―many of the tools, software, algorithms,

and libraries that we have developed for today’s computers will have to be revised or replaced to

effectively operate at extreme scales‖ [ASCR 2009, p. 163].

In the past there have been several occurrences of disruptive changes in supercomputing hardware

and concomitant changes in the programming interfaces, such as the change to vector processors and the

rise of distributed memory computing with message passing (Fig 1.2). In each case, a period of time was

required for usage of the new programming techniques to mature within the HPC community. This report

describes some of the steps required to prepare for the next wave of change in hardware and programming

environments and to decrease the period of time between formulation and maturation of new and effective

programming techniques needed to exploit the new hardware.

Fig. 1.2. Historic shifts in HPC platform architectures

Shared
Memory

Distributed
Memory,

Single Core
Nodes

Distributed
Memory,

Heterogeneous
Nodes

Distributed
Memory,
Multicore

Nodes

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

1. Introduction 3

1.3 Requirements Modeling

Requirements modeling is a formal process used to determine a path from the current state to a

desired future state [Kothe and Kendall 2007]. Modeling the requirements for OLCF leadership

computing involves the entire spectrum of elements involved in delivering breakthrough computational

science, including science drivers and objectives, science models, computational algorithms,

parallelization models, compilers, libraries and system software, computer hardware, software

development processes, verification and validation procedures, application workflow, and data

management. The requirements for these individual elements are interrelated because of the competing

factors of science objectives and environmental limitations. For example, a science model requirement

may dictate use of a certain algorithm, but available computer hardware may put limits on whether this

algorithm can perform efficiently at scale.

For requirements to be useful, they must be actionable and as quantitative as possible. The OLCF

requirements process is becoming increasingly quantitative as this process becomes better developed and

more mature. The inherent nature of the leadership-scale computational science discovery process,

however, makes it challenging at times to effectively manage requirements and limit risks [Bailey et al.

2007]. For example, disruptions in the hardware market can indirectly affect which software tools and

development practices are needed. Unforeseen innovations in models or algorithms can eliminate some

requirements or create new ones. Also, scientific discovery itself, which is not entirely predictable, can

dynamically influence the set of requirements for accomplishing the next step in the scientific method. In

addition, human factors such as HPC programmer productivity with various tools are not always well

understood and sometimes can be determined only by experience. Despite these concerns, the OLCF

requirements gathering and modeling process has identified clear needs for the next generation of

leadership computing.

The first step of requirements development is data gathering and elicitation. The 2009 OLCF

requirements effort utilized data from the following sources:

 Existing documentation regarding science objectives.

 Answers to science and application software questions from OLCF and Innovative and Novel

Computational Impact on Theory and Experiment (INCITE) project proposal applications.

 A requirements survey to elicit project requirements from OLCF-supported projects (see

Appendix B).

 In-depth interviews with science code project leaders and team members.

4 1. Introduction

 Review of OLCF Leadership Computing usage logs over recent years to detect usage trends.

 Performance data generated on current computer hardware from key heavily-used OLCF

applications.

 Survey of broader community and market trends.

 Discussions with computer hardware and software vendors regarding capabilities of next-

generation offerings and related trends.

These data are then submitted to a requirements development process. The elements of this process

include evaluating the data, detecting requirement commonalities across projects, evaluating tradeoffs,

differentiating desired and required features, comparing findings against past experience and current and

future resources, validating conclusions to minimize risks, and making recommendations. The

requirements resulting from this process must be unambiguous, testable, correct, in scope, modifiable,

feasible, traceable, written in clear (customer’s) language, acceptable to all clients, and not themselves a

solution.

By using these requirements to manage and arbitrate decisions, the OLCF aligns leadership systems

to the maximum possible extent with the needs and goals of the breakthrough science projects using these

resources. This results in improved science quality and user productivity, higher fidelity physical models

and numerical algorithms, more efficient and higher quality software, and better in-depth data analytics

and workflow. The requirements modeling process also ensures that OLCF planning and procurement

processes are in step with broader DOE and Office of Science goals. We expect that effective

requirements development, management, and planning will positively influence the design, procurement,

deployment, and operation of OLCF systems by measurably improving the quality, quantity and fidelity

of the output of multiple breakthrough science simulation applications.

1.4 Organization of Report

To describe the motivating factors for next-generation computational science, Chapter 2 discusses the

fundamental science goals driving the demands for leadership computing resources. Since computational

science is rooted in application software, it is necessary to discuss the usage and resource requirements of

leadership science applications. Thus, Chapter 3 discusses application usage and usage trends on OLCF

systems, and Chapter 4 presents performance analysis of these codes. Chapter 5 discusses in detail the

elements required to perform leadership science in the specified timeframe. Supplementary materials are

presented in the appendices.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

2. Science Drivers and Impact 5

2. SCIENCE DRIVERS AND IMPACT

2.1 Science for the Nation

High performance computing plays an increasingly strategic role in addressing urgent challenges in

national and homeland security, energy security, economic competitiveness, health care, and

environmental protection. The primary mission of the DOE ASCR program is to address these needs by

discovering, developing, and deploying the computational and networking tools that enable researchers in

the scientific disciplines to analyze, model, simulate, and predict complex phenomena important to the

Department of Energy. This includes

 Energy Security – Computer simulation helps ensure America’s energy security by enabling

researchers to understand combustion, improve fuel cells, develop fusion energy and develop

other technologies.

 Nuclear Security – ASCR-supported science contributes insights and research tools the

National Nuclear Security Agency (NNSA) can use to ensure the safety and reliability of the

nation’s nuclear deterrent, a part of national strategy to safeguard America’s nuclear security.

 Scientific Discovery and Innovation – ASCR hosts the most powerful open computing

systems in the world, key to scientific discovery and economic competitiveness and leading

to improvements in quality of life through innovation.

 Environmental Responsibility – Computer simulations help researchers understand

mechanisms of environmental contamination and develop appropriate remediation

technologies.

The Oak Ridge Leadership Computing Facility (OLCF) has made numerous contributions to advance

these goals, including for example

 Discovery of new, critical phenomena in the deaths of massive stars and a new mechanism

explaining the birth of pulsars;

 Breakthroughs toward understanding how turbulent flames stabilize within combustion

devices, with implications for the design of gasoline engines, diesel engines and gas turbines;

 A fundamental new understanding of loss of thermal energy in tokamak fusion reactors, with

ramifications for the design of the $10 billion ITER fusion device;

6 2. Science Drivers and Impact

 Completion of new models of high-temperature superconductivity which bring us closer to

designs for practical superconducting materials;

 Execution of the largest simulation ever of the dark matter cloud holding the galaxy together;

 Performing of one third of the climate simulation work for the most recent IPCC assessment.

Nonetheless, numerous science areas have identified the need for computational resources several

orders of magnitude beyond what is currently available. Specific science goals are discussed below.

2.2 Science Drivers

2.2.1 Aerodynamics
 Accurate simulations of aerodynamics and

combusting flows are critical to our everyday

life. These simulations are integral to the

design of efficient transportation and power

generation systems needed to reduce

greenhouse gasses, reduce cost to businesses

and individuals, and increase the country’s

energy independence. Fluid/structural

interaction plays a key role in safety ranging

from building design to medicine to air travel.

However, there still remains a significant gap

between actual physics and the computational

models used to simulate regimes such as highly

separated diffusing/accelerating flows. Today,

phenomena such as turbulence and combustion

chemistry are approximated in order to make them

practical on existing computers. This sets up a

―chicken and egg‖ situation – simulation software is

designed for the computers of today, and the next

generation of simulation software cannot be developed

DRIVER Need for accurate simulation of

aerodynamic phenomena.

STRATEGY Highly resolved simulation of fluid

behavior using Large Eddy Simulation

and Direct Numerical Simulation. This

will require new software and methods to

efficiently leverage high degrees of

parallelism to deliver turnaround times

useful for design.

OBJECTIVE Create computing platform on which next

generation software tools can be

developed, validated, and applied,

enabling groundbreaking aerodynamic

advances.

IMPACT Reduced fuel consumption and reduction

in greenhouse gases throughout the

economy. Improved flight safety.

Enabler for a broad range of products and

technologies that depend on fluid flows

for efficient cooling, combustion, and

robustness.

Geared Turbo Fan Nacelle System

Image courtesy: Pratt and Whitney

DRIVER Core-collapse supernovae are among

the universe’s most prodigious

explosions and produce most of the

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

2. Science Drivers and Impact 7

and validated without next generation computing.

OBJECTIVES FOR 20 PETAFLOPS: Develop and apply simulation software for highly accurate

simulation of complex flows across widely varying length and time scales, delivering results in a

sufficiently timely manner to be used in product development.

OBJECTIVES FOR EXASCALE: Leverage petascale simulation tools in multipoint and multiphysics

simulations.

2.2.2 Astrophysics
 Astrophysics research addresses physical

phenomena from the smallest subatomic

particles to the largest galaxies, such as the

formation of elements, supernova behaviors,

black holes, gravitational radiation, star

formation and dark matter. Supernova

occurrences are the most spectacular events in the

universe and are fundamental to element formation.

High-end scientific simulation can provide answers

regarding how supernovae occur, what happens when

black holes merge and what is the nature of dark matter.

OBJECTIVES FOR 20 PETAFLOPS: Increase

physical fidelity of nuclear burning module to

effectively confront observations of SNe remnants and

answer questions about galactic chemical evolution.

OBJECTIVES FOR EXASCALE: Determine the

precise manner in which supernovae explode by incorporating quantum kinetics on macroscopic scales

with realistic nuclear physics components to predict isotopic output.

DRIVER Core-collapse supernovae are among the

universe’s most prodigious explosions

and produce most of the elements heavier

than iron.

STRATEGY Understand the death of massive stars and

their contribution to galactic chemical

evolution.

OBJECTIVE Determination of the core-collapse

supernova mechanism and the production

of observational templates for a raft of

observables: neutrino signatures,

nucleosynthesis, gravitational waves, etc.

IMPACT Predictive simulations of core-collapse

supernovae will enable our fundamental

understanding of the constituents of our

world.

Fluid velocity streamlines during a

Type II supernova collapse

Visualization by D. Pugmire, ORNL;

Simulation by E. Endeve,C. Cardall,

R. Budiardja, ORNL and UT–Knoxville,

and A. Mezzacappa, ORNL.

DRIVER Core-collapse supernovae are among

the universe’s most prodigious

explosions and produce most of the

elements heavier than iron.

STRATEG

Y

Understand the death of massive stars

and their contribution to galactic

chemical evolution.

OBJECTIV

E

Determination of the core-collapse

supernova mechanism and the

production of observational templates

for a raft of observables: neutrino

signatures, nucleosynthesis,

gravitational waves, etc.

IMPACT Predictive simulations of core-

collapse

supernovae will enable our

fundamental

understanding of the constituents of

our world.

 FLUID VELOCITY STREAMLINES

DURING A TYPE II SUPERNOVA

COLLAPSE

8 2. Science Drivers and Impact

2.2.3 Biology
Microbial life affects nearly every physical

and geochemical process on earth. HPC in

biology brings the opportunity for design-

driven research in areas such as biofuels,

environmental remediation, protein research,

climate change research and pharmaceuticals.

OBJECTIVES FOR 20 PETAFLOPS:

Simulate microbial/biomass interface and

dynamics of enzyme action on biomass. With

multiscale development, simulate microbial

enzymes acting on biomass. Incorporate more

biomass component into model (lignin,

 hemicellulose, pectins, etc.).

OBJECTIVES FOR EXASCALE:

Realistically simulate the properties of

lignocellulose, requiring 40X increase

in number of atoms and 10X increase in

time scale.

2.2.4 Chemistry
The use of electricity generated from intermittent, renewable sources requires efficient storage of this

electrical energy. The performance of current electrical energy storage technologies falls far short of

requirements for effective use. Basic research is critical to understand the fundamental electrochemical

processes governing these devices.

DRIVER Predict and simulate the behavior of

complex microbial systems. Study

mechanisms for converting cellulose to

ethanol.

STRATEGY Understand biomass cellulose

recalcitrance and cellulose/enzyme

interactions.

OBJECTIVE Remove economic bottleneck in

cellulosic ethanol production

(recalcitrance to hydrolysis of biomass)

by building realistic molecular simulation

models encompassing both short and long

length scales that will guide conceptual

research in bioenergy.

IMPACT Produce alternative to fossil fuels with

drastically reduced environmental side

effects.

An atomistic model of cellulose (blue)

surrounded by lignin molecules (green)

comprising a total of 3.3 million atoms.

Image courtesy: Jeremy Smith and

Jamison Daniel, ORNL.

DRIVER Core-collapse supernovae are among

the universe’s most prodigious

explosions and produce most of the

elements heavier than iron.

STRATEG

Y

Understand the death of massive stars

and their contribution to galactic

chemical evolution.

OBJECTIV

E

Determination of the core-collapse

supernova mechanism and the

production of observational templates

for a raft of observables: neutrino

signatures, nucleosynthesis,

gravitational waves, etc.

IMPACT Predictive simulations of core-

collapse

supernovae will enable our

fundamental

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

2. Science Drivers and Impact 9

OBJECTIVES FOR 20 PETAFLOPS: Larger length-scale required for accurate quantum mechanical

description of electrochemical processes at interfaces;

longer time-scale required to understand ion diffusion

during charge-discharge cycles.

OBJECTIVES FOR EXASCALE: Solve larger

systems to higher accuracy.

2.2.5 Climate Modeling

Concerns regarding global warming and

anthropogenic climate change drive the need to

improve the scientific basis for assessing the

potential ecological, economic and social

impacts of climate change. More accurate

climate models can simulate different scenarios

of possible future climate change to help policy

makers in their planning processes.

DRIVER Develop enhanced energy storage in

nanostructured system.

STRATEGY Study charge storage and transfer in nano-

structured capacitors.

OBJECTIVE Apply density functional theory to the

workings of carbon tube supercapacitors

—nanostructures that store two to three

orders of magnitude more energy than

conventional capacitors—and provide a

nanoscale look at the physical/chemical

processes that limit storage capacity,

useful lifetime, and peak power output.

IMPACT Revolutionize battery and other energy

storage technologies.

DRIVER Accurately simulate scenarios of future

climate change.

STRATEGY Develop better models and higher

resolution simulation capabilities.

OBJECTIVE Improve the accuracy and fidelity of

climate change predictions. Configure

atmospheric, ocean, terrestrial, and

cryospheric component models to answer

policy and planning relevant questions

about specific climate change adaptation

and mitigation scenarios.

IMPACT Mitigate deleterious effects of global

climate change.

H3O+ undergoing chemical

transformations at the air-water

interface. The H3O+ is depicted in the

center using large red (oxygen) and

three white (hydrogen) spheres. Blue

bonds denote nearest hydrogen-bonded

neighbors which are involved in

interfacial chemistry.

Image courtesy: Chris Mundy, PNNL.

DRIVER Core-collapse supernovae are among

the universe’s most prodigious

explosions and produce most of the

elements heavier than iron.

STRATEG

Y

Understand the death of massive stars

and their contribution to galactic

chemical evolution.

OBJECTIV

E

Determination of the core-collapse

supernova mechanism and the

production of observational templates

for a raft of observables: neutrino

signatures, nucleosynthesis,

gravitational waves, etc.

IMPACT Predictive simulations of core-

collapse

supernovae will enable our

fundamental

understanding of the constituents of

our world.

FLUID VELOCITY STREAMLINES

DURING A TYPE II SUPERNOVA

COLLAPSE

Visualization by D. Pugmire, ORNL, and

simulation by E. Endeve, C. Cardall, R.

Budiardja, ORNL and UT–Knoxville, and

A. Mezzacappa, ORNL.

10 2. Science Drivers and Impact

OBJECTIVES FOR 20 PETAFLOPS: Create higher fidelity simulations with improved predictive

capability on decadal time scales using high-resolution Earth System Model configurations. Realistically

represent features like precipitation patterns/statistics and tropical storms.

OBJECTIVES FOR EXASCALE: Develop higher resolution models to support regional climate

modeling. Improve modeling of physical, chemical and biological processes. Simulate the carbon cycle.

Explore parameters giving rise to uncertainties.

A global snapshot of forecasted cloud cover from the GEOS-5 model at 7-km global resolution,

highlighting the existence of numerous cloud types represented at these resolutions, including

hurricane Helene in the tropical Atlantic Ocean, convective clusters throughout the tropical

Pacific and Indian oceans, and the marine stratocumulus layer off the west coasts of North and

South America, along with the characteristic structures of mid-latitude cyclones forming along

fronts in both the Northern and Southern hemispheres.

Image courtesy: Max J. Suarez, NASA.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

2. Science Drivers and Impact 11

2.2.6 Combustion
Combustion currently supplies 85% of

America’s energy needs. Environmental,

economic and national security concerns are

driving a shift toward alternative fuels for

combustion. These new fuels have different

physical and chemical properties leading to

different combustion processes. Advanced

simulation will determine effective designs for

combustion systems, to make cleaner, more

efficient use of combustible fuels.

OBJECTIVES FOR 20 PETAFLOPS:

Attempt 50–100% increase in Reynolds number

(from 10K to 15–20K) with existing chemical

complexity (single-stage ignition ethylene with 22 species) at ambient pressure; explore fully developed

turbulence beyond theoretically predicted ―mixing transition‖. Attempt more biofuel-like chemistry while

keeping complexity constant, e.g. going to dimethyl-ether. Alternatively stay at high pressure (50 atm)

with more complex chemistry (iso-butanol: practical biofuel), namely 60–80 species.

OBJECTIVES FOR EXASCALE: Develop

fundamental understanding of ―turbulence-chemistry‖

interactions of non-petroleum based biofuels at high

pressure engine conditions. Accurately model lifted

flame stabilization in ignitive flows, low-temperature

ignition kinetics coupling with transport,

extinction/reignition in dilute heated mixtures, emissions

and soot, controlling inhomogeneous autoignition for

HCCI combustion by tailoring mixing and ignition

kinetics, increased turbulent Reynolds numbers.

DRIVER Optimize the design of lean, premixed

turbine combustors. Simulate advanced

engine concepts under different operating

conditions. Evaluate combustion

behavior of new biofuels. Improve

thermal efficiency by potentially 25%-

50%.

STRATEGY Use direct numerical simulation for

fundamental studies of the microphysics

of turbulent reacting flows.

OBJECTIVE Increase clarity of modeling of mixing

transition. Model biofuel surrogates to

provide insight into next generation

engines. Model lifted flame stabilization,

extinction and reignition, premixed flame

structure.

IMPACT Clean, efficient burning processes to

supply energy needs.

Simultaneous volume rendering of a lifted ethylene/air slot jet

flame, where the lifted flame is represented by hydroxyl

radical showing the flame stabilization point. The particles are

colored by temperature: cold (blue), hot (red).

Image courtesy: Jackie Chen, SNL, and Kwan-Liu Ma, UC Davis.

12 2. Science Drivers and Impact

2.2.7 Fusion
Fusion energy offers the potential for a

source of clean, virtually unlimited power.

Successful fusion energy depends on the ability

to heat and electromagnetically confine the

reactive plasma within the fusion reactor for a

sufficient period of time. Advanced

computational simulation of this plasma is

essential to designing a working fusion reactor.

Currently the primary focus is on the ITER

reactor, scheduled for deployment in 2018.

OBJECTIVES FOR 20 PETAFLOPS:

Scaling to realistic Reynolds numbers needed

to address burning plasmas. Include multi-

scale integrated electromagnetic

turbulence in the whole-volume

ITER plasma in realistic diverted

geometry. Model plasma edge and

core turbulence.

OBJECTIVES FOR

EXASCALE:

Perform integrated modeling of

the entire discharge cycle of

magnetically confined fusion plasmas. Increase spatial resolution by an order of magnitude. Model

longer energy confinement time scales. Develop new robust validated numerical algorithms to support

these calculations.

DRIVER Effectively model and control the flow of

plasma and energy transport in a fusion

reactor.

STRATEGY Understand ―hot spots‖ near antenna

surface, ―parasitic‖ draining of heat to the

plasma surface in small reactors.

OBJECTIVE Use first principle simulations of the

gyrokinetic equations, to study cascades

and propagation in Collisionless Trapped

Electron Mode (CTEM) turbulence, as

well as to study the electron temperature

and Ion temperature gradient (ITG/ETG)

drift turbulence for the ITER reactor.

Include the full spectrum of toroidal

harmonics for specific antenna

geometries. Study propagation and

absorption of lower hybrid waves.

IMPACT Clean, nearly limitless energy supply.

The radio frequency antenna (red) launches three-

dimensional wave fields into the ITER plasma. The waves

heat deuterium and tritium fuel to fusion temperatures

about ten times hotter than the surface of the Sun.

Image courtesy: Fred Jaeger and

Sean Ahern/U.S. ITER Project Office.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

2. Science Drivers and Impact 13

2.2.8 Materials Science
Materials science is an interdisciplinary

field that incorporates chemistry, physics, and

engineering to provide a deeper understanding

of existing materials and to allow for the design

of new materials with predetermined properties.

Research into the nature of materials promises

to revolutionize many areas of modern life,

from power generation and transmission to

transportation to the production of faster,

smaller, more versatile computers and storage

devices. High performance supercomputing is

strategic to understanding the phenomenon of

high temperature superconductivity, with

potential application to energy transmission and

other areas.

OBJECTIVES FOR 20 PETAFLOPS: Model magnetic/superconducting phase diagrams including

effects of disorder. Model the effect of impurity configurations on pairing and the high-T

superconducting gap. Model the high-T superconducting transition temperature materials dependence in

cuprates.

OBJECTIVES FOR EXASCALE: Increase

accuracy and fidelity of superconductivity

simulations.

DRIVER Design high temperature superconductors

for improved energy transmission and

oxide electronics.

STRATEGY Hone in on the theory for high

temperature superconductors. Apply

Humbbard model to understand role of

inhomogeneities.

OBJECTIVE Understand the quantitative differences in

the transition temperatures of high

temperature superconductors. Develop a

more complete understanding of the

pairing mechanism in cuprates, including

the role of chemical composition,

disorder, and nano-scale inhomogeneities.

Develop a more complete understanding

of the pairing mechanism in cuprates,

including the role of chemical

composition, disorder, and nano-scale

inhomogeneities.

IMPACT Nanoscience and nanotechnology

capabilities to increase US

competitiveness and industrial leadership.

Molecular dynamics simulation of

confinement and dispersion of small

molecules within carbon nanostructures,

mimicking the dynamics of electrolytes in

porous carbon materials.

Visualization by the SciDAC code VisIt.

Simulation by Dr. Vincent Meunier, ORNL;

and visualization by Jeremy Meredith and

Sean Ahern, ORNL.

14 2. Science Drivers and Impact

2.2.9 Nuclear Energy
Over the last several years, the energy

security of the United States has risen in

importance both politically and economically.

Our nation needs to increase energy security,

reduce dependence on unreliable sources of

energy, obtain energy at affordable prices, and

insure that the environment is not impacted.

Improving scientific understanding of the

behaviors of nuclear fuels, reactors, separation

processes and long-term waste management

sites will increase the viability of nuclear energy strategies for addressing these concerns.

OBJECTIVES FOR 20 PETAFLOPS: Predict behavior of existing and novel nuclear fuels and reactors

in transient and nominal operation and evaluate predictability of software through uncertainty

quantification and sensitivity analysis. Model full-core reactor neutronics, neutronics/hydraulics

coupling, accident scenarios, fast reactor transients. Increase fidelity of solutions by replacing existing

homogenization techniques with direct techniques and solving for time-dependent multiphysics.

OBJECTIVES FOR EXASCALE: Develop integrated performance and safety codes with improved

uncertainty quantification

and bridging of time and

length scales. Implement

next-generation multi-

physics multiscale models.

Perform accurate full

reactor core calculations

with 40,000 fuel pins and

100 axial regions.

Perform ultra-resolution

simulations for

convergence verification.

DRIVER Effectively model nuclear reactor

behavior as a part of national energy

security strategy.

STRATEGY Predictive simulation for reactor core and

facility shielding.

OBJECTIVE Implement mathematically consistent

algorithms for multiscale modeling of

radiation transport in the core of the

nuclear reactor.

IMPACT Better, safer reactor design with increased

availability of low-cost energy.

Two pictures (left and center) of Zero Power Reactor Experiment

6/6A geometry and uranium-235 plate power distribution (with

separated matrix halves). The gray indicates the matrix tube and

drawer fronts that are loaded into each tube position. The solid

green squares are 2-inch depleted uranium metal blocks directly

loaded into the main core and acting as a neutron blanket. The plot

at the right shows the enriched uranium plate power with the

matrix halves separated.

Image courtesy: Dinesh Kaushik, ANL.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

2. Science Drivers and Impact 15

2.2.10 Nuclear Physics
A detailed understanding of the atomic

nucleus is both fundamentally important and of

great practical significance. Not only important

to explaining the birth of the universe and

astrophysical phenomena, understanding nuclei

is crucial in energy generation as well as in

industrial and medical applications. Nuclear

physics focuses on predicting and explaining

rich classes of phenomena that occur in nuclei.

The theoretical goal of increased predictive

power for nuclear processes that occur in nature

or in nuclear reactors, but cannot be measured

in the laboratory with sufficient precision,

drives the field to achieve detailed simulations

using extreme-scale computers and cutting-edge algorithms.

OBJECTIVES FOR 20 PETAFLOPS: High precision ab initio calculations for light ion reactions.

OBJECTIVES FOR EXASCALE: Nuclear fission calculations using ab initio techniques.

 2.2.11 Thermoelectric Materials Science
Waste heat is one of our most abundant

sources of alternative energy. Thermoelectric

energy conversion offers the opportunity of

converting waste heat into useful electricity to

achieve improved energy efficiency. HPC in

thermoelectric materials brings the opportunity

for design-driven research in areas such as

atomic-level materials understanding and

optimization.

OBJECTIVES FOR 20 PETAFLOPS: The

density functional theory (DFT) calculations

employ a massive supercell containing ~ 2000

atoms which can accommodate the composite system with the size of the fully enclosed nanoprecipitate

reaching those observed in actual specimens.

DRIVER Achieve a consistent theoretical

formulation to accurately describe and

predict nuclei and their reactions.

STRATEGY Develop a predictive microscopic nuclear

theory grounded in the fundamental

interactions between protons and

neutrons, including higher-body forces.

OBJECTIVE Use ab initio techniques to solve the

nuclear many-body problem using QCD

(quantum chromodynamics) derived 2-, 3,

and higher-body interactions and density

functional theory for studying light,

medium, and heavy mass nuclei.

IMPACT Fundamental understanding of the nuclear

force and predictive capability for exotic

nuclei unable to be produced in a

laboratory to drive future experimental

facilities/programs and nuclear energy

programs.

DRIVER Improve vehicle fuel efficiency.

STRATEGY Understand and predict atomic

arrangements and growth mechanisms of

nano-structured bulk thermoelectric

materials, which show significant promise

to achieve higher efficiency.

OBJECTIVE Establish unambiguous atomically

resolved structural assignment for the

nanocomposite and identify the

mechanisms for the nucleation and atomic

arrangement of the nanoprecipitates,

which ultimately determines the

thermoelectric properties of nano-

structured materials.

IMPACT Convert vehicle exhaust heat into

electricity in an effort to reduce fossil fuel

consumption.

16 2. Science Drivers and Impact

OBJECTIVES FOR EXASCALE: Realistically simulate the properties of real materials, requiring 40X

increase in number of atoms and 10X increase in time scale.

2.2.12 Turbomachinery
Aviation propulsion and power generation

depend on rotating turbomachinery, e.g. jet

engines and gas turbines. Modern day designs

are developed using CFD analyses that can be

run on conventional gigaflop clusters. As we

continue to push the state of the art to improve

efficiency, the problem sizes (grid density and

choice of computational domain) are growing

and the complexity of the physical models are

increasing. These twin effects drive us towards

petaflop and beyond computations in support of

future designs.

OBJECTIVES FOR 20 PETAFLOPS: Enable the use of CFD on full components, e.g. CFD of the

entire high pressure compressor, using basic turbulence models.

OBJECTIVES FOR EXASCALE: Enable the use of CFD on a full component using 1st principle

turbulence models (DNS or LES); enable full engine simulations.

DRIVER Design jet engines, gas turbines, and

steam turbines with increased efficiency

(less fuel burn) and increased durability.

STRATEGY Use supercomputers to assess

fundamental questions that would allow

the development of new technology used

to impact future designs.

OBJECTIVE Some of the fundamental questions that

need to be answered include (but are not

limited to): (a) understanding multistage

interactions in compressors, (b)

understanding aero-thermal effects in

high pressure turbines, and (c)

understanding turbulent physics in low

pressure turbines.

IMPACT Turbines for more efficient jet engines

and electrical generators.

Simulation of GE

Turbofan Engine

Image courtesy: NASA

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

3. Science Application Usage 17

3. SCIENCE APPLICATION USAGE

Ongoing assessment of the need for and usability of leadership-class computing resources is crucial to

its future direction. This raises the questions: ―What is leadership-class computing?‖ and ―What metrics

determine need and usability?‖ Leadership-class computing has long been synonymous with capability

computing described by Graham et al. [Graham et al. 2005]. Capability computing is defined as, ―using

the maximum computing power to solve a large problem in the shortest amount of time,‖ thus solving ―a

problem of a size or complexity that no other computer can.‖ This is in contrast with capacity computing

which uses, ―efficient cost-effective computing power to solve somewhat large problems or many small

problems.‖ When discussing capability systems, peak flops is often the performance measure of

computing power, evident in the popularity of the TOP500 list [TOP500]. On the other hand, experience

in real scientific computing shows that the actual measure of computing power also includes other system

attributes (e.g. number of CPU-hours deliverable, random access memory, memory bandwidth,

interconnect bandwidth, etc.).

 In connection with these definitions, metrics of leadership-class computing include scaling to larger

numbers of processors to tackle larger problem sizes and complexities and reduce times-to-solution.

Application scaling is a good indicator of need for leadership-class computing resources. Obviously there

is apparent need when applications require a large fraction of the resource for a single calculation.

Applications scale to larger numbers of processors to utilize more flops and, as is more often the case, to

distribute the memory load of data-intensive calculations. Without distinguishing between flops or

memory as the primary motivation for scaling to higher core counts, we track maximum job sizes, as well

as utilization by job size of our user community. We bin this usage data into three job size categories:

usage of less than 20%, between 20 and 60%, and greater than 60% of the computing resource. The

typical scale of a code appropriate for a leadership-class system is utilization of greater than 20% of the

resource for a single calculation. Job sizes less than 20% of the resource can typically fit onto smaller,

capacity systems.

Time-to-solution is more difficult to map to a leadership computing metric, since the relationship of

computing resource size to the application’s scaling behavior and science discovery workflow

characteristics may be complex. Generally, the assumption is a larger system with a higher peak flop

count provides a faster time-to-solution. But, more than peak flops, the sheer quantity of CPU-hours

available and consumed imply the likelihood of a faster time-to-solution. A leadership-class computing

resource typically delivers a higher number of CPU-hours. Without these hours, science would not be

accomplished at a rapid pace. As a broad metric, we can measure science time-to-solution through CPU-

18 3. Science Application Usage

XT4
7,832 quadcore nodes

31,328 cores

XT5
18,688 dual hex-core nodes

224,256 cores

hour utilization. Utilization of CPU-hours is also an indicator for usability of the system across the

breadth of disciplines capable of utilizing the resource. Since supercomputing is a scientific tool that

transcends any one discipline, its overall effectiveness is tied with its utility to a multitude of disciplines.

To better understand the impact of OLCF leadership-class computing resources on computational

science efforts, we present here usage statistics as an unbiased and quantitative measure of both need and

usability. We can also make projections based on usage patterns regarding the likelihood and speed of

adoption of new computing resources inevitable on the path toward exascale computing. This chapter

highlights usage trends on the OLCF Jaguar supercomputer, separately for the XT4 and XT5 partitions.

The Jaguar supercomputer provides the largest fraction of computing time by the OLCF. It currently

provides users with an aggregate peak performance of 2.595 petaflops, 362 terabytes of system memory,

10.7 petabytes of disk space, and 240 gigabytes/second of disk bandwidth. There are two partitions of

Jaguar: the XT4 partition contains 7,832 compute nodes with

quadcore AMD Opteron 1354 (Budapest) processors, totaling

31,328 processing cores, and the XT5 partition, with 18,688

compute nodes with dual hex-core AMD Opteron 2435

(Istanbul) processors, totaling 224,256 processing cores.

The XT5 partition became available to our larger user

community in July 2009; for the first half of 2009, during its

transition-to-operations period, it was only open to select Early

Science users. The Early Science period was prior to the hex-

core upgrade of Jaguar. At that time, the XT5 partition had

18,688 compute nodes with dual quadcore AMD Opteron 2356

(Barcelona) processors, totaling 149,504 processing cores.

Early Science utilization statistics provided in this section reflect usage of the XT5 prior to the hex-core

upgrade. The Early Science users were composed of high-end users with pertinent science need and with

applications that typically scaled to greater than 20% (~ 30,000 cores) of the system resource.

3.1 User Demographics

The wide reach of high-performance computing across many science domains is a testament to its

usefulness as a scientific tool and a measure of its usability. The user population tends to be diverse and

at various programming proficiency levels which creates a challenge for user support. The multi-tiered

and integrated support structure offered by the OLCF as described in Appendix C has been an optimal

approach for assisting and understanding our user population. Understanding user needs and the extent

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

3. Science Application Usage 19

that each science domain actively tries to benefit

from high-performance computing will likely guide

tools development on emerging platforms. Though a

standard set of libraries and software tools benefit

the user community at large, additional domain-

specific tools for increased user productivity are a

possibility on more complicated systems. The goal

is to ensure high resource usability to support a high

level of user productivity and science output as

computing shifts to achieve exascale.

Fig. 3.2. OLCF 2009 total user

demographics by science category

The majority of the hours (> 75%) delivered by the

OLCF are utilized by INCITE (Innovative and Novel

Computational Impact on Theory and Experiment)

projects. The INCITE program awards sizeable

allocations (on the order of millions of processor-

hours per project) for large-scale, computationally

intensive research projects at America's premier

leadership computing facilities (LCF), established

and operated by the U.S. Department of Energy

(DOE) Office of Science. These INCITE projects address grand challenges in science and engineering,

such as developing new energy solutions and gaining a better understanding of anthropogenic climate

change. Table 3.1 shows the science domains and research areas requesting and utilizing INCITE

Table 3.1. Research areas and science

domains by INCITE categorization

Science Category
Represented Research

Areas

Biology

Bioinformatics

Biophysics

Life Sciences

Medical Science

Neuroscience

Proteomics

Systems Biology

Chemistry
Chemistry

Physical Chemistry

Computer Science Computer Science

Earth Science
Climate

Geosciences

Engineering

Aerodynamics

Bioenergy

Combustion

Turbulence

Fusion
Fusion Energy

(Plasma Physics)

Materials

Materials Science

Nanoelectronics

Nanomechanics

Nanophotonics

Nanoscience

Nuclear Energy
Nuclear Fission

Nuclear Fuel Cycle

Physics

Accelerator Physics

Astrophysics

Atomic/Molecular

Physics Condensed

Matter Physics

High Energy Physics

Lattice Gauge Theory

Nuclear Physics

Solar/Space Physics

20 3. Science Application Usage

allocations at the OLCF. Utilization of high-performance computing resources touches every field of

science and is a valuable tool in scientific discovery.

The roughly 800 active users on the Jaguar supercomputer utilize approximately 70 different

applications. A profile on applications can be found in Appendix D. Fig. 3.1 shows the distribution of

users in the complete OLCF user community by their represented science category. This includes users

from INCITE and Director’s Discretion projects and internal developers. The largest number of users is

from the earth sciences community, which is largely comprised of climate research, accounting for 23%

of the user population. The next largest group of users is from Computer Science, which includes a large

number of internal developers who maintain and test system resources and create new tools and

optimization strategies. Mid-size communities utilizing the system include user communities in materials

science, chemistry, fusion/nuclear energy, and physics. The smallest numbers of users come from

engineering and biology. Although INCITE project principal investigators typically have a high degree

of HPC proficiency, the users of a project span a wide range of skill levels. Science users range from

end-users that run an established application and analyze the output to developers who actively improve

and scale their applications for frontier science breakthroughs.

Fig. 3.3. INCITE 2009 allocations by science category and research area

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

3. Science Application Usage 21

Interestingly, the number of users does not necessarily correlate with usage. When comparing the

user distribution of Fig. 3.1 and the INCITE allocations awarded for 2009 by science category in the top

left pie chart in Fig. 3.2, we see that the largest usage is not from the largest user communities of earth

science and computer science, but rather from physics. Further breakdown of the allocations by research

area in Fig. 3.2 shows that astrophysics, an early adopter of high-performance computing, dominates

physics usage, accounting for nearly 70% of the allocation. As early adopters of HPC, astrophysics

applications are more mature and capable of utilizing larger resources on a single run. These applications

typically are computationally intensive, accounting for multiple physics phenomena. Conversely, the

lower computing time utilized by the earth sciences with the higher number of users suggests their

applications require further development, and have yet to achieve maximal scaling for the resource.

The disparity between the high number of computer science users and very low INCITE allocation is

due to the high number of internal staff developers falling into the category of computer science. The

computing time for internal developers does not fall under the INCITE projects. The utilization from the

other science categories of fusion, materials, chemistry, biology, and engineering is consistent with the

size of their user base. The wide representation of science domains actively using Jaguar implies a high

level of usability of the system, despite the varied skills of the user population.

3.2 Usage Statistics

3.2.1 Overall Usage
Allocations and usage of OLCF computing resources have grown steadily over the last few years as

shown in Fig. 3.3. This graph shows that user core-hour consumption increases as more core-hours

become available from year to year. The CPU-hours requested and used are consistent, showing that the

computing resources are not wasted. As computational science continues to grow into an invaluable

method of scientific investigation across all science domains, demand for larger computing resources and

more computing time will also increase.

Fig. 3.4 shows the number of INCITE projects on the OLCF systems between the years 2006 and

2009. Although Fig. 3.3 shows dramatic increases in the number of CPU-hours utilized from year to

year, Fig. 3.4 shows that this is due only to a modest increase in the number of projects, with some

science categories remaining constant in the number of projects from year to year. This indicates that

applications are maturing from year to year and are capable of utilizing more of the available resource,

and that the science projects are becoming more computationally intensive. As more applications

improve their scaling capabilities, the number of CPU-hours available needs to increase. Additionally, to

22 3. Science Application Usage

accommodate new projects from year to year, a substantial increase in available computing time needs to

be addressed. This implies the need for larger and/or more leadership-class computing resources.

Fig. 3.4. Allocated and used INCITE core-hours (CY 2006 - 2010)

Fig. 3.5. Number of INCITE projects by science category (CY 2006 - 2010)

0

5

10

15

20

25

30

35

40

2006 2007 2008 2009

N
u

m
b

e
r

o
f

IN
C

IT
E

P

ro
je

c
ts

Year

Industry

Fusion

Engineering

Earth Science

Computer Science

Chemistry

Biology

Physics

Materials

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

3. Science Application Usage 23

3.2.2 Job Size Distribution
Fig. 3.5 shows the utilization of Jaguar broken down by job size distribution for INCITE project years

2008 and 2009 on the XT4 partition and for 2009 Early Science projects on the XT5 partition. Job size

Fig. 3.6. Utilization of Jaguar by job size for

INCITE projects (CY 2008 - 2009) and Early Science projects

is defined as the number of cores utilized during any given calculation. The exact number of cores for

each job size is shown in Fig. 3.5. The percentage of utilization for a job distribution range is defined as

the total number of core-hours utilized in that job size range divided by the total number of core-hours

used on that particular system over the period of interest. Regardless of the calendar year, system or

project type, the OLCF utilization has a job distribution load characteristic of a leadership (or capability)

usage model, namely, skewed heavily toward usage of a large percentage (i.e. >20%) of the total

available resource for any given calculation. Greater than 50% of the utilization by OLCF users requires

more than 20% of the resource for a single calculation. Surprisingly, the same job size distribution is seen

on the XT5 partition as on the XT4, despite having five times as many cores. The ability of the user

population to scale their applications quickly for new resources is a promising sign for the adoption of

new platforms. Likely, the similarity in architecture and manner in which users access and utilize the

system resources eased the transition from the XT4 to the XT5.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

INCITE 08 INCITE 09 Early Science

P
e

rc
e

n
t

o
f

To
ta

l C
P

U
-h

o
u

rs

> 60% > 20% to < 60% < 20%Job Size Distribution:

less than
6,266 cores

less than
29,900 cores

6,266 -
18,797 cores

greater than
18797 cores

29,900 -
89,703 cores

greater than
89,703 cores

XT4 XT4 XT5

24 3. Science Application Usage

Fig. 3.7. Utilization of Jaguar XT4 by job size for

2009 INCITE projects by research area

For the 2009 INCITE projects on the XT4 partition, Fig. 3.6 shows an additional break down of the

current utilization data with job size distributions for each research area. Research areas are listed along

the y-axis and ordered by utilization, with the largest usage at the top (climate) and the value in

parentheses being the number of projects contributing to the statistics. The majority of research areas are

utilizing the XT4 resource appropriately for capability computing, with the greater part of their jobs using

more than 20% of the resource. Lattice gauge theory, geosciences, accelerator physics, and fusion energy

are particularly strong HPC research areas, capable of using more than 20% of the machine for more than

80% of their usage. Research areas that are below capability utilization include fluid turbulence and

atomic/molecular physics. Climate research, though typically using less than 20% of the resource on any

single run, utilizes a large number of CPU-hours. Although climate researchers could run single

simulations on a smaller capacity system, typically one study requires a large aggregate of runs with

different parameters. To address time-to-solution, climate research consumes a large number of CPU-

hours only deliverable by leadership-class computing resources, but at a smaller scale. Fusion energy and

0% 20% 40% 60% 80% 100%

Climate (5)

Fusion Energy (5)

Lattice Gauge Theory (1)

Materials Sciences (4)

Chemical Sciences (4)

Geosciences (1)

Combustion (3)

Astrophysics (5)

Accelerator Physics (1)

Biological Sciences (3)

Nuclear Physics (1)

Engineering Physics (3)

Computer Sciences (1)

Fluid Turbulence (1)

Atomic/Molecular Physics (1)

> 60% > 20% to < 60% < 20%Job Size Distribution:

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

3. Science Application Usage 25

lattice gauge theory applications not only utilize a large number of CPU-hours but exhibit leadership-class

scaling. Applications in these research areas are potentially good candidates as early adopters of new

platforms due to the maturity of their codes and application teams.

The increasing competition for time on leadership-class systems will most likely alter the usage

distribution. Applications that scale to exploit the benefits of the size and speed of leadership-class

resources will take priority over those that simply need more CPU-hours. The user community will need

to make an active effort to continue developing their applications. The importance of application

development as a crucial component of the scientific investigation cycle will become more evident with

changes to the computing framework for exascale.

3.2.3 Petascale Early Science Usage
The Early Science utilization of the XT5 partition during the transition-to-operations period over the

first half of 2009 requires special attention. Select users were given access to the XT5 petascale system

with 149,504 cores. The largest resource available to these users previously was the Jaguar XT4

partition, with 31,328 cores. Applications scaling to 20% of the XT5 system meant that they were using

100% of the XT4 partition for similarly-sized jobs. Thus, it is quite impressive that many applications

were able to so quickly utilize more than 20% of the resource for a single calculation. The speed at which

the user community was able to develop their codes at this tremendous scale is remarkable.

Fig. 3.7 shows the Early

Science utilization of the

XT5 for each science

category. All science

domains except computer

science are represented, and

fusion and nuclear energy

are combined in this figure.

The largest utilization of the

resource is from materials

science at 25%, with

chemistry (20%) and fusion

(17%) close behind.

Physics, biology, engineering,

and earth sciences utilized

around 10%.

Materials
25%

Physics
11%

Biology
9%

Chemistry
20%

Earth Science
8%

Engineering
10%

Fusion
17%

Fig. 3.8. Early Science usage by science category

26 3. Science Application Usage

Table 3.2. Early Science projects on Jaguar XT5

Project

ID
Allocation
(CPU-hours)

Principal

Investigator
Project Description

AST017 57,000,000 Tony Mezzacappa A Three-Dimensional Model of SN1987A

AST018 57,000,000 James Van Meter Frontier Simulations of Black Hole Mergers

MAT014 57,000,000 Thomas Schulthess Investigations of the Hubbard Model with Disorder

CMB006 50,000,000 Jacqueline Chen
Direct Numerical Simulation of Diesel Jet Flame Stabilization at

High Pressure

CHP002 32,000,000 David Ceperley
Quantum Monte Carlo Calculation of the Energetics,

Thermodynamics and Structure of Water and Ice

CHM036 30,000,000 Robert Harrison CNP - Chemical Nanoscience at the PetaScale

FUS026 30,000,000 Zhihong Lin
Gyrokinetic Particle Simulation of Transport Barrier Dynamics in

Fusion Plasmas

NPH009 30,000,000 David J. Dean Ab Initio Structure of Carbon-14

CLI030 28,500,000 Kate Evans
Tests of Decadal Predictive Skill Using the Community Climate

System Model

BIP008 25,500,000 Jeremy Smith
Cellulosic Ethanol: A Simulation Model of Lignocellulosic Biomass

Deconstruction

NFU003 25,000,000 Dinesh Kaushik Scalable Simuation of Neutron Transport in Fast Reactor Cores

CLI031 20,000,000 Max J. Suarez

Explorations of High Impact Weather Events in an Ultra-High

Resolution Configuration of the NASA GEOS Cubed Sphere Global

Climate Model

CLI032 20,000,000
Venkatramani

Balaji

Petascale CHiMES - Coupled High-Resolution Modeling of the

Earth System

FUS025 20,000,000 Weixing Wang
Global Gyrokinetic Turbulence Simulations of National Spherical

Torus Experiment (NSTX)

MAT015 15,000,000 Mark Jarrell
Petascale Simulation of Strongly-Correlated Electron Systems

Using the Multi-Scale Many-Body Formalism

TUR005 10,000,000 Pui-kuen Yeung
Complex Transport Phenomena in Turbulent Flows: Leadership

Computing at Extreme Scalability on the Cray XT5

GEO003 9,500,000 Peter Lichtner Modeling Reactive Flows in Porous Media

NFI001 5,000,000 Thomas Evans
Denovo, A Scalable HPC Transport Code for Multi-Scale Nuclear

Energy Applications

CHM037 4,000,000
Christopher

Mundy

The Free Energy of Transfer of Hydronium from Bulk to Interface:

A Comprehensive First Principles Study

FUS024 4,000,000 Jeff Candy
Steady-State Gyrokinetic Transport Code (SSGKT), an SAP to the

FACETS project

NTI010 3,800,000 Lin-Wang Wang
Charge Patching Method for Electronic Structures and Charge

Transports of Organic and Organic-Inorganic Mixed Nanostructures

LGT004 2,500,000 Robert Sugar Lattice QCD

CPH002 2,000,000 Dario Alfe AQUA

GEO004 2,000,000 Omar Ghattas
Understanding the Dynamics of the Earth: High Resolution Mantle

Convection Simulation on Petascale Computers

NEL002 2,000,000 Gerhard Klimeck Towards Petascale Simulation of Nanoelectronic Devices

TUR009 2,000,000 George Vahala Lattice Algorithms for Quantum and Classical Turbulence

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

3. Science Application Usage 27

The Early Science projects on the XT5 are listed in Table 3.2. Twenty-six projects actively utilized

the XT5, consuming over 350 million CPU-hours over the course of 6 months. Comparatively, the

utilization is two and a half times greater than the entire 2008 INCITE usage, and three-quarters of the

INCITE allocation. Fig. 3.8 shows the utilization by each project broken down by job size. The high

utilization by materials science researchers is due in large part to significant development of the

application DCA++, which allowed scaling to the full size of the XT5. Not only was it used for an Early

Science project, but CDA++ was also the winner of the 2008 ACM Gordon Bell Prize for outstanding

achievement among high-performance computing applications.

In Fig. 3.8, projects are listed in order of utilization, with largest users listed at the top and utilization

in millions of CPU-hours shown to the left of the project IDs. The largest usage was from material

Fig. 3.9. Utilization of Jaguar XT5 by job size for Early Science projects

0% 20% 40% 60% 80% 100%

MAT014
FUS026
CHP002

MAT015
CHM036

BIP008
CMB006
NPH009
FUS025
CLI032

AST018
CLI031

TUR005
AST017

CHM037
NFU003

CLI030
NEL002
GEO003
LGT004
FUS024
NFI001
NTI010

CPH002
TUR009
GEO004

Percent of Total CPU-hours

X
T5

 E
ar

ly
 S

ci
e

n
ce

 P
ro

je
ct

 ID

> 60% > 20% to < 60% < 20%

(50- 30)

(20-10)

(10-5)

(30-20)

(5-1)

(<1)

(>50)

Job Size Distribution:

Project Usage
in Million
CPU-hours

28 3. Science Application Usage

 science (MAT014), with over 95% of their jobs utilizing greater than 20% of the XT5. Fourteen out of

twenty-six projects exhibited clear leadership-class utilization with more than 50% of their usage at

greater than 20% of the resource. Twelve projects were below standard capability utilization over all,

with only four projects unable to scale adequately, exclusively at job sizes less than 20% of the XT5. It is

interesting to note that three

projects (AST017, NFU003,

NPH009) in astrophysics,

nuclear fusion, and nuclear

physics used greater than 60%

of the resource for roughly

50% or more of their

utilization. Of those three,

NPH009, the nuclear physics

project, using the MFDn

application (more details on

applications are given in

Appendix D) to perform ab

initio calculations of carbon-

14, utilized nearly all of their

allocation for job sizes

exceeding ~90K cores.

3.2.4 Scaling
 To provide further

understanding of the data from

Fig. 3.8, Table 3.3 shows the

largest core count used by

various applications from

INCITE and Early Science

projects. Of the 28

applications listed, 27 use

more than 20% of the XT5

and 19 codes use more than

60% for a single calculation.

Table 3.3. Maximum scaling to date of INCITE codes

Science

Category
Research Area Code

Cores

Used

Biology Biology GROMACS 149,472

Chemistry Chemistry

NWChem

MADNESS

QMCPACK

96,000

140,000

131,072

Computer

Science

General purpose

lattice-boltzmann
Ludwig 131,072

Earth

Science

Seismology

Weather

Climate

Geosciences

SPECFEM3D

FD3D

WRF

POP

CCSM

GEOS-5 Cubed Sphere

PFLOTRAN

149,784

32,000

150,000

18,000

80,000

62,208

132,000

Engineering

Combustion

Fluid Dynamics

S3D

Senga

SBLI

210,000

131,072

130,000

Fusion Fusion GTC 153,600

Materials

Materials

Nanoscience

Condensed Matter

DCA++

LSMS

LS3DF

CASINO

213,120

223,232

147,456

40,000

Nuclear

Energy
Nuclear Energy

Denovo

UNIC

57,600

136,576

Physics

Lattice Gauge Theory

Molecular Dynamics

Astrophysics

Nuclear Physics

BQCD

CP2K

Chimera

MFDn

65,536

32,768

131,072

220,000

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

3. Science Application Usage 29

3.3 Summary

 The usage statistics presented in this chapter show that for most science domains, users exhibit a

need for leadership-class computing resources. This is demonstrated with the large core counts for a

single calculation and the large number of overall CPU-hours needed to accomplish the science

objectives. The need is growing from year to year as scientists are called on to address more and more

challenging problems impacting the nation. The statistics also show that most application teams are

reasonably adept at using current systems and capable of scaling their applications within a reasonable

time to utilize changing resources.

30 4. Science Application Performance

4. SCIENCE APPLICATION PERFORMANCE

Accurate development of requirements for next-generation leadership computational science is based

on an understanding of the behaviors of science applications used to perform this science. This chapter

presents performance analysis of key OLCF applications, to show how performance of these applications

drives demands for system hardware and software.

Assessment of application performance must be based on performance measures. At the highest

level, the goals of next-generation high performance computing are to solve new science problems that

could not be solved before (capability) and also to solve current problems faster and more cost-effectively

(capacity). These computing tasks impose performance requirements on next-generation systems that can

be quantified by cost factors such as:

 Time-to-solution for targeted application runs at specific core counts;

 Core-hours required for targeted application runs;

 Power consumption;

 Hardware constraints, such as main memory and offline memory capacities.

Evaluating science demands on future HPC systems requires estimating application performance for

realistic future system workloads. Accurate prediction of future application performance enables better-

informed procurement and planning decisions.

The OLCF application performance modeling process follows these steps:

1. Select heavily-used applications, based on utilization data from current workloads and

estimation of future workloads.

2. Understand from domain scientists and developers the likely changes in application models,

algorithms, science problems and use cases going forward.

3. Perform application benchmarks for representative problems on existing hardware to isolate

the application stress points related to different hardware features.

4. Extrapolate this performance data to future architectures, based on anticipated hardware

changes as well as changing science demands, to estimate future application performance.

The OLCF workload emphasizes leadership computing based on a comparatively small set of

applications for targeted science areas. This limited number of applications makes it possible to narrow

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

4. Science Application Performance 31

the focus and thus perform more in-depth application studies that give more meaningful estimates of

workload performance for future hardware.

4.1 Application Performance Modeling Procedure

The OLCF performance modeling process is used to estimate performance of an application on a

future system based on performance of the application on current systems. The first step of the

application modeling process is to determine the proper application code version and to define a

representative set of run specifications and core counts with the desired science and model features that

represent typical workloads.

The application code is then compiled and run for the selected settings, using one or more profiling

tools to extract runtime information. These tools include the standard FPMPI profiler [Gropp and

Buschelman 2004], the customized FPMPI profiling tool developed by Cray, Inc., and the CrayPat

profiler. These profilers provide data such as breakdown of runtime into wallclock time, scheduler time,

communication time, synchronization time and input/output (I/O) time; detailed data on message sizes

and counts; and, PAPI [Mucci et al. 2009] counter data. To obtain these statistics, multiple runs of the

same case may be performed to check for run-to-run timing variability for each test case.

Though profiling tools are able to provide substantial run information, some application performance

data must be obtained indirectly. To extract key information that is not readily available from profiling

tools, selected additional runs are performed with slightly changed run settings, to measure the impact of

certain hardware features. For example, a single test case at a fixed core count and identical problem

settings is run multiple times using different numbers of CPU cores per processor socket, to isolate the

impact of memory traffic on runtime due to different numbers of cores competing for the same memory.

Similarly, for hybrid MPI/OpenMP or MPI/PThread codes, the same test case can be run at the same CPU

socket count and MPI task count but different thread counts, to evaluate the threading efficiency and

degree of thread parallelism.

The resulting performance data is then submitted to a performance model that estimates the execution

time of the code on the proposed system based on hardware differences between the actual and targeted

architectures. When the differences between current and targeted hardware is small, e.g., increasing the

clock speed for the same processor type, the estimation process has relatively low risk. For larger

hardware differences, more detailed analyses are required, e.g., inspection of the application source code

or use of a simulator to understand the performance of code on the targeted hardware platforms.

32 4. Science Application Performance

To manage the process of performance modeling, the OLCF has developed the PMC performance

modeling tool. This is a Python script library that automates operations such as downloading and

building each application code, submitting the required jobs to the platform’s job scheduler, monitoring

execution, harvesting and analyzing run data, and generating performance reports based on this data.

4.2 Performance Indicators

Application performance depends on a variety of hardware characteristics, such as processor clock

speed, peak flop rate, cache structure, cache latencies, main memory bandwidth and latency, cores per

compute node, communication bandwidth and latency and I/O bandwidth.

To condense the effects of these hardware factors on application performance into a usable form,

several aggregate performance metrics are used, including:

 Fraction of runtime spent in each of CPU, memory, communication, and I/O.

 Flop rate percent of peak. This measure is important for some scientific applications, though

obviously incomplete as a measure of CPU performance since some true CPU work is not

flop-related (e.g., address computations).

 Floating point computational intensity, i.e., floating point operations per memory reference.

This partly captures memory locality and memory reuse by the CPU in a relatively hardware-

independent way, though it does not in itself measure reuse of data from the various caches.

 Communication bytes per second and messages per second, and their interrelationship. These

measures are not hardware-independent, since they depend on the platform, core count, and

problem size; nonetheless, they do help characterize in general terms the application

communication requirements for representative runs on current hardware.

4.3 Components of Application Performance

Using the performance modeling procedure described above, it is possible for representative runs of

selected applications to distinguish the relative runtime costs associated with different hardware

components, including CPU, memory subsystem, communication subsystem and I/O subsystem. Fig. 4.1

shows for selected OLCF applications the relative fraction of total runtime consumed by CPU, memory,

communication and I/O at representative core counts (for application details, see Appendix D). These

data were generated using the OLCF Jaguar platform, a Cray XT5 system using quadcore processors. For

this set of test runs, application I/O was kept to a minimum, in order to reduce run-to-run variability due

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

4. Science Application Performance 33

to the multi-user environment and thus obtain more reliable estimates. Fig. 4.1 shows usage of machine

resources not only by application and science area but also by core count, indicating how performance

scales.

Fig. 4.1. Application runtime fraction by hardware subsystem

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fusion: Aorsa: 32 cores

Fusion: Aorsa: 64 cores

Fusion: Aorsa: 256 cores

Fusion: Aorsa: 4096 cores

Fusion: Aorsa: 8192 cores

Fusion: Aorsa: 16384 cores

Fusion: Aorsa: 28900 cores

Fusion: Aorsa: 33856 cores

Astrophysics: Chimera: 128 cores

Astrophysics: Chimera: 256 cores

Materials Science: DCA++: 1000 cores

Materials Science: DCA++: 2000 cores

Materials Science: DCA++: 4000 cores

Materials Science: DCA++: 8000 cores

Materials Science: DCA++: 16000 cores

Materials Science: DCA++: 32000 cores

Materials Science: DCA++: 96000 cores

Fusion: GTC: 256 cores

Fusion: GTC: 4096 cores

Fusion: GTC: 16384 cores

Fusion: GTC: 32768 cores

Fusion: GTC: 65536 cores

Materials Science: LSMS: 2056 cores

Materials Science: LSMS: 4104 cores

Materials Science: LSMS: 8200 cores

Materials Science: LSMS: 16392 cores

Materials Science: LSMS: 49160 cores

Materials Science: LSMS: 98312 cores

Chemistry: Madness: 32768 cores

Chemistry: Madness: 65536 cores

Astrophysics: MVH3: 100 cores

Astrophysics: MVH3: 21904 cores

Astrophysics: MVH3: 34225 cores

Climate: POP: 331 cores

Climate: POP: 608 cores

Climate: POP: 930 cores

Climate: POP: 1716 cores

Climate: POP: 2267 cores

Climate: POP: 3298 cores

Climate: POP: 4534 cores

Climate: POP: 6966 cores

Climate: POP: 15216 cores

Combustion: S3D: 1536 cores

Combustion: S3D: 3072 cores

Combustion: S3D: 6144 cores

Combustion: S3D: 12288 cores

Combustion: S3D: 49152 cores

Combustion: S3D: 98304 cores

TimeClock

TimeMemory

TimeComm

TimeIO

34 4. Science Application Performance

It is clear from these results that:

 Science applications such as LSMS, DCA++, AORSA and Chimera, which rely heavily on

dense linear algebra, have a great deal of compute-bound work that can potentially be sped

up by using more or stronger processor cores.

 Grid-based codes such as POP, S3D and GTC have significant communication requirements.

Particularly, the POP code that is run in a strong scaling regime has communication

requirements that increase as a fraction of runtime with increasing core counts.

 Overall, it can be seen that a great deal of processor-intensive work exists across the

applications, which can be positively impacted by greater CPU capabilities of future

leadership-class HPC systems.

The application runtime footprint for different hardware subsystems can also be analyzed in terms of

the performance impact resulting from increasing the performance of a single hardware subsystem in

isolation.

Fig. 4.2 gives Kiviat diagrams for selected application codes showing the relative impact on time to

solution from improving processor, memory or communication performance by a factor of two. It is

evident that the performance of codes like LSMS, DCA++, AORSA and Chimera is improved by more or

stronger processor cores, and that codes like POP are improved by a better communication subsystem.

4.4 Computational Intensity and Percent of Peak

As mentioned earlier, two measures of how effectively applications make use of computer hardware

are computational intensity and percent of peak flop rate. Fig. 4.3 and 4.4 show computational intensity

and percent of peak floating point operations for selected application runs on the OLCF quadcore Jaguar

Cray XT5 platform.

Computational intensity is a measure of how much computational work is done by the CPU on a data

value once the value is fetched from memory to a register. Codes such as DCA++, LSMS and AORSA

with high computational intensity due to reliance on dense linear algebra make good use of the CPU,

since performing many compute operations on a data value amortizes the cost of the memory access. On

the other hand, codes like S3D, as is typical of grid-based codes, stress the memory subsystem more

heavily and thus attain lower computational intensities.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

4. Science Application Performance 35

Fig. 4.2. Impact of 2X hardware subsystem improvement on application performance

0

1

2

Processor
Improvement

Memory
Subsystem

Improvement

Communication
Subsystem

Improvement

GTC
0

1

2

Processor
Improvement

Memory
Subsystem

Improvement

Communication
Subsystem

Improvement

S3D

0

1

2

Processor
Improvement

Memory
Subsystem

Improvement

Communication
Subsystem

Improvement

Aorsa
0

1

2

Processor
Improvement

Memory
Subsystem

Improvement

Communication
Subsystem

Improvement

DCA++

0

1

2

Processor
Improvement

Memory
Subsystem

Improvement

Communication
Subsystem

Improvement

LSMS
0

1

2

Processor
Improvement

Memory
Subsystem

Improvement

Communication
Subsystem

Improvement

Chimera

0

1

2

Processor
Improvement

Memory
Subsystem

Improvement

Communication
Subsystem

Improvement

POP

36 4. Science Application Performance

Fig. 4.3. Application floating point operations per memory reference

The range of application percent of peak has a broad range, with high values (e.g., 80%) for

applications that heavily use dense linear algebra. The causes of lower fractions of machine peak speed

are evident from Fig. 4.1: application runtime is spent not only in the CPU but also in memory access and

communications. Unfortunately, many applications in practice are unable to exploit more than a small

fraction of the available power of the CPU. This behavior is widely recognized to be a common

0 1 2 3 4 5 6

Fusion: Aorsa: 32 cores
Fusion: Aorsa: 64 cores

Fusion: Aorsa: 256 cores
Fusion: Aorsa: 4096 cores
Fusion: Aorsa: 8192 cores

Fusion: Aorsa: 16384 cores
Fusion: Aorsa: 28900 cores
Fusion: Aorsa: 33856 cores

Astrophysics: Chimera: 128 cores
Astrophysics: Chimera: 256 cores

Materials Science: DCA++: 1000 …
Materials Science: DCA++: 2000 …
Materials Science: DCA++: 4000 …
Materials Science: DCA++: 8000 …

Materials Science: DCA++: 16000 …
Materials Science: DCA++: 32000 …
Materials Science: DCA++: 96000 …

Fusion: GTC: 256 cores
Fusion: GTC: 4096 cores

Fusion: GTC: 16384 cores
Fusion: GTC: 32768 cores
Fusion: GTC: 65536 cores

Materials Science: LSMS: 2056 …
Materials Science: LSMS: 4104 …
Materials Science: LSMS: 8200 …

Materials Science: LSMS: 16392 …
Materials Science: LSMS: 49160 …
Materials Science: LSMS: 98312 …

Chemistry: Madness: 32768 cores
Chemistry: Madness: 65536 cores

Astrophysics: MVH3: 100 cores
Astrophysics: MVH3: 21904 cores
Astrophysics: MVH3: 34225 cores

Climate: POP: 331 cores
Climate: POP: 608 cores
Climate: POP: 930 cores

Climate: POP: 1716 cores
Climate: POP: 2267 cores
Climate: POP: 3298 cores
Climate: POP: 4534 cores
Climate: POP: 6966 cores

Climate: POP: 15216 cores
Combustion: S3D: 1536 cores
Combustion: S3D: 3072 cores
Combustion: S3D: 6144 cores

Combustion: S3D: 12288 cores
Combustion: S3D: 49152 cores
Combustion: S3D: 98304 cores

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

4. Science Application Performance 37

Fig. 4.4. Application flop rate percent of peak

occurrence for science applications in a wide range of areas, due to the ―memory wall.‖ For a number of

years, the annual growth rate in memory speed has lagged the growth rate in processor power by about

30% per year [Graham et al. 2005, p. 108]. Thus, even the best written codes that have inherently

memory-bound physics models will necessarily attain only small fractions of machine peak flop rate.

This phenomenon adds urgency to the need to reformulate algorithms and science models along the lines

of increasing locality and thus mitigating the effects of the memory wall.

0% 20% 40% 60% 80% 100%

Fusion: Aorsa: 32 cores
Fusion: Aorsa: 64 cores

Fusion: Aorsa: 256 cores
Fusion: Aorsa: 4096 cores
Fusion: Aorsa: 8192 cores

Fusion: Aorsa: 16384 cores
Fusion: Aorsa: 28900 cores
Fusion: Aorsa: 33856 cores

Astrophysics: Chimera: 128 cores
Astrophysics: Chimera: 256 cores

Materials Science: DCA++: 1000 …
Materials Science: DCA++: 2000 …
Materials Science: DCA++: 4000 …
Materials Science: DCA++: 8000 …

Materials Science: DCA++: 16000 …
Materials Science: DCA++: 32000 …
Materials Science: DCA++: 96000 …

Fusion: GTC: 256 cores
Fusion: GTC: 4096 cores

Fusion: GTC: 16384 cores
Fusion: GTC: 32768 cores
Fusion: GTC: 65536 cores

Materials Science: LSMS: 2056 cores
Materials Science: LSMS: 4104 cores
Materials Science: LSMS: 8200 cores

Materials Science: LSMS: 16392 …
Materials Science: LSMS: 49160 …
Materials Science: LSMS: 98312 …

Chemistry: Madness: 32768 cores
Chemistry: Madness: 65536 cores

Astrophysics: MVH3: 100 cores
Astrophysics: MVH3: 21904 cores
Astrophysics: MVH3: 34225 cores

Climate: POP: 331 cores
Climate: POP: 608 cores
Climate: POP: 930 cores

Climate: POP: 1716 cores
Climate: POP: 2267 cores
Climate: POP: 3298 cores
Climate: POP: 4534 cores
Climate: POP: 6966 cores

Climate: POP: 15216 cores
Combustion: S3D: 1536 cores
Combustion: S3D: 3072 cores
Combustion: S3D: 6144 cores

Combustion: S3D: 12288 cores
Combustion: S3D: 49152 cores
Combustion: S3D: 98304 cores

38 4. Science Application Performance

Application performance can be characterized in terms of stress on CPU peak flop rate or

alternatively on memory bandwidth. Fig. 4.5 shows the ―roofline model‖ [Williams et al. 2009]

comparing the computational intensity to percent of peak flop rate for selected application runs. In this

graph, applications tend to be either compute bound (limited by the horizontal line representing maximum

attainable flop rate) or memory access bound (limited by one of the diagonal lines representing peak

bandwidth of the respective memory subsystem in the memory hierarchy). It can be seen that LSMS,

DCA++ and AORSA are more compute-bound and that GTC and S3D are more memory-bound. POP is

executed in a strong scaling regime, with its subproblems localized to L2 cache; however, it is

communication-intensive and thus attains a low fraction of machine peak.

Fig. 4.5. Application computational intensity vs. fraction of peak

4.5 Communication

Interprocessor communication network performance is a limiting factor for the performance of many

algorithms. Application interprocessor communication requirements can be characterized by two

measures: the number of messages sent per unit time, which stresses communication network latency, and

the total amount of data communicated per unit time, which stresses network bandwidth.

Fig. 4.6 compares the communication bytes per second and messages per second for selected

application runs on the OLCF quadcore Jaguar Cray XT5 system. Applications that send many messages

per second (and thus tend to stress the latency limits of the communication subsystem) appear on the right

0.001

0.010

0.100

1.000

0.001 0.010 0.100 1.000

Fl
op

 R
at

e
Fr

ac
ti

on
 o

f
Pe

ak

Flops per Memory Reference

LSMS

DCA++

Aorsa

Chimera

POP

GTC

Madness

S3D

Flop Rate Peak

Mem BW Peak

Mem BW STREAM

L2 Cache BW DAXPY

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

4. Science Application Performance 39

side of the graph. Applications that send large amounts of data per second (and thus tend to stress the

bandwidth limits) appear in the top part of the graph. From this it is shown that

 Codes like POP have high message rates, contributing to their being message latency limited.

 Codes like S3D and GTC which send 3-D halo data to neighbor processors have relatively

high bandwidth requirements.

Fig. 4.6. Application communication measures

4.6 I/O

While parallel I/O performance requirements of applications taken in isolation are readily achieved by

modern parallel file systems, aggregate I/O performance requirements on large-scale simulation

environments remain difficult to meet. For such large-scale environments the parallel file system is a

shared resource. Parallel I/O environments on petascale class platforms are made up of tens of thousands

of disk drives, hundreds of I/O servers, and increasingly complex system area networks to deliver the

aggregate bandwidth and I/O operations per second (IOPs) required by the diverse workloads these

platforms support. To provide a productive simulation environment, parallel I/O systems must be

designed to support increasingly diverse workloads such as ―metadata intensive‖ workloads in which tens

of thousands of files are created per second, ―IOPs intensive‖ workloads in which hundreds of thousands

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0.1 1 10 100 1000 10000

C
o

m
m

u
n

ic
at

io
n

 B
yt

e
s

/
Se

c

Communication Messages / Sec

Aorsa

Chimera

DCA++

GTC

LSMS

Madness

MVH3

POP

S3D

40 4. Science Application Performance

of application processes are generating small (e.g. 4KB) I/O requests concurrently, and ―bandwidth

intensive‖ workloads in which thousands of application processes are generating large (e.g. 1MB) I/O

requests concurrently. Under these mixed workloads, I/O performance is often limited by metadata

operations and IOPs rather than by aggregate theoretical bandwidth, as larger I/O requests are interleaved

with much smaller I/O requests creating contention. Under IOPs-intensive workloads as seen on many

large-scale simulation environments, I/O bandwidth drops to a small fraction of the theoretical bandwidth

achievable under ideal workloads.

Fig. 4.7. Aggregate I/O bandwidth (mixed workload)

Due to the shared nature of the parallel I/O environment, we have focused our performance study on

aggregate system load on the underlying storage system. Data presented in this study is obtained from a

live large-scale production system over a one-month period of time. Fig. 4.7 illustrates the aggregate load

(in terms of I/O bandwidth, gigabytes per second) on the underlying I/O subsystem generated by a diverse

application mix. While average system load is relatively low, the ability to deliver high parallel I/O

performance under heavy workloads is critical for providing a productive simulation environment and

avoiding sustained periods of system performance degradation, demonstrated by the dramatic peaks in

delivered system performance.

As detailed above, mixed workloads result in extremely high IOPs in the parallel I/O environment.

Traditional storage technologies such as magnetic disk drives are susceptible to extreme performance

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

4. Science Application Performance 41

degradation in terms of bandwidth under small I/O, high IOPs workloads. Fig. 4.8 illustrates the

aggregate load (in terms of IOPs, thousands of operations per second) on the underlying I/O subsystem

from a diverse application mix over the same one-month period analyzed in Fig. 4.7.

Fig. 4.8. Aggregate IOPs (mixed workload)

Fig. 4.7 and 4.8 together tell us that the ability to deliver high IOPs is as important as the ability to

deliver high parallel I/O performance towards achieving a productive parallel file system for large-scale

simulation environments.

4.7 Power Consumption

The power demands for computer hardware have become a major cost factor for executing

applications on HPC systems. Modern processors are able to adapt their power utilization based on the

calculations they perform at any given time. The growing concerns over power consumption suggest the

importance of including power consumption as a metric for optimizing algorithm design. Science

applications can be designed not just to minimize floating point operations or memory references but also

power-related metrics such as ―science results per watt‖ [Kogge 2008, p. 228]. Similarly, an

understanding of power consumption behaviors of applications can inform future computer hardware

designs.

42 4. Science Application Performance

Fig. 4.9 shows power consumption for dedicated application runs on the quadcore Jaguar Cray XT5

system at selected core counts. Unsurprisingly, DCA++ and AORSA, which heavily use dense linear

algebra kernels, have high computational intensity and thus high power consumption per core. On the

other hand, less compute-intensive codes such as S3D have high power requirements as well. Studies of

this type can be used to shed light on costs measured in terms of power as well as compute time

associated with particular algorithm designs.

Fig. 4.9. Application power consumption

4.8 Implications for Future HPC Systems

The performance characteristics of OLCF applications as described above indicate how these

applications may be expected to perform on future hardware and motivate the requirements for future

leadership HPC systems.

Anticipated changes in HPC system hardware include: (1) increasing demands for memory locality,

and (2) the need for applications to express increased thread parallelism, even to tens of billions of threads

0 10 20 30 40 50

S3D-Perf512

S3D-Perf30000

S3D-Perf60000

S3D-Perf100000

S3D-Perf140000

GTC test_040960c

GTC test_051200c

GTC test_051200c

GTC test_102400c

Madness test_moldft_35H2O_040000c

Madness test_moldft_35H2O_090000c

Madness test_moldft_35H2O_140000c

FLASHIO qc5000_s5000_N1

kickstart Test140000

kickstart Test148000

Aorsa test_33856_1cps

FLASHIO qc5000_s5000_N1

DCA test_148352

NWCHEM rr_60K_perf

Watts/Core (IDLE)

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

4. Science Application Performance 43

[Kogge 2008, p. 198]. These hardware trends and the above performance results for OLCF applications

motivate the following observations.

 Science applications relying heavily on compute-intensive kernels, such as several of those

described above, are well positioned to adapt to future hardware changes, since they already

have a high degree of locality. In particular, accelerator technology (see Section 5.6) will

benefit these applications due to their high flop rates.

 Other applications must increase the amount of data locality. More broadly, a locality-centric

orientation should be promoted across the parallel algorithm research and development

community. Though the memory bottleneck has grown for over a decade, fundamental

algorithmic research and deployment have been slow to respond. Algorithmic design must

focus on doing as much meaningful computational work with local data as possible, in

algorithm areas beyond dense linear algebra. In this algorithm design regime, some design

decisions might lead to reordering of computations at the algorithm level or even the

performing of redundant computations, if warranted by the tradeoff of computation for

memory reference. Deployment of such optimizations should be strengthened by raising the

community awareness level regarding the importance of these optimizations as well as

evaluation of how such code modifications could be implemented in realistic code

development processes and maintained in code bases without impeding progress in more

science-related code development activities.

 Algorithmic innovations such as lower precision and mixed precision arithmetic can improve

both memory reference costs and floating point operation costs. This approach is already in

use in one of the codes considered here (DCA++).

 Certain application codes already have significant potential for more thread parallelism, e.g.,

DCA++, LSMS, S3D and GTC. This should be exploited.

 Communication latency-bound codes such as POP should use algorithms that implement

better latency hiding techniques, e.g., iterative solvers using polynomial preconditioning or s-

step Krylov methods [Joubert and Carey 1992, Demmel et al. 2007]. Such measures cannot

entirely eliminate the need for local or global communications, so vendor hardware must

continue to address latency issues.

 Similarly, some applications should be rethought from first principles in terms of whether the

limits to parallelism are intrinsically imposed by the physics of the simulation or whether the

limit is an artificial result of a negotiable algorithm choice. For example, an explicit time-

44 4. Science Application Performance

dependent grid-based PDE code might be able to take several time steps between

communications without altering the numerical answer, by doing larger halo communications

and performing some redundant computations on each processor with this data.

 Communication bandwidth-bound codes might be adjusted so that communication better

matches the underlying hardware. For example, recent experiments with S3D show that total

performance can be improved by over 20% by MPI task remapping.

 Importantly, there is no single magic bullet hardware feature for improving application

performance across the board. Different applications in different science areas have different

hardware stress points, such as computation, memory, communication bandwidth and

communication latency. Next-generation HPC systems cannot afford to neglect any of these

hardware features. When possible, trends in the commodity hardware market can be

leveraged to address these needs. When this is not possible, alternative hardware solutions

must be developed. Notably, accelerator technology will address several of these hardware

concerns, including node peak flops, memory bandwidth and memory latency (see Section

5.6). Other factors such as interconnect bandwidth and latency must be improved as well.

 The programming model for many of these applications is MPI-only, though this is changing

in the direction of MPI plus threading. For example, Madness and GTC already implement

some form of threading in addition to MPI. Further modifications of this type must take

place, to better exploit coming hardware changes that are geared toward fine-grained

parallelism. Appropriate code changes, whether at the kernel level or at the large-scale code

restructuring level, need to be considered for increasing parallelism and breaking operations

into smaller units of independent work.

 A better understanding of the relationship between algorithm and power consumption can

better inform a cost model that includes all relevant factors including time to solution,

consumed core-hours and power utilization as objectives for optimization.

 Better software tools could aid in the performance optimization process. This might include

improved performance profiling tools that have more lightweight functionality but are more

robust across hardware vendors, programming languages, compiler vendors and parallelism

models. Also, usability issues regarding these tools should be addressed—performance

analysis tools could be made more accessible to non-specialist application developers by

giving more attention to usability engineering issues [Nielsen 1993].

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

4. Science Application Performance 45

In short, we make the following summary recommendations:

1. Hardware: OLCF applications stress multiple hardware features; no single hardware feature

can be improved to the neglect of others.

2. Parallelism: Substantial efforts must be undertaken to restructure applications and codes to

prepare for multibillion-thread parallelism.

3. Latency: A much more latency-centric approach to algorithm and software design is

required.

4. Optimization: Better adaptation of codes to communication networks and memory

hierarchies can substantially improve performance.

5. Power: More efforts to optimize the power consumption of algorithms and applications

should be undertaken.

6. Tools: More robust and usable performance analysis tools can assist application developers

in improving code performance.

46 5. Science Application Requirements

5. SCIENCE APPLICATION REQUIREMENTS

This chapter discusses the elements required to perform next-generation leadership science. The

requirements for leadership science are of two types: resource requirements and process requirements.

Resource requirements are generally easier to quantify; process requirements are more qualitative, being

more dependent on institutional experience and empirical research. In either case, it is the goal of the

OLCF requirements process to make science application requirements increasingly quantifiable and

objective, thus improving the accuracy and reliability of the planning process.

Computational resource requirements for science applications include computer hardware, system

software stack, scientific libraries, compilers, parallel programming interfaces, computational algorithms

and models. Processes include application development management, application workflow

management, software quality and assurance, verification and validation, and data management. In what

follows each of these items is addressed in turn.

5.1 Science Model Requirements

The DOE Office of Science has determined that significant increases in computational capabilities are

required to address serious economic, environmental and national security challenges. As mentioned

earlier, these vital needs for increased computational capabilities will enable advances in basic science in

numerous technical areas with a broad range of societal impacts.

Advancing science in these key areas requires development of next-generation physical models to

satisfy the accuracy and fidelity needs for targeted simulations. The impact of these simulation fidelity

needs on requirements for computational science is twofold. First, more complex physical models must

themselves be developed to account for more aspects of the physical phenomena being modeled. Second,

for the physical models being used, increases in resolution for key system variables, such as numbers of

spatial zones, time steps or chemical species, are needed to improve simulation accuracy, which in turn

places higher demands on computational hardware and software.

Application models represent the functional requirements that drive the need for certain numerical

algorithms and software implementations. The choice of model is in part motivated by the science

objectives, but it is also constrained by the computer hardware characteristics attainable in the relevant

time frame. The choice and specification of system attributes (e.g., peak speed or node memory capacity)

tend to constrain the functional attributes able to be employed in a given physical model on that system.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 47

For example, attributes such as the following all depend in part upon the hardware system for which

implementation of the models is targeted:

 model state variables (how many now, how many planned in the future);

 model characteristics (partial differential equations [PDE] or ordinary differential equations

[ODE], deterministic or stochastic, formulation of equations);

 primary model data types (double precision floating point, integer);

 presence of multiple, simultaneous phenomena, and the required degree of coupling;

Table 5.1. Model requirements for next-generation science

Science

Area
Application Future Model Requirements

Astrophysics CHIMERA Increase in number of spatial zones. Increase in number of nuclear species from

17 to 150-300, increasing the compute time for nuclear burn by 500x or more,

thus increasing full simulation cost by 20x or more.

Bioenergy /

Biology

LAMMPS Simulation of microbial/biomass interface and dynamics of enzyme action on

biomass. Higher atom count, longer time scales. Additional force fields, more

accurate potentials. Scaling by >10x to increase accuracy.

Chemistry MADNESS Couple new components to model. Use more accurate component models.

Climate CAM-HOMME Incorporate full land surface model, next-generation microphysics, radiative

transfer, aerosol indirect effect, full biogeochemistry. Include better

representations to parametrize subgrid scale physics, advanced time stepping

routines to improve speed and accuracy, new discretization schemes and grids,

more coupled prognostic variables.

Combustion S3D 50–100% increase in Re (from 10K to 15–20K) with corresponding up to 8x

increase in grid resolution and increase in the number of time steps.

Alternatively increase number of chemical species from 22 to 60-80 with

corresponding 3-4x increase in computations.

Fusion AORSA Incorporate finite width particle orbits in plasma response calculation.

Fusion GTC, GTS Add coupling of core and edge physics, late time evolution, neoclassical

turbulence physics.

Materials

Science

DCA++ Extend to multi-band model which scales the cost by order n
3
 in the number of

bands for at least 8x cost increase. Possibly increase from 24 to 32 atoms,

which scales the computation by order n
3
.

Materials

Science

WL-LSMS Extend the model to non-spherical potentials and more accurate density

functional which could increase cost by 10x. Increase atom count which scales

the cost linearly. Increase number of walkers by 10x to calculate additional

observables to increase accuracy of result.

Nuclear

Energy

Denovo Model full BWR cores; Gen-IV designs; experimental facilities. Increase the

number of energy groups from 44 to 999 (23x), which will in turn demand

further resolution in space and angle. Modeling of uncertainty.

48 5. Science Application Requirements

 presence of multiple scales in multiscale models;

 domain of dependence (local with specific patterns, global); and

 data dependency (degree of parallelizability).

As part of the requirements solicitation process, the OLCF consulted with over 50 leading scientists

in numerous science domains, to better understand the goals for next-generation science and the models

that would be required to reach these goals.

Table 5.1 summarizes key findings from this process. It can be noted that for several science areas,

the science demands require a significant quantum leap forward in science model capabilities.

Furthermore, several science areas are able to quantify the factor of growth in problem resolution required

to meet their science goals. Projects able to quantify this factor are shown to require growth of an order

of magnitude or more for their computational needs. In particular, current hardware capabilities on the

order of 2 petaflops must be extended to 20 petaflops or more to accommodate near-term science

requirements.

To reach the science goals mandated by DOE, action must be taken to provide solutions for this

increase in demand for high-end computing capabilities.

5.2 Computational Algorithm Requirements

Science priorities lead to science models, and models are implemented in the form of algorithms.

Algorithm selection is based on various criteria, such as appropriateness, accuracy, verification,

convergence, performance, parallelism and scalability.

Models and associated algorithms are not selected in isolation but must be evaluated in the context of

the extant computer hardware environment. Algorithms that perform well on one type of computer

hardware may become obsolete on newer hardware, so selections must be made carefully and may change

over time.

As mentioned earlier, moving forward to exascale will put heavier demands on algorithms in at least

two areas: the need for increasing amounts of data locality in order to perform computations efficiently,

and the need to obtain much higher factors of fine-grained parallelism as high-end systems support

increasing numbers of compute threads. As a consequence, parallel algorithms must adapt to this

environment, and new algorithms and implementations must be developed to extract the computational

capabilities of the new hardware.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 49

Table 5.2. Algorithm requirements for next-generation science

Science

Area
Application Algorithm Requirements

Astrophysics CHIMERA CURRENT: Finite-volume (PPM) hydrodynamics, multi-group flux-limited

diffusion neutrino transport, fully-implicit solution of nuclear kinetics networks.

Structured grid, adaptive mesh redistribution, sparse linear algebra, passive

particles, GMRES solver with custom preconditioner.

FUTURE: Quasi-equilibrium (QSE) methods, full 1D Boltzmann transport,

possibly AMR.

Bioenergy /

Biology

LAMMPS CURRENT: Molecular dynamics,multiple integrators, velocity Verlet , Charm22

force field and others, bonded and non-bonded terms, charge terms.

FUTURE: New models, scalable algorithms for long-range forces.

Chemistry MADNESS CURRENT: Adaptive multiresolution methods, low separation rank

representations of functions/operators, validation against experimental results.

FUTURE: Increasing accuracy of calculations, solving larger problem sizes with

more accurate physics models.

Chemistry NWCHEM CURRENT: Density functional theory (DFT), Hartree-Fock with LCAO , second

order Moller-Plesset theory (MP2), coupled cluster CCSD(T), other quantum

chemistry correlated methods.

FUTURE: Enhancements for IR and Raman spectra of large molecules, additional

correlated methods.

Climate CAM-

HOMME

CURRENT: Cubed sphere, spectral discretization, with finite volume and spectral

element (continuous and discontinuous Galerkin), explicit time stepping.

FUTURE: Fully implicit time stepping, iterative linear solver.

Combustion S3D CURRENT: Higher order accurate finite difference, fully explicit RK time

integration with error estimates and time step control.

FUTURE: Possibly adaptive chemistry, load balancing.

Fusion AORSA CURRENT: Double precision complex dense solve, quasi-linear operator,

CQL3D coupling for calculation of particle distribution functions.

FUTURE: Mixed precision solver, replacement of CQL3D for more accuracy .

Fusion GTC, GTS CURRENT: Particle-in-cell simulation solving gyrokinetic equation in

Lagrangian coordinates using a delta-F method, general geometry using spline fit

of MHD equilibrium and experimental profiles data, global field-aligned mesh

using magnetic coordinates, Monte Carlo method for collisions.

FUTURE: Full-F.

Materials

Science

DCA++ CURRENT: Dynamic cluster quantum Monte Carlo algorithm with Hirsch-Fye

auxiliary field solver with delayed updates.

FUTURE: New delayed update algorithm, continuous time quantum MC solver.

Materials

Science

WL-LSMS CURRENT: Calculation of scattering path matrix for complex energies by

iterating the block inverse formula.

FUTURE: Larger problem sizes.

Nuclear

Energy

Denovo CURRENT: Inverse power iteration for eigenpair calculation, accelerated with

coarse mesh finite diffusion, inner solves with 2-grid preconditioned Gauss-

Seidel, within-group solves using DSA-preconditioned GMRES.

FUTURE: Shifted inverse power iteration, Krylov inner solves over all energies,

energy groups in inner loop.

50 5. Science Application Requirements

As with science models, the performance of algorithms can change in two ways as application codes

undergo development and new computer hardware is used. First, algorithms themselves can change,

motivated by new models or performance optimizations. Second, algorithms can be executed under

different specifications, e.g., larger problem sizes or changing accuracy criteria. Both of these factors

must be taken into account.

Table 5.3. Employment of algorithm motifs by science areas

Science

domain
Code

Structured

grids

Unstructured

grids
FFT

Dense

linear

algebra

Sparse

linear

algebra

Particles
Monte

Carlo

Accelerator

physics
T3P X X

Astrophysics
CHIMERA X X X X

VULCAN/2D X X

Biology LAMMPS X X

Chemistry

MADNESS X X

NWCHEM X X

OReTran X X X

Climate

CAM X X X

POP/CICE X X X

MITgcm X X X

Combustion S3D X

Fusion

AORSA X X X

GTC X X X X

GYRO X X X X

Geophysics PFLOTRAN X X X

Materials

science

QMC/DCA X X

QBOX X X X

Nanoscience
CASINO X X

LSMS X X

Nuclear

energy

NEWTRNX X X X

Denovo X X X

Nuclear

physics
NUCCOR X

QCD MILC X X

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 51

The OLCF requirements elicitation process was used to poll domain scientists regarding algorithm

requirements going forward for the respective application codes. Results for key applications are

presented in Table 5.2. These results should be read in tandem with the data in Table 5.1 regarding

predicted changes in problem size parameters. These results show substantial algorithm development

requirements to support new science models as well as anticipated computer hardware changes.

The impact of these algorithm changes on application performance can be understood in terms of a

selected set of algorithm motifs [Colella 2004,Asanovic et al. 2006]. These algorithm motifs, such as

structured and unstructured grids, FFT, dense and sparse linear algebra, particles and Monte Carlo

methods, occur repeatedly across a wide range of science applications. Table 5.3 shows the usage of these

algorithm motifs in OLCF applications. Analyzing application codes in terms of these application motifs

helps identify common requirements across applications as well as common stress points for computer

hardware.

Table 5.4. Anticipated change in use of algorithm motifs for next-generation science

(↑ = increasing usage, ↓ = decreasing usage)

Science Area Application Algorithm Motif Change

Astrophysics CHIMERA Structured grids, dense linear algebra (↑), sparse linear algebra (↑),

particles, unstructured grids (↑)

Bioenergy/ Biology LAMMPS FFT (↓), particles (↑), structured grids, dense linear algebra(↑), sparse

linear algebra(↑)

Chemistry MADNESS Unstructured grids, dense linear algebra (↑)

Chemistry NWCHEM FFT, dense linear algebra

Climate CAM-HOMME Structured grids, particles, sparse linear algebra (↑)

Combustion S3D Structured grids (↑)

Fusion AORSA Structured grids, FFT, dense linear algebra (↑)

Fusion GTC, GTS Structured grids, sparse linear algebra, particles (↑), Monte Carlo

Materials Science DCA++ Dense linear algebra (↑), Monte Carlo (↑)

Materials Science WL-LSMS Structured grids, dense linear algebra

Nuclear Energy Denovo Structured grids (↑), sparse linear algebra (↑), dense linear algebra (↑)

Table 5.4 gives for selected applications the algorithm motif used and, when appropriate, the

anticipated growth of usage of these algorithm motifs in the science applications going forward. This

increased usage is reckoned in terms of new algorithm development, platform node-hour usage or fraction

of total runtime for typical runs.

52 5. Science Application Requirements

It should be noted from Table 5.4 the anticipated increased usage for many algorithm motifs

represented. This mandates the need for greater support for optimized software that efficiently performs

the requisite mathematical operations in support of these motifs.

This information motivates the following recommendations:

 As mentioned earlier, algorithm research is essential to the success of applications on next

generation hardware. Algorithm research should be driven by the need for more locality-

centric algorithm variants with more available fine-grained parallelism to address upcoming

hardware changes. The increasing reliance on key algorithmic motifs by OLCF applications

suggests efforts focused specifically on the motif components that are heavily used across

multiple applications. Encapsulating software for these motifs within libraries when

appropriate allows code optimization efforts to be leveraged across multiple projects.

 Support should be given to parallel software library development in these and related vital

motif areas. These software libraries must be optimized for the cases required by the codes of

domain scientists. Unfortunately, in many cases available software libraries are not

optimized for problem cases of importance to specific applications (e.g., a dense BLAS

kernel may not be optimized for a matrix shape that is uncommon in general situations but is

important to a specific science application area). In the course of library development, often

it is impossible to foresee the range of input settings or slight algorithm variations that might

be associated with key science application runs. This problem must be addressed by an

appropriate software strategy such as, (1) when possible provide compiler support to generate

high-quality code for the required operations, perhaps with the help of compiler hinting

techniques via directives; (2) support library developers to implement the required

functionalities directly in the library when needed; (3) make the library source code open

source and thus more easily customizable by others to the required problems; and (4) use

adaptive methods or autotuners when appropriate to optimize for a broader range of cases.

5.3 Parallelization and Compiler Software Requirements

5.3.1 Near-Term Requirements
Application development teams routinely select programming language, compiler and parallel

programming model based on a variety of factors such as model and algorithm structure, compiler

performance, supported platforms, team expertise and needs to reuse legacy code. Table 5.5 gives for

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 53

selected OLCF applications the choice of programming language, compilers, communication libraries and

lines of maintained code.

Table 5.5. Languages and parallel programming models for key applications

Science Area Application
Programming

Language(s)

Compilers

Supported

Comm

Libraries
LOC

Astrophysics Chimera F77, F90 PGI, Cray, IBM MPI 250K

Bioenergy /

Biology
LAMMPS C++

GNU, PGI, IBM,

Intel
MPI 140K

Chemistry MADNESS C++ GNU MPI, PThreads 1M

Climate
CAM-

HOMME
F90 PGI, Lahey, IBM MPI 500K

Combustion S3D F77, F90 PGI MPI 10K

Fusion AORSA F90 PGI MPI 20K

Fusion GTC F90, C, C++ PGI, Cray MPI, OpenMP 8K

Materials

Science
DCA++ C++ GNU MPI 26K

Materials

Science
gWL-LSMS F77, F90, C, C++ PGI, GNU MPI 70K

Nuclear Energy Denovo
C++, Fortran,

Python

GNU, PGI, Cray,

Intel
MPI 46K

It is clear that both FORTRAN and C++ are used heavily for application development, with no clear

winner. Furthermore, projects typically use an MPI-only parallel programming model, with some use of

hybrid approaches.

The requirements elicitation process also revealed trends that are expected to change this snapshot of

application development approach. In particular, numerous teams are moving toward hybrid

programming models, adding some type of threading such as OpenMP, PThreads or Intel TBB to their

current MPI framework. This is motivated by performance or memory usage improvements that are

expected to result.

5.3.2 Next-Generation Requirements
Seismic changes currently underway in parallel computing hardware, such as heterogeneous

processors, multibillion-threaded platforms and ever-increasing relative latency times, are motivating the

drive for new programming models to exploit advances in hardware capability. In particular, approaches

such as OpenCL and new directives-based compiler technologies are being considered.

54 5. Science Application Requirements

Development of new programming interfaces for these hardware innovations are in the early stages.

A period of user experimentation and experience-gathering will be required before a consolidation around

best practices is possible. Since these are early stages, specifications cannot yet be given in detail

regarding software requirements to match the new hardware. Still, a number of required criteria for new

programming interfaces for next-generation hardware are manifest:

 The interface must allow good performance for the average scientific programmer and allow

access to a high percentage of attainable peak performance for the expert performance-

oriented programmer.

 The compilers and libraries must be robust and stable.

 A standardization process and widespread availability across current and future platforms are

necessary to protect programmer investment in application code development.

 The interfaces must have relative ease of use with good performance for general parallel

scientific programmers.

 Multiple programming interfaces (e.g., threads, message passing, one-sided messaging) may

be required to meet the needs of a diverse set of science approaches.

 Interfaces must support hardware heterogeneity (e.g., multicore processors and accelerators in

the same hardware environment).

 Interoperability is required, to support mixed or hybrid programming models in the same

code, e.g., MPI+OpenMP or directives+OpenCL. Mixed models are often required for

supporting tradeoffs in performance tuning and incremental code parallelization.

 The programmer must be able to control process locality, data locality and data motion, e.g.,

whether memory is allocated on processor memory or accelerator memory.

 When possible, languages and interfaces should support the reuse of legacy code. Reuse of

code can often reduce software development costs by a factor of three to four and can also

substantially reduce defect rates [Kandt 2006, p. 203; Grady 1992, p. 14].

 Asynchronicity of memory and compute operations should be supported when appropriate.

Similarly, work sharing between heterogeneous compute units should be permitted.

 Parallel programming interfaces should allow for incremental code parallelization, though it

is recognized that in many cases substantial code restructuring or rewriting may be necessary

to obtain good performance.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 55

 Compilers should support as many standard language features as possible (e.g. a C++

compiler with parallelization directives should not omit important standard language features

such as templates).

 Programming interfaces should be adaptable to new forms of heterogeneity that might arise in

the future.

5.4 Scientific Library Requirements

Science applications typically make use of one or more scientific or mathematical software libraries.

Use of scientific software libraries is advantageous on several fronts: it saves developer time by

offloading relevant algorithm implementation and code optimization work from the science programmer;

it in principle provides better performance on the targeted hardware; and it focuses developer technical

expertise onto areas where it is best used.

Table 5.6 shows scientific library usage across a wide range of OLCF applications. It is clear that

applications make heavy use of a number of third-party mathematical libraries. More tellingly, Table 5.7

gives estimates of the fraction of runtime spent in mathematical libraries for several key heavily-used

OLCF applications. It can be inferred from these tables that the key applications spend on average over

30% of their time in scientific libraries. This heavy usage provides a good opportunity to leverage

optimization efforts for a few key libraries, to provide broad increases in performance across many

science domains.

For libraries to be effective for OLCF users, they must satisfy several criteria. They must be well-

supported by the vendor or third-party developer. They must be easily interfaced to the user code with

minimal invasiveness to the application. They must also be heavily optimized for the targeted hardware

and for the application use cases.

5.4.1 Expanding the Range of Coverage for Scientific Libraries
As mentioned above, key OLCF applications spend on average about 1/3 of their time in scientific

library calls. However, this leaves another 2/3 of runtime untouched. Developing libraries to address this

fraction of runtime would be of substantial value, from the standpoint of both development time and

application performance. The relative value of this will be even greater going forward, as hardware and

science models become increasingly complex.

To address this need, we recommend an effort to consider a broader range of commonly-used

operations or ―application kernels‖ as potential candidates for implementation in library form. This

56 5. Science Application Requirements

would extend the coverage of libraries from the limited scope of lower-level functions to higher-level

mathematical or even physics-level operations.

Various efforts in the past have attempted to create higher-level libraries or frameworks for general

use, often with mixed or poor results. Numerous libraries and component frameworks have been

developed to good effect in the context of individual projects or smaller user communities but have often

Table 5.6. Application library usage

Science domain Code I/O libraries Math libraries

Accelerator

design
T3P NetCDF MUMPS, ParMETIS, Zoltan

Astrophysics
CHIMERA HDF5 (pNetCDF) LAPACK

VULCAN/2D HDF5 PETSc

Biology LAMMPS ------------ FFTW

Chemistry

MADNESS ------------ BLAS

NWChem ------------ BLAS, ScaLAPACK, FFTPACK

OReTran ------------ LAPACK

Climate

CAM NetCDF (SciLib)

POP/CICE NetCDF ------------

MITgcm NetCDF ------------

Combustion S3D ------------ ------------

Fusion

AORSA NetCDF HPL, ScaLAPACK, FFTPACK, PGPLOT

GTC
MPI-IO, HDF5,

NetCDF, XML
PetSC

GYRO MPI-IO, NetCDF
BLAS, LAPACK, UMFPACK, MUMPS, FFTW

(SciLib, ESSL)

Geophysics PFLOTRAN ------------ BLAS, PetSC

Materials

science

LSMS HDF5, XML BLAS, LAPACK

QBOX XML LAPACK, ScaLAPACK, FFTW

QMC ------------ BLAS, LAPACK, SPRNG

Nanoscience
CASINO ------------ BLAS

VASP ------------ BLAS, ScaLAPACK

Nuclear energy NEWTRNX HDF5 LAPACK, PARPACK

Nuclear physics CCSD MPI-IO BLAS

QCD MILC, Chroma ------------ ------------

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 57

failed to become widely usable in general. Broader acceptance has failed for a variety of reasons, such as

functionality too restrictive, required use cases not covered, required user data formats not supported,

performance not well-optimized, software design too invasive to user code, package methods too tightly

coupled or inflexible, interfaces not standardized, software not adequately supported, package not

available on targeted platforms, or usage learning curve too steep. In short, often the use of the library or

framework provides little or no payoff for the effort of attempting to use it.

At the same time, a

well-chosen, carefully

implemented set of

application-centric

software microkernels

could have high impact on

numerous science

applications.

―Development of key

mini-applications that

represent the

performance-determining

computations of key

application areas is

important.‖ [Geist et al.

2007] In fact, the ―algorithm motif‖ concept [Colella 2004] itself carries with it the suggestion that

certain well defined operations taken from the motif areas might be good candidates for implementation

in general-purpose libraries, to the degree that algorithm structures and use cases are mature and stable.

Examples might be particle pushing operations for particle-in-cell codes, sparse matrix-vector product

operations, finite element assembly for FEM codes, and stencil computations for structured grids.

Code reuse in the form of libraries is notoriously lacking in some of these areas. For example,

bandwidth-optimized methods for stencil computations, though having high performance impact in

numerous situations, have been repeatedly rediscovered and reinvented over the last 15 years, with little

to no success in preserving institutional memory of their existence. Since problems like this have been

solved repeatedly, an effort should be made to make the solutions more widely known and generally

available.

Table 5.7. Estimated mathematical library runtime fraction

Science Area Application Libraries
Percent

Runtime

Astrophysics Chimera LAPACK 78%

Bioenergy /

Biology
LAMMPS FFTW 5-75%

Chemistry MADNESS LAPACK 50-75%

Climate CAM-HOMME Trilinos solver (future) (large)

Combustion S3D (N/A)

Fusion AORSA HPL, ScaLAPACK >35%

Fusion GTC (N/A)

Materials Science DCA++ LAPACK 70%

Materials Science gWL-LSMS LAPACK 70-75%

Nuclear Energy Denovo Trilinos small

58 5. Science Application Requirements

We recommend that next generation scientific application middleware libraries have the following

characteristics:

 Fine-grained: Put simply, each user-callable library component or function call should

perform a single responsibility. In other words, the functions should be small, recombinable

building blocks. This design feature converts the need to cover a prohibitively large scope of

potential use cases into the ability to access a combinatorial space of arrangements in which

the pieces can be joined at will by the user. This design philosophy is analogous to the

preference of RISC over CISC instruction set architectures in the microprocessor design

world.

 Decoupled: Functions must be capable of being used independently, and they must have

well-defined, simple interactions with the outside world. This is a requirement for the easy

combination of component functions.

 Use case driven: Kernels must be chosen so that they can be effectively used in the actual

application use cases of interest to the community. For example, the BLAS-1 kernels were

carefully chosen to cover a significant scope of vector computation situations in common use

[Lawson et al. 1979].

 Flexible: It has been said that a truly great tool has uses beyond the scope of its original

design intent [Raymond 1999]. Library components should be adaptable to the new

situations scientists frequently devise. Examples might include different data types or data

structures or slightly different boundary conditions. A mechanism for incorporating this

flexibility might be by the use of generic programming techniques.

 Tuned: The library must be highly optimized for the targeted hardware (e.g., using

autotuning techniques). In some cases it may be desirable to include the autotuning software

with the library code itself, to allow developers to tune the library to new hardware or new

application use cases.

 Benchmarked: Library users must be able to predict how the library will perform under

various settings or function combinations, in order to make informed design decisions

regarding model and algorithm selection. Library documentation should be accompanied by

performance statistics to make it possible to understand library performance for different

cases. In addition, it might be required that a library benchmarking tool be shipped with the

library, to aid with performance prediction.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 59

 Standardized: Interfaces increase in value when they are agreed upon by multiple parties.

Development and acceptance of standards will ease developer use and encourage more

widespread support across multiple platforms.

5.5 System Software Requirements

The system software stack provides the software infrastructure and services required for science

applications to be executed on HPC platforms. Table 5.8 illustrates the types of components in the

software stack and typical required capabilities.

Table 5.8. Software stack requirements

System software

component
Requirement

Mathematical libraries
BLAS, LAPACK, ScaLAPACK, PETSc, SuperLU, and Parallel FFT tuned to the LC

systems and modified to exploit multicore.

Communication library High-performance, fault-tolerant communication library able to deal with dead nodes.

Specialized

mathematical libraries

Specialized, high-performance O(N) libraries (USFFT, KFFMM, MRA, LSR, Generalize

Gaussian Quadrature) optimized for LC systems.

Lightweight OS kernel Scalable and robust kernel with support for multicore processors as an SMP node.

I/O and storage Increased scalability and updated algorithms for data and metadata servers.

Reliability and fault

tolerance

Development of advanced systems software enabling applications to have and use built-

in fault handling.

Advanced debugging
Comparative debugging tools to support the simultaneous execution of two versions of

an application, allowing the selection of comparison points for verification.

Automatic performance

analysis

Easy-to-use, automated performance tools able to handle large amounts of data.

Development of an infrastructure to support scalability and automation.

Integrated compilation
Compilation environment for applications simultaneously targeted for different systems

(scalar/vector processors, FPGAs, stream-based coprocessors, etc.).

Table 5.9 shows specific software used to satisfy these requirements.

These tables indicate current software requirements. We anticipate future software requirements to

change in the following ways:

 Better OS support for fault tolerance will be required, as mean time to interrupt (MTTI_

figures are pressured downward.

60 5. Science Application Requirements

 New parallel programming interfaces such as CUDA and OpenCL will require software

support in the form of compilers, debuggers, and emulators where appropriate.

 Source code analysis tools will be useful to help identify code sections amenable to fine-

grained parallelization.

 Debuggers, profilers and libraries will need to support new forms of heterogeneous compute

nodes.

 Compilers will need to support OpenMP and/or other directives to access relevant node

hardware efficiently.

Table 5.9. System software to satisfy software stack requirements

Requirement OLCF software stack

Resource manager/scheduler Torque, Moab, ALPS

Scripting tools bash, Perl, Python, Tcl/Tk

Build tools make, configure, autoconf, m4

Workflow tools Kepler, bbcp

User mgmt, ticket system,

accounting
ORNL Resource Accounting and Tracking (RATS), RT

Security and fault detection Nagios, Inmon, OSIRIS, SNORT/BRO

Compilers PGI, GNU, Cray, Pathscale, Intel

Vendor math libraries LibSci, ACML

Community math libraries FFTW, PETSc, LAPACK, ScaLAPACK, Atlas, Goto BLAS

Programming languages Fortran, C/C++, CAF

Performance and debugging tools CrayPat, Apprentice, TotalView, PAPI

Parallel I/O libraries HDF5, pNetCDF, MPI-IO

MPI MPT

Accelerator support CUDA, OpenCL

Low-level communication layers Portals, ARMCI, Global Arrays

Shared memory layers OpenMP, PThreads

CN and ION kernels, CIOD CVN, CNOS (Linux) and SUSE

Visualization and data analysis VisIt, EnSight, IDL, AVS/Express, Parallel R, VTK, Matlab

Production file system Lustre

Archive tools hsi, htar

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 61

5.6 Hardware Requirements

Science applications are ultimately dependent on the underlying hardware for performance. A given

OLCF system has many hardware attributes that uniquely characterize it relative to other systems. The

following twelve attributes have been found to be particularly useful and important to consider from an

application perspective:

1. Peak flops per node,

2. Mean time to interrupt,

3. Wide area network bandwidth,

4. Node memory capacity,

5. Local storage capacity,

6. Archival storage capacity,

7. Memory latency,

8. Interconnect latency,

9. Disk latency,

10. Interconnect bandwidth,

11. Memory bandwidth, and

12. Disk bandwidth.

The performance of computer hardware associated with these system attributes affects different

algorithm classes in different ways, depending on the algorithm structure and computational

requirements. Table 5.10 shows the impact of hardware system attributes on different commonly-used

OLCF algorithm classes and applications.

Likewise, science application codes in science domain areas have differing requirement levels for

different hardware attributes. Table 5.11 gives a three-tier ranking of the importance of each hardware

attribute to each science area. For each science area, the demand placed on each hardware attribute is

classified as high, medium or low.

62 5. Science Application Requirements

Table 5.10. Impact of system attributes on algorithms and applications

System Attribute

Algorithms that Require

High Performance for this

Attribute

Relevant Application Behaviors

Node peak

flops

Dense linear algebra, FFT,

sparse linear algebra, Monte

Carlo

Scalable and required spatial resolution low; would benefit

from a doubling of clock speed; only a problem domain that

has strong scaling, completely unscalable algorithms;

embarrassingly parallel algorithms.

Mean time to

interrupt
Particles, Monte Carlo

Naïve restart capability; large restart files; large restart R/W

time.

WAN bandwidth
Long time evolution,

multiphysics, multiscale

Community data/repositories; remote visualization and

analysis; data analysis.

Node memory

capacity

Dense linear algebra, sparse

linear algebra, unstructured

grids, particles

High DOFs per node, multi-component/multi-physics,

volume visualization, data replication parallelism, restarted

Krylov subspace with large bases, subgrid models.

Local storage

capacity

Particles, out-of-core

algorithms

High-frequency/large dumps, out-of-core state, debugging

at scale.

Archival storage

capacity

Long time evolution,

multiphysics, multiscale

Large data (relative to local storage) that must be preserved

for future analysis, for comparison, for community data

(e.g., EOS tables, wind surface, and ozone data); expensive

to recreate; nowhere else to store.

Memory latency
Sparse linear algebra,

unstructured grids

Data structures with stride-one access patterns (e.g., cache-

aware algorithms); random data-access patterns for small

data.

Interconnect

latency

Structured grids, particles,

FFT, sparse linear algebra

(global), Monte Carlo

Global reduction of scalars; explicit algorithms using

nearest-neighbor or systolic communication; interactive

visualization; iterative solvers; pipelined algorithms.

Disk latency Out-of-core algorithms
Naïve out-of-core memory usage; many small I/O files;

small record direct-access files.

Interconnect

bandwidth

FFT and other spectral

methods, coupled models

Large messages, global reductions of large data; implicit

algorithms with large DOFs per grid point.

Memory

bandwidth

Sparse linear algebra,

unstructured grids

Large multidimensional data structures and indirect

addressing; lots of data copying; lots of library calls,

requiring data copies if algorithms require data

retransformations; sparse matrix operations.

Disk

bandwidth
Out-of-core algorithms

Reads/writes large amounts of data at a relatively low

frequency; read/writes large amounts of large intermediate

temporary data; well-structured out-of-core memory usage.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 63

Table 5.11. Importance of hardware attributes to science domains

(Priority: Red = high, pink = medium, grey = low.)

System Attribute

C
li

m
a

te

A
st

r
o

p
h

y
si

cs

F
u

si
o

n

C
h

em
is

tr
y

C
o

m
b

u
st

io
n

A
cc

el
er

a
to

r

p
h

y
si

cs

B
io

lo
g

y

M
a

te
r
ia

ls

sc
ie

n
ce

Node peak flops

MTTI

WAN network bandwidth

Node memory capacity

Local storage capacity

Archival storage capacity

Memory latency

Interconnect latency

Disk latency

Interconnect bandwidth

Memory bandwidth

Disk bandwidth

It is important to understand how future science needs and concomitant science model changes will

influence the demands on each of these hardware characteristics for future HPC platforms. Table 5.12

shows for each science area the anticipated change in demand for hardware attributes.

The highlighted rows of Table 5.12 indicate the hardware characteristics that are expected to grow in

importance for OLCF applications on future systems. To prepare for the demands that science

applications are expected to put on hardware, actions such as the following will be required:

 Interconnect bandwidth: For future systems, the power cost to transport data off-chip will

be an increasing challenge [Kogge 2008, p. 212]. For the longer term, new hardware

technologies will be needed to address this problem. Bandwidth-reducing and

communication-hiding algorithm research can help mitigate this problem.

64 5. Science Application Requirements

 Node peak flops: Since performance gains from clock speed and instruction level

parallelism have reached an impasse, other approaches such as multicore processors and

accelerators will be required to increase flop rates.

Table 5.12. Future changes in demand for hardware characteristics

System Attribute
C

li
m

a
te

A
st

r
o

p
h

y
si

cs

F
u

si
o

n

C
h

em
is

tr
y

C
o

m
b

u
st

io
n

A
cc

el
er

a
to

r

p
h

y
si

cs

B
io

lo
g

y

M
a

te
r
ia

ls

sc
ie

n
ce

Total

Node peak flops + + + + – + + +5

MTTI + + + +3

WAN network bandwidth – – + + + – – -1

Node memory capacity + + + - + +3

Local storage capacity + – – -1

Archival storage capacity – – – -3

Memory latency + – – + + + +2

Interconnect latency + – – – + + + +1

Disk latency – – – – – – -6

Interconnect bandwidth + + + + + + +6

Memory bandwidth + + + + + +5

Disk bandwidth – + – – – -3

 Memory bandwidth: The ―memory wall‖ has increased in severity for many years. On the

algorithm side, the memory wall can be addressed in part by more locality-aware algorithms.

On the hardware side, bandwidth-optimized accelerators in the form of streaming processors

hold promise for gains (see below).

 MTTI: Hardware reliability and fault tolerance will continue to increase in importance. For

the shorter term, hardware must be designed so that any single hardware failure will have

only local impact, i.e., will not cause a failure of the whole system. This can be addressed for

example by making use of adaptive hardware. For the longer term, it is likely that new

techniques will be required to address this concern, at the level of hardware, system software

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 65

and application programming models [Kogge 2008, p. 3]. Resiliency will be a major concern

for attaining exascale, since standard disk-hased checkpoint/restart techniques will become

less viable due to MTTI pressure from the sheer number of components used.

 Node memory capacity: Some applications will require increasing amounts of memory per

core, in some cases to implement more complex and realistic physics models. New hardware

will require ―fat-memory‖ nodes that do not shrink the available memory per core.

 Memory latency: Improvements in hardware latency have not kept pace with improvements

in bandwidth. Algorithms and application codes must be restructured to allow for more

latency hiding. Furthermore, processor hardware must be able to hide more latency by

allowing more in-flight memory references.

 Interconnect latency: Next-generation interconnect hardware must keep communication

latencies under control and allow for high message injection rates. Furthermore, latency-

reducing algorithms must be developed and implemented to reduce the impact of latency on

application performance.

5.6.1 Accelerator Technology
As mentioned earlier, next-generation science goals will drive demand for an order of magnitude or

more increase in computational capabilities. This growth is manifested most directly in the need for more

aggregate floating point operations per second for next-generation systems, but science requirements also

place demands on multiple hardware characteristics, as shown earlier.

For nearly twenty years, high performance computing has found it advantageous for reasons of cost to

leverage the economies of scale provided by the commodity processor hardware market. However,

conventional commodity processors are no longer able to produce performance gains through increases in

clock speed or instruction level parallelism. Thus, the support of increasing numbers of processor threads

has become a key avenue for increased performance of commodity hardware.

This factor has driven the growth of multicore processors. But more dramatically, it has given rise to

a variety of many-core streaming graphics-accelerated chips suitable for general-purpose programming,

such as the IBM Cell BE, AMD Fusion and Intel Larrabee processors, as well as general-purpose graphics

processing units from companies such as NVIDIA.

Fig. 5.1 and 5.2 demonstrate the annual growth rate of peak processor performance and peak memory

bandwidth for NVIDIA processors. The rate of performance growth demonstrated by these processors is

dramatic, demanding the attention of future HPC system developers.

66 5. Science Application Requirements

Fig. 5.1. Growth rate of peak processor performance

Fig. 5.2. Growth rate of peak memory bandwidth

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 67

Notably, accelerators of this type are able to address three of the seven hardware concerns for future

application performance mentioned above:

 Node peak flops, due to more processors per die,

 Memory bandwidth, and

 Memory latency, due to the ability to hide memory latency with many outstanding in-flight

memory references.

Next-generation systems must pay close attention to the potential performance gains offered by these

accelerators. However, use of accelerator technologies for HPC is not without challenge. As mentioned

earlier, parallel programming models are likely to experience a period of disruption as significant as the

transition to message passing two decades ago, and programming methodologies will require a period of

time to assimilate the changes. Software development teams must begin now to prepare for the requisite

software disruptions this new hardware will impose. Some of the required preparations are discussed in

the next section.

5.7 Application Development Process Requirements

All progress in computational science is ultimately dependent on the processes of development of the

science applications. In the future, this process is expected to become increasingly challenging, for

various reasons:

 HPC computer hardware is becoming increasingly complex and heterogeneous.

 To access the performance potential of the hardware, it is becoming necessary in some cases

to use multiple/hybrid programming models in the same application (e.g., MPI+OpenMP).

 Science models are becoming increasingly complex. Also, multiple codes are being

composed together to generate new science.

 Core counts are becoming higher, making it more difficult to locate performance problems or

execution errors.

 The increasing incidence of hardware faults or unusual hardware behaviors can make it more

difficult to determine whether observed problems are due to the application, system software

or hardware.

 The combined effect of these complexities makes it increasingly difficult for individual

developers to maintain deep expertise in multiple requisite domains.

68 5. Science Application Requirements

The survey results from science code teams using OLCF facilities indicated that currently the

following are the primary bottlenecks to the application development process, in order of priority:

1. Debugging and testing;

2. Optimization and tuning;

3. Managing software development collaborations;

4. Learning new programming models.

In what follows we address these concerns.

5.7.1 Software Defect Reduction Tools
By far, the primary concern expressed by science application code teams concerns debugging and

testing of application software. Based on the trends mentioned above, the challenges in this area can only

be expected to increase. We recommend strong action be taken to address this issue, in two areas:

improved tools and better software engineering practices.

Studies have shown that software defect detection and correction activities can consume as much as

50% of the labor effort to create software and 75% of total software life-cycle costs [Kandt 2006, p. 177].

Experience has shown that good software debugging and correctness checking software can substantially

reduce this figure. For example, one study found that organizations using software tools for error

detection delivered software with seven times fewer defects [Kandt 2006, p. 191].

Historically, debuggers for HPC systems have suffered from significant problems such as:

 inability to scale to high core counts;

 failure to present parallel code behavior information to the user in a meaningful way;

 lack of availability for specific targeted hardware and/or compilers;

 slow, unresponsive interactive behavior that greatly decreases programmer productivity; and

 lack of reliability across use cases and source code constructs.

A fundamental concern is that high-quality debuggers are not being delivered within the timeframe in

which they are most needed. It is difficult to adapt debuggers and other tools to rapidly changing

hardware and software. Top HPC hardware systems have short lifecycles that can be measured in terms of

a few years. Major compiler releases occur at a rate of at least once per year, and minor releases occur

even more frequently. New language or library features (e.g., Fortran 20XX), languages (e.g., UPC, Co-

Array Fortran, X10, Fortress, Chapel) and programming models (e.g. OpenMP, OpenCL, MPI 3.0)

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 69

continue to emerge. These factors slow the debugging tool software development process and thus make

it difficult for debugging tools to be available and robust precisely during the time when they are most

needed [Vetter 2007, p. 7].

Several alternatives are possible to address this problem. First, funding agencies can increase their

support for tool development. Second, a healthier market, driven by increasing demand for debuggers

scaling to high core counts, can provide a wider range of alternatives. Third, debugging tool developers

can more directly treat the debugger code as a scalable application in its own right and improve their code

designs accordingly. Developers of debuggers can also use software design methodologies that enable

easier extension to new software and hardware environments. Finally, debugger development efforts can

be refocused toward more lightweight, modular tools that can be more quickly and easily ported to new

hardware and new compilers. In the absence of a full-featured interactive development environment

which, due to its integration, would improve developer productivity substantially, the development of

more easily ported, simpler debugging tools would provide more available functionality and timeliness

for scientific application developers.

Additionally, a greater attempt should be made to leverage applicable commercial off-the-shelf

(COTS) software. For example, memory checking tools such as Rational Purify [IBM 2009] applied to

single core runs can be extremely effective for identifying bugs that are otherwise very difficult to locate.

Unfortunately, it is often the case that ―the HPC community is unaware of these tools … application

developers either do not know about or do not have access to new tools‖ [Collette et al. 2004, pp. 1-3].

However, many tools have matured in the mainstream software development community; some of these

can be leveraged for HPC programming efforts. In this way, in the area of software tools, as well as

hardware, benefit can be derived from leveraging products from the larger mainstream market.

It should also be recognized that, to a large extent, ―deep analysis is largely a user function, rather

than a tool capability‖ [Vetter 2007, p. 7]. Debugging and testing capabilities must, to an increasing

degree, be implemented directly within application codes. The criteria for what small pieces of data are

required from the application to facilitate the user’s debugging experience can be very complex, requiring

either debugger support for very complex query expressions based on application code values or user-

written debugging functions within the application. Developing code infrastructure to generate diagnostic

information within the application can be of help.

5.7.2 Improved Software Engineering Practices
The benefits of good software engineering practices for scientific code development efforts are well-

documented, and efforts to strengthen software quality within organizations can be of significant value.

For example, through implementation of improved software quality practices, the NASA Software

70 5. Science Application Requirements

Engineering Laboratory over a four year period decreased software defect rates by 75% and reduced costs

by 55% within the organization [Kandt 2006, p. 44]. However, institutional efforts to improve software

quality practices must be done carefully, since nearly two thirds of organizational efforts to improve

software processes result in failure [Kandt 2006, p. 44].

Many factors that improve programmer productivity and reduce the occurrence of software bugs are

fairly well-understood based on empirical research. This is true of both the software development

community at large and the HPC scientific software development community in particular [HPCS DTWG

2007].

Many of these defect reduction practices are well-proven and should be implemented. For example,

unit testing is well-known to increase programmer productivity by helping developers locate defects more

quickly. Implementing unit testing in an application can significantly increase individual development

time. However, since on average 20 percent of the modules of a software system account for 80 percent

of the defects, and less than 5 percent of code can account for more than 45 percent of defects [Kandt

2006, p. 158], unit testing can be deployed strategically to particularly complex error-prone parts of the

code, to limit the time required for deployment. Another effective practice is the use of software

inspections, which can detect as many as 45-60 percent of defects [Kandt 2006, p. 178] and can reduce

the cost of defect detection by 5-17 times compared to release testing only [Grady 1992, p. 161].

Though software quality practices are of value, historically some conclusions drawn from software

engineering research regarding the broader software development community have not been entirely

applicable to the niche industry of HPC scientific software development, for various reasons:

 The high importance of software performance in the computer time vs. developer time cost

mix, compared with many PC applications for which software runtime performance is almost

irrelevant.

 The difficulty of supporting some software quality principles in the face of immature and

rapidly changing software and hardware environments.

 The more short-term research-oriented nature of some codes. It has been noted that for

scientific software projects, ―… each [software engineering] technique must be individually

evaluated to match costs and benefits to project goals. It would be counterproductive, for

example, to dogmatically apply the rigorous quality assurance processes necessary for

mission-critical software—where one bug could crash a plane—to the development of

scientific codes that thrive on risky innovation and experimentation.‖ [Post and Votta 2005,

p. 40]

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 71

 The need for flexibility of programming approach based on science domain and application

type, for which a ―one size fits all‖ approach to programming technique is not appropriate.

Nevertheless, many of the findings from software engineering research are of value to HPC

application development efforts. However, such practices have been either slow in deployment or non-

existent. For example, it has been remarked that in most computational science software development

efforts, "few of even the simplest and best-known proven methods for organizing and managing code

development teams are being employed" [Post and Votta 2005, p. 40].

To remedy this problem, actions such as the following can be taken as first steps to promote the

diffusion of appropriate software engineering ideas within the community:

 Provide education in the form of training on HPC-aware software engineering practices.

Many HPC practitioners have backgrounds primarily in the physical sciences and may have

little previous exposure to software quality practices. Educational venues would increase

programmer awareness of potentially useful methodologies for software development.

 Promote awareness and facilitate usage of mainstream software development tools when

appropriate. For example, usage of interactive development environments are able to double

programmer productivity [Kandt 2006, p. 170]; however, in some cases these tools do not run

efficiently on front ends of HPC systems due to network latency times, thus reducing or

eliminating any potential for productivity gains. Better tool support might remedy this

problem.

 Foster a community of best practices that conserves experiences regarding the tradeoffs of

code efficiency, code flexibility and programmer productivity.

 Provide institutional leadership and incentives to support improved software quality at the

organizational level.

 Support a specific HPC-aware software engineering component within science application

development teams.

In light of the inevitable heightening of the challenge in developing and debugging HPC application

software, organizations must take seriously the need to improve institutional software quality efforts, in

order to reduce risks regarding the success of next-generation systems and commensurately control costs.

5.7.3 Parallel Programming Interfaces

Factors such as the rise of heterogeneous computing, the quantum jump in the amount of parallelism

required in applications, and the increasing need for locality are creating a disruption in the methods of

72 5. Science Application Requirements

programming HPC hardware. The potential performance gains for science applications are too great to

ignore this paradigm shift. Various methodologies are being proposed for parallel programming APIs

(MPI, OpenMP, OpenCL, CUDA, other directives-based methods, PGAS and HPCS languages, hybrids,

etc.) [Kasim et al. 2008].

From the standpoint of science application development and deployment, the following are

requirements for an effective new programming interface to next-generation systems:

 Parallel programming interfaces must be user-friendly to new developers but also permit

access to high-performance hardware capability to the development code teams’ HPC

performance ―power users‖. Optimized code within applications must at least be readable,

and better yet maintainable, by science programmers who are not performance experts.

 Parallel programming interfaces must have stability, maturity, and planned long-term support,

to reduce the risk level and attract users to write to the interface.

 There must be a small, bounded ratio between the performance of casually written source

code using the programming interface and the performance of highly optimized source code.

Otherwise, the programming interface must allow a high increase in programmer productivity

with an associated understanding of the reasons for performance loss.

 The parallel programming interface must properly differentiate between, on the one hand,

what performance optimizations the compiler can do, and, on the other hand, which ones the

programmer must do. A failure to get this right will make it impossible to write efficient

code for significant cases. The compiler and language syntax must allow the programmer to

be able to optimize the cases that the compiler cannot. In particular, optimizations for data

locality that cannot be managed reliably by the compiler must be accessible to the

programmer in some form.

 The programming interface should allow portability of application codes across the entire

range of applicable platforms.

 It should be possible to run existing legacy application codes with a modicum of performance

and, when possible, permit an incremental performance upgrade path for development. As

mentioned earlier, reuse of code greatly decreases required development efforts and incidence

of defects.

 The programming interface should naturally allow for programming abstractions. On the

other hand, it should also allow the writing of code for which the experienced programmer

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 73

can ―see thorough‖ the source code to get some idea of the underlying machine operations

generated.

 The programming interface or language should permit good software engineering practices

(e.g., encapsulation and abstraction, without undue performance loss).

5.7.4 Application Readiness
Disruptive changes in hardware technology on the way to attaining exaflop computing promise

dramatic shifts in programming methodologies. Changes of this nature will for some time put in flux the

more established programming approaches based on MPI and/or OpenMP.

Historically, disruptions such as this have been followed by periods of programming model

innovation in which programming principles and best practices emerged from developer communities.

For the current situation, these efforts should begin now and be accelerated in order to prepare codes for

exaflop computing.

As has been typical in the past, software modernization efforts will commonly begin with small,

incremental changes to the source code base along the lines of optimizing kernels and code hot spots.

The next step will be to perform a major code refactoring or rewrite of the applications in toto to

systematically take advantage of the performance gains offered by the new hardware. This effort may

require several phases of prototyping before determining an effective programming methodology.

To the maximum extent possible, code teams must design and write application codes to be

independent of foreseeable hardware and software changes. Such an approach manages the risk of not

knowing which parallel programming interface will reach final marketplace acceptance. Programming

principles such as separation of concerns should be used to separate algorithm from implementation to as

great a degree as possible.

Compiler vendors and system software developers must provide robust, well-optimized, stable,

standards-based programming interfaces to which code can be written. These tool developers must focus

primarily on providing robust basic core- and node-level optimizations, as risk mitigation against the

possibility that advanced techniques such as general-purpose automatic parallelization do not become

effective.

Hardware and software vendors must continue the routine practice of providing training, support and

interaction, to assist application developers in making the needed transitions.

74 5. Science Application Requirements

5.7.5 Software Optimization
OLCF science application development teams reported code optimization as a bottleneck to effective

software development.

A successful computational science application team requires expertise in a range of areas, including

physics, software, computational mathematics, computer science, computer operations and computer

hardware. The current practice of mandating a division of labor regarding these expertise areas has

served the application development process well and should be continued. In particular, code

optimization efforts can be delegated to a specialist who has fewer responsibilities in the other technical

areas of the project and can focus on the task at hand. At the same time, development team members

must to some degree be generalists, to the extent that all team members understand the big picture well

enough to be able to mesh together the varied and sometimes conflicting concerns.

The degree of emphasis to be placed on code optimization is a tradeoff between programmer effort,

code maintainability and the potential for code performance gains per unit of effort. The programmer

productivity regarding code optimization efforts can be enhanced in several ways.

Better profiling tools are needed to make it easier to understand the performance of large-scale

parallel applications. These tools should be robust, accurate, cross-platform, cross-language and scalable

to millions of threads. They must not only collect data regarding performance effectively but must also

report results in a useful way to the developer. Due to the challenge of these goals, favor might be given

to more lightweight tools that have strong reliability and leave a small code base footprint compared with

heavyweight tools that are prone to lag behind swiftly changing hardware and system software in their

support. The FPMPI tool [Gropp and Buschelman 2004] is a good example along these lines.

The practice should continue of vendor trainings to help developers understand how to write

optimized code for newer computer hardware and system software. Subject to security concerns,

mechanisms such as discussion forums or wikis can be used when appropriate to conserve experiences

and best practices in application performance optimization.

As algorithms, compilers and computer hardware have become more complex, the number of tuning

options that can be used to improve code performance has increased dramatically, making it impractical

to tune codes manually over the entire range of options. Autotuning methods give promise for

significant gains along these lines. However, autotuning technology needs to mature to be more easily

usable by the general programmer. Compiler hinting holds potential promise as well but must become

more production-ready.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 75

5.8 Software SQA and V&V Requirements

Users of HPC science applications and their audience must have assurance of the accuracy and

validity of generated science results. Application software quality assurance (SQA) and verification and

validation (V&V) are essential components in the life cycle of an application.

SQA is a ―systematic, planned set of actions necessary to provide adequate confidence that the

software development process or the maintenance process of a software system product conforms to

established functional technical requirements as well as with the managerial requirements of keeping the

schedule and operating with budgetary confines.‖ [Galin 2004].

Verification is the process by which one assures that the code ―equations are being solved

correctly‖—namely, through ―solution verification‖, which ensures that the numerical solutions are

correct (accurate, convergent) and ―code verification‖, which ensures that the software implementation of

the associated algorithms is correct (bug free). Validation is the process by which one assures that the

code ―equations are correct‖—namely that the model formulation accurately and reliably describes reality

(matches experimental data).

The growing need for V&V has been described as a ―looming crisis in computational science‖ [Van

De Vander et al. 2005]. As software becomes more complex from use of more detailed models and

multiple physics packages and hardware becomes more complex from heterogeneity and greater numbers

of threads, the need for better SQA and V&V continues to increase. Sources of error in codes are

becoming more difficult to find; in this environment, assuring model and software quality is an obvious

approach to compensating for the impact of growing hardware and software complexities.

Respondents to the OLCF requirements elicitation identified a variety of procedures currently in use

for model and software verification and validation. These include the following:

 Regression testing;

 Comparison with results from other codes;

 Comparison with experiment;

 Comparison with observation;

 Comparison with earlier research as reported in the scientific literature;

 Use of a test suite of established test problems;

 Use of test problems with analytic solutions;

76 5. Science Application Requirements

 Comparison with results on different platforms;

 Comparison with results using slightly different inputs (sensitivity analysis);

 Comparison with theory;

 Grid convergence studies; and,

 Comparison with results using different models.

In one research study at a national laboratory, a detailed analysis of major code development projects

revealed that V&V and strong software project management were essential to project success [Post and

Votta 2005]. However, the same study showed that even in the presence of strong team and institutional

commitment, V&V is a very difficult problem.

SQA and V&V efforts for OLCF projects should include the following:

 Code verification efforts should at least include standard testing approaches from the

software engineering field, including unit, system and regression testing.

 V&V should be performed on individual components as well as the entire code.

 Stronger institutional support should be given to SQA and V&V efforts. Just as purchasing

an ―insurance policy‖ is not a waste of resources but is an integral part of risk mitigation,

SQA and V&V are not a waste of project resources but are an important part of assuring

science quality.

 The proposal process for being awarded computational resources could set forth specific

SQA and V&V requirements as a precondition for funding.

 Projects could be required to disclose specific risks concerning the accuracy and validity of

the science generated.

 The broader computational science research community must address at a wider scale the

issue of the criteria required to certify that the results of a simulation are valid and thus

credible.

5.9 Application Usage Workflow Requirements

The way applications are used in practice is the ultimate driver of application requirements. An

idealized workflow for performing a single computational science experiment using an OLCF platform

consists of these steps: define the problem; build the model (e.g., generate computational grids); validate

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 77

the model; prepare run inputs; perform preparatory runs as needed; initiate primary run or runs; generate

checkpoint/restart and analysis data; restart as needed; postprocess data; generate visualizations; perform

analysis; validate results; archive data; and finally, disseminate conclusions.

In practice, a research effort consists of many experiments such as this. These experiments can be

performed either sequentially or concurrently, as the specifications for later experiments may or may not

depend on the findings of earlier ones. The workflow can be dynamic, as intermediate results of a

simulation suggest new avenues of computational experimentation. These relationships embody the

actual science production workflow.

The OLCF requirements elicitation process was used to poll domain scientists regarding the details of

the workflow for their respective projects. This process revealed a number of commonalities in workflow

requirements. The following were some of the findings:

 Bottlenecks: The largest perceived workflow bottleneck was the actual execution time or

queue wait time of the application jobs on the targeted platform. Naturally, this factor can be

addressed directly by procuring larger, more powerful HPC systems. However, additional

factors were seen as bottlenecks, such as experiment design, mesh generation, data analysis

and off-site data movement.

 Visualization: A variety of visualization and analysis tools are used across projects, such as

ParaView, VisIt, IDL, MatLab, VMD, Gnuplot, Tecplot, and Ensight.

 Archived data: The amount of simulation data archived ranged from a small fraction to the

entirety of the simulation data.

 Anticipated future changes: The primary anticipated workflow change going forward is an

increase in the scope and accuracy of the science, leading to greater demands on computation

and I/O storage requirements. An additional change expected by some projects is greater use

of on-site or even application code in-situ analysis and visualization techniques, to deal with

the problem of managing growing quantities of data.

The following are identified as key requirements for workflow management on next-generation

leadership computing hardware.

1. Storage and manipulation of growing amounts of data. Higher fidelity simulations will

generate exponentially increasing amounts of data. This growth encompasses both the

aggregate amount of data and the number of files, stressing both data and metadata storage.

Science workflow is limited by both the size and speed of data storage systems. Future

78 5. Science Application Requirements

systems must address the need for large, fast storage under the constraints of a multi-user

environment.

2. Data resilience and integrity. The presence of more data and metadata increases the

probability of failure. Fault tolerance applies not only to processors and DRAM memories

but also to disk storage. Storage systems, file formats and I/O libraries must be robust and

fault tolerant to handle increasing quantities of data.

3. Automation of workflow and data management. As science models become more

complex, science codes are coupled to produce new science, core counts are increased, the

volume of data produced grows, and the human factor in managing science workflow

becomes increasingly stressed. The science process workflow must be automated as much as

possible to manage this growth in complexity. Workflow management tools can be of use in

this regard (e.g., see [Cummings et al. 2008]).

4. Data organization to enable analytics. Once created, science data must be available to

analyze, with fast response times for scientists analyzing the data. As the quantity of data

grows, reaching this objective becomes more challenging. Data management systems must

provide tools to control the layout of data on mass storage devices to facilitate fast queries.

In situ analysis when appropriate is a further step to lessening the data access burden.

Furthermore, advanced mathematical algorithms must be provided to support operations such

as dimension reduction, statistical analysis and feature identification.

5.10 Data Management Requirements

A productive simulation environment requires systems and tools capable of storing, transmitting, and

manipulating extremely large datasets, both within and across multiple HPC centers. Large-scale

simulation platforms are capable of generating multiple petabytes of data per year, and archival data

storage requirements are growing exponentially as illustrated in Fig. 5.3.

In addition to archival storage, parallel I/O storage data growth is increasingly challenging. As

illustrated in Fig. 5.4, data stored in the OLCF parallel I/O environment recently increased by over 800TB

in just three months. As simulation environments continue to scale both in terms of compute cores and

system memory, the need to store massive amounts of data for both defensive and productive I/O

increases dramatically. Managing this dramatic storage growth requires careful planning of system

upgrades and improved information lifecycle management.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

5. Science Application Requirements 79

Fig. 5.3. OLCF archival storage growth

Fig. 5.4. Parallel I/O environment data growth

80 5. Science Application Requirements

As the number of datasets located both in archival and in online storage increases, the ability to

effectively manage, identify and retrieve this data becomes increasingly challenging. With over 150

million files in online storage today and projections of over 1 billion files in the near future, parallel tools

must be developed to manage these datasets. Standard system tools for data management such as cp, tar,

and find must be parallelized to take advantage of parallel I/O environments and high performance

archival systems.

The identification of a handful of relevant datasets among over 1 billion potential candidates will

require improved metadata tagging and search capabilities. Standardization of metadata and improved

metadata extraction will allow users of these scientific datasets to quickly identify datasets of interest

while providing a basis for automation of a number of data-analysis activities. To ensure the integrity of

these scientific results, the storage environment will need to be enhanced to provide data provenance

features allowing users to determine both the origin and subsequent transformations of these datasets.

As science teams increasingly utilize multiple compute centers and share data among these centers,

high-performance data transfer mechanisms between these sites are of increasing importance. Current

generation networking technologies limit data transfers to a maximum of 1.25 GB/sec over a single 10Gb

WAN link. As an example, transferring a 300TB dataset at these rates could take days or more to

complete in the absence of network congestion, unlikely on a shared network such as ESnet. The

Advanced Networking Initiative (ANI) which will provide a 100 Gb native optical network loop among

the OLCF, ALCF, and other facilities will be required to allow reasonable transfer times for these

extremely large datasets and allow effective use of multiple computational resources spanning a number

of HPC centers.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

6. Conclusions and Recommendations 81

6. CONCLUSIONS AND RECOMMENDATIONS

The purpose of the OLCF requirements modeling process is to insure that institutional resources are

effectively procured, deployed and managed so that nationally-identified science objectives are attained

cost effectively and with a low risk factor.

A major finding of the OLCF 2009 requirements process is that the next stages of advance in high-

end computational science are likely to be significantly more challenging than past efforts. Certainly, the

challenges of high performance computing have continuously increased over time, as hardware, science

models, algorithms and application codes have increased in complexity. Furthermore, adapting to periods

of disruption in hardware architecture has been a great challenge for application software.

However, the current shift to heterogeneous processors may be the most significant challenge yet,

since (1) the performance penalty for not modifying applications to take advantage of new hardware is the

highest since the advent of message passing programming, and (2) HPC science applications are more

complex than ever before and thus increasingly difficult to revise for new hardware.

Planning for innovation is an inexact science. Managing requirements in a period of change has a

level of risk and uncertainty. However, the OLCF requirements process has successfully identified

actionable steps to prepare for next-generation leadership science. The following are the primary findings

and recommendations from this process:

 Next-generation science models will require at least an order of magnitude more compute

power than current hardware provides. The next OLCF system will require a capability of

10-20 petaflops or more.

 Science applications make use of multiple computational algorithm ―motifs‖. The motifs

tend to be shared across multiple science domains and applications. The reliance on certain

motifs is increasing over time. It is recommended that effective libraries be developed to

support more of these computational motifs. Such libraries would be leveraged to provide

improved performance and productivity across science domains and would also free

developers to focus on more pressing concerns.

 More research and deployment of improved algorithms are needed to meet the challenge of

increased numbers of processing threads and growing demands for data locality.

 MPI is the predominant means of obtaining parallelism. Use of OpenMP and threads is

increasing. Programming interfaces such as CUDA, OpenCL and new directives-based

methods will be required for new hardware. These interfaces must be usable and provide

82 6. Conclusions and Recommendations

access to the performance potential of the new hardware. Application teams must prepare for

these changes.

 Applications will require varying levels of refactoring to adapt to heterogeneous processor

hardware, from rewriting of kernels to major code restructuring.

 Applications on average spend one third of runtime in scientific or mathematical libraries.

For future hardware, libraries must be well-tuned to system hardware for targeted use cases.

 The system software stack must provide a diverse set of tools and services to support parallel

applications.

 Application performance is particularly dependent on several specific hardware attributes,

including interconnect bandwidth, node peak flops, memory bandwidth, MTTI, node memory

capacity, memory latency and interconnect latency. Future platforms cannot afford to neglect

any of these attributes in the pursuit of effective leadership science.

 Processor accelerators such as NVIDIA general purpose GPUs directly address requirements

for three of the key hardware attributes, including node peak flops, memory bandwidth, and

memory latency.

 Better software tools must be made available to help manage the increasing complexity of

HPC hardware and software. Better tools can be obtained by increasing support of tool

developers, by supporting the construction of more lightweight, easily-maintained tools or by

leveraging more heavily existing COTS tools.

 To address concerns of software quality and robustness, application developers must

incorporate proven software development techniques into project workflows. Institutional

support must be given for this. V&V efforts must be strongly supported.

 Increasing science accuracy will drive requirements for greater amounts of secondary storage.

Capabilities for storing, transferring and visualizing larger quantities of data will be required.

The challenges of effectively using newly deployed computing hardware are daunting. To address

nationally mandated computational science goals, efforts must be undertaken now to prepare for and

adapt to changes in leading-edge HPC computing hardware.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Acknowledgements 83

ACKNOWLEDGEMENTS

The authors would like to thank Thomas Zacharia and Jeff Nichols for their visionary leadership in

chartering and founding the NCCS OLCF; Buddy Bland and the rest of the NCCS management for their

leadership and direction of the NCCS OLCF Project and day-to-day operations; the support staff and

management of the DOE Office of Science ASCR Program Office (Michael Strayer, Daniel Hitchcock,

Walt Polansky, Barbara Helland, and Fred Johnson); members of the ASCAC subpanel (in particular,

chair Gordon Bell) on science-based performance metrics for ASCR computational facilities; and finally

the principal investigators and project team members on each of the NCCS OLCF and INCITE Projects.

The authors thank Sarp Oral and Galen Shipman for their contributions to the I/O and Data

Management sections of the document. The authors also thank Richard Graham, Rebecca Hartmann-

Baker, Ricky Kendall, Scott Klasky, and other members of the NCCS for their valuable comments and

contributions. The authors also thank the principal investigators, science application team members and

liaisons for their valuable input.

The staff in the NCCS, particularly members of the Scientific Computing Group, would like to thank

the computational scientists involved in the 2009 INCITE projects that received allocations on the OLCF.

Without their applications, science achievements, time, and support of the OLCF, this facility would not

have a reason to exist.

This work is supported by the Office of Advanced Scientific Computing Research of the U.S.

Department of Energy under Contract DE-AC0500OR22725.

84 REFERENCES

REFERENCES

Agullo, Emmanuel, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien Langou, Hatem

Ltaief, Piotr Luszczek, and Stanimire Tomov. 2009. ―Numerical Linear Algebra on Emerging

Architectures: The PLASMA and MAGMA Projects,‖ Journal of Physics: Conference Series 180,

012037 (http://stacks.iop.org/1742-6596/180/012037).

Asanovic, Krste, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands, Kurt

Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams, and

Katherine A. Yelick. 2006. The Landscape of Parallel Computing Research: A View from Berkeley,

Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley

(http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html).

ASCR. 2009. Advanced Scientific Computing Research Funding Profile by Subprogram, 2009,

Department of Energy, Office of Science (http://www.er.doe.gov/obp/FY_09_Budget/ASCR.pdf).

Bailey, F. Ronald, Gordon Bell, John Blondin, John Connolly, David Dean, Peter Freeman, James Hack,

Steven Pieper, Douglass Post, and Steven Wolff. 2007. Petascale Metrics Report, Advanced

Scientific Computing Advisory Committee, Department of Energy, Office of Science

(http://www.er.doe.gov/ASCR/ASCAC/Reports/PetascaleMetricsReport.pdf).

Colella, P. 2004. ―Defining Software Requirements for Scientific Computing,‖ Defense Advanced

Research Projects Agency HPCS presentation.

Collette, Michael, Bob Corey, and John Johnson. 2004. High Performance Tools and Technologies,

Computer Applications and Research Department, Lawrence Livermore National Laboratory,

Livermore, Calif.

(https://computing.llnl.gov/tutorials/performance_tools/HighPerformanceToolsTechnologiesLC.pdf).

Cummings, J., A. Pankin, N. Podhorszki, G. Park, S. Ku, R. Barreto, S. Klasky, C. S. Chang, H. Strauss,

L. Sugiyama, P. Snyder, D. Pearlstein, B. Ludascher, G. Bateman, A. Kritz, and the CPES Team.

2008. ―Plasma Edge Kinetic-MHD Modeling in Tokamaks Using Kepler Workflow for Code

Coupling, Data Management and Visualization,‖ Communications in Computational Physics 4(3),

675–702 (http://www.global-sci.com/freedownload/v4_675.pdf).

Demmel, James, Mark Hoemmen, Marghoob Mohiyuddin, and Katherine Yelick. 2007. Avoiding

Communication in Computing Krylov Subspaces, Technical Report UCB/EECS-2007-123,

University of California, Berkeley

(http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-123.html).

http://stacks.iop.org/1742-6596/180/012037
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.er.doe.gov/obp/FY_09_Budget/ASCR.pdf
http://www.er.doe.gov/ASCR/ASCAC/Reports/PetascaleMetricsReport.pdf
https://computing.llnl.gov/tutorials/performance_tools/HighPerformanceToolsTechnologiesLC.pdf
http://www.global-sci.com/freedownload/v4_675.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-123.html

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

REFERENCES 85

Galin, D. 2004. Software Quality Assurance—From Theory to Implementation, Pearson Education

Limited, Harlow, U.K.

Geist, Al, Phil Colella, and Mike Heroux. 2007. Workshop on CS/Math Institutes and High Risk / High

Payoff Technologies for Applications, Final Report, U.S. Department of Energy,

(http://www.er.doe.gov/ascr/ProgramDocuments/Docs/MathCSWorkshopReport.pdf).

Grady, Robert B. 1992. Practical Software Metrics for Project Management and Process Improvement,

Prentice Hall, Upper Saddle River, N.J.

Graham, Susan L., Marc Snir, and Cynthia A. Patterson, eds. 2005. Getting up to Speed: The Future of

Supercomputing, National Academies Press, Washington, D.C.

(http://www.nap.edu/openbook.php?isbn=0309095026).

Gropp, William, and Kristopher Buschelman. 2004. FPMPI, Fast Profiling Library for MPI, Argonne

National Laboratory, Argonne, Ill. (http://www.mcs.anl.gov/fpmpi).

HPCS DTWG. 2007. HPCS Development Time Working Group, Conference Publications List,

University of Maryland, College Park (http://hpcs.cs.umd.edu/index.php?id=14).

IBM. 2009. ―Rational Purify Product Line,‖ International Business Machines Corp. (http://www-

01.ibm.com/software/awdtools/purify).

Joubert, Wayne D., and Graham F. Carey. 1992. ―Parallelizable Restarted Iterative Methods for

Nonsymmetric Linear Systems. Part I: Theory, Part II: Implementation,‖ International Journal of

Computer Mathematics 44(1–4), 243–290

(http://www.informaworld.com/openurl?genre=article&issn=0020-

7160&volume=44&issue=1&spage=243).

Kandt, Ronald Kirk. 2006. Software Engineering Quality Practices. Auerbach Publications, Boca Raton,

Fla.

Kasim, Henry, Verdi March, Rita Zhang, and Simon See. 2008. ―Survey on Parallel Programming

Model,‖ NPC ’08: Proceedings of the IFIP International Conference on Network and Parallel

Computing, Shanghai, China, Lecture Notes in Computer Science 5245, 266–275 Springer

(http://www.springerlink.com/content/u61n6x07u7j26x73).

Kogge, Peter, ed. 2008. ExaScale Computing Study: Technology Challenges in Achieving Exascale

Systems, Defense Advanced Research Projects Agency

(http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECS_reports.htm).

http://www.er.doe.gov/ascr/ProgramDocuments/Docs/MathCSWorkshopReport.pdf
http://www.nap.edu/openbook.php?isbn=0309095026
http://www.mcs.anl.gov/fpmpi
http://hpcs.cs.umd.edu/index.php?id=14
http://www-01.ibm.com/software/awdtools/purify
http://www-01.ibm.com/software/awdtools/purify
http://www.informaworld.com/smpp/title~db=all~content=t713455451
http://www.informaworld.com/smpp/title~db=all~content=t713455451
http://www.informaworld.com/smpp/title~db=all~content=t713455451~tab=issueslist~branches=44#v44
http://www.informaworld.com/openurl?genre=article&issn=0020-7160&volume=44&issue=1&spage=243
http://www.informaworld.com/openurl?genre=article&issn=0020-7160&volume=44&issue=1&spage=243
http://www.springerlink.com/content/u61n6x07u7j26x73
http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/ECS_reports.htm

86 REFERENCES

Kothe, Douglas, and Ricky Kendall. 2007. Computational Science Requirements for Leadership

Computing, Report ORNL/TM-2007/44, National Center for Computational Sciences, Oak Ridge

National Laboratory

(http://www.nccs.gov/wp-content/media/nccs_reports/ORNL_TM-2007_44.pdf).

Lawson, C. L., R. J. Hanson, D. R. Kincaid, and F. T. Krogh. 1979. ―Basic Linear Algebra Subprograms

for Fortran Usage,‖ ACM Trans. Math. Softw. 5, 308–323

(http://doi.acm.org/10.1145/355841.355847).

Mucci, Phil, et al. 2009. ―PAPI, Performance Application Programming Interface,‖ Innovative

Computing Laboratory, University of Tennessee, Knoxville (http://icl.cs.utk.edu/papi).

Nielsen, Jakob. 1993. Usability Engineering. Morgan Kaufmann, San Francisco.

Post, Douglass E., and Lawrence G. Votta. 2005. ―Computational Science Demands a New Paradigm,‖

Physics Today 58(11), 35–41, American Institute of Physics.

Raymond, Eric S. 1999. The Cathedral and the Bazaar, O'Reilly Media

(http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar).

Tomov, Stanimire, Jack Dongarra, and Marc Baboulin. 2008. Towards Dense Linear Algebra for Hybrid

GPU Accelerated Manycore Systems, Technical Report UT-CS-08-632, University of Tennessee,

LAPACK Working Note 210 (http://www.netlib.org/lapack/lawnspdf/lawn210.pdf).

Van De Vanter, Michael L., D. E. Post, and Mary E. Zosel. 2005. ―HPC Needs a Tool Strategy,‖ pp. 55–

59 in SE-HPCS '05: Proceedings of the Second International Workshop on Software Engineering

for High Performance Computing System Applications, St. Louis, Missouri, 2005, ACM, New York

(http://doi.acm.org/10.1145/1145319.1145335).

Vetter, Jeffrey, ed. 2007. Workshop on Software Development Tools for Petascale Computing,

Washington, D.C., August 1–2, 2007

(http://www.er.doe.gov/ascr/WorkshopsConferences/Docs/sdtpc_workshop_report.pdf).

Williams, Sam, D. A. Patterson, and A. Waterman. 2009. ―Roofline: An Insightful Visual Performance

Model for Multicore Architectures,‖ Communications of the ACM 52, 65–76

(http://doi.acm.org/10.1145/1498765.1498785).

http://www.nccs.gov/wp-content/media/nccs_reports/ORNL_TM-2007_44.pdf
http://doi.acm.org/10.1145/355841.355847
http://icl.cs.utk.edu/papi
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar
http://www.netlib.org/lapack/lawnspdf/lawn210.pdf
http://doi.acm.org/10.1145/1145319.1145335
http://www.er.doe.gov/ascr/WorkshopsConferences/Docs/sdtpc_workshop_report.pdf
http://parlab.eecs.berkeley.edu/publications/author/154
http://parlab.eecs.berkeley.edu/publications/author/89
http://parlab.eecs.berkeley.edu/publications/author/151
http://doi.acm.org/10.1145/1498765.1498785

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix A. OLCF Overview 87

APPENDIX A. OLCF OVERVIEW

The U.S. Department of Energy-funded Oak Ridge Leadership Computing Facility (OLCF) is part of

the National Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory (ORNL).

The NCCS was established in 1992. The mission of the NCCS is to advance the state of the art in

high performance computing and to make available the capabilities of high-end parallel supercomputers

to scientists in a wide variety of computational science domains. NCCS works with academia, industry,

laboratories and government agencies to provide a computational environment that enables the scientific

community to employ this computational capability to solve important problems in diverse areas such as

fusion, climate, astrophysics, materials science, biology, nanoscience, chemistry, accelerator physics,

combustion, engineering, and other disciplines vital to maintaining U.S. science leadership.

The NCCS leadership computing efforts initially focused on a Cray X1 computer, ―Phoenix,‖ with

peak speed of 6.4 teraflops and a Cray XT3 system, ―Jaguar‖, with peak speed of 26 teraflops. A series of

upgrades resulted in the Cray XT4 ―Jaguar‖ system in 2007 becoming the second fastest computer in the

world, achieving 101.7 teraflops on the LINPACK benchmark and 119 teraflops peak speed. In 2008, the

NCCS began operation of the Cray XT5 ―Jaguar‖ system, the world’s fastest computer for open science,

which together with the Jaguar XT4 system delivered 1.64 petaflops of performance. In late 2009 the

Jaguar XT5 system was upgraded to a capability of 2.595 petaflops peak speed.

The Jaguar XT5 system has been the winner of numerous awards in high performance computing.

The 2009 Gordon Bell Prize winner—a team led by Markus Eisenbach of ORNL—achieved 1.84

petaflops on Jaguar with a scientific simulation of high-temperature superconducting materials. Jaguar

took first place in three of four competitions at the 2009 High-Performance Computing Challenge (speed

in solving a dense system of linear equations, Global-Fast Fourier Transform and sustainable memory

bandwidth) and third place in the fourth category (speed in executing Global-Random Access).

In addition to Jaguar, the OLCF houses an array of support systems and services, including high-

performance memory, file systems, archival storage, networking capabilities and visualization hardware

including the EVEREST visualization system.

The NCCS facility includes a diversity of support personnel, including the Scientific Computing

Group (SciComp), whose role is to collaborate with OLCF users to accelerate scientific progress.

SciComp members apply their extensive experience in parallel algorithm development and

implementation, model formation, software development, and code porting and tuning to support science

application development teams.

88 Appendix A. OLCF Overview

In 2010, Oak Ridge National Laboratory will make nearly 950 million core-hours available on Jaguar

under the DOE’s Innovative and Novel Computational Impact on Theory and Experiment, or INCITE,

program. The INCITE program awards allocations on some of the world's largest computers to address

grand challenges in science and engineering.

To design the next-generation HPC system, NCCS is working in collaboration with the DOE Office

of Science and the Department of Defense High Productivity Computer System (HPCS) program. By

2011-2012, the Office of Science plans to install a computing platform of roughly 20 petaflop capability

resulting from the HPCS program. Further into the future, the plan is to install a 100-250 petaflop

platform in the 2015 time frame and an exaflop machine by 2018.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix B. Requirements Elicitation 89

APPENDIX B. REQUIREMENTS ELICITATION

Members of the Scientific Computing Group at the Oak Ridge Leadership Computing Facility

(OLCF), part of the National Center for Computational Sciences (NCCS) at Oak Ridge National

Laboratory (ORNL), surveyed numerous scientists in a broad range of scientific domains and asked them

to speculate on requirements for their scientific application(s) on Leadership Computing platforms in the

next 3–5 years. A large fraction of the information, guidance, and plans outlined in this document is

derived from the answers provided in these surveys from this expert community of leading computational

scientists. Without their insight, knowledge, and experience, the application requirements outlined in this

document would not have nearly the fidelity or significance. The survey questions are listed here.

Project Overview

 Project name

 Contact information for the project (principal investigators, emails, phones, URL)

 Scientific domain (chemistry, fusion, high energy, nuclear, other)

 Team size

 Team institutional affiliation(s)

 Composition of team personnel by training and by chief technical or scientific focus area

 Team resource allocation for code development, code maintenance, code utilization

 Code(s) used and/or developed

 Description of each code, including hyperlinks to home page

 Development history (including where and who)

Science Motivation and Impact

 Why does your science need leadership computing (use of a large fraction of a large-scale HPC

system)?

 Without leadership computing, can progress be made at all? Or as fast?

 What science questions are you answering?

 What impact will your answers have on your field? Other fields?

 What do you consider to be the most exciting and important aspects of this research?

 How will you use your results to confirm observations or measurements (e.g., are you simulating

a particular experimental device, or will your findings be tested in other ways)?

 Will your models have a predictive capability?

Application Models

 Briefly describe the basic physics or system being modeled by your code.

 How do you envision your model(s) for science changing in the next several years as more

advanced computer resources become available?

90 Appendix B. Requirements Elicitation

 What is the application area (molecular physics, nanoscale science, climate, environment,

combustion, fusion, nuclear energy, biology, chemistry, astrophysics, nuclear physics, accelerator

physics, QCD, aerodynamics, etc.)?

 Are your models deterministic? Stochastic? Both? If deterministic, how are your models

expressed (e.g., partial differential equations)?

 Is the model steady or dynamic (e.g., boundary value problem or initial value problem)?

 Are multiple, simultaneous physical processes modeled (i.e., multiphysics

 How many independent variables or degrees of freedom per discrete solution point currently

describe your physical system?

 Does the nature of the model vary over space and/or time (e.g., more DOFs or different

connectivity in different physical regions)?

 How are these factors expected to change in the next several years as models are improved and

more advanced computer resources become available? What new models or capabilities would be

of chief importance to develop for use in improving computer hardware?

Application Algorithms

 What types of algorithms and computational mathematics are used (e.g., structured grids,

unstructured grids, adaptive mesh refinement, spectral/FFT, dense or sparse linear algebra, Monte

Carlo methods, finite state machines, combinational methods, graph traversal, dynamic

programming, particles, backtrack/branch and bound, graphical model inference, finding nearest

neighbors)?

 How are these factors expected to change over the next several years?

 If dense or sparse linear algebra, what methods are used?

 If grids, what types of method are used (finite difference, finite element, etc.) (Eulerian,

Lagrangian, MD)?

 If AMR, what type of refinement is used (patch-based, cell-based, etc.)?

 Do your algorithms adaptively change as a function of space and/or time based on the data?

 Have you been able to quantify convergence properties and numerical errors of your algorithms?

 What is the largest source of numerical error in your solution algorithms?

 How are these factors expected to change over the next several years, as new algorithms are

implemented and more advanced computer resources become available? What new algorithms

would be of chief importance to develop for use in improving computer hardware?

 How are these factors expected to change over the next several years as new algorithms are

implemented and more advanced computer resources become available? What new algorithms

would be of chief importance to develop for use in improving computer hardware?

Application Parallelization Strategy

 What is your current data decomposition model (e.g., distributed, domain replicated)? What is the

primary axis of parallelism (e.g., space, time, task)? Are you instantiating parallelism with MPI

tasks, threads, or both?

 Do your science requirements dictate that your code scale in a strong sense (fixed problem size,

increase concurrency), a weak sense (fixed problem size per node), or both? What parameter do

you scale on?

 Is your application load balanced?

 What method is used for load balancing?

 Does your application require dynamic repartitioning

 What techniques, if any, are used to increase memory locality for improved cache utilization?

 What is your current I/O model (e.g., parallel, serial through a single PE, hybrid)?

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix B. Requirements Elicitation 91

 How important is a fast underlying message-passing fabric to obtaining optimal performance

from your code?

 Is your code sensitive to network latency, bandwidth, or both?

 Are your algorithms sensitive to on-node memory bandwidth?

 How are these factors expected to change over the next several years?

 Is the domain of dependence for any given state variable local (i.e., dependent upon other nearby

state variables) or global?

 What new parallelization, cache optimization, or I/O strategies are being considered?

 Does your application have unexploited concurrency?

Application Software

 What platforms does your code run on? What is your preferred platform?

 How many lines of code comprise the primary models you plan to run (single lines of code,

function points, etc.)?

 What computing and/or scripting languages are employed (Fortran, C, C++, Python, etc.)?

 What libraries do your applications require, including I/O libraries such as NetCDF or HDF?

 How are these factors expected to change over the next several years?

 What compiler vendors are supported and typically used (PGI, PathScale, etc.)?

 Are there functionalities in your code that could be offloaded to a library function?

 To what extent does your team develop and use its own codes? Codes developed by others in the

DOE and general scientific community?

 What software is used to achieve parallelism (MPI, OpenMP, PThreads, etc.)?

 What software, if any, is used for I/O?

 What data file formats are used (HDF5, NetCDF, PHDF5, pNetCDF, etc.)?

 What analysis programs (data mining, visualization, etc.) do you run? (IDL, Matlab, VisIt,

EnSight, AVS, Gnuplot, SCIRun, Python/Perl scripts, R, etc.)?

 Can your application execute on a heterogeneous platform (i.e., nodes having different

hardware)?

Application Development Process

 For the primary model(s) you plan to run, how often is a new software release issued?

 What software development tools are used?

 What is the biggest time bottleneck in the software development cycle?

 Is the software you plan to run under active development?

 How are these factors expected to change over the next several years?

 Is there any structure imposed on the development of your software product (e.g., do you use

software life-cycle model such as waterfall, evolutionary delivery, etc.)?

 Please list the specific tools or processes used for the following software engineering practices:

 Configuration management (revision control, etc.)

 Quality control and testing

 Documentation

 Bug and issue reporting and tracking

 Code reviews

 Project planning

 Project scheduling and tracking

 Collaboration management

 What build system do you use? Is it ―maintenance free‖?

 Does your code have a centralized software repository?

92 Appendix B. Requirements Elicitation

 What is the split between code development on computer center computers and code

development on computers at other institutions?

 Is your code developed by a single individual or by a team?

 What is the maturity of your software in terms of age, testing breadth and depth, and ability to

model the science problems planned?

Application Software Quality Assurance (SQA) and Verification and Validation (V&V)

 When moving your codes to ORNL resources, how do you plan to verify that the model(s) are

behaving as expected?

 What kind of testing (e.g., unit, regression, integral) do you perform? How many of each?

 What is your solution validation strategy?

 What is your verification strategy? How are your simulations verified (solving equations

correctly)?

 What is your validation (solving the right equations) strategy? What experimental facilities do

you use for validation? Does your project have adequate resources for validation?

 What confidence level (level of predictability) do you have in your current simulations? Can this

be quantified (e.g., ―error bars‖)? If not, is this possible with more computational resources?

What physics models are crudely represented today (i.e., have the highest uncertainties or

sensitivities)?

 What V&V tools and methodologies (e.g., method of manufactured solutions) do you use?

 How are these factors expected to change over the next several years?

Application Usage Workflow

 Describe a typical use case for the code(s) you will run. An example would typically include

problem definition, problem setup, main compute phase, postprocessing, data analysis and

visualization, and dissemination of results.

 What are the time-intensive bottlenecks for the use case outlined above?

 What visualization and analysis tools do you typically use (e.g. NCO, Ferret, VisIt, IDL)?

 What maximum simulation turnaround time can you tolerate and still move your science

forward?

 For a given processor count, what fraction of your simulation run time is spent in I/O?

 What is the expected annual use of resources in terms of processor-hours, disk, and archival

storage?

 What is the size of a typical job in terms of core count, memory, disk, archival storage, and

wallclock time?

 What are your temporary and archival storage size needs for analysis dumps and restart dumps

(expressed as a function of the simulation core count)?

 Do you archive all of your data from a simulation, or just a fraction of it?

 What size are the external communities your code or datasets support?

 What is the number of users?

 What proportion of your output data do you transfer to your home institution?

 How are these factors expected to change over the next several years?

 Are your computational experiments sequential (i.e., the current dependent upon the previous

result)?

 What turnaround time would allow detailed parameter studies and optimization?

 How much time do you spend analyzing current runs? From the end of the simulation to the time

you publish?

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix B. Requirements Elicitation 93

 What are the frequency and size (in terms of fraction of simulation image) of your restart and

graphics dumps?

 What is the steady-state use of resources on a production basis per month, in terms of processor-

hours, disk, and tertiary storage rate of change?

 Does your analysis program read in all of your data (all of the variables, all of the timesteps

 What is your current bottleneck in analysis (e.g., data movement, coming up with new routines

for new analysis, trying to decide which routine will work best with a new dataset, comparing

results to older data and experimental data)?

 What is the split between interactive and batch use?

 How do you monitor your running simulation? (ASCII output and run gnuplot? Transfer file over

to your cluster and run another program? Real-time monitoring? Visualization tool on restart

dumps?)

 How do you use archival storage? Are your simulation datasets analyzed and used by many

others, or are they for single-user backup?

 Based on past experience, what do you anticipate increased computing capabilities will provide?

 Better turn-around time for the project?

 More users and incremental improvement in use with little or no change in scale or

quality?

 Reduced granularity, resulting in constant solution time, though more accurate results?

 New applications permitting in new approaches and new science?

 How, specifically, has your use changed with specific facilities increases?

 How are these factors expected to change over the next several years?

 Application Performance

 Do you have a normalized performance metric for your application (e.g., grind time)? If so,

what is it? Is it being tracked?

 What is the maximum demonstrated scalability of the code (in a weak and/or strong sense)?

 What is the maximum projected scalability of the code? How was this figure obtained?

 What is the greatest hindrance to scalability at large core counts? What algorithms are primarily

responsible?

 Does your application have a few identifiable performance bottlenecks?

 Are these bottlenecks localized in software?

 What do these parts of the code do?

 Is it likely that significant performance improvements could be attained by implementing further

code optimizations?

 Using alternative compilers, compilation options, or libraries?

 What fraction of your simulation run time is spent in communication?

 How much memory per core does your code typically require?

 What fraction of machine peak speed does the code typically attain? What is the primary limiting

factor (memory bandwidth, communication bandwidth, load imbalance, I/O, etc.)?

 If hardware flop rate or memory capacity was doubled, how would you make use of these added

resources?

 Communication questions

 For the primary interprocess communication tasks of your code, what is the typical

number of other processes communicated with by each process? Does the communication

topology vary over space and/or time?

 What is the distribution of message sizes?

 What kind of message passing calls does you code use (blocking, asynchronous).

 Memory questions

94 Appendix B. Requirements Elicitation

 What is your application’s normalized memory usage (e.g., double precision words

required per discrete solution point or cell)? What fraction of this can be accounted for by

the permanent state variables representing the physical system you are modeling?

 Does your application require an extensive amount of indirect addressing? What is the

aggregate computational intensity (flops per memory reference)?

 Computation questions

 What fraction of the total cycles is devoted to floating point ops, integer ops, logical ops,

data movement, etc.?

 What is the ―efficiency‖ of the code, and how is it measured?

 What-if questions

 How might the quality (fidelity of physics models) of your science change with platform

peak speed and aggregate memory?

 How might the productivity of your science output change with platform peak speed and

aggregate memory?

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix C. User Support 95

SCIENTIFIC

LIAISONS
(domain specific
scientists)

COMMUNICATION

WITH USERS
(multiple channels,
easy and frequent
access)

TRAINING CURRENT

AND FUTURE USERS
(workshops tailored to
user needs)

OUTREACH TO THE

NEXT GENERATION
(learning opportunities for
student and faculty)

User surveys conducted by an independent third party of

OLCF users with 48% response rate from 226 surveys

showed:

 Overall result in 2008 was 4.2 on a scale from 1 to

5 where 5 is very satisfied

 Every question scored 3.5 (satisfactory) or higher

User surveys, as well as our frequent and close interaction

with users, enable us to see problems immediately and

continually improve our facility.

APPENDIX C. USER SUPPORT

One of the key

components to

bridging the

gap between

application

scientists and the

quickly changing

landscape of computing is providing impeccable user support, from

basic machine usage issues to complex algorithm development and

implementation. The OLCF addresses the needs of its users through two support

teams, the User Assistance and Outreach Group (UAO) and the Scientific Computing

Group (SciComp). Using a multifaceted approach, users have access to the level of support

and features necessary for projects success.

The OLCF provides experts in user support, including Ph.D.-level liaisons from science fields who

are also experts in developing and optimizing code for the OLCF systems. Large projects are assigned

primary, secondary, and visualization liaisons to maximize opportunities for success on the leadership

computing resources. Liaisons address user needs in scientific computing, visualization, end-to-end

workflow, and runtime performance.

0

1

2

3

4

5

2006 2007 2008

Overall OLCF Score

96 Appendix C. User Support

Scientific Liaison

A critical area in which the OLCF excels is in assisting the user communities in porting, tuning, and

scaling applications to run on these highly scalable systems. The Scientific Computing Group within the

OLCF provides a liaison to each project to assist in these activities. Our customers have told us that

without the liaisons, using these large systems would be much more difficult and less productive. As we

begin deploying accelerator-based computer systems, this activity will make the difference between

effectively using the systems and not. Already, multiple members of the group are developing algorithms

for accelerators and heterogeneous processor technology.

Duties include:

 Providing guidance and experience to the project team

 Improving performance and scalability of the project application software

 Assisting in redesigning, developing, and implementing strategies that increase effective use of

OLCF resources

 Scalable algorithmic choices and library-based solutions

 Assisting in the planning of new code and algorithm development

 Providing an advocacy interface to the OLCF resource decision entities

 Resource Utilization Council

 Technology Council

 Software Council

Visualization Liaison

Visualization is an integral component to scientific computing; allowing scientists to delve into their

data as well as immediately convey their science to a larger audience. The OLCF provides a visualization

liaison to every INCITE project for their post-analysis data processing needs. Support services include:

 Support of visualization tools

 Conversion of data

 Statistical analyses

 Production of publication-ready images

 Production of movies and animations

 Highlighting of science successes to visitors

 Research of new data exploration techniques

 Writing of custom visualization tools and algorithms

 Parallel data analysis support

 Large display support

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix D. Survey of Applications 97

APPENDIX D. SURVEY OF APPLICATIONS

The applications listed here are a sampling of the leadership-class applications ported to the Jaguar

system. These codes possess high potential for achieving breakthrough science results. The codes span

many domains of science and a wide variety of models, algorithms, and software that collectively stress

all aspects of a leadership-class computational resource. These applications originate from many different

institutions. For each code in this list the following are summarized: physical models, numerical

algorithms, scaling performance, and functional software requirements (system software and

mathematical libraries). The code data is based in large part on details graciously provided by the relevant

code authors and subject matter experts. A list of codes is given in Table D.1. Details for each code are

provided in the text following the table.

Table D.1. Representative applications ported to the Jaguar system

Science Category Research Area Code(s)

Biology Biophysics GROMACS, LAMMPS, NAMD

Chemistry Chemistry MADNESS, NWChem, CP2K, QMCPACK

Earth Science Climate

Geosciences

Ocean Modeling

CAM

PFLOTRAN

POP

Engineering Combustion S3D

Fusion Fusion Energy AORSA, GTC, TGYRO

Materials Material Sciences

Nanoelectronics

Nanosciences

DCA++, gWL-LSMS, VASP

OMEN

LS3DF

Nuclear Energy Neutron Transport Denovo, UNIC

Physics Astrophysics

Condensed Matter

Lattice Gauge Theory

Nuclear Physics

Chimera, FLASH

CASINO

MILC/Chroma

MFDn, NUCCOR

98 Appendix D. Survey of Applications

D.1 Biology

Biophysics: GROMACS

Molecular dynamics simulator

http://www.gromacs.org

GROMACS is a versatile package for performing molecular dynamics, i.e., simulating the Newtonian

equations of motion for systems with hundreds to millions of particles. It is primarily designed for

biochemical molecules like proteins, lipids, and nucleic acids with many complicated bonded interactions,

but since GROMACS is extremely fast at calculating the nonbonded interactions (that usually dominate

simulations), many groups are also using it for research on nonbiological systems (e.g., polymers).

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

C, F90 MPI None None

Math

Libraries:

Library Function Functionality

FFT fftw_create_plan

fftw

fftw_destroy_plan

Creates/destroys an object with information

required to compute FFT in the FFTW

library

Algorithms: Ordinary Differential Equations of Newton’s Dynamic; PME, PPPM, Ewald summation

Scaling: A representative breakdown of CPU cost for a time step is 85% for force computation,

10% for neighbor finding, and 5% includes time integration, application of boundary

conditions, etc. Typically, for biomolecular systems, the force computation is dominated

by short-range pairwise interactions and long-range Coulomb interactions. The

traditional method for solving the long-range Coulomb part are Ewald summations with

the solution to the smooth summation part accomplished via distributed 3-D FFTs on a

grid to which particle charge density is interpolated. The 3-D FFT’s have a scale

computationally O(NlogN) but the communication overhead of the distributed 3-D FFT’s

make them scale poorly with system size – several all-to-all communication patterns. If

we ignore the cost of FFTs (which typically only require >50% of the force computation

time for large systems), classical MD simulations scale as O(N) in both memory and

CPU cost, where N is the number of particles simulated.traditional method for solving the

long-range Coulomb part are Ewald summations with the solution to the smooth

summation part accomplished via distributed 3-D FFTs on a grid to which particle charge

density is interpolated. The 3-D FFT’s have a scale computationally O(NlogN) but the

communication overhead of the distributed 3-D FFT’s make them scale poorly with

system size – several all-to-all communication patterns. If we ignore the cost of FFTs

(which typically only require >50% of the force computation time for large systems),

classical MD simulations scale as O(N) in both memory and CPU cost, where N is the

number of particles simulated.

Other: Cellulosic Ethanol: A Simulation Model of Lignocellulosic Biomass Deconstruction.

Load balancing uses neutral territory methods with staggered domains.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix D. Survey of Applications 99

Biophysics: LAMMPS

Large-scale Atomic/Molecular Massively Parallel Simulator

http://lammps.sandia.gov/

LAMMPS is a classical molecular dynamics (MD) code developed primarily at Sandia National

Laboratories over the past ten years. LAMMPS uses atomistic-based modeling of molecular systems such

as biomolecules, material surfaces, and chemical systems. The atomistic modeling uses Newtonian

(classical) mechanics for the system where the atoms are represented by a point mass and charge.

Additional terms in the physical model include two-, three-, and four-body terms and pairwise interaction

(electrostatic and van der Waals interactions) beyond the fourth body interaction. Computationally, MD is

similar to the N-body problem. Unlike gravitational or plasma simulations, the forces in MD are mostly

short range, and particle densities do not reach high values. The timestep in an MD simulation is limited

by the need to accurately integrate atomic motion between strongly interacting atoms (e.g., between two

atoms coupled by a harmonic bond). For computational efficiency, LAMMPS uses neighbor lists to keep

track of nearby particles. The lists are optimized for systems with particles that are repulsive at short

distances, so that the local density of particles never becomes too large. On parallel machines, LAMMPS

uses spatial-decomposition techniques to partition the simulation domain into small 3-D subdomains, one

of which is assigned to each processor. Processors communicate and store ―ghost‖ atom information for

atoms that border their subdomain. LAMMPS is most efficient (in a parallel sense) for systems whose

particles fill a 3-D rectangular box with roughly uniform density.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

C++ MPI None None

Math

Libraries:

Library Function Functionality

FFTW fftw_create_plan

fftw

fftw_destroy_plan

Creates/destroys an object with information

required to compute FFT in the FFTW

library

Algorithms: A spatial decomposition algorithm and a particle-particle/particle mesh (PPPM) method

and particle mesh Ewald algorithm. Complex 2-D and 3-D parallel FFT are also used.

Scaling: A representative breakdown of CPU cost for a timestep is 85% for force computation,

10% for neighbor finding, and 5% includes time integration, application of boundary

conditions, etc. Typically, for biomolecular systems, the force computation is dominated

by short-range pairwise interactions and long-range Coulomb interactions. The

traditional method for solving the long-range Coulomb part are Ewald summations with

the solution to the smooth summation part accomplished via distributed 3-D FFTs on a

grid to which particle charge density is interpolated. The 3-D FFT’s have a scale

computationally O(NlogN) but the communication overhead of the distributed 3-D FFT’s

make them scale poorly with system size—several all-to-all communication patterns. If

we ignore the cost of FFTs (which typically only require >50% of the force computation

time for large systems), classical MD simulations scale as O(N) in both memory and

CPU cost, where N is the number of particles simulated.

Other: There is no runtime load balancing in LAMMPS.

100 Appendix D. Survey of Applications

Biophysics: NAMD

Molecular dynamics code designed for simulation of large biomolecular systems

http://www.ks.uiuc.edu/Research/namd/

NAMD is a parallel molecular dynamics code designed for high-performance simulation of large

biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as

tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop

computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats.

NAMD uses the classical molecular dynamics force field, equations of motion, and integration methods

along with the efficient electrostatics evaluation algorithms employed and temperature and pressure

controls used. Features for steering the simulation across barriers and for calculating both alchemical and

conformational free-energy differences are present.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

C++ MPI Charm++ None

Math

Libraries:

Library Function Functionality

FFTW fftw_create_plan

fftw

fftw_destroy_plan

Creates/destroys an object with information

required to compute FFT in the FFTW

library

Algorithms: Verlet algorithm to propagate ODEs

Scaling: A representative breakdown of CPU cost for a time step is 85% for force computation,

10% for neighbor finding, and 5% includes time integration, application of boundary

conditions, etc. Typically, for biomolecular systems, the force computation is dominated

by short-range pairwise interactions and long-range Coulomb interactions. The

traditional method for solving the long-range Coulomb part are Ewald summations with

the solution to the smooth summation part accomplished via distributed 3-D FFTs on a

grid to which particle charge density is interpolated. The 3-D FFT’s have a scale

computationally O(NlogN) but the communication overhead of the distributed 3-D FFT’s

make them scale poorly with system size – several all-to-all communication patterns. If

we ignore the cost of FFTs (which typically only require >50% of the force computation

time for large systems), classical MD simulations scale as O(N) in both memory and

CPU cost, where N is the number of particles simulated.

NAMD implements runtime load balancing by the use CHARMM++ to migrate work

between the processors.

Other: 2002 Recipient of the Gordon Bell Award

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix D. Survey of Applications 101

D.2 Chemistry

Chemistry: MADNESS

Multiresolution Adaptive Numerical Scientific Simulation

http://code.google.com/p/m-a-d-n-e-s-s/

MADNESS provides a high-level environment for the solution of integral and differential equations in

many dimensions using adaptive, fast methods with guaranteed precision based on fast methods and

multiwavelet analysis and novel separated representations. There are three main components to

MADNESS. At the lowest level is a new petascale parallel programming environment that increases

programmer productivity and code performance/scalability while maintaining backward compatibility

with current programming tools such as MPI and Global Arrays. The numerical capabilities built upon

the parallel tools provide a high-level environment for composing and solving numerical problems in

many (1–6+) dimensions. Finally, built upon the numerical tools are new applications with initial focus

upon chemistry, atomic and molecular physics, material science, and nuclear structure.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

C/C++, Python,

Fortran

MPI, Global Arrays

Math

Libraries:

Library Function Functionality

BLAS

Algorithms: Fast methods with guaranteed precision based on multiwavelet analysis, separated

representations of functions and operators, partitioned singular value representations, and

bandwidth-limited bases for efficient sampling in space and evolution in time.

Scaling: Scaled to 130K+ cores on Jaguar XT5

Other: MADNESS enables scientific applications by addressing the difficulty of solving

equations in multi-scale systems implicit from quantum-scale models to simulations of

turbulent, reactive flow. Current utilization of MADNESS is in a density functional

theory (DFT) application for chemistry with developments in fluid dynamics and climate

modeling.

102 Appendix D. Survey of Applications

Chemistry: NWChem

Quantum chemistry application

http://www.emsl.pnl.gov/docs/nwchem/nwchem.html

NWChem provides many methods to compute the properties of molecular and periodic systems using

standard quantum mechanical descriptions of the electronic wave function or density. In addition,

NWChem has the capability to perform classical molecular dynamics and free-energy simulations. These

approaches may be combined to perform mixed quantum mechanics and molecular mechanics

simulations.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

GNU make,

FORTRAN77/C

Global Arrays,

ARMCI

ChemIO

Math

Libraries:

Library Function Functionality

PEIGS Symmetric eigensolvers, Cholesky

decomposition

 ScaLAPACK Symmetric eigensolvers, Cholesky

decomposition, linear solvers

 LAPACK Various dense linear algebra operations

 BLAS Various dense linear algebra operations

 FFTPACK Discrete FFT

Algorithms: NWChem uses both local basis function (atomic orbitals) and plane waves to compute

the solution of the Schrödinger equations.

Scaling: NWChem is made of various modules whose scalability can vary greatly. For example,

the DFT module scales between O(N) and O(N
3
) (where N is the number of basis

functions), while the CCSD(T) codes scales as O(N
7
).

Other: NWChem is an open-source computational chemistry package for high-performance

computing as well as conventional workstation clusters. The science enabled by this

application can be seen in the long list of associated publications.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix D. Survey of Applications 103

Chemistry: CP2K

Atomistic and molecular simulations of solid state, liquid, molecular, and biological systems

http://cp2k.berlios.de/

CP2K is a suite of modules, collecting a variety of molecular simulation methods at different levels of

accuracy, from ab-initio DFT to classical Hamiltonians, passing through semi-empirical NDDO

approximation. It is used routinely for predicting energies, molecular structures, vibrational frequencies

of molecular systems, and reaction mechanisms, and is ideally suited for performing molecular dynamics

studies. CP2K provides sophisticated interaction potentials to understand complex reactions at interfaces.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

GNU make,

Fortran90, CUDA

MPI, OpenMP

Math

Libraries:

Library Function Functionality

BLAS/LAPACK,

ScaLAPACK, FFTW

pdpotrf,

pdsygst,

pdsyevd,

pdtrsm

Algorithms: Hamiltionians: Classical, semi-empirical, local and non-local DFT and QM/MM.

Algorithms: Molecular Dynamics, Monte Carlo. Free Energy tools and Ehrenfest MD.

FFT and sparse linear algebra based.

Scaling: Varies from O(N) to O(N
3
) where N is the size of the basis set.

Other: CP2K enabled a comprehensive first principles study of the free energy of transfer of

hydronium from bulk to interface.

104 Appendix D. Survey of Applications

Physical Chemistry: QMCPACK

Quantum Monte Carlo Package

http://code.google.com/p/qmcpack/

The quantum Monte Carlo package was developed at the University of Illinois and is openly released

under UIUC/NCSA Open Source License. It is a chemistry code designed for high-performance

computers. Simulations start from electronic structure calculations using density functional theory (DFT),

Hartree-Fock (HF), and other many-body methods.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

Cmake, C++ MPI, OpenMP HDF5, libxml2

Math

Libraries:
BLAS/LAPACK, FFTW, einspline, boost

Algorithms: Quantum Monte Carlo (QMC) algorithms: Diffusion Monte Carlo (DMC), Variational

Monte Carlo (VMC). Particle-based algorithms using dense linear algebra and spline

grids for wavefunctions.

Scaling: QMC scales as O(N
2
–N

4
) where N is the number of particles.

Other: Quantum Monte Carlo calculation of the energetic, thermodynamics, and structure of

water and ice.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix D. Survey of Applications 105

D.3 Earth Science

Climate: CAM

Community Atmosphere Model: Numerical modeling of the earth’s climate

http://www.ccsm.ucar.edu/models/atm-cam/

The general circulation of the atmosphere is modeled by approximations to the primitive equations of

geophysical flows in a hydrostatic formulation. These are conservation laws for mass, momentum,

energy, and transported constituent species expressed as partial differential and integral equations. A fully

active land surface model (CLM) with vegetation modeling and soil hydrology and river routing is

included in all CAM simulations.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

Fortran 90 MPI NetCDF

Math

Libraries:
Cray SciLib, SGI SCSL

Algorithms: CAM can be configured to utilize either of three dynamical cores. The Spectral Eulerian

core employs spherical harmonic basis functions to predict the evolution of the large-

scale flow. The Semi-Lagrangian Spectral core is run on the same grid, but is formulated

in a way that preserves positive-definite behavior for critical advected constituents such

as water vapor. The Finite Volume dynamical core employs a finite-difference method.

Like the Semi-Lagrangian Spectral core, it also can be configured to guarantee positive-

definite behavior for critical advected species. Numerous subgrid-scale physical

processes are parameterized, with their effects providing a forcing term to the dynamics.

Examples include shortwave and longwave radiative transfer, convective adjustment and

clouds.

Scaling: The finite volume dynamical core has the best scaling characteristics of the three

available options because it is formulated with a 2-D data decomposition (X and Y). The

Eulerian and semi-Lagrangian spectral cores only decompose along the Y dimension.

 Current development will enable scaling to thousands of processors by increasing

resolution, adding computational complexity, and implementing more-scalable data

distributions. The model is formulated in a hybrid MPI/OpenMP fashion to take

advantage of modern cluster architectures.

Other: Good connectivity to the Earth System Grid is required.

106 Appendix D. Survey of Applications

Geoscience: PFLOTRAN

Modeling reactive flows in porous media

http://ees.lanl.gov/pflotran

PFLOTRAN (Parallel FLOw and TRANsport) solves multiphase, multicomponent reactive flow and

transport equations in nonisothermal, variably saturated media. The code consists of two modules, which

can be run separately or in coupled mode. The module PFLOW simulates Darcy flow, solving mass

conservation equations for water and other fluids and an energy balance equation. The module PTRAN

solves mass conservation equations for a multicomponent geochemical system. The reactions included in

PTRAN involve aqueous species and minerals.

System

Software:

Programming

languages:

Communication libraries: I/O libraries

and functions:

Operating system

functions:

Fortran 90 MPI None None

Math

Libraries:

Library Function Functionality

PETSc SNESSolve,

KSPSolve,

DAGlobalToLocal,

MatFDColoring

Newton solves, Krylov solves, halo

exchanges, multi-color finite difference

Jacobian

 BLAS BLAS Level 1 and

2

Dot product, etc.

Algorithms: PFLOTRAN uses a first-order finite-volume discretization on a Cartesian grid (extension

to unstructured grids is being developed). Within both the PFLOW and PTRAN modules,

time-stepping is fully implicit (backward Euler). In coupled mode, flow velocities,

saturation, pressure, and temperature computed from PFLOW are fed into PTRAN. For

transient problems, sequential coupling of PFLOW and PTRAN enables changes in

porosity and permeability due to chemical reactions to alter the flow field.

A PETSc-based Newton-Krylov solver framework is used to solve the system of

nonlinear equations arising at each time step. Because we employ PETSc, a wide variety

of nonlinear and linear solver options can be easily employed by making the appropriate

selection for the given problem at runtime. We usually employ an outer, quasi-Newton

solver with line search and an inner, BiCGSTAB Krylov solver preconditioned with an

additive-Schwarz method with an overlap of 1, with ILU(0) applied on each subdomain.

The Jacobian matrix can be explicitly calculated (analytically for some cases, via finite-

difference for others) or its action can be applied on the fly (though this somewhat

restricts choice of preconditioners).

Adaptive mesh refinement (AMR) is currently not supported; we plan to use the

Chombo framework to introduce support for hierarchical block-structured AMR.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix D. Survey of Applications 107

Ocean Modeling: POP

Parallel Ocean Program to model ocean circulation in three dimensions

http://climate.lanl.gov/Models/POP

POP is an ocean circulation model derived from earlier models in which depth is used as the vertical

coordinate. The model solves the 3-D primitive equations for fluid motions on the sphere under

hydrostatic and Boussinesq approximations. A wide variety of physical parameterizations and other

features are available in the model and are described in detail in a reference manual distributed with the

code. Because POP is a public code, many improvements to its physical parameterizations have resulted

from external collaborations with other ocean-modeling groups, and such development is very much a

community effort.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

Fortran 90, C, GNU

Make, CAF

(optional)

MPI, OpenMP

(optional)

NetCDF None

Math

Libraries:

Library Function Functionality

None

Algorithms: Spatial derivatives in POP are computed using finite-difference discretizations which are

formulated to handle any generalized orthogonal grid on a sphere, including dipole and

tripole grids which shift the North Pole singularity into land masses to avoid time-step

constraints due to grid convergence. Time integration of the POP model is split into two

parts. The 3-D vertically varying (baroclinic) tendencies are integrated explicitly using a

leapfrog scheme. The very fast vertically uniform (barotropic) modes are integrated

using an implicit free surface formulation in which a preconditioned conjugate gradient

solver is used to solve for the 2-D surface pressure.

Scaling: Strong scaling to 10K cores.

Other: POP is the ocean component of the Community Climate System Model (CCSM) and has

been used extensively at LANL in ocean-only mode for eddy-resolving simulations of

the global ocean and for ocean-ice coupled simulations with the CICE model.

108 Appendix D. Survey of Applications

D.4 Engineering

Combustion: S3D

Combustion modeling in flames

Chen, J. H. et al., “High fidelity simulations for clean and efficient combustion of

alternative fuels,” SciDAC2008: Scientific Discovery through Advanced Scientific Computing

125:12028 (2008).

S3D solves a fully coupled system of time-varying partial differential equations (PDEs) governing the

full compressible reacting Navier-Stokes, total energy, species and continuity equations coupled with

detailed chemistry. The PDEs are supplemented with additional constitutive relationships for the ideal gas

equation of state, and detailed high-fidelity models for reaction rate, molecular transport, and

thermodynamic properties. In this formulation, after the initialization of the primitive variables for each

time step, the convective, diffusive, and chemical terms in the conservation equations are updated, once

for each of the six stages of the fourth-order accurate explicit Runge-Kutta time advancement solver.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

Fortran 90 MPI None Mkdir

Math

Libraries:

Library Function Functionality

None

Algorithms: S3D is based on a high-order accurate, nondissipative numerical scheme. It has been

used extensively to investigate first-of-a-kind fundamental turbulence–chemistry

interactions in combustion topics, including premixed and nonpremixed flames and

autoignition. Time advancement is achieved through a fourth-order explicit Runge-Kutta

method, spatial differencing is achieved through high-order (eighth-order with tenth-

order filters) finite differences on a Cartesian structured grid, and Navier-Stokes

Characteristic Boundary Conditions (NSCBC) are used to prescribe the boundary

conditions. The equations are solved on a conventional structured mesh.

This computational approach is very appropriate for the problems selected. The

coupling of high-order finite difference methods with explicit R-K time integration make

very effective use of the available resources, obtaining spectral-like spatial resolution

without excessive communication overheads and allowing scalable parallelism.

Scaling: The parallelism in S3D can basically be described as explicit nearest-neighbor local

communication. With this design, the code is compute-bound, which has been

empirically observed. The code exhibits good weak scaling behavior.

Other: Capable of Direct Numerical Simulation of Diesel Jet Flame Stabilization at High

Pressure

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix D. Survey of Applications 109

D.5 Fusion

Fusion Energy: AORSA

The All-ORders Spectral Algorithm code: High-resolution solutions for mode conversion and high

harmonic fast wave heating in tokamak plasmas

http://www.csm.ornl.gov/~shelton/fusion.html

AORSA solves Maxwell-Boltzmann equations for the wave electric and magnetic fields and for the

distribution function fs(r, v, t), representing the density of species in a 6-D phase space. The time-

evolution of this function is determined using self-consistent electric and magnetic fields. The wave fields

and particle distribution function can be separated into a time-averaged slowly varying part, (E0, B0, fs
0
),

and a time harmonic rapidly oscillating part, [E(r)e
-iωt

, B(r)e
-iωt

, fs
1
(r,v)e

-iωt
], where ω is the frequency of

the wave. Solving the linearized Boltzmann equation gives the rapidly varying part of the distribution

function fs
1
(r, v) in terms of the equilibrium part fs

0
. For the rapidly oscillating, time harmonic wave

fields, Maxwell’s equations reduce to a generalization of the Helmholtz wave equation. The numerical

solution is expensive because of the nonlocal nature of the plasma current, the geometric complexity of

the plasma boundary, and the enormous range of spatial scales that must be treated. AORSA takes

advantage of today’s parallel computers and solves its equations in the general integral form with no

restriction on wavelength relative to orbit size and no limit on the number of cyclotron harmonics.

AORSA has been generalized to treat nonthermal (i.e., non-Maxwellian) plasma components.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

Fortran 77/90 BLACS NetCDF None

Math

Libraries:
HPL, ScaLAPACK, PBLAS, FFTPACK, PGPLOT

Algorithms: AORSA uses a fully spectral method to solve the wave equation, and the resulting set of

linear equations is solved using ScaLAPACK libraries or HPL, modified for use with

complex coefficient systems. This avoids complicated convolutions associated with

calculating the plasma current and, at the same time, includes cyclotron harmonics of

arbitrarily high order. For an N × N grid in 2-D, AORSA generates a dense matrix of

approximately 0.70*(3*N
2
). For example, the medium-size ITER problem (350 × 350)

requires the solution of a double complex valued linear system of order 254,823. The

larger ITER problem (580 × 580) required to resolve the mode-converted waves requires

solution of a linear system of order 68,758.

Scaling: Linear scaling up to 48,000 processors; prefer 2–3 times the memory of Jaguar’s

processors (1.3 Gbytes/processor available to code); domain decomposition with MPI;

50% of peak on Jaguar

Other: AORSA could do a complete simulation of mode conversion heating in ITER with a

realistic antenna geometry and non-Maxwellian alpha particles.

110 Appendix D. Survey of Applications

Fusion Energy: GTC

Gyrokinetic particle simulation of transport barrier dynamics in fusion plasmas

S. Ethier, W. M. Tang, and Z. Lin, “Gyrokinetic Particle-in-Cell Simulations of Plasma Micro-

Turbulence on Advanced Computing Platforms,” Journal of Physics: Conference Series 16, 1

(2005).

There are three versions of GTC.

GTC, developed at Princeton Plasma Physics Laboratory (PPPL), is a global code for turbulence transport

simulations. It uses a shaped plasma in general geometry with electrostatic electron dynamics based on

the delta-h scheme with the nonadiabatic part of delta-f.

The GTC version developed at the University of California–Irvine (UCI) has electromagnetic electron

dynamics based on the hybrid scheme along with a global code for both turbulence and gyrokinetic MHD

simulations.

Finally, the GTC-neo (PPPL) code has neoclassical transport simulations in general toroidal geometry

and in fully operational collision operators. The GTC code has shown steady-state simulations of ion

temperature gradient (ITG) turbulence with adiabatic electrons. The GTC code developers were able to

add the velocity space nonlinearity term, which helps produce an ion current ratio of 2.5%. Using ITG

simulations with GTC, they were able to show turbulence spreading for shaped and circle plasmas.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

F90, C MPI, OpenMP ADIOS Timers (through

MPI)

Math

Libraries:
PETSc

Algorithms: Gyrokinetic Vlasov equation PDE in Eulerian coordinates: MHD equations are time-

dependent PDEs in Eulerian coordinates, and the Gyrokinetic-Darwin-Maxwell

equations are time-independent PDE in Eulerian coordinates. GTC solves the

Gyrokinetic Vlasov equation using a PIC method (ODE in Lagrangian coordinates). It

also solves the Gyrokinetic-Darwin-Maxwell equations with finite elements with

specialized fast Poisson solvers.

Scaling: Mature PIC code, nearest-neighbor, good scaling to 5,000 processors, and has been

demonstrated on a number of systems utilizing MPI and OpenMPI. The code has run

long simulations on the Cray XT series with 4,800 processors for over 100 wall-clock

hours per simulation. The code has scaled on over 16K processors on the IBM Blue

Gene. The code has shown 96–98% on multicore Opteron processors. GTC has achieved

3.7 TF on the Earth Simulator. GTC has scaled to over 100K cores.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix D. Survey of Applications 111

Fusion Energy: TGYRO

Nonlinear tokamak microturbulence package

http://fusion.gat.com/theory/Tgyrooverview

Temperature and density profiles in tokamaks are fundamentally limited by pressure-gradient-

driven turbulence and to a lesser extent by cross-field transport caused by collisions so-called

neoclassical transport. A first-principles description of these transport processes can be obtained

via direct kinetic simulations, but to date, these have been far too computationally expensive to

be considered for modeling and performance-prediction purposes. To solve the inverse problem,

modelers use reduced models for core thermal and particle transport where a typical modeling

scenario may require the evaluation of thousands of local transport fluxes. By developing an

iteration scheme suitable for solving the inverse problem, we have been able to obtain steady-

state temperature profiles for DIII-D plasmas using GYRO to repeatedly calculate turbulent

particle and energy fluxes. These so-called transport solutions also include first principles

neoclassical fluxes computed using NEO. TGYRO oversees execution of multiple simultaneous

instances of both GYRO and NEO.

Developed at General Atomics (starting in 1999) by J. Candy and R. Waltz, GYRO uses a fixed

(Eulerian) grid to solve the 5-D gyrokinetic-Maxwell equations. Operation is flexible, with the

capability to treat a local (flux-tube) or global radial domain (with an adaptive source to maintain

the equilibrium profiles), a full or partial torus, general (Miller shaped) or simple circular

plasmas, adiabatic, drift-kinetic or gyrokinetic electrons, electrostatic or electromagnetic

fluctuations, finite parallel velocity and shear, and experimental or user-defined physical input

parameters. All transport channels are treated: ion and electron energy transport plus turbulent

energy exchange, plasma and impurity particle transport, and toroidal angular momentum

transport.

System

Software:

Programming

languages:

Communication libraries: I/O libraries

and functions:

Operating system

functions:

Fortran 77/90 MPI MPIIO Timing only

Math

Libraries:
BLAS/LAPACK, UMFPACK, MUMPS, FFTW

Algorithms: GYRO uses a mixture of finite-difference, finite-element, spectral and pseudo-spectral

discretization schemes. Radial derivatives are computed using arbitrary-order finite-

difference formulae, whereas 2-D gyro averages are treated using a mixed spectral (in the

binormal direction), pseudo-spectral (in the radial direction). Orbit motion (advection) in

the poloidal plane is treated using a third-order upwind scheme, whereas the poloidal

field dependence is represented using adjustable-order finite elements. Velocity space

integrals (2-D) are computed using novel high-order 2-D Gaussian quadrature schemes,

which is the most accurate integration scheme used by any gyrokinetic code (Eulerian or

PIC). Time integration through either a semi-implicit IMEX-RK scheme (ideal for large,

global-scale simulations), or an explicit 4th-order RK scheme (ideal for simulations

which resolve the full electron-temperature-gradient physics time and space scales).

112 Appendix D. Survey of Applications

D.6 Materials

Materials Science: DCA++

Quantum Monte Carlo calculations for materials characterization

A. Maier et al., “Quantum Cluster Theories,” Review of Modern Physics 77, 1027 (2005).

The two-dimensional Hubbard model is a simplified description of the electronic degrees of freedom of

the superconducting copper oxide planes in high-temperature superconductors (HYSC). DCA++ is based

on a dynamic cluster quantum Monte Carlo algorithm to solve, in a controlled way, lattice models of

strongly correlated electron systems such as the 2-D Hubbard model. The dynamic cluster method

approximates the effects of correlations in the bulk lattice with those of a finite-size quantum cluster. This

enables a mapping of the bulk lattice problem to an effective cluster embedded in a self-consistent bath

designed to represent the remaining degrees of freedom. Recently, this technique has been applied

successfully to show that the 2-D Hubbard model of high-temperature superconductors does have a

superconducting transition in the range of parameters and temperatures characteristic of the cuprates. The

new computational capabilities even established the fact that pairing in the Hubbard model is mediated by

spin fluctuations. While the success in describing the physics of the cuprates with high-end simulation

results of the Hubbard model is remarkable, it is important to link a generalized Hubbard-like model to

actual cuprate HTSC to understand material-specific properties such as the huge differences in

superconducting transition temperatures between different HTSC materials.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

C++ MPI None None

Math

Libraries:

Library Function Functionality

BLAS

Algorithms: The computational workhorse to solve the effective quantum cluster problem is a

generalized version of the Hirsch-Fye QMC algorithm. This algorithm performs a

stochastic Markov-chain walk, along which measurements are made periodically. The

central quantity that has to be measured and updated along this walk is the single-particle

Green’s function G of the effective cluster problem. G is a matrix of size N*t, where N is

the total number of sites and orbitals treated with correlations in the quantum cluster

calculation and t is the number of time-slices used in the integration path integral. A

majority of the CPU time is spent updating G that is calculated by a vector outer product

followed by a matrix update, which may be completed by the BLAS call DGER. Since

DGER has a relatively low computational intensity (only two floating point operations

per memory access), a reformulation of the underlying Hirsch-Fye algorithm is used, in

which the frequent calls to DGER are delayed and hence replaced by fewer and much

more cache-efficient matrix multiplies (BLAS call DGEMM). This allows the code to be

run for large problems with high efficiency on superscalar processors.

Other: 2008 Recipient of the Gordon Bell Award

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix D. Survey of Applications 113

Materials Science: gWL-LSMS

Electronic structure calculations based on density functional theory

http://www.ccs.ornl.gov/mri/repository/LSMS

This code implements a first principles electronic structure calculation based on density functional theory.

LSMS stands for locally self-consistent multiple scattering, an order-N method that is well suited to solve

all-electron electronic structure problems as they appear in nanostructures—particularly magnetic

nanostructures. The method is formulated within the local spin density approximation to density

functional theory and solves the single-particle Dirac equation as well as the nonrelativistic Schrödinger

equations. The LSMS code won the Gordon Bell prize in 2009.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

Fortran 77/90, C++ MPI2 HDF5 ctime (or

equivalent)

Math

Libraries:

Library Function Functionality

BLAS ZGEMM Dense double complex matrix-matrix multiply

 BLAS ZGEMV Dense double complex matrix-vector multiply

 LAPACK ZGETRF Double complex factorization of a dense matrix

 LAPACK ZGETRS Double complex triangular matrix solve

 LAPACK ZGETRI Double complex matrix inverse formation

Algorithms: LSMS solves the Kohn-Sham equations of density functional theory using Multiple

Scattering theory to calculate its Green function and consequently the resulting densities

by calculating the trace of the product of the observables and Green’s function. The main

computational effort involves inversion of a matrix of dimension that scales linearly with

the size of the system. To achieve linear overall scaling with system size, LSMS takes

advantage of the fact that most observables depend only on their local environment, so

by taking only a fixed-size neighborhood of atoms into account, LSMS keeps the size of

the matrices independent of the system size after the range of this local interaction zone

has been determined.

Scaling: Parallelization is achieved by assigning system atoms to different processors. Integration

of these ab initio methods with a classical statistical physics method (generalized Wang-

Landau in particular) as the energy function will allow another level of parallelism in the

random walkers used. This combined code will naturally scale to >200,000 cores when

investigating the thermodynamic behavior of 1,000–10,000 atom nanoparticles.

Other: 2009 Recipient of the Gordon Bell Award

114 Appendix D. Survey of Applications

Materials Science: VASP

Vienna Ab-initio Simulation Package for molecular dynamics simulations of large biomolecular systems

http://cms.mpi.univie.ac.at/vasp

Plane wave-based density functional calculations, together with all-electron-derived pseudo potentials,

comprise a powerful and flexible method. Their well-controlled accuracy vs. computational cost makes

them ideal for the study of novel systems in which the electronic structure is not well understood, or in

which tiny differences determine the outcome of the simulations. Such accuracy is critical when

performing quantum molecular dynamics (QMD) simulations, which enable studies of the evolution of

nanoscale systems and their environment at finite temperature, as well as investigations of biomolecular

reaction mechanisms, structural changes and temperature-dependent phase transitions.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

Fortran90, C (minor) MPI None Getrusage

Math

Libraries:

Library Function Functionality

BLAS D/ZGEMM Double complex/real general matrix-matrix

multiply

 BLAS (D/Z)TRMM Double complex/real triangular matrix- matrix

multiply

 P(D/Z)TRTR

 ScaLAPACK P(D/Z)POTRF Matrix inverse, Cholesky decomposition,

Eigenvector computation

 P(D/Z)HEEVX

Algorithms: Planewave code that solves the density functional equations in a plane wave basis

defined by a sphere of vectors in Fourier space. All atoms are represented by ab initio

pseudopotentials, of either a norm-conserving, ultrasoft, or projector-augmented wave

type. The latter two offers much improved accuracy and reduced computational costs

(flops and memory) over the simpler norm-conserving potentials, particularly for systems

containing transition metal atoms. For calculations of up to 1000 atoms, the main

computational effort involves (1) evaluation of the pseudopotential contributions to the

energy and forces, and (2) parallel Fourier transforms between real and reciprocal

(Fourier) space. The former involve linear algebra operations using standard BLAS,

while the latter utilize vendor 1-D FFT transforms and custom routines for highly

efficient parallel 3-D transforms.

Scaling: Although the method is in-principle cubic scaling, in practice it scales quadratically up to

1000 atoms using recent numerical advances. Appropriately configured, VASP currently

delivers a large fraction of peak performance, typically 30–50%, for up to 1000

processors.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix D. Survey of Applications 115

Nanoelectronics: OMEN

Atomistic and full-band quantum transport simulator designed for post-CMOS devices

http://cobweb.ecn.purdue.edu/~gekco/omen

OMEN is a two- and three-dimensional Schrodinger-Poisson solver based on the sp
3
d

5
s* semi-empirical

tight-binding method. This bandstructure model has been chosen for (i) its ability to reproduce the

principal bulk characteristics of electrons and holes, (ii) its straightforward extension to nanostructures,

and (iii) its atomic description of the simulation domain. Carrier and current densities are obtained by

injecting electrons and holes at different energies into the device and by solving the resulting system of

equations in the Wave Function or in the Non-equilibrium Green’s Function formalism. The 2-D or 3-D

Poisson equation is expressed in a finite-element basis where the tight-binding charges sit on node

position. OMEN will enable the calculation of full transistor characteristics of realistic semiconductor

devices, using quantum mechanics in an atomistic representation.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

C/C++, Fortran

Math

Libraries:
SuperLUdist, MUMPS, PARPACK, LAPACK/BLAS

Algorithms: Recursive Green’s Function; The Schrödinger equation is solved with open boundary

conditions (OBCs) either in the Wave Function (WF) or in the Non-Equilibrium Green’s

Function (NEGF) formalism. The resulting charge and current densities are self-

consistently coupled to the Poisson equation in a finite-element basis.

Scaling: Scaled to 222,730 cores. The computation of the bias points, the energy and momentum

integrations, as well as the spatial domain decomposition have been parallelized so that a

single simulation can run on a number of processors Ncpu up to O(10
4
) with a speed-up

factor close to Ncpu.

Other: OMEN enables discovery of new nanoscale technologies for faster switching, smaller

feature size, and reduced heat generation. The creation of a new switch will revitalize the

semiconductor industry in 2015. Designers will be enabled to directly address questions

of quantization and spin, tunneling, phonon interactions, and heat generation for

nanoscale devices.

http://cobweb.ecn.purdue.edu/~gekco/omen/scale_32768.html
http://cobweb.ecn.purdue.edu/~gekco/omen/scale_32768.html

116 Appendix D. Survey of Applications

Nanoscience: LS3DF

Linear Scaling 3-D Fragment code for electronic structure calculations

Lin-Wang Wang, “Linear Scaling 3-D Fragment Method for Large-Scale Electronic Structure

Calculations,” Lawrence Berkeley National Laboratory (2008).

New linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic

structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel

patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the

system. As a consequence, the LS3DF program yields essentially the same results as direct density

functional theory (DFT) calculations at a much smaller computational cost.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

Fortran MPI

Math

Libraries:
ESSL, BLAS2, LAPACK, FFT

Algorithms: LS3DF divides a large system into small pieces called fragments, and then calculates the

electron wavefunctions and the charge density of each piece independently using a small

group of processors. The charge densities of all the pieces are then patched together to

determine the charge density of the entire system. Finally, a Poisson equation is solved

for the whole system charge density, until a self-consistent charge density for the entire

system is achieved.

Scaling: The fragments of the LS3DF algorithm can be calculated separately with different groups

of processors. This leads to almost perfect parallelization on tens of thousands of

processors. After code optimization, they were able to achieve 35.1 Tflop/s, which is

39 percent of the theoretical speed on 17,280 Cray XT4 processor cores. Their 13,824-

atom ZnTeO alloy calculation runs 400 times faster than a direct DFT calculation, even

presuming that the direct DFT calculation can scale well up to 17,280 processor cores.

These results demonstrate the applicability of the LS3DF method to material simulations,

the advantage of using linearly scaling algorithms over conventional O(N
3
) methods, and

the potential for petascale computation using the LS3DF method.

Other: LS3DF simulations allow for a better understanding of nanostructure solar cells to

improve their efficiency and viability as a mainstream solution for renewable solar

energy.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix D. Survey of Applications 117

D.7 Nuclear Energy

Neutron Transport: Denovo

Nuclear reactor neutron transport solver

Progress in nuclear technology requires simulations that model many coupled physics systems, including

Boltzmann transport equations, a powerful algorithm for analyzing transport phenomena with many-step

gradients in both density and temperature. For nuclear reactor simulation, the size of the equations to be

modeled is tremendous—five orders of magnitude in space and ten in neutron energy. Denovo is a

parallel transport solver which is the first-of-a-kind, mathematically consistent, two-level approach to the

multiscale challenge. With present algorithms, a solver that incorporates the separating out of processes

for all scales would require 10
17

 to 10
21

 degrees of freedom (DOF) for a single time-step, which is beyond

even exascale computational resources. Denovo is a significant advance over current technology, because

it allows fully consistent multi-step approaches to high-fidelity nuclear reactor simulations that cannot be

performed with current technology.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

C++, Python, F95 MPI Silo, HDF5

Math

Libraries:

Library Function Functionality

Trilinos

Algorithms: Denovo incorporates a wavefront algorithm to sweep across spatial domain. The angular

domain is in the process of being thread-parallelized and the energy domain will be

decomposed as well. We are evaluating the performance of several acceleration/solver

approaches to the eiganvalue form of the transport equation, including the

Trilinos/Anasazi solvers, a traditional non-linear CMFD approach, and a shifted-

eigenvalue coupled with Krylov solver.

Scaling: Denovo scales to the petaflop level by uncoupling the multi-level, phase-space

parameters of the equations.

Other: This multi-level approach with advanced computing can provide an extremely high-

fidelity capability to understand the power distribution within a nuclear reactor in an

approach that can be coupled with computational fluid dynamics and conjugate heat

transfer solvers to understand the performance of a nuclear reactor during nominal, and

potentially transient, operating conditions.

118 Appendix D. Survey of Applications

Neutron Transport: UNIC

Neutron transports simulations in nuclear reactors

UNIC is developed at ANL as part of the DOE Nuclear Energy Advanced Modeling and Simulation

(NEAMS) program. UNIC models how neutrons move inside the reactor core. The simulation of

processes in reactor cores is challenging because of large length scales, a complicated distribution of

materials, and the intricacies of the physical data. Calculating and simulating these processes requires

simulation over several orders of magnitude and energy, and the resolution of strong local fluctuations.

UNIC solves large-scale nuclear reactor core problems governed by the seven dimensional (three in

space, two in angle, one in energy, and one in time) Boltzmann equation. The goal of this simulation

effort is to reduce the uncertainties and biases in reactor design calculations by progressively replacing

existing multi-level averaging (homogenization) techniques with more direct solution methods. As the

algorithms are refined, they will be used to solve coupled physics problems in such a way that thermal,

hydraulic, and structural feedbacks are accurately represented in realistic reactor transient simulations.

This will lead to a significant reduction in cost and better assessments of the safety of fast reactors—

nuclear reactors where the fission is sustained by fast neutrons.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

C++ MPI

Math

Libraries:

Library Function Functionality

PETSc, MeTIS

Algorithms: Currently UNIC has two solvers for the neutron transport equation which are based upon

the second-order even parity transport equation and utilize a spherical harmonics and a

discrete ordinates approximation for the angular approximation. A third solver based on a

first-order method of characteristics has also been implemented in order to provide a

more efficient capability of explicit geometry modeling. UNIC uses an unstructured

mesh and to represent the complex geometry of a reactor core, billions of spatial

elements, hundreds of angles, and thousands of energy groups are necessary, which leads

to problem sizes with petascale degrees of freedom.

Scaling: UNIC shows weak scalability of over 80% on 131,072 cores on Jaguar XT5.

Other: Scalable simulation of unstructured, deterministic neutron transport in fast reactor cores.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix D. Survey of Applications 119

D.8 Physics

Astrophysics: CHIMERA

3-D modeling of core collapse supernovae

S. W. Bruenn et al., “Modeling Core Collapse Supernovae in 2 and 3 Dimensions with Spectral

Neutrino Transport,” Journal of Physics: Conference Series 46, 393–402 (2006).

CHIMERA solves the equations of radiation hydrodynamics in a ray-by-ray approach: the hydrodynamic

evolution is followed in two or three spatial dimensions and the neutrino radiation transport is constrained

along radial rays. This is an excellent approximation for the core-collapse supernova problem: for much

of the evolution, the configuration is roughly spherical on scales probed by the neutrino interactions with

the surrounding matter. In addition, thermonuclear kinetics are evolved in each spatial zone via a local

nuclear burning module.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

F90 MPI HDF5, pnetCDF None

Math

Libraries:
LAPACK

Algorithms: Piecewise Parabolic Method (PPM) is a finite-volume discretization of the Euler

equations (a particular example of a Godunov method). VH1 is a Lagrangian remap

version of PPM (i.e., the hydro step is performed on a Lagrangian mesh and remapped

back to the primary Eulerian mesh during each timestep). CHIMERA includes all the

PPM technology of VH-1 along with a fully implicit, multigroup flux-limited diffusion

neutrino transport solver. The transport solver uses a variety of Krylov solvers.

Scaling: Explicit Eulerian hydrodynamics is shown to scale to thousands of processors on the

NCCS XT series. CHIMERA is under active development on the Cray XT series. Its

scaling characteristics are essentially identical to VH-1, as the transport solves that mark

the added physics in CHIMERA are local.

Other: The world’s first core-collapse supernova simulations in 3-D with realistic neutrino

transport. The simulations would also likely include magnetic fields, some

approximation to general relativistic gravity, and realistic nuclear burning.

120 Appendix D. Survey of Applications

Astrophysics: FLASH

Modular, parallel, multiphysics simulation code for handling general compressible flow problems found

in many astrophysical environments

http://flash.uchicago.edu

FLASH is designed to solve compressible, reactive flow problems in dense stellar environments, like

those found in novae, X-ray bursts, and Type Ia supernovae. The code incorporates solvers for

hydrodynamics, nuclear burning, gravity, and a variety of other physical processes. The code also has

considerable functionality for cosmology problems in the form of particle-mesh solvers.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

Python, F90, C MPI HDF5, pnetCDF GNU make

Math

Libraries:
No external libraries

Algorithms: FLASH uses an explicit, PPM-based method, hence is a finite volume, nearest-neighbor

code. It uses block-structured AMR. FLASH includes modules to perform passive and

active particle tracing, nuclear burning, multigrid and multipole gravity solves, complex

equations of state, and front tracking via massive scalar advection.

Scaling: FLASH recently completed a 64,000 processor-driven turbulence run on the LLNL BG/L

platform. The code exhibited good scaling.

Other: The code could perform a full-star deflagration simulation, including any possible

transition to detonation, in the white dwarf at resolutions finer than 0.01 km. This would

be a 100× leap in resolution for these kinds of simulations and would allow for real

validation of the chosen subgrid model for flame turbulence.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix D. Survey of Applications 121

Condensed Matter: CASINO

First-principles electronic structure calculations using Quantum Monte Carlo methods

http://www.tcm.phy.cam.ac.uk/~mdt26/casino2.html

In contrast to other first-principles methods, such as density functional theory (DFT), QMC provides

essentially exact answers, with no or few approximations in the entire method. The method is therefore

ideal for providing benchmark answers for delicate problems such as those in optical properties of

nanostructures, catalysis, reaction pathways, and many other problems involving transition metals where

common DFT approaches are suspect. Indeed, practical implementations of DFT are based on a

parameterization of QMC data. Although calculations are substantially more expensive than DFT,

structures of several hundred atoms have been examined.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

Fortran 90 MPI None Timing

Math

Libraries:
BLAS

Algorithms: Atomistic QMC calculations have many features in common with both molecular

dynamics calculations (e.g., the movement of individual particles, Ewald sums for long

range forces) and with quantum chemical and DFT electronic structure methods (e.g.,

representation of wave functions in an underlying Gaussian or plane-wave basis, possible

use of pseudopotentials). A generalized Metropolis algorithm is used for Monte Carlo.

The population of walkers is dynamically load balanced across processors ensuring very

high parallel efficiency (>90%). The Monte Carlo and dynamic nature of the algorithms

could take advantage of fault-tolerant parallel environments, if available: the loss of a

few walkers due to a failed processor can be compensated for with only minor overhead.

Scaling: The computational requirements scale with the second to fourth power of the number of

electrons and atoms, depending on the quantities being measured. The scalability of

QMC calculations depends on a combination of the size of materials system under study,

the physical quantities of interest (energies, forces, optical excitations), as well as the

quality of trial wave function that can be obtained using more approximate methods.

Based on current experience with these governing factors, publication-quality QMC

calculations will scale to systems of 1,000–10,000 electrons on 10,000–100,000

processors without major developments to existing code. Hard scaling could be further

improved by dividing each walker over several processors. Although this development

has not been done, an additional order of magnitude of scalability might be reasonably

achieved.

Other: Possible to study a key scientific problem in an area of materials science such as

catalysis, hydrogen production (photodissociation of water on titanium dioxide surface),

hydrogen storage in organic and solid state nanostructures, as well as magnetic systems.

122 Appendix D. Survey of Applications

Lattice Gauge Theory: MILC/Chroma

Numerical studies of quantum chromodynamics

MILC: http://physics.indiana.edu/~sg/milc.html

CHROMA: http://usqcd.jlab.org/usqcd-docs/chroma/

Lattice QCD calculations are performed in two steps. In the first, one performs Monte Carlo calculations

to generate gauge configurations, which are representative samples of the QCD ground state. These

configurations are stored, and, in the second step, they are used to calculate a wide variety of physical

quantities.

During the past few years, a great deal of progress has been made through the use of improved

formulations of lattice QCD (improved actions). The USQCD Collaboration, which consists of nearly all

the lattice gauge theorists in the United States, is making use of the three formulations we consider to be

the most promising: the improved staggered (Asqtad) action, the domain wall fermion (DWF) action, and

the Wilson-Clover action. Each of these actions has important strengths for addressing different physics

questions: The Asqtad action is computationally efficient, and is enabling precise tests of the Standard

Model; the DWF action possesses nearly exact chiral symmetry for finite lattice spacing, eliminating

many problems associated with operator mixing; and the anisotropic Wilson-Clover action enables

correlation functions to be examined at short distances to extract excited states.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

C, C++ MPI POSIX

compliant I/O

system calls and

large file (>2

GB) support

Standard UNIX

like system calls

(current QK kernel

functions appear

sufficient)

Math

Libraries:

Library Function Functionality

None

Algorithms: The generation of gauge configurations will be carried out with the recently developed

Rational Hybrid Monte Carlo (RHMC) algorithm. This algorithm provides a major

improvement over older ones. Indeed, our proposed work could not be accomplished

without it. The single most computationally intensive step in our calculations is the

inversion of large sparse matrices, which is performed using the conjugate gradient

algorithm.

Scaling: Configuration generation is computationally intensive, but the memory, I/O, and storage

requirements are modest. The code is compact and relatively straightforward to optimize.

Jobs are run in a small number of streams and can be handled by a few people. By

contrast, the calculations of physical quantities from the configurations typically require

many fewer floating-point operations, but have significantly greater I/O and storage

needs than configuration generation.

ORNL Leadership Computing Facility Application Requirements and Strategy OLCF

Appendix D. Survey of Applications 123

Nuclear Physics: MFDn

Many Fermion Dynamics – nuclear

https://hpcrd.lbl.gov/scidac09/talks/Vary_SciDAC_2009.pdf

MFDn is a state-of-the-art configuration interaction nuclear shell model application, capable of

calculating the energy spectrum, wavefunctions and observables for light nuclei, using two- and three-

body interactions. One major challenge for nuclear science is to provide a consistent theoretical

framework that accurately describes all nuclei, and can be used predictively. Toward this aim, MFDn

allows for ab initio investigations with two-body and three-body interactions derived from effective field

theory within the microscopic no-core shell model approach. These interactions provide a long sought

after bridge between low-energy nuclear physics and quantum chromodynamics (QCD), the fundamental

theory describing the strong interaction.

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

Fortran90 MPI, OpenMP

(optional)

MPI-IO

Math

Libraries:

Library Function Functionality

None

Algorithms: MFDn solves the nuclear many-body problem as a large-sparse matrix eigenvalue

problem. It generates the governing Hamiltonian matrix and uses the Lanczos algorithm

(iterative Krylov solver) to solve for the lowest eigenvalues of interest.

Scaling: Problem size scales by number of particles and size of model space allowed. Features

intense integer arithmetic operations. Currently scales to 200K+ cores on the hex-core

upgraded Jaguar XT5.

Other: Used to investigate the nuclear structure of carbon-14 to explain its anomalously long

half-life useful in carbon-dating.

124 Appendix D. Survey of Applications

Nuclear Physics: NUCCOR

Nuclear Coupled-Cluster Oak Ridge

D. J. Dean and M. Hjorth-Jensen, “Coupled-Cluster Approach to Nuclear Physics,” Physical

Review C 69, 054320 (2004).

Nuclear scientists strive to understand the properties of atomic nuclei from the interactions of protons and

neutrons, or ultimately, from quarks and gluons. Indeed, nuclei are the only link between QCD and the

atomic and macroscopic world. For medium mass nuclei, the coupled-cluster approach is the only

microscopic method presently available. NUCCOR iteratively solves for the one- and two-body

amplitudes of the coupled, non-linear algebraic CCSD (coupled-cluster with single and double

excitations) equations that arise from application of an exponentiated cluster excitation operator onto a

reference many-body wave-function (usually taken as a single Slater determinant).

System

Software:

Programming

languages:

Communication

libraries:

I/O libraries

and functions:

Operating system

functions:

F90 MPI MPI-IO None

Math

Libraries:

Library Function Functionality

BLAS Matrix-matrix; matrix-vector

 BLAS Tensor-tensor multiplies of (size 1002 × 1002

and 10004 (100 particles and 1000 basis states))

Algorithms: Solves a nonlinear set of coupled algebraic equations. A complete calculation for a given

nucleus proceeds in the following manner. Generate the effective two-body interaction

for the problem. This is done by renormalization of bare nucleon-nucleon potentials via

sums of ladder diagrams (the G-matrix approach), a Hamiltonian similarity

transformation and projection to the model-space, and a renormalization group (RG)

method that obtains the low-momentum part of the interaction. The RG approach, also

known as Vlowk, will be utilized to investigate three-body effects. Second, the two-body

interactions obtained from the first step are calculated in a ―spin-coupled‖ representation

and must be decoupled. Once matrix elements have been decoupled and MPI-I/O written

to a file, the resulting 4-index array of matrix elements is block-distributed among the

processors with a MPI-I/O read. This is an extremely efficient (and crucial) part of the

overall algorithm. The final step involves calculation of the NUCCOR amplitudes. The

present code uniformly distributes the interaction matrix elements across processors on

two of the four indices. Each processor maintains a complete copy of the amplitudes.

Thus each processor performs a partial sum of the equations to obtain new amplitudes

with an allreduce to obtain the new copies of the amplitudes for the next iteration step.

Scaling: The computational requirements scale as No
2
Nu

4
, where No and Nu are the number of

occupied and unoccupied single-particle orbitals, respectively.

Other: NUCCOR is the workhorse for the developing time-dependent coupled cluster

application that will provide the first ever microscopic calculations of nuclear fission.

2 Appendix D. Survey of Applications

