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EXECUTIVE SUMMARY 

In 2009 the Oak Ridge Leadership Computing Facility (OLCF), a U.S. Department of Energy (DOE) 

facility at the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences 

(NCCS), elicited petascale computational science requirements from leading computational scientists in 

the international science community.  This effort targeted science teams whose projects received large 

computer allocation awards on OLCF systems. 

A clear finding of this process was that in order to reach their science goals over the next several 

years, multiple projects will require computational resources in excess of an order of magnitude more 

powerful than those currently available.  Additionally, for the longer term, next-generation science will 

require computing platforms of exascale capability in order to reach DOE science objectives over the next 

decade. 

It is generally recognized that achieving exascale in the proposed time frame will require disruptive 

changes in computer hardware and software.  Processor hardware will become necessarily heterogeneous 

and will include accelerator technologies.  Software must undergo the concomitant changes needed to 

extract the available performance from this heterogeneous hardware.  This disruption portends to be 

substantial, not unlike the change to the message passing paradigm in the computational science 

community over 20 years ago. 

Since technological disruptions take time to assimilate, we must aggressively embark on this course 

of change now, to insure that science applications and their underlying programming models are mature 

and ready when exascale computing arrives.  This includes initiation of application readiness efforts to 

adapt existing codes to heterogeneous architectures, support of relevant software tools, and procurement 

of next-generation hardware testbeds for porting and testing codes. 

The 2009 OLCF requirements process identified numerous actions necessary to meet this challenge: 

 Hardware capabilities must be advanced on multiple fronts, including peak flops, node memory 

capacity, interconnect latency, interconnect bandwidth, and memory bandwidth.   

 Effective parallel programming interfaces must be developed to exploit the power of emerging 

hardware.   

 Science application teams must now begin to adapt and reformulate application codes to the new 

hardware and software, typified by hierarchical and disparate layers of compute, memory and 

concurrency.   
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 Algorithm research must be realigned to exploit this hierarchy.   

 When possible, mathematical libraries must be used to encapsulate the required operations in an 

efficient and useful way.   

 Software tools must be developed to make the new hardware more usable.   

 Science application software must be improved to cope with the increasing complexity of 

computing systems.   

 Data management efforts must be readied for the larger quantities of data generated by larger, 

more accurate science models. 

Requirements elicitation, analysis, validation, and management comprise a difficult and inexact 

process, particularly in periods of technological change.  Nonetheless, the OLCF requirements modeling 

process is becoming increasingly quantitative and actionable, as the process becomes more developed and 

mature, and the process this year has identified clear and concrete steps to be taken. 

This report discloses (1) the fundamental science case driving the need for the next generation of 

computer hardware, (2) application usage trends that illustrate the science need, (3) application 

performance characteristics that drive the need for increased hardware capabilities, (4) resource and 

process requirements that make the development and deployment of science applications on next-

generation hardware successful, and (5) summary recommendations for the required next steps within the 

computer and computational science communities. 
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1.  INTRODUCTION 

1.1 Context 

The Advanced Scientific Computing Research (ASCR) program of the U.S. Department of Energy 

(DOE) has identified key computational science goals vital to addressing fundamental national and global 

concerns in domains such as energy assurance, environment and national security.  This report details the 

conclusions of the Oak Ridge Leadership Computing Facility (OLCF) requirements elicitation process 

employed to identify specific resource 

requirements for attaining these goals. 

Reaching next-generation science 

objectives requires computational 

resources several orders of magnitude 

beyond those currently available.  A 

commonly referenced milestone is an 

exaflop system (capable of 10
18

 floating 

point operations per second), which by 

current trends will likely be built within 

the 2015-2020 timeframe.  To reach 

exascale computing and beyond, major 

disruptive changes will be required in 

parallel computing hardware and 

software.  Some of these changes are already apparent, but adapting to these developments will take 

conscious planning and purposeful action.  This report identifies the supporting elements required for 

transformational science progress in the 3-5 year timeframe while concurrently preparing for leadership 

computational science at the exascale level. 

1.2 Hardware Drivers 

Historically, in the high performance computing (HPC) arena, technology trends and business factors 

have made the economics of HPC hardware heavily dependent on broader trends in the commodity 

hardware market.  Planning for next-generation computational science must take into account the external 

environmental factor of availability of the required computing resources.   

Fig. 1.1 Predicted performance growth of  

leadership computing platforms 
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In recent years limitations in clock speed, power consumption and instruction level parallelism have 

led to the prevalence of multicore processors in the marketplace, in which a conventional processor core 

is replicated on a single die.  More recent developments however are trending toward processors that are 

many-core and heterogeneous, in which one or more conventional cores are augmented with multiple 

streaming processor cores.  This new direction in processor design is likely to radically impact parallel 

scientific computing. ―Recent activities of major chip manufacturers, such as Intel, AMD, IBM and 

NVIDIA, make it more evident than ever that future designs of microprocessors and large HPC systems 

will be heterogeneous in nature‖ [Agullo et al. 2009]. 

The typical processor of the future will likely be composed of multiple processor cores of a more 

conventional nature supplemented by an attached set of multiple SIMD-like stream processing units used 

to offload local compute-intensive work.  Programming these processors to exploit potential performance 

gains will require significant new software approaches.  These changes will likely substantially affect 

parallel scientific applications.  It has been noted that ―many familiar and widely used algorithms and 

libraries will become obsolete and will have to be rethought and rewritten in order to take advantage of 

the new architectures‖ [Tomov et al. 2008, p. 1].  As a result, ―many of the tools, software, algorithms, 

and libraries that we have developed for today’s computers will have to be revised or replaced to 

effectively operate at extreme scales‖ [ASCR 2009, p. 163]. 

In the past there have been several occurrences of disruptive changes in supercomputing hardware 

and concomitant changes in the programming interfaces, such as the change to vector processors and the 

rise of distributed memory computing with message passing (Fig 1.2).  In each case, a period of time was 

required for usage of the new programming techniques to mature within the HPC community.  This report 

describes some of the steps required to prepare for the next wave of change in hardware and programming 

environments and to decrease the period of time between formulation and maturation of new and effective 

programming techniques needed to exploit the new hardware. 

 

Fig. 1.2.  Historic shifts in HPC platform architectures 
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1.3 Requirements Modeling 

Requirements modeling is a formal process used to determine a path from the current state to a 

desired future state [Kothe and Kendall 2007].  Modeling the requirements for OLCF leadership 

computing involves the entire spectrum of elements involved in delivering breakthrough computational 

science, including science drivers and objectives, science models, computational algorithms, 

parallelization models, compilers, libraries and system software, computer hardware, software 

development processes, verification and validation procedures, application workflow, and data 

management.  The requirements for these individual elements are interrelated because of the competing 

factors of science objectives and environmental limitations.  For example, a science model requirement 

may dictate use of a certain algorithm, but available computer hardware may put limits on whether this 

algorithm can perform efficiently at scale. 

For requirements to be useful, they must be actionable and as quantitative as possible.  The OLCF 

requirements process is becoming increasingly quantitative as this process becomes better developed and 

more mature.  The inherent nature of the leadership-scale computational science discovery process, 

however, makes it challenging at times to effectively manage requirements and limit risks [Bailey et al. 

2007]. For example, disruptions in the hardware market can indirectly affect which software tools and 

development practices are needed.  Unforeseen innovations in models or algorithms can eliminate some 

requirements or create new ones.  Also, scientific discovery itself, which is not entirely predictable, can 

dynamically influence the set of requirements for accomplishing the next step in the scientific method.  In 

addition, human factors such as HPC programmer productivity with various tools are not always well 

understood and sometimes can be determined only by experience.  Despite these concerns, the OLCF 

requirements gathering and modeling process has identified clear needs for the next generation of 

leadership computing. 

The first step of requirements development is data gathering and elicitation.  The 2009 OLCF 

requirements effort utilized data from the following sources: 

 Existing documentation regarding science objectives. 

 Answers to science and application software questions from OLCF and Innovative and Novel 

Computational Impact on Theory and Experiment (INCITE) project proposal applications. 

 A requirements survey to elicit project requirements from OLCF-supported projects (see 

Appendix B). 

 In-depth interviews with science code project leaders and team members. 
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 Review of OLCF Leadership Computing usage logs over recent years to detect usage trends. 

 Performance data generated on current computer hardware from key heavily-used OLCF 

applications. 

 Survey of broader community and market trends. 

 Discussions with computer hardware and software vendors regarding capabilities of next-

generation offerings and related trends. 

These data are then submitted to a requirements development process.  The elements of this process 

include evaluating the data, detecting requirement commonalities across projects, evaluating tradeoffs, 

differentiating desired and required features, comparing findings against past experience and current and 

future resources, validating conclusions to minimize risks, and making recommendations.  The 

requirements resulting from this process must be unambiguous, testable, correct, in scope, modifiable, 

feasible, traceable, written in clear (customer’s) language, acceptable to all clients, and not themselves a 

solution. 

By using these requirements to manage and arbitrate decisions, the OLCF aligns leadership systems 

to the maximum possible extent with the needs and goals of the breakthrough science projects using these 

resources.  This results in improved science quality and user productivity, higher fidelity physical models 

and numerical algorithms, more efficient and higher quality software, and better in-depth data analytics 

and workflow.  The requirements modeling process also ensures that OLCF planning and procurement 

processes are in step with broader DOE and Office of Science goals.  We expect that effective 

requirements development, management, and planning will positively influence the design, procurement, 

deployment, and operation of OLCF systems by measurably improving the quality, quantity and fidelity 

of the output of multiple breakthrough science simulation applications. 

1.4 Organization of Report 

To describe the motivating factors for next-generation computational science, Chapter 2 discusses the 

fundamental science goals driving the demands for leadership computing resources.  Since computational 

science is rooted in application software, it is necessary to discuss the usage and resource requirements of 

leadership science applications.  Thus, Chapter 3 discusses application usage and usage trends on OLCF 

systems, and Chapter 4 presents performance analysis of these codes.  Chapter 5 discusses in detail the 

elements required to perform leadership science in the specified timeframe.  Supplementary materials are 

presented in the appendices.  
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2.  SCIENCE DRIVERS AND IMPACT 

2.1 Science for the Nation 

High performance computing plays an increasingly strategic role in addressing urgent challenges in 

national and homeland security, energy security, economic competitiveness, health care, and 

environmental protection.  The primary mission of the DOE ASCR program is to address these needs by 

discovering, developing, and deploying the computational and networking tools that enable researchers in 

the scientific disciplines to analyze, model, simulate, and predict complex phenomena important to the 

Department of Energy.  This includes 

 Energy Security – Computer simulation helps ensure America’s energy security by enabling 

researchers to understand combustion, improve fuel cells, develop fusion energy and develop 

other technologies. 

 Nuclear Security – ASCR-supported science contributes insights and research tools the 

National Nuclear Security Agency (NNSA) can use to ensure the safety and reliability of the 

nation’s nuclear deterrent, a part of national strategy to safeguard America’s nuclear security. 

 Scientific Discovery and Innovation – ASCR hosts the most powerful open computing 

systems in the world, key to scientific discovery and economic competitiveness and leading 

to improvements in quality of life through innovation. 

 Environmental Responsibility – Computer simulations help researchers understand 

mechanisms of environmental contamination and develop appropriate remediation 

technologies. 

The Oak Ridge Leadership Computing Facility (OLCF) has made numerous contributions to advance 

these goals, including for example 

 Discovery of new, critical phenomena in the deaths of massive stars and a new mechanism 

explaining the birth of pulsars; 

 Breakthroughs toward understanding how turbulent flames stabilize within combustion 

devices, with implications for the design of gasoline engines, diesel engines and gas turbines; 

 A fundamental new understanding of loss of thermal energy in tokamak fusion reactors, with 

ramifications for the design of the $10 billion ITER fusion device; 
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 Completion of new models of high-temperature superconductivity which bring us closer to 

designs for practical superconducting materials; 

 Execution of the largest simulation ever of the dark matter cloud holding the galaxy together; 

 Performing of one third of the climate simulation work for the most recent IPCC assessment. 

Nonetheless, numerous science areas have identified the need for computational resources several 

orders of magnitude beyond what is currently available.  Specific science goals are discussed below.  

2.2 Science Drivers 

2.2.1 Aerodynamics 
 Accurate simulations of aerodynamics and 

combusting flows are critical to our everyday 

life.  These simulations are integral to the 

design of efficient transportation and power 

generation systems needed to reduce 

greenhouse gasses, reduce cost to businesses 

and individuals, and increase the country’s 

energy independence.  Fluid/structural 

interaction plays a key role in safety ranging 

from building design to medicine to air travel.  

However, there still remains a significant gap 

between actual physics and the computational 

models used to simulate regimes such as highly 

separated diffusing/accelerating flows.  Today, 

phenomena such as turbulence and combustion 

chemistry are approximated in order to make them 

practical on existing computers.  This sets up a 

―chicken and egg‖ situation – simulation software is 

designed for the computers of today, and the next 

generation of simulation software cannot be developed 

DRIVER Need for accurate simulation of 

aerodynamic phenomena. 

STRATEGY Highly resolved simulation of fluid 

behavior using Large Eddy Simulation 

and Direct Numerical Simulation.  This 

will require new software and methods to 

efficiently leverage high degrees of 

parallelism to deliver turnaround times 

useful for design. 

OBJECTIVE Create computing platform on which next 

generation software tools can be 

developed, validated, and applied, 

enabling groundbreaking aerodynamic 

advances.  

IMPACT Reduced fuel consumption and reduction 

in greenhouse gases throughout the 

economy.  Improved flight safety.  

Enabler for a broad range of products and 

technologies that depend on fluid flows 

for efficient cooling, combustion, and 

robustness. 

Geared Turbo Fan Nacelle System 

 

Image courtesy: Pratt and Whitney 
 

 

DRIVER Core-collapse supernovae are among 

the universe’s most prodigious 

explosions and produce most of the 



ORNL Leadership Computing Facility Application Requirements and Strategy         OLCF 

 

2.  Science Drivers and Impact 7 

 

and validated without next generation computing. 

OBJECTIVES FOR 20 PETAFLOPS:  Develop and apply simulation software for highly accurate 

simulation of complex flows across widely varying length and time scales, delivering results in a 

sufficiently timely manner to be used in product development. 

OBJECTIVES FOR EXASCALE:  Leverage petascale simulation tools in multipoint and multiphysics 

simulations.  

2.2.2 Astrophysics  
 Astrophysics research addresses physical 

phenomena from the smallest subatomic 

particles to the largest galaxies, such as the 

formation of elements, supernova behaviors, 

black holes, gravitational radiation, star 

formation and dark matter.  Supernova 

occurrences are the most spectacular events in the 

universe and are fundamental to element formation.  

High-end scientific simulation can provide answers 

regarding how supernovae occur, what happens when 

black holes merge and what is the nature of dark matter.  

OBJECTIVES FOR 20 PETAFLOPS:  Increase 

physical fidelity of nuclear burning module to 

effectively confront observations of SNe remnants and 

answer questions about galactic chemical evolution. 

OBJECTIVES FOR EXASCALE:  Determine the 

precise manner in which supernovae explode by incorporating quantum kinetics on macroscopic scales 

with realistic nuclear physics components to predict isotopic output.  

DRIVER Core-collapse supernovae are among the 

universe’s most prodigious explosions 

and produce most of the elements heavier 

than iron. 

STRATEGY Understand the death of massive stars and 

their contribution to galactic chemical 

evolution. 

OBJECTIVE Determination of the core-collapse 

supernova mechanism and the production 

of observational templates for a raft of 

observables: neutrino signatures, 

nucleosynthesis, gravitational waves, etc. 

IMPACT Predictive simulations of core-collapse  

supernovae will enable our fundamental  

understanding of the constituents of our 

world.  

Fluid velocity streamlines during a  

Type II supernova collapse  

 

Visualization by D. Pugmire, ORNL;  

Simulation by E. Endeve,C. Cardall,  

R. Budiardja, ORNL and UT–Knoxville,  

and A. Mezzacappa, ORNL. 
 

 

DRIVER Core-collapse supernovae are among 

the universe’s most prodigious 

explosions and produce most of the 

elements heavier than iron. 

STRATEG

Y 

Understand the death of massive stars 

and their contribution to galactic 

chemical evolution. 

OBJECTIV

E 

Determination of the core-collapse 

supernova mechanism and the 

production of observational templates 

for a raft of observables: neutrino 

signatures, nucleosynthesis, 

gravitational waves, etc. 

IMPACT Predictive simulations of core-

collapse  

supernovae will enable our 

fundamental  

understanding of the constituents of 

our world.  

 FLUID VELOCITY STREAMLINES 

DURING A TYPE II SUPERNOVA 
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2.2.3 Biology 
Microbial life affects nearly every physical 

and geochemical process on earth.  HPC in 

biology brings the opportunity for design-

driven research in areas such as biofuels, 

environmental remediation, protein research, 

climate change research and pharmaceuticals. 

OBJECTIVES FOR 20 PETAFLOPS:  

Simulate microbial/biomass interface and 

dynamics of enzyme action on biomass.  With 

multiscale development, simulate microbial 

enzymes acting on biomass.  Incorporate more 

biomass    component   into     model   (lignin,    

  hemicellulose, pectins, etc.). 

OBJECTIVES FOR EXASCALE:  

Realistically simulate the properties of 

lignocellulose, requiring 40X increase 

in number of atoms and 10X increase in 

time scale. 

 

 

2.2.4 Chemistry 
The use of electricity generated from intermittent, renewable sources requires efficient storage of this 

electrical energy.  The performance of current electrical energy storage technologies falls far short of 

requirements for effective use.  Basic research is critical to understand the fundamental electrochemical 

processes governing these devices.  

DRIVER Predict and simulate the behavior of 

complex microbial systems.  Study 

mechanisms for converting cellulose to 

ethanol. 

STRATEGY Understand biomass cellulose 

recalcitrance and cellulose/enzyme 

interactions. 

OBJECTIVE Remove economic bottleneck in 

cellulosic ethanol production 

(recalcitrance to hydrolysis of biomass) 

by building realistic molecular simulation 

models encompassing both short and long 

length scales that will guide conceptual 

research in bioenergy. 

IMPACT Produce alternative to fossil fuels with 

drastically reduced environmental side 

effects. 

An atomistic model of cellulose (blue) 

surrounded by lignin molecules (green) 

comprising a total of 3.3 million atoms.  
 

Image courtesy: Jeremy Smith and  

Jamison Daniel, ORNL. 
 

DRIVER Core-collapse supernovae are among 

the universe’s most prodigious 

explosions and produce most of the 

elements heavier than iron. 

STRATEG

Y 

Understand the death of massive stars 

and their contribution to galactic 

chemical evolution. 

OBJECTIV

E 

Determination of the core-collapse 

supernova mechanism and the 

production of observational templates 

for a raft of observables: neutrino 

signatures, nucleosynthesis, 

gravitational waves, etc. 

IMPACT Predictive simulations of core-

collapse  

supernovae will enable our 

fundamental  
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OBJECTIVES FOR 20 PETAFLOPS:  Larger length-scale required for accurate quantum mechanical 

description of electrochemical processes at interfaces; 

longer time-scale required to understand ion diffusion 

during charge-discharge cycles. 

OBJECTIVES FOR EXASCALE:  Solve larger 

systems to higher accuracy. 

 

 

 

2.2.5 Climate Modeling 
 

Concerns regarding global warming and 

anthropogenic climate change drive the need to 

improve the scientific basis for assessing the 

potential ecological, economic and social 

impacts of climate change.  More accurate 

climate models can simulate different scenarios 

of possible future climate change to help policy 

makers in their planning processes. 

 

DRIVER Develop enhanced energy storage in 

nanostructured system. 

STRATEGY Study charge storage and transfer in nano-

structured capacitors. 

OBJECTIVE Apply density functional theory to the 

workings of carbon tube supercapacitors 

—nanostructures that store two to three 

orders of magnitude more energy than 

conventional capacitors—and provide a 

nanoscale look at the physical/chemical 

processes that limit storage capacity, 

useful lifetime, and peak power output. 

IMPACT Revolutionize battery and other energy 

storage technologies. 

DRIVER Accurately simulate scenarios of future 

climate change. 

STRATEGY Develop better models and higher 

resolution simulation capabilities. 

OBJECTIVE Improve the accuracy and fidelity of 

climate change predictions.  Configure 

atmospheric, ocean, terrestrial, and 

cryospheric component models to answer 

policy and planning relevant questions 

about specific climate change adaptation 

and mitigation scenarios. 

IMPACT Mitigate deleterious effects of global 

climate change. 

H3O+ undergoing chemical 

transformations at the air-water 

interface. The H3O+ is depicted in the 

center using large red (oxygen) and 

three white (hydrogen) spheres. Blue 

bonds denote nearest hydrogen-bonded 

neighbors which are involved in 

interfacial chemistry. 

Image courtesy: Chris Mundy, PNNL. 

DRIVER Core-collapse supernovae are among 

the universe’s most prodigious 

explosions and produce most of the 

elements heavier than iron. 

STRATEG

Y 

Understand the death of massive stars 

and their contribution to galactic 

chemical evolution. 

OBJECTIV

E 

Determination of the core-collapse 

supernova mechanism and the 

production of observational templates 

for a raft of observables: neutrino 

signatures, nucleosynthesis, 

gravitational waves, etc. 

IMPACT Predictive simulations of core-

collapse  

supernovae will enable our 

fundamental  

understanding of the constituents of 

our world. 

FLUID VELOCITY STREAMLINES 

DURING A TYPE II SUPERNOVA 

COLLAPSE  

Visualization by D. Pugmire, ORNL, and 

simulation by E. Endeve, C. Cardall, R. 

Budiardja, ORNL and UT–Knoxville, and 

A. Mezzacappa, ORNL. 
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OBJECTIVES FOR 20 PETAFLOPS:  Create higher fidelity simulations with improved predictive 

capability on decadal time scales using high-resolution Earth System Model configurations.  Realistically 

represent features like precipitation patterns/statistics and tropical storms. 

OBJECTIVES FOR EXASCALE: Develop higher resolution models to support regional climate 

modeling.  Improve modeling of physical, chemical and biological processes. Simulate the carbon cycle.  

Explore parameters giving rise to uncertainties. 

 

 

 

A global snapshot of forecasted cloud cover from the GEOS-5 model at 7-km global resolution, 

highlighting the existence of numerous cloud types represented at these resolutions, including 

hurricane Helene in the tropical Atlantic Ocean, convective clusters throughout the tropical 

Pacific and Indian oceans, and the marine stratocumulus layer off the west coasts of North and 

South America, along with the characteristic structures of mid-latitude cyclones forming along 

fronts in both the Northern and Southern hemispheres.  

Image courtesy: Max J. Suarez, NASA. 
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2.2.6 Combustion 
Combustion currently supplies 85% of 

America’s energy needs.  Environmental, 

economic and national security concerns are 

driving a shift toward alternative fuels for 

combustion.  These new fuels have different 

physical and chemical properties leading to 

different combustion processes.  Advanced 

simulation will determine effective designs for 

combustion systems, to make cleaner, more 

efficient use of combustible fuels. 

OBJECTIVES FOR 20 PETAFLOPS: 

Attempt 50–100% increase in Reynolds number 

(from 10K to 15–20K) with existing chemical 

complexity (single-stage ignition ethylene with 22 species) at ambient pressure; explore fully developed 

turbulence beyond theoretically predicted ―mixing transition‖.  Attempt more biofuel-like chemistry while 

keeping complexity constant, e.g. going to dimethyl-ether.  Alternatively stay at high pressure (50 atm) 

with more complex chemistry (iso-butanol: practical biofuel), namely 60–80 species. 

OBJECTIVES FOR EXASCALE: Develop 

fundamental understanding of ―turbulence-chemistry‖ 

interactions of non-petroleum based biofuels at high 

pressure engine conditions.  Accurately model lifted 

flame stabilization in ignitive flows, low-temperature 

ignition kinetics coupling with transport, 

extinction/reignition in dilute heated mixtures, emissions 

and soot, controlling inhomogeneous autoignition for 

HCCI combustion by tailoring mixing and ignition 

kinetics, increased turbulent Reynolds numbers. 

DRIVER Optimize the design of lean, premixed 

turbine combustors.  Simulate advanced 

engine concepts under different operating 

conditions.  Evaluate combustion 

behavior of new biofuels.  Improve 

thermal efficiency by potentially 25%-

50%. 

STRATEGY Use direct numerical simulation for 

fundamental studies of the microphysics 

of turbulent reacting flows. 

OBJECTIVE Increase clarity of modeling of mixing 

transition.  Model biofuel surrogates to 

provide insight into next generation 

engines.  Model lifted flame stabilization, 

extinction and reignition, premixed flame 

structure. 

IMPACT Clean, efficient burning processes to 

supply energy needs. 

Simultaneous volume rendering of a lifted ethylene/air slot jet 

flame, where the lifted flame is represented by hydroxyl 

radical showing the flame stabilization point. The particles are 

colored by temperature: cold (blue), hot (red). 

 

Image courtesy: Jackie Chen, SNL, and Kwan-Liu Ma, UC Davis. 
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2.2.7 Fusion 
Fusion energy offers the potential for a 

source of clean, virtually unlimited power.  

Successful fusion energy depends on the ability 

to heat and electromagnetically confine the 

reactive plasma within the fusion reactor for a 

sufficient period of time.  Advanced 

computational simulation of this plasma is 

essential to designing a working fusion reactor.  

Currently the primary focus is on the ITER 

reactor, scheduled for deployment in 2018. 

OBJECTIVES FOR 20 PETAFLOPS: 

Scaling to realistic Reynolds numbers needed 

to address burning plasmas.  Include multi-

scale integrated electromagnetic 

turbulence in the whole-volume 

ITER plasma in realistic diverted 

geometry.  Model plasma edge and 

core turbulence. 

 

 

 

OBJECTIVES FOR 

EXASCALE:  

Perform integrated modeling of 

the entire discharge cycle of 

magnetically confined fusion plasmas.  Increase spatial resolution by an order of magnitude.  Model 

longer energy confinement time scales.  Develop new robust validated numerical algorithms to support 

these calculations. 

DRIVER Effectively model and control the flow of 

plasma and energy transport in a fusion 

reactor. 

STRATEGY Understand ―hot spots‖ near antenna 

surface, ―parasitic‖ draining of heat to the 

plasma surface in small reactors. 

OBJECTIVE Use first principle simulations of the 

gyrokinetic equations, to study cascades 

and propagation in Collisionless Trapped 

Electron Mode (CTEM) turbulence, as 

well as to study the electron temperature 

and Ion temperature gradient (ITG/ETG) 

drift turbulence for the ITER reactor.  

Include the full spectrum of toroidal 

harmonics for specific antenna 

geometries.  Study propagation and 

absorption of lower hybrid waves. 

IMPACT Clean, nearly limitless energy supply. 

The radio frequency antenna (red) launches three-

dimensional wave fields into the ITER plasma. The waves 

heat deuterium and tritium fuel to fusion temperatures 

about ten times hotter than the surface of the Sun.  

Image courtesy: Fred Jaeger and  

Sean Ahern/U.S. ITER Project Office. 
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2.2.8 Materials Science 
Materials science is an interdisciplinary 

field that incorporates chemistry, physics, and 

engineering to provide a deeper understanding 

of existing materials and to allow for the design 

of new materials with predetermined properties.  

Research into the nature of materials promises 

to revolutionize many areas of modern life, 

from power generation and transmission to 

transportation to the production of faster, 

smaller, more versatile computers and storage 

devices.  High performance supercomputing is 

strategic to understanding the phenomenon of 

high temperature superconductivity, with 

potential application to energy transmission and 

other areas. 

OBJECTIVES FOR 20 PETAFLOPS: Model magnetic/superconducting phase diagrams including 

effects of disorder.  Model the effect of impurity configurations on pairing and the high-T 

superconducting gap.  Model the high-T superconducting transition temperature materials dependence in 

cuprates.  

OBJECTIVES FOR EXASCALE: Increase 

accuracy and fidelity of superconductivity 

simulations.   

DRIVER Design high temperature superconductors 

for improved energy transmission and 

oxide electronics. 

STRATEGY Hone in on the theory for high 

temperature superconductors.  Apply 

Humbbard model to understand role of 

inhomogeneities. 

OBJECTIVE Understand the quantitative differences in 

the transition temperatures of high 

temperature superconductors.  Develop a 

more complete understanding of the 

pairing mechanism in cuprates, including 

the role of chemical composition, 

disorder, and nano-scale inhomogeneities.  

Develop a more complete understanding 

of the pairing mechanism in cuprates, 

including the role of chemical 

composition, disorder, and nano-scale 

inhomogeneities. 

IMPACT Nanoscience and nanotechnology 

capabilities to increase US 

competitiveness and industrial leadership. 

Molecular dynamics simulation of 

confinement and dispersion of small 

molecules within carbon nanostructures, 

mimicking the dynamics of electrolytes in 

porous carbon materials. 

Visualization by the SciDAC code VisIt. 

Simulation by Dr. Vincent Meunier, ORNL; 

and visualization by Jeremy Meredith and 

Sean Ahern, ORNL. 
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2.2.9 Nuclear Energy 
Over the last several years, the energy 

security of the United States has risen in 

importance both politically and economically.  

Our nation needs to increase energy security, 

reduce dependence on unreliable sources of 

energy, obtain energy at affordable prices, and 

insure that the environment is not impacted.  

Improving scientific understanding of the 

behaviors of nuclear fuels, reactors, separation 

processes and long-term waste management 

sites will increase the viability of nuclear energy strategies for addressing these concerns. 

OBJECTIVES FOR 20 PETAFLOPS: Predict behavior of existing and novel nuclear fuels and reactors 

in transient and nominal operation and evaluate predictability of software through uncertainty 

quantification and sensitivity analysis.  Model full-core reactor neutronics, neutronics/hydraulics 

coupling, accident scenarios, fast reactor transients.  Increase fidelity of solutions by replacing existing 

homogenization techniques with direct techniques and solving for time-dependent multiphysics. 

OBJECTIVES FOR EXASCALE: Develop integrated performance and safety codes with improved 

uncertainty quantification 

and bridging of time and 

length scales.  Implement 

next-generation multi-

physics multiscale models.  

Perform accurate full 

reactor core calculations 

with 40,000 fuel pins and 

100 axial regions.  

Perform ultra-resolution 

simulations for 

convergence verification. 

 

DRIVER Effectively model nuclear reactor 

behavior as a part of national energy 

security strategy. 

STRATEGY Predictive simulation for reactor core and 

facility shielding. 

OBJECTIVE Implement mathematically consistent 

algorithms for multiscale modeling of 

radiation transport in the core of the 

nuclear reactor. 

IMPACT Better, safer reactor design with increased 

availability of low-cost energy. 

Two pictures (left and center) of Zero Power Reactor Experiment 

6/6A geometry and uranium-235 plate power distribution (with 

separated matrix halves). The gray indicates the matrix tube and 

drawer fronts that are loaded into each tube position. The solid 

green squares are 2-inch depleted uranium metal blocks directly 

loaded into the main core and acting as a neutron blanket. The plot 

at the right shows the enriched uranium plate power with the 

matrix halves separated. 

Image courtesy: Dinesh Kaushik, ANL. 
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2.2.10 Nuclear Physics 
A detailed understanding of the atomic 

nucleus is both fundamentally important and of 

great practical significance.  Not only important 

to explaining the birth of the universe and 

astrophysical phenomena, understanding nuclei 

is crucial in energy generation as well as in 

industrial and medical applications. Nuclear 

physics focuses on predicting and explaining 

rich classes of phenomena that occur in nuclei. 

The theoretical goal of increased predictive 

power for nuclear processes that occur in nature 

or in nuclear reactors, but cannot be measured 

in the laboratory with sufficient precision, 

drives the field to achieve detailed simulations 

using extreme-scale computers and cutting-edge algorithms. 

OBJECTIVES FOR 20 PETAFLOPS: High precision ab initio calculations for light ion reactions. 

OBJECTIVES FOR EXASCALE: Nuclear fission calculations using ab initio techniques. 

 2.2.11 Thermoelectric Materials Science 
Waste heat is one of our most abundant 

sources of alternative energy.  Thermoelectric 

energy conversion offers the opportunity of 

converting waste heat into useful electricity to 

achieve improved energy efficiency.  HPC in 

thermoelectric materials brings the opportunity 

for design-driven research in areas such as 

atomic-level materials understanding and 

optimization. 

OBJECTIVES FOR 20 PETAFLOPS: The 

density functional theory (DFT) calculations 

employ a massive supercell containing ~ 2000 

atoms which can accommodate the composite system with the size of the fully enclosed nanoprecipitate 

reaching those observed in actual specimens.  

DRIVER Achieve a consistent theoretical 

formulation to accurately describe and 

predict nuclei and their reactions. 

STRATEGY Develop a predictive microscopic nuclear 

theory grounded in the fundamental 

interactions between protons and 

neutrons, including higher-body forces. 

OBJECTIVE Use ab initio techniques to solve the 

nuclear many-body problem using QCD 

(quantum chromodynamics) derived 2-, 3, 

and higher-body interactions and density 

functional theory for studying light, 

medium, and heavy mass nuclei. 

IMPACT Fundamental understanding of the nuclear 

force and predictive capability for exotic 

nuclei unable to be produced in a 

laboratory to drive future experimental 

facilities/programs and nuclear energy 

programs. 

DRIVER Improve vehicle fuel efficiency. 

STRATEGY Understand and predict atomic 

arrangements and growth mechanisms of 

nano-structured bulk thermoelectric 

materials, which show significant promise 

to achieve higher efficiency. 

OBJECTIVE Establish unambiguous atomically 

resolved structural assignment for the 

nanocomposite and identify the 

mechanisms for the nucleation and atomic 

arrangement of the nanoprecipitates, 

which ultimately determines the 

thermoelectric properties of nano-

structured materials. 

IMPACT Convert vehicle exhaust heat into 

electricity in an effort to reduce fossil fuel 

consumption. 
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OBJECTIVES FOR EXASCALE: Realistically simulate the properties of real materials, requiring 40X 

increase in number of atoms and 10X increase in time scale.   

2.2.12 Turbomachinery 
Aviation propulsion and power generation 

depend on rotating turbomachinery, e.g. jet 

engines and gas turbines.  Modern day designs 

are developed using CFD analyses that can be 

run on conventional gigaflop clusters.  As we 

continue to push the state of the art to improve 

efficiency, the problem sizes (grid density and 

choice of computational domain) are growing 

and the complexity of the physical models are 

increasing.  These twin effects drive us towards 

petaflop and beyond computations in support of 

future designs. 

 

OBJECTIVES FOR 20 PETAFLOPS: Enable the use of CFD on full components, e.g. CFD of the 

entire high pressure compressor, using basic turbulence models. 

OBJECTIVES FOR EXASCALE: Enable the use of CFD on a full component using 1st principle 

turbulence models (DNS or LES); enable full engine simulations. 

 

  

DRIVER Design jet engines, gas turbines, and 

steam turbines with increased efficiency 

(less fuel burn) and increased durability. 

STRATEGY Use supercomputers to assess 

fundamental questions that would allow 

the development of new technology used 

to impact future designs. 

OBJECTIVE Some of the fundamental questions that 

need to be answered include (but are not 

limited to): (a) understanding multistage 

interactions in compressors, (b) 

understanding aero-thermal effects in 

high pressure turbines, and (c) 

understanding turbulent physics in low 

pressure turbines. 

IMPACT Turbines for more efficient jet engines 

and electrical generators. 

Simulation of GE 

Turbofan Engine 

Image courtesy: NASA 
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3.  SCIENCE APPLICATION USAGE 

Ongoing assessment of the need for and usability of leadership-class computing resources is crucial to 

its future direction.  This raises the questions: ―What is leadership-class computing?‖ and ―What metrics 

determine need and usability?‖  Leadership-class computing has long been synonymous with capability 

computing described by Graham et al. [Graham et al. 2005].  Capability computing is defined as, ―using 

the maximum computing power to solve a large problem in the shortest amount of time,‖ thus solving ―a 

problem of a size or complexity that no other computer can.‖  This is in contrast with capacity computing 

which uses, ―efficient cost-effective computing power to solve somewhat large problems or many small 

problems.‖  When discussing capability systems, peak flops is often the performance measure of 

computing power, evident in the popularity of the TOP500 list [TOP500].  On the other hand, experience 

in real scientific computing shows that the actual measure of computing power also includes other system 

attributes (e.g. number of CPU-hours deliverable, random access memory, memory bandwidth, 

interconnect bandwidth, etc.).     

  In connection with these definitions, metrics of leadership-class computing include scaling to larger 

numbers of processors to tackle larger problem sizes and complexities and reduce times-to-solution.  

Application scaling is a good indicator of need for leadership-class computing resources.  Obviously there 

is apparent need when applications require a large fraction of the resource for a single calculation.  

Applications scale to larger numbers of processors to utilize more flops and, as is more often the case, to 

distribute the memory load of data-intensive calculations.  Without distinguishing between flops or 

memory as the primary motivation for scaling to higher core counts, we track maximum job sizes, as well 

as utilization by job size of our user community.  We bin this usage data into three job size categories: 

usage of less than 20%, between 20 and 60%, and greater than 60% of the computing resource.  The 

typical scale of a code appropriate for a leadership-class system is utilization of greater than 20% of the 

resource for a single calculation.  Job sizes less than 20% of the resource can typically fit onto smaller, 

capacity systems. 

Time-to-solution is more difficult to map to a leadership computing metric, since the relationship of 

computing resource size to the application’s scaling behavior and science discovery workflow 

characteristics may be complex.  Generally, the assumption is a larger system with a higher peak flop 

count provides a faster time-to-solution.  But, more than peak flops, the sheer quantity of CPU-hours 

available and consumed imply the likelihood of a faster time-to-solution.    A leadership-class computing 

resource typically delivers a higher number of CPU-hours.  Without these hours, science would not be 

accomplished at a rapid pace.  As a broad metric, we can measure science time-to-solution through CPU-
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XT4
7,832 quadcore nodes

31,328 cores

XT5
18,688 dual hex-core nodes

224,256 cores

hour utilization.  Utilization of CPU-hours is also an indicator for usability of the system across the 

breadth of disciplines capable of utilizing the resource.  Since supercomputing is a scientific tool that 

transcends any one discipline, its overall effectiveness is tied with its utility to a multitude of disciplines.        

To better understand the impact of OLCF leadership-class computing resources on computational 

science efforts, we present here usage statistics as an unbiased and quantitative measure of both need and 

usability. We can also make projections based on usage patterns regarding the likelihood and speed of 

adoption of new computing resources inevitable on the path toward exascale computing.   This chapter 

highlights usage trends on the OLCF Jaguar supercomputer, separately for the XT4 and XT5 partitions. 

The Jaguar supercomputer provides the largest fraction of computing time by the OLCF.  It currently 

provides users with an aggregate peak performance of 2.595 petaflops, 362 terabytes of system memory, 

10.7 petabytes of disk space, and 240 gigabytes/second of disk bandwidth.  There are two partitions of 

Jaguar: the XT4 partition contains 7,832 compute nodes with 

quadcore AMD Opteron 1354 (Budapest) processors, totaling 

31,328 processing cores, and the XT5 partition, with 18,688 

compute nodes with dual hex-core AMD Opteron 2435 

(Istanbul) processors, totaling 224,256 processing cores.   

The XT5 partition became available to our larger user 

community in July 2009; for the first half of 2009, during its 

transition-to-operations period, it was only open to select Early 

Science users.  The Early Science period was prior to the hex-

core upgrade of Jaguar. At that time, the XT5 partition had 

18,688 compute nodes with dual quadcore AMD Opteron 2356 

(Barcelona) processors, totaling 149,504 processing cores.  

Early Science utilization statistics provided in this section reflect usage of the XT5 prior to the hex-core 

upgrade.   The Early Science users were composed of high-end users with pertinent science need and with 

applications that typically scaled to greater than 20% (~ 30,000 cores) of the system resource.         

3.1 User Demographics 

The wide reach of high-performance computing across many science domains is a testament to its 

usefulness as a scientific tool and a measure of its usability.  The user population tends to be diverse and 

at various programming proficiency levels which creates a challenge for user support.  The multi-tiered 

and integrated support structure offered by the OLCF as described in Appendix C has been an optimal 

approach for assisting and understanding our user population.  Understanding user needs and the extent 
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that each science domain actively tries to benefit 

from high-performance computing will likely guide 

tools development on emerging platforms.  Though a 

standard set of libraries and software tools benefit 

the user community at large, additional domain-

specific tools for increased user productivity are a 

possibility on more complicated systems.  The goal 

is to ensure high resource usability to support a high 

level of user productivity and science output as 

computing shifts to achieve exascale. 

 

Fig. 3.2. OLCF 2009 total user  

demographics by science category 

The majority of the hours ( > 75%) delivered by the 

OLCF are utilized by INCITE (Innovative and Novel 

Computational Impact on Theory and Experiment) 

projects.   The INCITE program awards sizeable 

allocations (on the order of millions of processor-

hours per project) for large-scale, computationally 

intensive research projects at America's premier 

leadership computing facilities (LCF), established 

and operated by the U.S. Department of Energy 

(DOE) Office of Science.    These INCITE projects address grand challenges in science and engineering, 

such as developing new energy solutions and gaining a better understanding of anthropogenic climate 

change.  Table 3.1 shows the science domains and research areas requesting and utilizing INCITE 

Table 3.1. Research areas and science 

domains by INCITE categorization 

Science Category 
Represented Research 

Areas 

Biology 

Bioinformatics 

Biophysics 

Life Sciences  

Medical Science  

Neuroscience  

Proteomics  

Systems Biology 

Chemistry 
Chemistry  

Physical Chemistry 

Computer Science Computer Science 

Earth Science 
Climate  

Geosciences 

Engineering 

Aerodynamics 

Bioenergy  

Combustion  

Turbulence 

Fusion 
Fusion Energy  

(Plasma Physics) 

Materials 

Materials Science 

Nanoelectronics 

Nanomechanics  

Nanophotonics  

Nanoscience 

Nuclear Energy 
Nuclear Fission  

Nuclear Fuel Cycle 

Physics 

Accelerator Physics 

Astrophysics 

Atomic/Molecular 

Physics Condensed 

Matter Physics 

High Energy Physics  

Lattice Gauge Theory  

Nuclear Physics 

Solar/Space Physics 
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allocations at the OLCF.  Utilization of high-performance computing resources touches every field of 

science and is a valuable tool in scientific discovery.   

The roughly 800 active users on the Jaguar supercomputer utilize approximately 70 different 

applications.  A profile on applications can be found in Appendix D.  Fig. 3.1 shows the distribution of 

users in the complete OLCF user community by their represented science category.  This includes users 

from INCITE and Director’s Discretion projects and internal developers.  The largest number of users is 

from the earth sciences community, which is largely comprised of climate research, accounting for 23% 

of the user population.  The next largest group of users is from Computer Science, which includes a large 

number of internal developers who maintain and test system resources and create new tools and 

optimization strategies.  Mid-size communities utilizing the system include user communities in materials 

science, chemistry, fusion/nuclear energy, and physics.  The smallest numbers of users come from 

engineering and biology.  Although INCITE project principal investigators typically have a high degree 

of HPC proficiency, the users of a project span a wide range of skill levels.  Science users range from 

end-users that run an established application and analyze the output to developers who actively improve 

and scale their applications for frontier science breakthroughs. 

  

 

Fig. 3.3. INCITE 2009 allocations by science category and research area 
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Interestingly, the number of users does not necessarily correlate with usage.  When comparing the 

user distribution of Fig. 3.1 and the INCITE allocations awarded for 2009 by science category in the top 

left pie chart in Fig. 3.2, we see that the largest usage is not from the largest user communities of earth 

science and computer science, but rather from physics.  Further breakdown of the allocations by research 

area in Fig. 3.2 shows that astrophysics, an early adopter of high-performance computing, dominates 

physics usage, accounting for nearly 70% of the allocation.  As early adopters of HPC, astrophysics 

applications are more mature and capable of utilizing larger resources on a single run.  These applications 

typically are computationally intensive, accounting for multiple physics phenomena.  Conversely, the 

lower computing time utilized by the earth sciences with the higher number of users suggests their 

applications require further development, and have yet to achieve maximal scaling for the resource.  

The disparity between the high number of computer science users and very low INCITE allocation is 

due to the high number of internal staff developers falling into the category of computer science.  The 

computing time for internal developers does not fall under the INCITE projects.  The utilization from the 

other science categories of fusion, materials, chemistry, biology, and engineering is consistent with the 

size of their user base.  The wide representation of science domains actively using Jaguar implies a high 

level of usability of the system, despite the varied skills of the user population. 

3.2 Usage Statistics 

3.2.1 Overall Usage 
Allocations and usage of OLCF computing resources have grown steadily over the last few years as 

shown in Fig. 3.3.  This graph shows that user core-hour consumption increases as more core-hours 

become available from year to year.  The CPU-hours requested and used are consistent, showing that the 

computing resources are not wasted.  As computational science continues to grow into an invaluable 

method of scientific investigation across all science domains, demand for larger computing resources and 

more computing time will also increase.   

Fig. 3.4 shows the number of INCITE projects on the OLCF systems between the years 2006 and 

2009.  Although Fig. 3.3 shows dramatic increases in the number of CPU-hours utilized from year to 

year, Fig. 3.4 shows that this is due only to a modest increase in the number of projects, with some 

science categories remaining constant in the number of projects from year to year.  This indicates that 

applications are maturing from year to year and are capable of utilizing more of the available resource, 

and that the science projects are becoming more computationally intensive.  As more applications 

improve their scaling capabilities, the number of CPU-hours available needs to increase.  Additionally, to 
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accommodate new projects from year to year, a substantial increase in available computing time needs to 

be addressed.  This implies the need for larger and/or more leadership-class computing resources. 

 

Fig. 3.4.  Allocated and used INCITE core-hours (CY 2006 - 2010) 

 

 

Fig. 3.5.  Number of INCITE projects by science category (CY 2006 - 2010) 
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3.2.2 Job Size Distribution 
Fig. 3.5 shows the utilization of Jaguar broken down by job size distribution for INCITE project years 

2008 and 2009 on the XT4 partition and for 2009 Early Science projects on the XT5 partition.  Job size  

 

Fig. 3.6. Utilization of Jaguar by job size for  

INCITE projects (CY 2008 - 2009) and Early Science projects 

is defined as the number of cores utilized during any given calculation.  The exact number of cores for 

each job size is shown in Fig. 3.5.  The percentage of utilization for a job distribution range is defined as 

the total number of core-hours utilized in that job size range divided by the total number of core-hours 

used on that particular system over the period of interest. Regardless of the calendar year, system or 

project type, the OLCF utilization has a job distribution load characteristic of a leadership (or capability) 

usage model, namely, skewed heavily toward usage of a large percentage (i.e.  >20%) of the total 

available resource for any given calculation.  Greater than 50% of the utilization by OLCF users requires 

more than 20% of the resource for a single calculation.  Surprisingly, the same job size distribution is seen 

on the XT5 partition as on the XT4, despite having five times as many cores.  The ability of the user 

population to scale their applications quickly for new resources is a promising sign for the adoption of 

new platforms.  Likely, the similarity in architecture and manner in which users access and utilize the 

system resources eased the transition from the XT4 to the XT5. 
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Fig. 3.7. Utilization of Jaguar XT4 by job size for  

2009 INCITE projects by research area 

 

For the 2009 INCITE projects on the XT4 partition, Fig. 3.6 shows an additional break down of the 

current utilization data with job size distributions for each research area.  Research areas are listed along 

the y-axis and ordered by utilization, with the largest usage at the top (climate) and the value in 

parentheses being the number of projects contributing to the statistics.  The majority of research areas are 

utilizing the XT4 resource appropriately for capability computing, with the greater part of their jobs using 

more than 20% of the resource.  Lattice gauge theory, geosciences, accelerator physics, and fusion energy 

are particularly strong HPC research areas, capable of using more than 20% of the machine for more than 

80% of their usage.  Research areas that are below capability utilization include fluid turbulence and 

atomic/molecular physics.  Climate research, though typically using less than 20% of the resource on any 

single run, utilizes a large number of CPU-hours.  Although climate researchers could run single 

simulations on a smaller capacity system, typically one study requires a large aggregate of runs with 

different parameters.  To address time-to-solution, climate research consumes a large number of CPU-

hours only deliverable by leadership-class computing resources, but at a smaller scale.  Fusion energy and 
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lattice gauge theory applications not only utilize a large number of CPU-hours but exhibit leadership-class 

scaling.  Applications in these research areas are potentially good candidates as early adopters of new 

platforms due to the maturity of their codes and application teams.  

The increasing competition for time on leadership-class systems will most likely alter the usage 

distribution.  Applications that scale to exploit the benefits of the size and speed of leadership-class 

resources will take priority over those that simply need more CPU-hours.  The user community will need 

to make an active effort to continue developing their applications.  The importance of application 

development as a crucial component of the scientific investigation cycle will become more evident with 

changes to the computing framework for exascale.   

3.2.3 Petascale Early Science Usage 
The Early Science utilization of the XT5 partition during the transition-to-operations period over the 

first half of 2009 requires special attention.  Select users were given access to the XT5 petascale system 

with 149,504 cores.  The largest resource available to these users previously was the Jaguar XT4 

partition, with 31,328 cores.  Applications scaling to 20% of the XT5 system meant that they were using 

100% of the XT4 partition for similarly-sized jobs.  Thus, it is quite impressive that many applications 

were able to so quickly utilize more than 20% of the resource for a single calculation.  The speed at which 

the user community was able to develop their codes at this tremendous scale is remarkable.   

Fig. 3.7 shows the Early 

Science utilization of the 

XT5 for each science 

category.  All science 

domains except computer 

science are represented, and 

fusion and nuclear energy 

are combined in this figure.  

The largest utilization of the 

resource is from materials 

science at 25%, with 

chemistry (20%) and fusion 

(17%) close behind.  

Physics, biology, engineering, 

and earth sciences utilized 

around 10%.    
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Table 3.2. Early Science projects on Jaguar XT5 

Project 

ID 
Allocation 
(CPU-hours) 

Principal 

Investigator 
Project Description 

AST017 57,000,000 Tony Mezzacappa  A Three-Dimensional Model of SN1987A 

AST018 57,000,000 James Van Meter Frontier Simulations of Black Hole Mergers 

MAT014 57,000,000 Thomas Schulthess Investigations of the Hubbard Model with Disorder 

CMB006 50,000,000 Jacqueline Chen 
Direct Numerical Simulation of Diesel Jet Flame Stabilization at 

High Pressure 

CHP002 32,000,000 David Ceperley 
Quantum Monte Carlo Calculation of the Energetics, 

Thermodynamics and Structure of Water and Ice 

CHM036 30,000,000 Robert Harrison CNP - Chemical Nanoscience at the PetaScale 

FUS026 30,000,000 Zhihong Lin 
Gyrokinetic Particle Simulation of Transport Barrier Dynamics in 

Fusion Plasmas 

NPH009 30,000,000 David J. Dean Ab Initio Structure of Carbon-14 

CLI030 28,500,000 Kate Evans 
Tests of Decadal Predictive Skill Using the Community Climate 

System Model 

BIP008 25,500,000 Jeremy Smith 
Cellulosic Ethanol: A Simulation Model of Lignocellulosic Biomass 

Deconstruction 

NFU003 25,000,000 Dinesh Kaushik Scalable Simuation of Neutron Transport in Fast Reactor Cores 

CLI031 20,000,000 Max J. Suarez 

Explorations of High Impact Weather Events in an Ultra-High 

Resolution Configuration of the NASA GEOS Cubed Sphere Global 

Climate Model 

CLI032 20,000,000 
Venkatramani 

Balaji 

Petascale CHiMES - Coupled High-Resolution Modeling of the 

Earth System 

FUS025 20,000,000 Weixing Wang 
Global Gyrokinetic Turbulence Simulations of National Spherical 

Torus Experiment (NSTX) 

MAT015 15,000,000 Mark Jarrell 
Petascale Simulation of Strongly-Correlated Electron Systems 

Using the Multi-Scale Many-Body Formalism 

TUR005 10,000,000 Pui-kuen Yeung 
Complex Transport Phenomena in Turbulent Flows: Leadership 

Computing at Extreme Scalability on the Cray XT5 

GEO003 9,500,000 Peter Lichtner Modeling Reactive Flows in Porous Media 

NFI001 5,000,000 Thomas Evans 
Denovo, A Scalable HPC Transport Code for Multi-Scale Nuclear 

Energy Applications 

CHM037 4,000,000 
Christopher 

Mundy 

The Free Energy of Transfer of Hydronium from Bulk to Interface: 

A Comprehensive First Principles Study 

FUS024 4,000,000 Jeff Candy 
Steady-State Gyrokinetic Transport Code (SSGKT), an SAP to the 

FACETS project 

NTI010 3,800,000 Lin-Wang Wang 
Charge Patching Method for Electronic Structures and Charge 

Transports of Organic and Organic-Inorganic Mixed Nanostructures 

LGT004 2,500,000 Robert Sugar Lattice QCD 

CPH002 2,000,000 Dario Alfe AQUA 

GEO004 2,000,000 Omar Ghattas 
Understanding the Dynamics of the Earth: High Resolution Mantle 

Convection Simulation on Petascale Computers 

NEL002 2,000,000 Gerhard Klimeck Towards Petascale Simulation of Nanoelectronic Devices 

TUR009 2,000,000 George Vahala Lattice Algorithms for Quantum and Classical Turbulence  
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The Early Science projects on the XT5 are listed in Table 3.2.  Twenty-six projects actively utilized 

the XT5, consuming over 350 million CPU-hours over the course of 6 months.  Comparatively, the 

utilization is two and a half times greater than the entire 2008 INCITE usage, and three-quarters of the 

INCITE allocation.  Fig. 3.8 shows the utilization by each project broken down by job size. The high 

utilization by materials science researchers is due in large part to significant development of the 

application DCA++, which allowed scaling to the full size of the XT5.  Not only was it used for an Early 

Science project, but CDA++ was also the winner of the 2008 ACM Gordon Bell Prize for outstanding 

achievement among high-performance computing applications. 

In Fig. 3.8, projects are listed in order of utilization, with largest users listed at the top and utilization 

in millions of CPU-hours shown to the left of the project IDs.  The largest usage was from material  

 

Fig. 3.9. Utilization of Jaguar XT5 by job size for Early Science projects 
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 science (MAT014), with over 95% of their jobs utilizing greater than 20% of the XT5.  Fourteen out of 

twenty-six projects exhibited clear leadership-class utilization with more than 50% of their usage at 

greater than 20% of the resource.  Twelve projects were below standard capability utilization over all, 

with only four projects unable to scale adequately, exclusively at job sizes less than 20% of the XT5.  It is 

interesting to note that three 

projects (AST017, NFU003, 

NPH009) in astrophysics, 

nuclear fusion, and nuclear 

physics used greater than 60% 

of the resource for roughly 

50% or more of their 

utilization.  Of those three, 

NPH009, the nuclear physics 

project, using the MFDn 

application (more details on 

applications are given in 

Appendix D) to perform ab 

initio calculations of carbon-

14, utilized nearly all of their 

allocation for job sizes 

exceeding ~90K cores.  

3.2.4 Scaling 
 To provide further 

understanding of the data from 

Fig. 3.8, Table 3.3 shows the 

largest core count used by 

various applications from 

INCITE and Early Science 

projects.  Of the 28 

applications listed, 27 use 

more than 20% of the XT5 

and 19 codes use more than 

60% for a single calculation.    

Table 3.3. Maximum scaling to date of INCITE codes 

Science 

Category 
Research Area Code 

Cores 

Used 

Biology Biology GROMACS 149,472 

Chemistry Chemistry 

NWChem 

MADNESS 

QMCPACK 

96,000 

140,000 

131,072 

Computer 

Science 

General purpose 

lattice-boltzmann 
Ludwig 131,072 

Earth 

Science 

Seismology 

 

Weather 

Climate 

 

 

Geosciences 

SPECFEM3D 

FD3D 

WRF 

POP 

CCSM 

GEOS-5 Cubed Sphere 

PFLOTRAN 

149,784 

32,000 

150,000 

18,000 

80,000 

62,208 

132,000 

Engineering 

Combustion 

 

Fluid Dynamics 

S3D 

Senga 

SBLI 

210,000 

131,072 

130,000 

Fusion Fusion GTC 153,600 

Materials 

Materials 

 

Nanoscience 

Condensed Matter 

DCA++ 

LSMS 

LS3DF 

CASINO 

213,120 

223,232 

147,456 

40,000 

Nuclear 

Energy 
Nuclear Energy 

Denovo 

UNIC 

57,600 

136,576 

Physics 

Lattice Gauge Theory 

Molecular Dynamics 

Astrophysics 

Nuclear Physics 

BQCD 

CP2K 

Chimera 

MFDn 

65,536 

32,768 

131,072 

220,000 
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3.3 Summary 

 The usage statistics presented in this chapter show that for most science domains, users exhibit a 

need for leadership-class computing resources.  This is demonstrated with the large core counts for a 

single calculation and the large number of overall CPU-hours needed to accomplish the science 

objectives.  The need is growing from year to year as scientists are called on to address more and more 

challenging problems impacting the nation.  The statistics also show that most application teams are 

reasonably adept at using current systems and capable of scaling their applications within a reasonable 

time to utilize changing resources.     
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4. SCIENCE APPLICATION PERFORMANCE 

Accurate development of requirements for next-generation leadership computational science is based 

on an understanding of the behaviors of science applications used to perform this science.  This chapter 

presents performance analysis of key OLCF applications, to show how performance of these applications 

drives demands for system hardware and software. 

Assessment of application performance must be based on performance measures.  At the highest 

level, the goals of next-generation high performance computing are to solve new science problems that 

could not be solved before (capability) and also to solve current problems faster and more cost-effectively 

(capacity).  These computing tasks impose performance requirements on next-generation systems that can 

be quantified by cost factors such as: 

 Time-to-solution for targeted application runs at specific core counts; 

 Core-hours required for targeted application runs; 

 Power consumption; 

 Hardware constraints, such as main memory and offline memory capacities. 

Evaluating science demands on future HPC systems requires estimating application performance for 

realistic future system workloads.  Accurate prediction of future application performance enables better-

informed procurement and planning decisions. 

The OLCF application performance modeling process follows these steps: 

1. Select heavily-used applications, based on utilization data from current workloads and 

estimation of future workloads. 

2. Understand from domain scientists and developers the likely changes in application models, 

algorithms, science problems and use cases going forward. 

3. Perform application benchmarks for representative problems on existing hardware to isolate 

the application stress points related to different hardware features. 

4. Extrapolate this performance data to future architectures, based on anticipated hardware 

changes as well as changing science demands, to estimate future application performance. 

The OLCF workload emphasizes leadership computing based on a comparatively small set of 

applications for targeted science areas.  This limited number of applications makes it possible to narrow 
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the focus and thus perform more in-depth application studies that give more meaningful estimates of 

workload performance for future hardware. 

4.1 Application Performance Modeling Procedure 

The OLCF performance modeling process is used to estimate performance of an application on a 

future system based on performance of the application on current systems.  The first step of the 

application modeling process is to determine the proper application code version and to define a 

representative set of run specifications and core counts with the desired science and model features that 

represent typical workloads. 

The application code is then compiled and run for the selected settings, using one or more profiling 

tools to extract runtime information.  These tools include the standard FPMPI profiler [Gropp and 

Buschelman 2004], the customized FPMPI profiling tool developed by Cray, Inc., and the CrayPat 

profiler.  These profilers provide data such as breakdown of runtime into wallclock time, scheduler time, 

communication time, synchronization time and input/output (I/O) time; detailed data on message sizes 

and counts; and, PAPI [Mucci et al. 2009] counter data.  To obtain these statistics, multiple runs of the 

same case may be performed to check for run-to-run timing variability for each test case. 

Though profiling tools are able to provide substantial run information, some application performance 

data must be obtained indirectly.  To extract key information that is not readily available from profiling 

tools, selected additional runs are performed with slightly changed run settings, to measure the impact of 

certain hardware features.  For example, a single test case at a fixed core count and identical problem 

settings is run multiple times using different numbers of CPU cores per processor socket, to isolate the 

impact of memory traffic on runtime due to different numbers of cores competing for the same memory.  

Similarly, for hybrid MPI/OpenMP or MPI/PThread codes, the same test case can be run at the same CPU 

socket count and MPI task count but different thread counts, to evaluate the threading efficiency and 

degree of thread parallelism. 

The resulting performance data is then submitted to a performance model that estimates the execution 

time of the code on the proposed system based on hardware differences between the actual and targeted 

architectures.  When the differences between current and targeted hardware is small, e.g., increasing the 

clock speed for the same processor type, the estimation process has relatively low risk.  For larger 

hardware differences, more detailed analyses are required, e.g., inspection of the application source code 

or use of a simulator to understand the performance of code on the targeted hardware platforms. 
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To manage the process of performance modeling, the OLCF has developed the PMC performance 

modeling tool.  This is a Python script library that automates operations such as downloading and 

building each application code, submitting the required jobs to the platform’s job scheduler, monitoring 

execution, harvesting and analyzing run data, and generating performance reports based on this data. 

4.2 Performance Indicators 

Application performance depends on a variety of hardware characteristics, such as processor clock 

speed, peak flop rate, cache structure, cache latencies, main memory bandwidth and latency, cores per 

compute node, communication bandwidth and latency and I/O bandwidth. 

To condense the effects of these hardware factors on application performance into a usable form, 

several aggregate performance metrics are used, including: 

 Fraction of runtime spent in each of CPU, memory, communication, and I/O. 

 Flop rate percent of peak.  This measure is important for some scientific applications, though 

obviously incomplete as a measure of CPU performance since some true CPU work is not 

flop-related (e.g., address computations). 

 Floating point computational intensity, i.e., floating point operations per memory reference.  

This partly captures memory locality and memory reuse by the CPU in a relatively hardware-

independent way, though it does not in itself measure reuse of data from the various caches. 

 Communication bytes per second and messages per second, and their interrelationship.  These 

measures are not hardware-independent, since they depend on the platform, core count, and 

problem size; nonetheless, they do help characterize in general terms the application 

communication requirements for representative runs on current hardware. 

4.3 Components of Application Performance 

Using the performance modeling procedure described above, it is possible for representative runs of 

selected applications to distinguish the relative runtime costs associated with different hardware 

components, including CPU, memory subsystem, communication subsystem and I/O subsystem.  Fig. 4.1 

shows for selected OLCF applications the relative fraction of total runtime consumed by CPU, memory, 

communication and I/O at representative core counts (for application details, see Appendix D).  These 

data were generated using the OLCF Jaguar platform, a Cray XT5 system using quadcore processors.  For 

this set of test runs, application I/O was kept to a minimum, in order to reduce run-to-run variability due 
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to the multi-user environment and thus obtain more reliable estimates.  Fig. 4.1 shows usage of machine 

resources not only by application and science area but also by core count, indicating how performance 

scales. 

 

 

Fig. 4.1.  Application runtime fraction by hardware subsystem 
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It is clear from these results that: 

 Science applications such as LSMS, DCA++, AORSA and Chimera, which rely heavily on 

dense linear algebra, have a great deal of compute-bound work that can potentially be sped 

up by using more or stronger processor cores.   

 Grid-based codes such as POP, S3D and GTC have significant communication requirements.  

Particularly, the POP code that is run in a strong scaling regime has communication 

requirements that increase as a fraction of runtime with increasing core counts.   

 Overall, it can be seen that a great deal of processor-intensive work exists across the 

applications, which can be positively impacted by greater CPU capabilities of future 

leadership-class HPC systems. 

The application runtime footprint for different hardware subsystems can also be analyzed in terms of 

the performance impact resulting from increasing the performance of a single hardware subsystem in 

isolation. 

Fig. 4.2 gives Kiviat diagrams for selected application codes showing the relative impact on time to 

solution from improving processor, memory or communication performance by a factor of two.  It is 

evident that the performance of codes like LSMS, DCA++, AORSA and Chimera is improved by more or 

stronger processor cores, and that codes like POP are improved by a better communication subsystem. 

4.4 Computational Intensity and Percent of Peak 

As mentioned earlier, two measures of how effectively applications make use of computer hardware 

are computational intensity and percent of peak flop rate.  Fig. 4.3 and 4.4 show computational intensity 

and percent of peak floating point operations for selected application runs on the OLCF quadcore Jaguar 

Cray XT5 platform. 

Computational intensity is a measure of how much computational work is done by the CPU on a data 

value once the value is fetched from memory to a register.  Codes such as DCA++, LSMS and AORSA 

with high computational intensity due to reliance on dense linear algebra make good use of the CPU, 

since performing many compute operations on a data value amortizes the cost of the memory access.  On 

the other hand, codes like S3D, as is typical of grid-based codes, stress the memory subsystem more 

heavily and thus attain lower computational intensities. 
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Fig. 4.2.  Impact of 2X hardware subsystem improvement on application performance 
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Fig. 4.3. Application floating point operations per memory reference 
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Fig. 4.4. Application flop rate percent of peak 

 

occurrence for science applications in a wide range of areas, due to the ―memory wall.‖  For a number of 

years, the annual growth rate in memory speed has lagged the growth rate in processor power by about 

30% per year [Graham et al. 2005, p. 108].  Thus, even the best written codes that have inherently 

memory-bound physics models will necessarily attain only small fractions of machine peak flop rate.  

This phenomenon adds urgency to the need to reformulate algorithms and science models along the lines 

of increasing locality and thus mitigating the effects of the memory wall. 
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Application performance can be characterized in terms of stress on CPU peak flop rate or 

alternatively on memory bandwidth.  Fig. 4.5 shows the ―roofline model‖ [Williams et al. 2009] 

comparing the computational intensity to percent of peak flop rate for selected application runs.  In this 

graph, applications tend to be either compute bound (limited by the horizontal line representing maximum 

attainable flop rate) or memory access bound (limited by one of the diagonal lines representing peak 

bandwidth of the respective memory subsystem in the memory hierarchy).  It can be seen that LSMS, 

DCA++ and AORSA are more compute-bound and that GTC and S3D are more memory-bound.  POP is 

executed in a strong scaling regime, with its subproblems localized to L2 cache; however, it is 

communication-intensive and thus attains a low fraction of machine peak. 

 

 

Fig. 4.5. Application computational intensity vs. fraction of peak 

4.5 Communication 

Interprocessor communication network performance is a limiting factor for the performance of many 

algorithms.  Application interprocessor communication requirements can be characterized by two 

measures: the number of messages sent per unit time, which stresses communication network latency, and 

the total amount of data communicated per unit time, which stresses network bandwidth. 

Fig. 4.6 compares the communication bytes per second and messages per second for selected 

application runs on the OLCF quadcore Jaguar Cray XT5 system.  Applications that send many messages 

per second (and thus tend to stress the latency limits of the communication subsystem) appear on the right 
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side of the graph.  Applications that send large amounts of data per second (and thus tend to stress the 

bandwidth limits) appear in the top part of the graph.  From this it is shown that 

 Codes like POP have high message rates, contributing to their being message latency limited. 

 Codes like S3D and GTC which send 3-D halo data to neighbor processors have relatively 

high bandwidth requirements. 

 

 

Fig. 4.6. Application communication measures 

4.6 I/O 

While parallel I/O performance requirements of applications taken in isolation are readily achieved by 

modern parallel file systems, aggregate I/O performance requirements on large-scale simulation 

environments remain difficult to meet. For such large-scale environments the parallel file system is a 

shared resource. Parallel I/O environments on petascale class platforms are made up of tens of thousands 

of disk drives, hundreds of I/O servers, and increasingly complex system area networks to deliver the 

aggregate bandwidth and I/O operations per second (IOPs) required by the diverse workloads these 

platforms support. To provide a productive simulation environment, parallel I/O systems must be 

designed to support increasingly diverse workloads such as ―metadata intensive‖ workloads in which tens 

of thousands of files are created per second, ―IOPs intensive‖ workloads in which hundreds of thousands 
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of application processes are generating small (e.g. 4KB) I/O requests concurrently, and ―bandwidth 

intensive‖ workloads in which thousands of application processes are generating large (e.g. 1MB) I/O 

requests concurrently. Under these mixed workloads, I/O performance is often limited by metadata 

operations and IOPs rather than by aggregate theoretical bandwidth, as larger I/O requests are interleaved 

with much smaller I/O requests creating contention. Under IOPs-intensive workloads as seen on many 

large-scale simulation environments, I/O bandwidth drops to a small fraction of the theoretical bandwidth 

achievable under ideal workloads. 

 

Fig. 4.7. Aggregate I/O bandwidth (mixed workload) 

Due to the shared nature of the parallel I/O environment, we have focused our performance study on 

aggregate system load on the underlying storage system. Data presented in this study is obtained from a 

live large-scale production system over a one-month period of time. Fig. 4.7 illustrates the aggregate load 

(in terms of I/O bandwidth, gigabytes per second) on the underlying I/O subsystem generated by a diverse 

application mix. While average system load is relatively low, the ability to deliver high parallel I/O 

performance under heavy workloads is critical for providing a productive simulation environment and 

avoiding sustained periods of system performance degradation, demonstrated by the dramatic peaks in 

delivered system performance.  

As detailed above, mixed workloads result in extremely high IOPs in the parallel I/O environment. 

Traditional storage technologies such as magnetic disk drives are susceptible to extreme performance 
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degradation in terms of bandwidth under small I/O, high IOPs workloads. Fig. 4.8 illustrates the 

aggregate load (in terms of IOPs, thousands of operations per second) on the underlying I/O subsystem 

from a diverse application mix over the same one-month period analyzed in Fig. 4.7.  

 

 

Fig. 4.8. Aggregate IOPs (mixed workload) 

 

Fig. 4.7 and 4.8 together tell us that the ability to deliver high IOPs is as important as the ability to 

deliver high parallel I/O performance towards achieving a productive parallel file system for large-scale 

simulation environments. 

4.7 Power Consumption 

The power demands for computer hardware have become a major cost factor for executing 

applications on HPC systems.  Modern processors are able to adapt their power utilization based on the 

calculations they perform at any given time.  The growing concerns over power consumption suggest the 

importance of including power consumption as a metric for optimizing algorithm design.  Science 

applications can be designed not just to minimize floating point operations or memory references but also 

power-related metrics such as ―science results per watt‖ [Kogge 2008, p. 228].  Similarly, an 

understanding of power consumption behaviors of applications can inform future computer hardware 

designs. 
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Fig. 4.9 shows power consumption for dedicated application runs on the quadcore Jaguar Cray XT5 

system at selected core counts.  Unsurprisingly, DCA++ and AORSA, which heavily use dense linear 

algebra kernels, have high computational intensity and thus high power consumption per core.  On the 

other hand, less compute-intensive codes such as S3D have high power requirements as well.  Studies of 

this type can be used to shed light on costs measured in terms of power as well as compute time 

associated with particular algorithm designs. 

 

 

Fig. 4.9. Application power consumption 

4.8 Implications for Future HPC Systems 

The performance characteristics of OLCF applications as described above indicate how these 

applications may be expected to perform on future hardware and motivate the requirements for future 

leadership HPC systems. 

Anticipated changes in HPC system hardware include: (1) increasing demands for memory locality, 

and (2) the need for applications to express increased thread parallelism, even to tens of billions of threads 
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[Kogge 2008, p. 198].  These hardware trends and the above performance results for OLCF applications 

motivate the following observations. 

 Science applications relying heavily on compute-intensive kernels, such as several of those 

described above, are well positioned to adapt to future hardware changes, since they already 

have a high degree of locality.  In particular, accelerator technology (see Section 5.6) will 

benefit these applications due to their high flop rates. 

 Other applications must increase the amount of data locality.  More broadly, a locality-centric 

orientation should be promoted across the parallel algorithm research and development 

community.  Though the memory bottleneck has grown for over a decade, fundamental 

algorithmic research and deployment have been slow to respond.  Algorithmic design must 

focus on doing as much meaningful computational work with local data as possible, in 

algorithm areas beyond dense linear algebra.  In this algorithm design regime, some design 

decisions might lead to reordering of computations at the algorithm level or even the 

performing of redundant computations, if warranted by the tradeoff of computation for 

memory reference.  Deployment of such optimizations should be strengthened by raising the 

community awareness level regarding the importance of these optimizations as well as 

evaluation of how such code modifications could be implemented in realistic code 

development processes and maintained in code bases without impeding progress in more 

science-related code development activities. 

 Algorithmic innovations such as lower precision and mixed precision arithmetic can improve 

both memory reference costs and floating point operation costs.  This approach is already in 

use in one of the codes considered here (DCA++). 

 Certain application codes already have significant potential for more thread parallelism, e.g., 

DCA++, LSMS, S3D and GTC.  This should be exploited. 

 Communication latency-bound codes such as POP should use algorithms that implement 

better latency hiding techniques, e.g., iterative solvers using polynomial preconditioning or s-

step Krylov methods [Joubert and Carey 1992, Demmel et al. 2007].  Such measures cannot 

entirely eliminate the need for local or global communications, so vendor hardware must 

continue to address latency issues. 

 Similarly, some applications should be rethought from first principles in terms of whether the 

limits to parallelism are intrinsically imposed by the physics of the simulation or whether the 

limit is an artificial result of a negotiable algorithm choice.  For example, an explicit time-
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dependent grid-based PDE code might be able to take several time steps between 

communications without altering the numerical answer, by doing larger halo communications 

and performing some redundant computations on each processor with this data. 

 Communication bandwidth-bound codes might be adjusted so that communication better 

matches the underlying hardware.  For example, recent experiments with S3D show that total 

performance can be improved by over 20% by MPI task remapping. 

 Importantly, there is no single magic bullet hardware feature for improving application 

performance across the board.  Different applications in different science areas have different 

hardware stress points, such as computation, memory, communication bandwidth and 

communication latency.  Next-generation HPC systems cannot afford to neglect any of these 

hardware features.  When possible, trends in the commodity hardware market can be 

leveraged to address these needs.  When this is not possible, alternative hardware solutions 

must be developed.  Notably, accelerator technology will address several of these hardware 

concerns, including node peak flops, memory bandwidth and memory latency (see Section 

5.6).  Other factors such as interconnect bandwidth and latency must be improved as well. 

 The programming model for many of these applications is MPI-only, though this is changing 

in the direction of MPI plus threading.  For example, Madness and GTC already implement 

some form of threading in addition to MPI.  Further modifications of this type must take 

place, to better exploit coming hardware changes that are geared toward fine-grained 

parallelism.  Appropriate code changes, whether at the kernel level or at the large-scale code 

restructuring level, need to be considered for increasing parallelism and breaking operations 

into smaller units of independent work. 

 A better understanding of the relationship between algorithm and power consumption can 

better inform a cost model that includes all relevant factors including time to solution, 

consumed core-hours and power utilization as objectives for optimization. 

 Better software tools could aid in the performance optimization process.  This might include 

improved performance profiling tools that have more lightweight functionality but are more 

robust across hardware vendors, programming languages, compiler vendors and parallelism 

models.  Also, usability issues regarding these tools should be addressed—performance 

analysis tools could be made more accessible to non-specialist application developers by 

giving more attention to usability engineering issues [Nielsen 1993]. 
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In short, we make the following summary recommendations: 

1. Hardware: OLCF applications stress multiple hardware features; no single hardware feature 

can be improved to the neglect of others. 

2. Parallelism: Substantial efforts must be undertaken to restructure applications and codes to 

prepare for multibillion-thread parallelism. 

3. Latency: A much more latency-centric approach to algorithm and software design is 

required. 

4. Optimization: Better adaptation of codes to communication networks and memory 

hierarchies can substantially improve performance. 

5. Power: More efforts to optimize the power consumption of algorithms and applications 

should be undertaken. 

6. Tools: More robust and usable performance analysis tools can assist application developers 

in improving code performance. 
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5. SCIENCE APPLICATION REQUIREMENTS 

This chapter discusses the elements required to perform next-generation leadership science.  The 

requirements for leadership science are of two types: resource requirements and process requirements.  

Resource requirements are generally easier to quantify; process requirements are more qualitative, being 

more dependent on institutional experience and empirical research.  In either case, it is the goal of the 

OLCF requirements process to make science application requirements increasingly quantifiable and 

objective, thus improving the accuracy and reliability of the planning process. 

Computational resource requirements for science applications include computer hardware, system 

software stack, scientific libraries, compilers, parallel programming interfaces, computational algorithms 

and models.  Processes include application development management, application workflow 

management, software quality and assurance, verification and validation, and data management.  In what 

follows each of these items is addressed in turn. 

5.1 Science Model Requirements  

The DOE Office of Science has determined that significant increases in computational capabilities are 

required to address serious economic, environmental and national security challenges.  As mentioned 

earlier, these vital needs for increased computational capabilities will enable advances in basic science in 

numerous technical areas with a broad range of societal impacts.  

Advancing science in these key areas requires development of next-generation physical models to 

satisfy the accuracy and fidelity needs for targeted simulations.  The impact of these simulation fidelity 

needs on requirements for computational science is twofold.  First, more complex physical models must 

themselves be developed to account for more aspects of the physical phenomena being modeled.  Second, 

for the physical models being used, increases in resolution for key system variables, such as numbers of 

spatial zones, time steps or chemical species, are needed to improve simulation accuracy, which in turn 

places higher demands on computational hardware and software.  

Application models represent the functional requirements that drive the need for certain numerical 

algorithms and software implementations.  The choice of model is in part motivated by the science 

objectives, but it is also constrained by the computer hardware characteristics attainable in the relevant 

time frame.  The choice and specification of system attributes (e.g., peak speed or node memory capacity) 

tend to constrain the functional attributes able to be employed in a given physical model on that system.  
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For example, attributes such as the following all depend in part upon the hardware system for which 

implementation of the models is targeted: 

 model state variables (how many now, how many planned in the future); 

 model characteristics (partial differential equations [PDE] or ordinary differential equations 

[ODE], deterministic or stochastic, formulation of equations); 

 primary model data types (double precision floating point, integer); 

 presence of multiple, simultaneous phenomena, and the required degree of coupling; 

Table 5.1.  Model requirements for next-generation science 

Science 

Area 
Application Future Model Requirements 

Astrophysics CHIMERA Increase in number of spatial zones.  Increase in number of nuclear species from 

17 to 150-300, increasing the compute time for nuclear burn by 500x or more, 

thus increasing full simulation cost by 20x or more. 

Bioenergy / 

Biology 

LAMMPS Simulation of microbial/biomass interface and dynamics of enzyme action on 

biomass.  Higher atom count, longer time scales.  Additional force fields, more 

accurate potentials.  Scaling by >10x to increase accuracy. 

Chemistry MADNESS Couple new components to model.  Use more accurate component models. 

Climate CAM-HOMME Incorporate full land surface model, next-generation microphysics, radiative 

transfer, aerosol indirect effect,  full biogeochemistry.  Include better 

representations to parametrize subgrid scale physics, advanced time stepping 

routines to improve speed and accuracy, new discretization schemes and grids, 

more coupled prognostic variables. 

Combustion S3D 50–100% increase in Re (from 10K to 15–20K) with corresponding up to 8x 

increase in grid resolution and increase in the number of time steps.  

Alternatively increase number of chemical species from 22 to 60-80 with 

corresponding 3-4x increase in computations. 

Fusion AORSA Incorporate finite width particle orbits in plasma response calculation. 

Fusion GTC, GTS Add coupling of core and edge physics, late time evolution, neoclassical 

turbulence physics. 

Materials 

Science 

DCA++ Extend to multi-band model which scales the cost by order n
3
 in the number of 

bands for at least 8x cost increase.  Possibly increase from 24 to 32 atoms, 

which scales the computation by order n
3
. 

Materials 

Science 

WL-LSMS Extend the model to non-spherical potentials and more accurate density 

functional which could increase cost by 10x.  Increase atom count which scales 

the cost linearly.  Increase number of walkers by 10x to calculate additional 

observables to increase accuracy of result. 

Nuclear 

Energy 

Denovo Model full BWR cores; Gen-IV designs; experimental facilities.  Increase the 

number of energy groups from 44 to 999 (23x), which will in turn demand 

further resolution in space and angle.  Modeling of uncertainty. 
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 presence of multiple scales in multiscale models; 

 domain of dependence (local with specific patterns, global); and 

 data dependency (degree of parallelizability). 

As part of the requirements solicitation process, the OLCF consulted with over 50 leading scientists 

in numerous science domains, to better understand the goals for next-generation science and the models 

that would be required to reach these goals. 

Table 5.1 summarizes key findings from this process.   It can be noted that for several science areas, 

the science demands require a significant quantum leap forward in science model capabilities.  

Furthermore, several science areas are able to quantify the factor of growth in problem resolution required 

to meet their science goals.  Projects able to quantify this factor are shown to require growth of an order 

of magnitude or more for their computational needs.  In particular, current hardware capabilities on the 

order of 2 petaflops must be extended to 20 petaflops or more to accommodate near-term science 

requirements. 

To reach the science goals mandated by DOE, action must be taken to provide solutions for this 

increase in demand for high-end computing capabilities. 

5.2 Computational Algorithm Requirements  

Science priorities lead to science models, and models are implemented in the form of algorithms.  

Algorithm selection is based on various criteria, such as appropriateness, accuracy, verification, 

convergence, performance, parallelism and scalability. 

Models and associated algorithms are not selected in isolation but must be evaluated in the context of 

the extant computer hardware environment.  Algorithms that perform well on one type of computer 

hardware may become obsolete on newer hardware, so selections must be made carefully and may change 

over time. 

As mentioned earlier, moving forward to exascale will put heavier demands on algorithms in at least 

two areas: the need for increasing amounts of data locality in order to perform computations efficiently, 

and the need to obtain much higher factors of fine-grained parallelism as high-end systems support 

increasing numbers of compute threads.  As a consequence, parallel algorithms must adapt to this 

environment, and new algorithms and implementations must be developed to extract the computational 

capabilities of the new hardware. 
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Table 5.2.  Algorithm requirements for next-generation science 

Science 

Area 
Application Algorithm Requirements 

Astrophysics CHIMERA CURRENT: Finite-volume (PPM) hydrodynamics, multi-group flux-limited 

diffusion neutrino transport, fully-implicit solution of nuclear kinetics networks.  

Structured grid, adaptive mesh redistribution, sparse linear algebra, passive 

particles, GMRES solver with custom preconditioner. 

FUTURE: Quasi-equilibrium (QSE) methods, full 1D Boltzmann transport, 

possibly AMR. 

Bioenergy / 

Biology 

LAMMPS CURRENT: Molecular dynamics,multiple  integrators,  velocity Verlet , Charm22 

force field and others, bonded and non-bonded terms, charge terms. 

FUTURE: New models, scalable algorithms for long-range forces. 

Chemistry MADNESS CURRENT: Adaptive multiresolution methods, low separation rank 

representations of functions/operators, validation against experimental results. 

FUTURE: Increasing accuracy of calculations, solving larger problem sizes with 

more accurate physics models. 

Chemistry NWCHEM CURRENT: Density functional theory (DFT),  Hartree-Fock with LCAO , second 

order Moller-Plesset theory (MP2), coupled cluster CCSD(T), other quantum 

chemistry correlated methods. 

FUTURE: Enhancements for IR and Raman spectra of large molecules, additional 

correlated methods. 

Climate CAM-

HOMME 

CURRENT: Cubed sphere, spectral discretization, with finite volume and spectral 

element (continuous and discontinuous Galerkin),  explicit time stepping. 

FUTURE: Fully implicit time stepping, iterative linear solver. 

Combustion S3D CURRENT: Higher order accurate finite difference, fully explicit RK time 

integration with error estimates and time step control. 

FUTURE: Possibly adaptive chemistry, load balancing. 

Fusion AORSA CURRENT: Double precision complex dense solve, quasi-linear operator, 

CQL3D coupling for calculation of particle distribution functions. 

FUTURE: Mixed precision solver, replacement of CQL3D for more accuracy . 

Fusion GTC, GTS CURRENT: Particle-in-cell simulation solving gyrokinetic equation  in 

Lagrangian coordinates using a delta-F method, general geometry using spline fit 

of MHD equilibrium and experimental profiles data, global field-aligned mesh 

using magnetic coordinates, Monte Carlo method for collisions. 

FUTURE: Full-F. 

Materials 

Science 

DCA++ CURRENT: Dynamic cluster quantum Monte Carlo algorithm with Hirsch-Fye 

auxiliary field solver with delayed updates. 

FUTURE: New delayed update algorithm, continuous time quantum MC solver. 

Materials 

Science 

WL-LSMS CURRENT: Calculation of scattering path matrix for complex energies by 

iterating the block inverse formula. 

FUTURE: Larger problem sizes. 

Nuclear 

Energy 

Denovo CURRENT: Inverse power iteration for eigenpair calculation, accelerated with 

coarse mesh finite diffusion, inner solves with 2-grid preconditioned Gauss-

Seidel, within-group solves using DSA-preconditioned GMRES. 

FUTURE: Shifted inverse power iteration, Krylov inner solves over all energies, 

energy groups in inner loop. 
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As with science models, the performance of algorithms can change in two ways as application codes 

undergo development and new computer hardware is used.  First, algorithms themselves can change, 

motivated by new models or performance optimizations.  Second, algorithms can be executed under 

different specifications, e.g., larger problem sizes or changing accuracy criteria.  Both of these factors 

must be taken into account. 

Table 5.3.  Employment of algorithm motifs by science areas 

Science 

domain 
Code 

Structured 

grids 

Unstructured 

grids 
FFT 

Dense 

linear 

algebra 

Sparse 

linear 

algebra 

Particles 
Monte 

Carlo 

Accelerator 

physics 
T3P  X   X   

Astrophysics 
CHIMERA X   X X X  

VULCAN/2D  X  X    

Biology LAMMPS   X   X  

Chemistry 

MADNESS  X  X    

NWCHEM   X X    

OReTran X  X X    

Climate 

CAM X  X   X  

POP/CICE X    X X  

MITgcm X    X X  

Combustion S3D X       

Fusion 

AORSA X  X X    

GTC X    X X X 

GYRO X  X X X   

Geophysics PFLOTRAN X X   X   

Materials 

science 

QMC/DCA    X   X 

QBOX   X X  X  

Nanoscience 
CASINO      X X 

LSMS X   X    

Nuclear 

energy 

NEWTRNX  X  X X   

Denovo X   X X   

Nuclear 

physics 
NUCCOR    X    

QCD MILC X      X 
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The OLCF requirements elicitation process was used to poll domain scientists regarding algorithm 

requirements going forward for the respective application codes.  Results for key applications are 

presented in Table 5.2.  These results should be read in tandem with the data in Table 5.1 regarding 

predicted changes in problem size parameters.  These results show substantial algorithm development 

requirements to support new science models as well as anticipated computer hardware changes. 

The impact of these algorithm changes on application performance can be understood in terms of a 

selected set of algorithm motifs [Colella 2004,Asanovic et al. 2006].  These algorithm motifs, such as 

structured and unstructured grids, FFT, dense and sparse linear algebra, particles and Monte Carlo 

methods, occur repeatedly across a wide range of science applications. Table 5.3 shows the usage of these 

algorithm motifs in OLCF applications.  Analyzing application codes in terms of these application motifs 

helps identify common requirements across applications as well as common stress points for computer 

hardware. 

Table 5.4.  Anticipated change in use of algorithm motifs for next-generation science 

(↑ = increasing usage, ↓ = decreasing usage) 

Science Area Application Algorithm Motif Change 

Astrophysics CHIMERA Structured grids, dense linear algebra (↑), sparse linear algebra (↑), 

particles, unstructured grids (↑) 

Bioenergy/ Biology LAMMPS FFT (↓), particles (↑), structured grids, dense linear algebra(↑), sparse 

linear algebra(↑) 

Chemistry MADNESS Unstructured grids, dense linear algebra (↑) 

Chemistry NWCHEM FFT, dense linear algebra 

Climate CAM-HOMME Structured grids, particles, sparse linear algebra (↑) 

Combustion S3D Structured grids (↑) 

Fusion AORSA Structured grids, FFT, dense linear algebra (↑) 

Fusion GTC, GTS Structured grids, sparse linear algebra, particles (↑), Monte Carlo 

Materials Science DCA++ Dense linear algebra (↑), Monte Carlo (↑) 

Materials Science WL-LSMS Structured grids, dense linear algebra 

Nuclear Energy Denovo Structured grids (↑), sparse linear algebra (↑), dense linear algebra (↑) 

  

Table 5.4 gives for selected applications the algorithm motif used and, when appropriate, the 

anticipated growth of usage of these algorithm motifs in the science applications going forward.  This 

increased usage is reckoned in terms of new algorithm development, platform node-hour usage or fraction 

of total runtime for typical runs. 
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It should be noted from Table 5.4 the anticipated increased usage for many algorithm motifs 

represented.  This mandates the need for greater support for optimized software that efficiently performs 

the requisite mathematical operations in support of these motifs. 

This information motivates the following recommendations: 

 As mentioned earlier, algorithm research is essential to the success of applications on next 

generation hardware.  Algorithm research should be driven by the need for more locality-

centric algorithm variants with more available fine-grained parallelism to address upcoming 

hardware changes.  The increasing reliance on key algorithmic motifs by OLCF applications 

suggests efforts focused specifically on the motif components that are heavily used across 

multiple applications.  Encapsulating software for these motifs within libraries when 

appropriate allows code optimization efforts to be leveraged across multiple projects. 

 Support should be given to parallel software library development in these and related vital 

motif areas.  These software libraries must be optimized for the cases required by the codes of 

domain scientists.  Unfortunately, in many cases available software libraries are not 

optimized for problem cases of importance to specific applications (e.g., a dense BLAS 

kernel may not be optimized for a matrix shape that is uncommon in general situations but is 

important to a specific science application area).  In the course of library development, often 

it is impossible to foresee the range of input settings or slight algorithm variations that might 

be associated with key science application runs.  This problem must be addressed by an 

appropriate software strategy such as, (1) when possible provide compiler support to generate 

high-quality code for the required operations, perhaps with the help of compiler hinting 

techniques via directives; (2) support library developers to implement the required 

functionalities directly in the library when needed; (3) make the library source code open 

source and thus more easily customizable by others to the required problems; and (4) use 

adaptive methods or autotuners when appropriate to optimize for a broader range of cases. 

5.3 Parallelization and Compiler Software Requirements  

5.3.1 Near-Term Requirements 
Application development teams routinely select programming language, compiler and parallel 

programming model based on a variety of factors such as model and algorithm structure, compiler 

performance, supported platforms, team expertise and needs to reuse legacy code.  Table 5.5 gives for 
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selected OLCF applications the choice of programming language, compilers, communication libraries and 

lines of maintained code. 

Table 5.5.  Languages and parallel programming models for key applications 

Science Area Application 
Programming 

Language(s) 

Compilers 

Supported 

Comm 

Libraries 
LOC 

Astrophysics Chimera F77, F90 PGI, Cray, IBM MPI 250K 

Bioenergy / 

Biology 
LAMMPS C++ 

GNU, PGI, IBM, 

Intel 
MPI 140K 

Chemistry MADNESS C++ GNU MPI, PThreads 1M 

Climate 
CAM-

HOMME 
F90 PGI, Lahey, IBM MPI 500K 

Combustion S3D F77, F90 PGI MPI 10K 

Fusion AORSA F90 PGI MPI 20K 

Fusion GTC F90, C, C++ PGI, Cray MPI, OpenMP 8K 

Materials 

Science 
DCA++ C++ GNU MPI 26K 

Materials 

Science 
gWL-LSMS F77, F90, C, C++ PGI, GNU MPI 70K 

Nuclear Energy Denovo 
C++, Fortran, 

Python 

GNU, PGI, Cray, 

Intel 
MPI 46K 

 

It is clear that both FORTRAN and C++ are used heavily for application development, with no clear 

winner.  Furthermore, projects typically use an MPI-only parallel programming model, with some use of 

hybrid approaches. 

The requirements elicitation process also revealed trends that are expected to change this snapshot of 

application development approach.  In particular, numerous teams are moving toward hybrid 

programming models, adding some type of threading such as OpenMP, PThreads or Intel TBB to their 

current MPI framework.  This is motivated by performance or memory usage improvements that are 

expected to result. 

5.3.2 Next-Generation Requirements 
Seismic changes currently underway in parallel computing hardware, such as heterogeneous 

processors, multibillion-threaded platforms and ever-increasing relative latency times, are motivating the 

drive for new programming models to exploit advances in hardware capability.  In particular, approaches 

such as OpenCL and new directives-based compiler technologies are being considered. 
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Development of new programming interfaces for these hardware innovations are in the early stages.  

A period of user experimentation and experience-gathering will be required before a consolidation around 

best practices is possible.  Since these are early stages, specifications cannot yet be given in detail 

regarding software requirements to match the new hardware.  Still, a number of required criteria for new 

programming interfaces for next-generation hardware are manifest: 

 The interface must allow good performance for the average scientific programmer and allow 

access to a high percentage of attainable peak performance for the expert performance-

oriented programmer. 

 The compilers and libraries must be robust and stable. 

 A standardization process and widespread availability across current and future platforms are 

necessary to protect programmer investment in application code development. 

 The interfaces must have relative ease of use with good performance for general parallel 

scientific programmers. 

 Multiple programming interfaces (e.g., threads, message passing, one-sided messaging) may 

be required to meet the needs of a diverse set of science approaches. 

 Interfaces must support hardware heterogeneity (e.g., multicore processors and accelerators in 

the same hardware environment). 

 Interoperability is required, to support mixed or hybrid programming models in the same 

code, e.g., MPI+OpenMP or directives+OpenCL.  Mixed models are often required for 

supporting tradeoffs in performance tuning and incremental code parallelization. 

 The programmer must be able to control process locality, data locality and data motion, e.g., 

whether memory is allocated on processor memory or accelerator memory. 

 When possible, languages and interfaces should support the reuse of legacy code.  Reuse of 

code can often reduce software development costs by a factor of three to four and can also 

substantially reduce defect rates [Kandt 2006, p. 203; Grady 1992, p. 14]. 

 Asynchronicity of memory and compute operations should be supported when appropriate.  

Similarly, work sharing between heterogeneous compute units should be permitted. 

 Parallel programming interfaces should allow for incremental code parallelization, though it 

is recognized that in many cases substantial code restructuring or rewriting may be necessary 

to obtain good performance. 
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 Compilers should support as many standard language features as possible (e.g. a C++ 

compiler with parallelization directives should not omit important standard language features 

such as templates). 

 Programming interfaces should be adaptable to new forms of heterogeneity that might arise in 

the future. 

5.4 Scientific Library Requirements  

Science applications typically make use of one or more scientific or mathematical software libraries.  

Use of scientific software libraries is advantageous on several fronts: it saves developer time by 

offloading relevant algorithm implementation and code optimization work from the science programmer; 

it in principle provides better performance on the targeted hardware; and it focuses developer technical 

expertise onto areas where it is best used. 

Table 5.6 shows scientific library usage across a wide range of OLCF applications.  It is clear that 

applications make heavy use of a number of third-party mathematical libraries.  More tellingly, Table 5.7 

gives estimates of the fraction of runtime spent in mathematical libraries for several key heavily-used 

OLCF applications.  It can be inferred from these tables that the key applications spend on average over 

30% of their time in scientific libraries.  This heavy usage provides a good opportunity to leverage 

optimization efforts for a few key libraries, to provide broad increases in performance across many 

science domains. 

For libraries to be effective for OLCF users, they must satisfy several criteria.  They must be well-

supported by the vendor or third-party developer.  They must be easily interfaced to the user code with 

minimal invasiveness to the application.  They must also be heavily optimized for the targeted hardware 

and for the application use cases. 

5.4.1 Expanding the Range of Coverage for Scientific Libraries 
As mentioned above, key OLCF applications spend on average about 1/3 of their time in scientific 

library calls.  However, this leaves another 2/3 of runtime untouched.  Developing libraries to address this 

fraction of runtime would be of substantial value, from the standpoint of both development time and 

application performance.  The relative value of this will be even greater going forward, as hardware and 

science models become increasingly complex. 

To address this need, we recommend an effort to consider a broader range of commonly-used 

operations or ―application kernels‖ as potential candidates for implementation in library form.  This  
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would extend the coverage of libraries from the limited scope of lower-level functions to higher-level 

mathematical or even physics-level operations. 

 

Various efforts in the past have attempted to create higher-level libraries or frameworks for general 

use, often with mixed or poor results.  Numerous libraries and component frameworks have been 

developed to good effect in the context of individual projects or smaller user communities but have often 

Table 5.6.  Application library usage 

Science domain Code I/O libraries Math libraries 

Accelerator 

design 
T3P NetCDF MUMPS, ParMETIS, Zoltan 

Astrophysics 
CHIMERA HDF5 (pNetCDF) LAPACK 

VULCAN/2D HDF5 PETSc 

Biology LAMMPS ------------ FFTW 

Chemistry 

MADNESS ------------ BLAS 

NWChem ------------ BLAS, ScaLAPACK, FFTPACK 

OReTran ------------ LAPACK 

Climate 

CAM NetCDF (SciLib) 

POP/CICE NetCDF ------------ 

MITgcm NetCDF ------------ 

Combustion S3D ------------ ------------ 

Fusion 

AORSA NetCDF HPL, ScaLAPACK, FFTPACK, PGPLOT 

GTC 
MPI-IO, HDF5, 

NetCDF, XML 
PetSC 

GYRO MPI-IO, NetCDF 
BLAS, LAPACK, UMFPACK, MUMPS, FFTW 

(SciLib, ESSL) 

Geophysics PFLOTRAN ------------ BLAS, PetSC 

Materials 

science 

LSMS HDF5, XML BLAS, LAPACK 

QBOX XML LAPACK, ScaLAPACK, FFTW  

QMC ------------ BLAS, LAPACK, SPRNG 

Nanoscience 
CASINO ------------ BLAS 

VASP ------------ BLAS, ScaLAPACK 

Nuclear energy NEWTRNX HDF5 LAPACK, PARPACK 

Nuclear physics CCSD MPI-IO BLAS 

QCD MILC, Chroma ------------ ------------ 
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failed to become widely usable in general.  Broader acceptance has failed for a variety of reasons, such as 

functionality too restrictive, required use cases not covered, required user data formats not supported, 

performance not well-optimized, software design too invasive to user code, package methods too tightly 

coupled or inflexible, interfaces not standardized, software not adequately supported, package not 

available on targeted platforms, or usage learning curve too steep.  In short, often the use of the library or 

framework provides little or no payoff for the effort of attempting to use it. 

At the same time, a 

well-chosen, carefully 

implemented set of 

application-centric 

software microkernels 

could have high impact on 

numerous science 

applications.  

―Development of key 

mini-applications that 

represent the 

performance-determining 

computations of key 

application areas is 

important.‖ [Geist et al. 

2007]  In fact, the ―algorithm motif‖ concept [Colella 2004] itself carries with it the suggestion that 

certain well defined operations taken from the motif areas might be good candidates for implementation 

in general-purpose libraries, to the degree that algorithm structures and use cases are mature and stable.  

Examples might be particle pushing operations for particle-in-cell codes, sparse matrix-vector product 

operations, finite element assembly for FEM codes, and stencil computations for structured grids. 

Code reuse in the form of libraries is notoriously lacking in some of these areas.  For example, 

bandwidth-optimized methods for stencil computations, though having high performance impact in 

numerous situations, have been repeatedly rediscovered and reinvented over the last 15 years, with little 

to no success in preserving institutional memory of their existence.  Since problems like this have been 

solved repeatedly, an effort should be made to make the solutions more widely known and generally 

available.  

Table 5.7.  Estimated mathematical library runtime fraction 

Science Area Application Libraries 
Percent 

Runtime 

Astrophysics Chimera LAPACK 78% 

Bioenergy / 

Biology 
LAMMPS FFTW 5-75% 

Chemistry MADNESS LAPACK 50-75% 

Climate CAM-HOMME Trilinos solver (future) (large) 

Combustion S3D (N/A)  

Fusion AORSA HPL, ScaLAPACK >35% 

Fusion GTC (N/A)  

Materials Science DCA++ LAPACK 70% 

Materials Science gWL-LSMS LAPACK 70-75% 

Nuclear Energy Denovo Trilinos small 
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We recommend that next generation scientific application middleware libraries have the following 

characteristics:  

 Fine-grained: Put simply, each user-callable library component or function call should 

perform a single responsibility.  In other words, the functions should be small, recombinable 

building blocks.  This design feature converts the need to cover a prohibitively large scope of 

potential use cases into the ability to access a combinatorial space of arrangements in which 

the pieces can be joined at will by the user.  This design philosophy is analogous to the 

preference of RISC over CISC instruction set architectures in the microprocessor design 

world. 

 Decoupled: Functions must be capable of being used independently, and they must have 

well-defined, simple interactions with the outside world.  This is a requirement for the easy 

combination of component functions. 

 Use case driven: Kernels must be chosen so that they can be effectively used in the actual 

application use cases of interest to the community.  For example, the BLAS-1 kernels were 

carefully chosen to cover a significant scope of vector computation situations in common use 

[Lawson et al. 1979]. 

 Flexible: It has been said that a truly great tool has uses beyond the scope of its original 

design intent [Raymond 1999].  Library components should be adaptable to the new 

situations scientists frequently devise.  Examples might include different data types or data 

structures or slightly different boundary conditions.  A mechanism for incorporating this 

flexibility might be by the use of generic programming techniques. 

 Tuned: The library must be highly optimized for the targeted hardware (e.g., using 

autotuning techniques).  In some cases it may be desirable to include the autotuning software 

with the library code itself, to allow developers to tune the library to new hardware or new 

application use cases. 

 Benchmarked: Library users must be able to predict how the library will perform under 

various settings or function combinations, in order to make informed design decisions 

regarding model and algorithm selection.  Library documentation should be accompanied by 

performance statistics to make it possible to understand library performance for different 

cases.  In addition, it might be required that a library benchmarking tool be shipped with the 

library, to aid with performance prediction. 



ORNL Leadership Computing Facility Application Requirements and Strategy         OLCF 

 

5. Science Application Requirements 59 

 

 Standardized: Interfaces increase in value when they are agreed upon by multiple parties.  

Development and acceptance of standards will ease developer use and encourage more 

widespread support across multiple platforms. 

5.5 System Software Requirements 

The system software stack provides the software infrastructure and services required for science 

applications to be executed on HPC platforms.  Table 5.8 illustrates the types of components in the 

software stack and typical required capabilities. 

Table 5.8.  Software stack requirements 

System software 

component 
Requirement 

Mathematical libraries 
BLAS, LAPACK, ScaLAPACK, PETSc, SuperLU, and Parallel FFT tuned to the LC 

systems and modified to exploit multicore. 

Communication library High-performance, fault-tolerant communication library able to deal with dead nodes. 

Specialized 

mathematical libraries 

Specialized, high-performance O(N) libraries (USFFT, KFFMM, MRA, LSR, Generalize 

Gaussian Quadrature) optimized for LC systems. 

Lightweight OS kernel Scalable and robust kernel with support for multicore processors as an SMP node. 

I/O and storage  Increased scalability and updated algorithms for data and metadata servers. 

Reliability and fault 

tolerance 

Development of advanced systems software enabling applications to have and use built-

in fault handling. 

Advanced debugging 
Comparative debugging tools to support the simultaneous execution of two versions of 

an application, allowing the selection of comparison points for verification. 

Automatic performance 

analysis 

Easy-to-use, automated performance tools able to handle large amounts of data. 

Development of an infrastructure to support scalability and automation. 

Integrated compilation 
Compilation environment for applications simultaneously targeted for different systems 

(scalar/vector processors, FPGAs, stream-based coprocessors, etc.). 

 

Table 5.9 shows specific software used to satisfy these requirements. 

These tables indicate current software requirements.  We anticipate future software requirements to 

change in the following ways: 

 Better OS support for fault tolerance will be required, as mean time to interrupt (MTTI_ 

figures are pressured downward. 
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 New parallel programming interfaces such as CUDA and OpenCL will require software 

support in the form of compilers, debuggers, and emulators where appropriate. 

 Source code analysis tools will be useful to help identify code sections amenable to fine-

grained parallelization. 

 Debuggers, profilers and libraries will need to support new forms of heterogeneous compute 

nodes. 

 Compilers will need to support OpenMP and/or other directives to access relevant node 

hardware efficiently. 

Table 5.9.  System software to satisfy software stack requirements 

Requirement OLCF software stack 

Resource manager/scheduler Torque, Moab, ALPS 

Scripting tools bash, Perl, Python, Tcl/Tk 

Build tools make, configure, autoconf, m4 

Workflow tools Kepler, bbcp 

User mgmt, ticket system, 

accounting 
ORNL Resource Accounting and Tracking (RATS), RT 

Security and fault detection Nagios, Inmon, OSIRIS, SNORT/BRO 

Compilers PGI, GNU, Cray, Pathscale, Intel 

Vendor math libraries LibSci,  ACML 

Community math libraries FFTW, PETSc, LAPACK, ScaLAPACK, Atlas, Goto BLAS 

Programming languages Fortran, C/C++, CAF 

Performance and debugging tools CrayPat, Apprentice, TotalView, PAPI 

Parallel I/O libraries HDF5, pNetCDF, MPI-IO 

MPI MPT 

Accelerator support CUDA, OpenCL 

Low-level communication layers Portals, ARMCI, Global Arrays 

Shared memory layers OpenMP, PThreads 

CN and ION kernels, CIOD CVN, CNOS (Linux) and SUSE 

Visualization and data analysis VisIt, EnSight, IDL, AVS/Express, Parallel R, VTK, Matlab 

Production file system Lustre 

Archive tools hsi, htar 
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5.6 Hardware Requirements  

Science applications are ultimately dependent on the underlying hardware for performance.  A given 

OLCF system has many hardware attributes that uniquely characterize it relative to other systems.  The 

following twelve attributes have been found to be particularly useful and important to consider from an 

application perspective: 

1. Peak flops per node, 

2. Mean time to interrupt, 

3. Wide area network bandwidth, 

4. Node memory capacity, 

5. Local storage capacity, 

6. Archival storage capacity, 

7. Memory latency, 

8. Interconnect latency, 

9. Disk latency, 

10. Interconnect bandwidth, 

11. Memory bandwidth, and 

12. Disk bandwidth. 

The performance of computer hardware associated with these system attributes affects different 

algorithm classes in different ways, depending on the algorithm structure and computational 

requirements.  Table 5.10 shows the impact of hardware system attributes on different commonly-used 

OLCF algorithm classes and applications. 

Likewise, science application codes in science domain areas have differing requirement levels for 

different hardware attributes.  Table 5.11 gives a three-tier ranking of the importance of each hardware 

attribute to each science area.  For each science area, the demand placed on each hardware attribute is 

classified as high, medium or low. 
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Table 5.10.  Impact of system attributes on algorithms and applications 

System Attribute 

Algorithms that Require 

High Performance for this 

Attribute 

Relevant Application Behaviors 

Node peak  

flops 

Dense linear algebra, FFT, 

sparse linear algebra, Monte 

Carlo 

Scalable and required spatial resolution low; would benefit 

from a doubling of clock speed; only a problem domain that 

has strong scaling, completely unscalable algorithms; 

embarrassingly parallel algorithms. 

Mean time to 

interrupt 
Particles, Monte Carlo 

Naïve restart capability; large restart files; large restart R/W 

time. 

WAN bandwidth 
Long time evolution, 

multiphysics, multiscale 

Community data/repositories; remote visualization and 

analysis; data analysis. 

Node memory 

capacity 

Dense linear algebra, sparse 

linear algebra, unstructured 

grids, particles 

High DOFs per node, multi-component/multi-physics, 

volume visualization, data replication parallelism, restarted 

Krylov subspace with large bases, subgrid models. 

Local storage 

capacity 

Particles, out-of-core 

algorithms 

High-frequency/large dumps, out-of-core state, debugging 

at scale. 

Archival storage 

capacity 

Long time evolution, 

multiphysics, multiscale 

Large data (relative to local storage) that must be preserved 

for future analysis, for comparison, for community data 

(e.g., EOS tables, wind surface, and ozone data); expensive 

to recreate; nowhere else to store. 

Memory latency 
Sparse linear algebra, 

unstructured grids 

Data structures with stride-one access patterns (e.g., cache-

aware algorithms); random data-access patterns for small 

data. 

Interconnect 

latency 

Structured grids, particles, 

FFT, sparse linear algebra 

(global), Monte Carlo 

Global reduction of scalars; explicit algorithms using 

nearest-neighbor or systolic communication; interactive 

visualization; iterative solvers; pipelined algorithms. 

Disk latency Out-of-core algorithms 
Naïve out-of-core memory usage; many small I/O files; 

small record direct-access files. 

Interconnect 

bandwidth 

FFT and other spectral 

methods, coupled models 

Large messages, global reductions of large data; implicit 

algorithms with large DOFs per grid point. 

Memory 

bandwidth 

Sparse linear algebra, 

unstructured grids 

Large multidimensional data structures and indirect 

addressing; lots of data copying; lots of library calls, 

requiring data copies if algorithms require data 

retransformations; sparse matrix operations. 

Disk  

bandwidth 
Out-of-core algorithms 

Reads/writes large amounts of data at a relatively low 

frequency; read/writes large amounts of large intermediate 

temporary data; well-structured out-of-core memory usage. 
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Table 5.11.  Importance of hardware attributes to science domains 

(Priority: Red = high, pink = medium, grey = low.) 
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Node peak flops         

MTTI         

WAN network bandwidth         

Node memory capacity         

Local storage capacity         

Archival storage capacity         

Memory latency         

Interconnect latency         

Disk latency         

Interconnect bandwidth         

Memory bandwidth         

Disk bandwidth         

 

It is important to understand how future science needs and concomitant science model changes will 

influence the demands on each of these hardware characteristics for future HPC platforms.  Table 5.12 

shows for each science area the anticipated change in demand for hardware attributes. 

The highlighted rows of Table 5.12 indicate the hardware characteristics that are expected to grow in 

importance for OLCF applications on future systems.  To prepare for the demands that science 

applications are expected to put on hardware, actions such as the following will be required: 

 Interconnect bandwidth:  For future systems, the power cost to transport data off-chip will 

be an increasing challenge [Kogge 2008, p. 212].  For the longer term, new hardware 

technologies will be needed to address this problem.  Bandwidth-reducing and 

communication-hiding algorithm research can help mitigate this problem. 
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 Node peak flops:  Since performance gains from clock speed and instruction level 

parallelism have reached an impasse, other approaches such as multicore processors and 

accelerators will be required to increase flop rates. 

 

Table 5.12.  Future changes in demand for hardware characteristics 

System Attribute 
C

li
m

a
te

 

A
st

r
o

p
h

y
si

cs
 

F
u

si
o

n
 

C
h

em
is

tr
y

 

C
o

m
b

u
st

io
n

 

A
cc

el
er

a
to

r 

p
h

y
si

cs
 

B
io

lo
g

y
 

M
a

te
r
ia

ls
 

sc
ie

n
ce

 

Total 

Node peak flops + +  + + – + + +5 

MTTI  +    +  + +3 

WAN network bandwidth – – + +  + – – -1 

Node memory capacity + + +  - +   +3 

Local storage capacity  + –  –    -1 

Archival storage capacity   –   –  – -3 

Memory latency + –  – +  + + +2 

Interconnect latency + –  – – + + + +1 

Disk latency –  –  – – – – -6 

Interconnect bandwidth + + + + +  +  +6 

Memory bandwidth +  +  +  + + +5 

Disk bandwidth   – + – – –  -3 

 

 Memory bandwidth:  The ―memory wall‖ has increased in severity for many years.  On the 

algorithm side, the memory wall can be addressed in part by more locality-aware algorithms.  

On the hardware side, bandwidth-optimized accelerators in the form of streaming processors 

hold promise for gains (see below). 

 MTTI: Hardware reliability and fault tolerance will continue to increase in importance.  For 

the shorter term, hardware must be designed so that any single hardware failure will have 

only local impact, i.e., will not cause a failure of the whole system.  This can be addressed for 

example by making use of adaptive hardware.  For the longer term, it is likely that new 

techniques will be required to address this concern, at the level of hardware, system software 
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and application programming models [Kogge 2008, p. 3].  Resiliency will be a major concern 

for attaining exascale, since standard disk-hased checkpoint/restart techniques will become 

less viable due to MTTI pressure from the sheer number of components used. 

 Node memory capacity:  Some applications will require increasing amounts of memory per 

core, in some cases to implement more complex and realistic physics models.  New hardware 

will require ―fat-memory‖ nodes that do not shrink the available memory per core. 

 Memory latency: Improvements in hardware latency have not kept pace with improvements 

in bandwidth.  Algorithms and application codes must be restructured to allow for more 

latency hiding.  Furthermore, processor hardware must be able to hide more latency by 

allowing more in-flight memory references. 

 Interconnect latency: Next-generation interconnect hardware must keep communication 

latencies under control and allow for high message injection rates.  Furthermore, latency-

reducing algorithms must be developed and implemented to reduce the impact of latency on 

application performance. 

5.6.1 Accelerator Technology  
As mentioned earlier, next-generation science goals will drive demand for an order of magnitude or 

more increase in computational capabilities.  This growth is manifested most directly in the need for more 

aggregate floating point operations per second for next-generation systems, but science requirements also 

place demands on multiple hardware characteristics, as shown earlier. 

For nearly twenty years, high performance computing has found it advantageous for reasons of cost to 

leverage the economies of scale provided by the commodity processor hardware market.  However, 

conventional commodity processors are no longer able to produce performance gains through increases in 

clock speed or instruction level parallelism.  Thus, the support of increasing numbers of processor threads 

has become a key avenue for increased performance of commodity hardware. 

This factor has driven the growth of multicore processors.  But more dramatically, it has given rise to 

a variety of many-core streaming graphics-accelerated chips suitable for general-purpose programming, 

such as the IBM Cell BE, AMD Fusion and Intel Larrabee processors, as well as general-purpose graphics 

processing units from companies such as NVIDIA. 

Fig. 5.1 and 5.2 demonstrate the annual growth rate of peak processor performance and peak memory 

bandwidth for NVIDIA processors.  The rate of performance growth demonstrated by these processors is 

dramatic, demanding the attention of future HPC system developers. 
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Fig. 5.1.  Growth rate of peak processor performance   

 

 

Fig. 5.2.  Growth rate of peak memory bandwidth  
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Notably, accelerators of this type are able to address three of the seven hardware concerns for future 

application performance mentioned above: 

 Node peak flops, due to more processors per die, 

 Memory bandwidth, and 

 Memory latency, due to the ability to hide memory latency with many outstanding in-flight 

memory references. 

Next-generation systems must pay close attention to the potential performance gains offered by these 

accelerators.  However, use of accelerator technologies for HPC is not without challenge.  As mentioned 

earlier, parallel programming models are likely to experience a period of disruption as significant as the 

transition to message passing two decades ago, and programming methodologies will require a period of 

time to assimilate the changes.  Software development teams must begin now to prepare for the requisite 

software disruptions this new hardware will impose.  Some of the required preparations are discussed in 

the next section. 

5.7 Application Development Process Requirements  

All progress in computational science is ultimately dependent on the processes of development of the 

science applications.  In the future, this process is expected to become increasingly challenging, for 

various reasons:  

 HPC computer hardware is becoming increasingly complex and heterogeneous. 

 To access the performance potential of the hardware, it is becoming necessary in some cases 

to use multiple/hybrid programming models in the same application (e.g., MPI+OpenMP). 

 Science models are becoming increasingly complex.  Also, multiple codes are being 

composed together to generate new science. 

 Core counts are becoming higher, making it more difficult to locate performance problems or 

execution errors. 

 The increasing incidence of hardware faults or unusual hardware behaviors can make it more 

difficult to determine whether observed problems are due to the application, system software 

or hardware. 

 The combined effect of these complexities makes it increasingly difficult for individual 

developers to maintain deep expertise in multiple requisite domains. 
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The survey results from science code teams using OLCF facilities indicated that currently the 

following are the primary bottlenecks to the application development process, in order of priority: 

1. Debugging and testing; 

2. Optimization and tuning; 

3. Managing software development collaborations; 

4. Learning new programming models. 

In what follows we address these concerns. 

5.7.1 Software Defect Reduction Tools 
By far, the primary concern expressed by science application code teams concerns debugging and 

testing of application software.  Based on the trends mentioned above, the challenges in this area can only 

be expected to increase.  We recommend strong action be taken to address this issue, in two areas: 

improved tools and better software engineering practices. 

Studies have shown that software defect detection and correction activities can consume as much as 

50% of the labor effort to create software and 75% of total software life-cycle costs [Kandt 2006, p. 177].  

Experience has shown that good software debugging and correctness checking software can substantially 

reduce this figure.  For example, one study found that organizations using software tools for error 

detection delivered software with seven times fewer defects [Kandt 2006, p. 191]. 

Historically, debuggers for HPC systems have suffered from significant problems such as: 

 inability to scale to high core counts; 

 failure to present parallel code behavior information to the user in a meaningful way; 

 lack of availability for specific targeted hardware and/or compilers; 

 slow, unresponsive interactive behavior that greatly decreases programmer productivity; and 

 lack of reliability across use cases and source code constructs. 

A fundamental concern is that high-quality debuggers are not being delivered within the timeframe in 

which they are most needed.  It is difficult to adapt debuggers and other tools to rapidly changing 

hardware and software. Top HPC hardware systems have short lifecycles that can be measured in terms of 

a few years.  Major compiler releases occur at a rate of at least once per year, and minor releases occur 

even more frequently.  New language or library features (e.g., Fortran 20XX), languages (e.g., UPC, Co-

Array Fortran, X10, Fortress, Chapel) and programming models (e.g. OpenMP, OpenCL, MPI 3.0) 
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continue to emerge.  These factors slow the debugging tool software development process and thus make 

it difficult for debugging tools to be available and robust precisely during the time when they are most 

needed [Vetter 2007, p. 7]. 

Several alternatives are possible to address this problem.  First, funding agencies can increase their 

support for tool development.  Second, a healthier market, driven by increasing demand for debuggers 

scaling to high core counts, can provide a wider range of alternatives.  Third, debugging tool developers 

can more directly treat the debugger code as a scalable application in its own right and improve their code 

designs accordingly.  Developers of debuggers can also use software design methodologies that enable 

easier extension to new software and hardware environments.  Finally, debugger development efforts can 

be refocused toward more lightweight, modular tools that can be more quickly and easily ported to new 

hardware and new compilers.  In the absence of a full-featured interactive development environment 

which, due to its integration, would improve developer productivity substantially, the development of 

more easily ported, simpler debugging tools would provide more available functionality and timeliness 

for scientific application developers. 

Additionally, a greater attempt should be made to leverage applicable commercial off-the-shelf 

(COTS) software.   For example, memory checking tools such as Rational Purify [IBM 2009] applied to 

single core runs can be extremely effective for identifying bugs that are otherwise very difficult to locate.  

Unfortunately, it is often the case that ―the HPC community is unaware of these tools … application 

developers either do not know about or do not have access to new tools‖ [Collette et al. 2004, pp. 1-3].  

However, many tools have matured in the mainstream software development community; some of these 

can be leveraged for HPC programming efforts. In this way, in the area of software tools, as well as 

hardware, benefit can be derived from leveraging products from the larger mainstream market. 

It should also be recognized that, to a large extent, ―deep analysis is largely a user function, rather 

than a tool capability‖ [Vetter 2007, p. 7].  Debugging and testing capabilities must, to an increasing 

degree, be implemented directly within application codes.  The criteria for what small pieces of data are 

required from the application to facilitate the user’s debugging experience can be very complex, requiring 

either debugger support for very complex query expressions based on application code values or user-

written debugging functions within the application.  Developing code infrastructure to generate diagnostic 

information within the application can be of help. 

5.7.2 Improved Software Engineering Practices 
The benefits of good software engineering practices for scientific code development efforts are well-

documented, and efforts to strengthen software quality within organizations can be of significant value.  

For example, through implementation of improved software quality practices, the NASA Software 
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Engineering Laboratory over a four year period decreased software defect rates by 75% and reduced costs 

by 55% within the organization [Kandt 2006, p. 44].  However, institutional efforts to improve software 

quality practices must be done carefully, since nearly two thirds of organizational efforts to improve 

software processes result in failure [Kandt 2006, p. 44]. 

Many factors that improve programmer productivity and reduce the occurrence of software bugs are 

fairly well-understood based on empirical research.  This is true of both the software development 

community at large and the HPC scientific software development community in particular [HPCS DTWG 

2007]. 

Many of these defect reduction practices are well-proven and should be implemented.  For example, 

unit testing is well-known to increase programmer productivity by helping developers locate defects more 

quickly.  Implementing unit testing in an application can significantly increase individual development 

time.  However, since on average 20 percent of the modules of a software system account for 80 percent 

of the defects, and less than 5 percent of code can account for more than 45 percent of defects [Kandt 

2006, p. 158], unit testing can be deployed strategically to particularly complex error-prone parts of the 

code, to limit the time required for deployment.  Another effective practice is the use of software 

inspections, which can detect as many as 45-60 percent of defects [Kandt 2006, p. 178] and can reduce 

the cost of defect detection by 5-17 times compared to release testing only [Grady 1992, p. 161]. 

Though software quality practices are of value, historically some conclusions drawn from software 

engineering research regarding the broader software development community have not been entirely 

applicable to the niche industry of HPC scientific software development, for various reasons:  

 The high importance of software performance in the computer time vs. developer time cost 

mix, compared with many PC applications for which software runtime performance is almost 

irrelevant.  

 The difficulty of supporting some software quality principles in the face of immature and 

rapidly changing software and hardware environments.  

 The more short-term research-oriented nature of some codes.  It has been noted that for 

scientific software projects, ―… each [software engineering] technique must be individually 

evaluated to match costs and benefits to project goals. It would be counterproductive, for 

example, to dogmatically apply the rigorous quality assurance processes necessary for 

mission-critical software—where one bug could crash a plane—to the development of 

scientific codes that thrive on risky innovation and experimentation.‖ [Post and Votta 2005, 

p. 40]  
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 The need for flexibility of programming approach based on science domain and application 

type, for which a ―one size fits all‖ approach to programming technique is not appropriate.  

Nevertheless, many of the findings from software engineering research are of value to HPC 

application development efforts.  However, such practices have been either slow in deployment or non-

existent.  For example, it has been remarked that in most computational science software development 

efforts, "few of even the simplest and best-known proven methods for organizing and managing code 

development teams are being employed" [Post and Votta 2005, p. 40]. 

To remedy this problem, actions such as the following can be taken as first steps to promote the 

diffusion of appropriate software engineering ideas within the community: 

 Provide education in the form of training on HPC-aware software engineering practices.  

Many HPC practitioners have backgrounds primarily in the physical sciences and may have 

little previous exposure to software quality practices.  Educational venues would increase 

programmer awareness of potentially useful methodologies for software development. 

 Promote awareness and facilitate usage of mainstream software development tools when 

appropriate.  For example, usage of interactive development environments are able to double 

programmer productivity [Kandt 2006, p. 170]; however, in some cases these tools do not run 

efficiently on front ends of HPC systems due to network latency times, thus reducing or 

eliminating any potential for productivity gains.  Better tool support might remedy this 

problem. 

 Foster a community of best practices that conserves experiences regarding the tradeoffs of 

code efficiency, code flexibility and programmer productivity. 

 Provide institutional leadership and incentives to support improved software quality at the 

organizational level. 

 Support a specific HPC-aware software engineering component within science application 

development teams. 

In light of the inevitable heightening of the challenge in developing and debugging HPC application 

software, organizations must take seriously the need to improve institutional software quality efforts, in 

order to reduce risks regarding the success of next-generation systems and commensurately control costs. 

5.7.3 Parallel Programming Interfaces 

Factors such as the rise of heterogeneous computing, the quantum jump in the amount of parallelism 

required in applications, and the increasing need for locality are creating a disruption in the methods of 
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programming HPC hardware.  The potential performance gains for science applications are too great to 

ignore this paradigm shift.  Various methodologies are being proposed for parallel programming APIs 

(MPI, OpenMP, OpenCL, CUDA, other directives-based methods, PGAS and HPCS languages, hybrids, 

etc.) [Kasim et al. 2008]. 

From the standpoint of science application development and deployment, the following are 

requirements for an effective new programming interface to next-generation systems:  

 Parallel programming interfaces must be user-friendly to new developers but also permit 

access to high-performance hardware capability to the development code teams’ HPC 

performance ―power users‖.  Optimized code within applications must at least be readable, 

and better yet maintainable, by science programmers who are not performance experts. 

 Parallel programming interfaces must have stability, maturity, and planned long-term support, 

to reduce the risk level and attract users to write to the interface. 

 There must be a small, bounded ratio between the performance of casually written source 

code using the programming interface and the performance of highly optimized source code.  

Otherwise, the programming interface must allow a high increase in programmer productivity 

with an associated understanding of the reasons for performance loss. 

 The parallel programming interface must properly differentiate between, on the one hand, 

what performance optimizations the compiler can do, and, on the other hand, which ones the 

programmer must do.  A failure to get this right will make it impossible to write efficient 

code for significant cases.  The compiler and language syntax must allow the programmer to 

be able to optimize the cases that the compiler cannot.  In particular, optimizations for data 

locality that cannot be managed reliably by the compiler must be accessible to the 

programmer in some form. 

 The programming interface should allow portability of application codes across the entire 

range of applicable platforms. 

 It should be possible to run existing legacy application codes with a modicum of performance 

and, when possible, permit an incremental performance upgrade path for development.  As 

mentioned earlier, reuse of code greatly decreases required development efforts and incidence 

of defects. 

 The programming interface should naturally allow for programming abstractions.  On the 

other hand, it should also allow the writing of code for which the experienced programmer 
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can ―see thorough‖ the source code to get some idea of the underlying machine operations 

generated. 

 The programming interface or language should permit good software engineering practices 

(e.g., encapsulation and abstraction, without undue performance loss). 

5.7.4 Application Readiness 
Disruptive changes in hardware technology on the way to attaining exaflop computing promise 

dramatic shifts in programming methodologies.  Changes of this nature will for some time put in flux the 

more established programming approaches based on MPI and/or OpenMP. 

Historically, disruptions such as this have been followed by periods of programming model 

innovation in which programming principles and best practices emerged from developer communities.  

For the current situation, these efforts should begin now and be accelerated in order to prepare codes for 

exaflop computing. 

As has been typical in the past, software modernization efforts will commonly begin with small, 

incremental changes to the source code base along the lines of optimizing kernels and code hot spots.  

The next step will be to perform a major code refactoring or rewrite of the applications in toto to 

systematically take advantage of the performance gains offered by the new hardware.  This effort may 

require several phases of prototyping before determining an effective programming methodology. 

To the maximum extent possible, code teams must design and write application codes to be 

independent of foreseeable hardware and software changes.  Such an approach manages the risk of not 

knowing which parallel programming interface will reach final marketplace acceptance.  Programming 

principles such as separation of concerns should be used to separate algorithm from implementation to as 

great a degree as possible. 

Compiler vendors and system software developers must provide robust, well-optimized, stable, 

standards-based programming interfaces to which code can be written.  These tool developers must focus 

primarily on providing robust basic core- and node-level optimizations, as risk mitigation against the 

possibility that advanced techniques such as general-purpose automatic parallelization do not become 

effective. 

Hardware and software vendors must continue the routine practice of providing training, support and 

interaction, to assist application developers in making the needed transitions. 
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5.7.5 Software Optimization 
OLCF science application development teams reported code optimization as a bottleneck to effective 

software development. 

A successful computational science application team requires expertise in a range of areas, including 

physics, software, computational mathematics, computer science, computer operations and computer 

hardware.  The current practice of mandating a division of labor regarding these expertise areas has 

served the application development process well and should be continued.  In particular, code 

optimization efforts can be delegated to a specialist who has fewer responsibilities in the other technical 

areas of the project and can focus on the task at hand.  At the same time, development team members 

must to some degree be generalists, to the extent that all team members understand the big picture well 

enough to be able to mesh together the varied and sometimes conflicting concerns. 

The degree of emphasis to be placed on code optimization is a tradeoff between programmer effort, 

code maintainability and the potential for code performance gains per unit of effort.  The programmer 

productivity regarding code optimization efforts can be enhanced in several ways. 

Better profiling tools are needed to make it easier to understand the performance of large-scale 

parallel applications.  These tools should be robust, accurate, cross-platform, cross-language and scalable 

to millions of threads.  They must not only collect data regarding performance effectively but must also 

report results in a useful way to the developer.  Due to the challenge of these goals, favor might be given 

to more lightweight tools that have strong reliability and leave a small code base footprint compared with 

heavyweight tools that are prone to lag behind swiftly changing hardware and system software in their 

support.  The FPMPI tool [Gropp and Buschelman 2004] is a good example along these lines. 

The practice should continue of vendor trainings to help developers understand how to write 

optimized code for newer computer hardware and system software.  Subject to security concerns, 

mechanisms such as discussion forums or wikis can be used when appropriate to conserve experiences 

and best practices in application performance optimization. 

As algorithms, compilers and computer hardware have become more complex, the number of tuning 

options that can be used to improve code performance has increased dramatically, making it impractical 

to tune codes manually over the entire range of options.    Autotuning methods give promise for 

significant gains along these lines.  However, autotuning technology needs to mature to be more easily 

usable by the general programmer.  Compiler hinting holds potential promise as well but must become 

more production-ready. 
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5.8 Software SQA and V&V Requirements  

Users of HPC science applications and their audience must have assurance of the accuracy and 

validity of generated science results.  Application software quality assurance (SQA) and verification and 

validation (V&V) are essential components in the life cycle of an application.  

SQA is a ―systematic, planned set of actions necessary to provide adequate confidence that the 

software development process or the maintenance process of a software system product conforms to 

established functional technical requirements as well as with the managerial requirements of keeping the 

schedule and operating with budgetary confines.‖ [Galin 2004]. 

Verification is the process by which one assures that the code ―equations are being solved 

correctly‖—namely, through ―solution verification‖, which ensures that the numerical solutions are 

correct (accurate, convergent) and ―code verification‖, which ensures that the software implementation of 

the associated algorithms is correct (bug free). Validation is the process by which one assures that the 

code ―equations are correct‖—namely that the model formulation accurately and reliably describes reality 

(matches experimental data).  

The growing need for V&V has been described as a ―looming crisis in computational science‖ [Van 

De Vander et al. 2005].  As software becomes more complex from use of more detailed models and 

multiple physics packages and hardware becomes more complex from heterogeneity and greater numbers 

of threads, the need for better SQA and V&V continues to increase.  Sources of error in codes are 

becoming more difficult to find; in this environment, assuring model and software quality is an obvious 

approach to compensating for the impact of growing hardware and software complexities. 

Respondents to the OLCF requirements elicitation identified a variety of procedures currently in use 

for model and software verification and validation.  These include the following: 

 Regression testing; 

 Comparison with results from other codes; 

 Comparison with experiment; 

 Comparison with observation; 

 Comparison with earlier research as reported in the scientific literature; 

 Use of a test suite of established test problems; 

 Use of test problems with analytic solutions; 
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 Comparison with results on different platforms; 

 Comparison with results using slightly different inputs (sensitivity analysis); 

 Comparison with theory; 

 Grid convergence studies; and, 

 Comparison with results using different models. 

In one research study at a national laboratory, a detailed analysis of major code development projects 

revealed that V&V and strong software project management were essential to project success [Post and 

Votta 2005].  However, the same study showed that even in the presence of strong team and institutional 

commitment, V&V is a very difficult problem. 

SQA and V&V efforts for OLCF projects should include the following: 

 Code verification efforts should at least include standard testing approaches from the 

software engineering field, including unit, system and regression testing. 

 V&V should be performed on individual components as well as the entire code. 

 Stronger institutional support should be given to SQA and V&V efforts.  Just as purchasing 

an ―insurance policy‖ is not a waste of resources but is an integral part of risk mitigation, 

SQA and V&V are not a waste of project resources but are an important part of assuring 

science quality. 

 The proposal process for being awarded computational resources could set forth specific 

SQA and V&V requirements as a precondition for funding. 

 Projects could be required to disclose specific risks concerning the accuracy and validity of 

the science generated. 

 The broader computational science research community must address at a wider scale the 

issue of the criteria required to certify that the results of a simulation are valid and thus 

credible. 

5.9 Application Usage Workflow Requirements  

The way applications are used in practice is the ultimate driver of application requirements.  An 

idealized workflow for performing a single computational science experiment using an OLCF platform 

consists of these steps: define the problem; build the model (e.g., generate computational grids); validate 
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the model; prepare run inputs; perform preparatory runs as needed; initiate primary run or runs; generate 

checkpoint/restart and analysis data; restart as needed; postprocess data; generate visualizations; perform 

analysis; validate results; archive data; and finally, disseminate conclusions. 

In practice, a research effort consists of many experiments such as this.  These experiments can be 

performed either sequentially or concurrently, as the specifications for later experiments may or may not 

depend on the findings of earlier ones.  The workflow can be dynamic, as intermediate results of a 

simulation suggest new avenues of computational experimentation.  These relationships embody the 

actual science production workflow. 

The OLCF requirements elicitation process was used to poll domain scientists regarding the details of 

the workflow for their respective projects.  This process revealed a number of commonalities in workflow 

requirements.  The following were some of the findings: 

 Bottlenecks: The largest perceived workflow bottleneck was the actual execution time or 

queue wait time of the application jobs on the targeted platform.  Naturally, this factor can be 

addressed directly by procuring larger, more powerful HPC systems.  However, additional 

factors were seen as bottlenecks, such as experiment design, mesh generation, data analysis 

and off-site data movement. 

 Visualization: A variety of visualization and analysis tools are used across projects, such as 

ParaView, VisIt, IDL, MatLab, VMD, Gnuplot, Tecplot, and Ensight. 

 Archived data: The amount of simulation data archived ranged from a small fraction to the 

entirety of the simulation data. 

 Anticipated future changes: The primary anticipated workflow change going forward is an 

increase in the scope and accuracy of the science, leading to greater demands on computation 

and I/O storage requirements.  An additional change expected by some projects is greater use 

of on-site or even application code in-situ analysis and visualization techniques, to deal with 

the problem of managing growing quantities of data. 

The following are identified as key requirements for workflow management on next-generation 

leadership computing hardware. 

1. Storage and manipulation of growing amounts of data.  Higher fidelity simulations will 

generate exponentially increasing amounts of data.  This growth encompasses both the 

aggregate amount of data and the number of files, stressing both data and metadata storage.  

Science workflow is limited by both the size and speed of data storage systems.  Future 
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systems must address the need for large, fast storage under the constraints of a multi-user 

environment. 

2. Data resilience and integrity.  The presence of more data and metadata increases the 

probability of failure.  Fault tolerance applies not only to processors and DRAM memories 

but also to disk storage.  Storage systems, file formats and I/O libraries must be robust and 

fault tolerant to handle increasing quantities of data. 

3. Automation of workflow and data management.  As science models become more 

complex, science codes are coupled to produce new science, core counts are increased, the 

volume of data produced grows, and the human factor in managing science workflow 

becomes increasingly stressed.  The science process workflow must be automated as much as 

possible to manage this growth in complexity.  Workflow management tools can be of use in 

this regard (e.g., see [Cummings et al. 2008]). 

4. Data organization to enable analytics.  Once created, science data must be available to 

analyze, with fast response times for scientists analyzing the data.  As the quantity of data 

grows, reaching this objective becomes more challenging.  Data management systems must 

provide tools to control the layout of data on mass storage devices to facilitate fast queries.  

In situ analysis when appropriate is a further step to lessening the data access burden.  

Furthermore, advanced mathematical algorithms must be provided to support operations such 

as dimension reduction, statistical analysis and feature identification. 

5.10 Data Management Requirements 

A productive simulation environment requires systems and tools capable of storing, transmitting, and 

manipulating extremely large datasets, both within and across multiple HPC centers. Large-scale 

simulation platforms are capable of generating multiple petabytes of data per year, and archival data 

storage requirements are growing exponentially as illustrated in Fig. 5.3.  

In addition to archival storage, parallel I/O storage data growth is increasingly challenging. As 

illustrated in Fig. 5.4, data stored in the OLCF parallel I/O environment recently increased by over 800TB 

in just three months. As simulation environments continue to scale both in terms of compute cores and 

system memory, the need to store massive amounts of data for both defensive and productive I/O 

increases dramatically. Managing this dramatic storage growth requires careful planning of system 

upgrades and improved information lifecycle management. 
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Fig. 5.3. OLCF archival storage growth 

 

Fig. 5.4. Parallel I/O environment data growth 
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As the number of datasets located both in archival and in online storage increases, the ability to 

effectively manage, identify and retrieve this data becomes increasingly challenging. With over 150 

million files in online storage today and projections of over 1 billion files in the near future, parallel tools 

must be developed to manage these datasets. Standard system tools for data management such as cp, tar, 

and find must be parallelized to take advantage of parallel I/O environments and high performance 

archival systems. 

The identification of a handful of relevant datasets among over 1 billion potential candidates will 

require improved metadata tagging and search capabilities. Standardization of metadata and improved 

metadata extraction will allow users of these scientific datasets to quickly identify datasets of interest 

while providing a basis for automation of a number of data-analysis activities. To ensure the integrity of 

these scientific results, the storage environment will need to be enhanced to provide data provenance 

features allowing users to determine both the origin and subsequent transformations of these datasets. 

As science teams increasingly utilize multiple compute centers and share data among these centers, 

high-performance data transfer mechanisms between these sites are of increasing importance. Current 

generation networking technologies limit data transfers to a maximum of 1.25 GB/sec over a single 10Gb 

WAN link. As an example, transferring a 300TB dataset at these rates could take days or more to 

complete in the absence of network congestion, unlikely on a shared network such as ESnet. The 

Advanced Networking Initiative (ANI) which will provide a 100 Gb native optical network loop among 

the OLCF, ALCF, and other facilities will be required to allow reasonable transfer times for these 

extremely large datasets and allow effective use of multiple computational resources spanning a number 

of HPC centers. 
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6.  CONCLUSIONS AND RECOMMENDATIONS 

The purpose of the OLCF requirements modeling process is to insure that institutional resources are 

effectively procured, deployed and managed so that nationally-identified science objectives are attained 

cost effectively and with a low risk factor. 

A major finding of the OLCF 2009 requirements process is that the next stages of advance in high-

end computational science are likely to be significantly more challenging than past efforts.  Certainly, the 

challenges of high performance computing have continuously increased over time, as hardware, science 

models, algorithms and application codes have increased in complexity.  Furthermore, adapting to periods 

of disruption in hardware architecture has been a great challenge for application software. 

However, the current shift to heterogeneous processors may be the most significant challenge yet, 

since (1) the performance penalty for not modifying applications to take advantage of new hardware is the 

highest since the advent of message passing programming, and (2) HPC science applications are more 

complex than ever before and thus increasingly difficult to revise for new hardware. 

Planning for innovation is an inexact science.  Managing requirements in a period of change has a 

level of risk and uncertainty.  However, the OLCF requirements process has successfully identified 

actionable steps to prepare for next-generation leadership science.  The following are the primary findings 

and recommendations from this process: 

 Next-generation science models will require at least an order of magnitude more compute 

power than current hardware provides.  The next OLCF system will require a capability of 

10-20 petaflops or more. 

 Science applications make use of multiple computational algorithm ―motifs‖.  The motifs 

tend to be shared across multiple science domains and applications. The reliance on certain 

motifs is increasing over time.  It is recommended that effective libraries be developed to 

support more of these computational motifs.  Such libraries would be leveraged to provide 

improved performance and productivity across science domains and would also free 

developers to focus on more pressing concerns. 

 More research and deployment of improved algorithms are needed to meet the challenge of 

increased numbers of processing threads and growing demands for data locality. 

 MPI is the predominant means of obtaining parallelism.  Use of OpenMP and threads is 

increasing.  Programming interfaces such as CUDA, OpenCL and new directives-based 

methods will be required for new hardware.  These interfaces must be usable and provide 



 

 

82 6.  Conclusions and Recommendations 

 

access to the performance potential of the new hardware.  Application teams must prepare for 

these changes. 

 Applications will require varying levels of refactoring to adapt to heterogeneous processor 

hardware, from rewriting of kernels to major code restructuring. 

 Applications on average spend one third of runtime in scientific or mathematical libraries.  

For future hardware, libraries must be well-tuned to system hardware for targeted use cases. 

 The system software stack must provide a diverse set of tools and services to support parallel 

applications. 

 Application performance is particularly dependent on several specific hardware attributes, 

including interconnect bandwidth, node peak flops, memory bandwidth, MTTI, node memory 

capacity, memory latency and interconnect latency.  Future platforms cannot afford to neglect 

any of these attributes in the pursuit of effective leadership science. 

 Processor accelerators such as NVIDIA general purpose GPUs directly address requirements 

for three of the key hardware attributes, including node peak flops, memory bandwidth, and 

memory latency. 

 Better software tools must be made available to help manage the increasing complexity of 

HPC hardware and software.  Better tools can be obtained by increasing support of tool 

developers, by supporting the construction of more lightweight, easily-maintained tools or by 

leveraging more heavily existing COTS tools. 

 To address concerns of software quality and robustness, application developers must 

incorporate proven software development techniques into project workflows.  Institutional 

support must be given for this.  V&V efforts must be strongly supported. 

 Increasing science accuracy will drive requirements for greater amounts of secondary storage.  

Capabilities for storing, transferring and visualizing larger quantities of data will be required. 

The challenges of effectively using newly deployed computing hardware are daunting.  To address 

nationally mandated computational science goals, efforts must be undertaken now to prepare for and 

adapt to changes in leading-edge HPC computing hardware.  
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APPENDIX A. OLCF OVERVIEW 

The U.S. Department of Energy-funded Oak Ridge Leadership Computing Facility (OLCF) is part of 

the National Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory (ORNL).  

The NCCS was established in 1992.  The mission of the NCCS is to advance the state of the art in 

high performance computing and to make available the capabilities of high-end parallel supercomputers 

to scientists in a wide variety of computational science domains.  NCCS works with academia, industry, 

laboratories and government agencies to provide a computational environment that enables the scientific 

community to employ this computational capability to solve important problems in diverse areas such as 

fusion, climate, astrophysics, materials science, biology, nanoscience, chemistry, accelerator physics, 

combustion, engineering, and other disciplines vital to maintaining U.S. science leadership. 

The NCCS leadership computing efforts initially focused on a Cray X1 computer, ―Phoenix,‖ with 

peak speed of 6.4 teraflops and a Cray XT3 system, ―Jaguar‖, with peak speed of 26 teraflops.  A series of 

upgrades resulted in the Cray XT4 ―Jaguar‖ system in 2007 becoming the second fastest computer in the 

world, achieving 101.7 teraflops on the LINPACK benchmark and 119 teraflops peak speed.  In 2008, the 

NCCS began operation of the Cray XT5 ―Jaguar‖ system, the world’s fastest computer for open science, 

which together with the Jaguar XT4 system delivered 1.64 petaflops of performance.  In late 2009 the 

Jaguar XT5 system was upgraded to a capability of 2.595 petaflops peak speed. 

The Jaguar XT5 system has been the winner of numerous awards in high performance computing. 

The 2009 Gordon Bell Prize winner—a team led by Markus Eisenbach of ORNL—achieved 1.84 

petaflops on Jaguar with a scientific simulation of high-temperature superconducting materials. Jaguar 

took first place in three of four competitions at the 2009 High-Performance Computing Challenge (speed 

in solving a dense system of linear equations, Global-Fast Fourier Transform and sustainable memory 

bandwidth) and third place in the fourth category (speed in executing Global-Random Access). 

In addition to Jaguar, the OLCF houses an array of support systems and services, including high-

performance memory, file systems, archival storage, networking capabilities and visualization hardware 

including the EVEREST visualization system. 

The NCCS facility includes a diversity of support personnel, including the Scientific Computing 

Group (SciComp), whose role is to collaborate with OLCF users to accelerate scientific progress.  

SciComp members apply their extensive experience in parallel algorithm development and 

implementation, model formation, software development, and code porting and tuning to support science 

application development teams. 
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In 2010, Oak Ridge National Laboratory will make nearly 950 million core-hours available on Jaguar 

under the DOE’s Innovative and Novel Computational Impact on Theory and Experiment, or INCITE, 

program.  The INCITE program awards allocations on some of the world's largest computers to address 

grand challenges in science and engineering. 

To design the next-generation HPC system, NCCS is working in collaboration with the DOE Office 

of Science and the Department of Defense High Productivity Computer System (HPCS) program.  By 

2011-2012, the Office of Science plans to install a computing platform of roughly 20 petaflop capability 

resulting from the HPCS program.  Further into the future, the plan is to install a 100-250 petaflop 

platform in the 2015 time frame and an exaflop machine by 2018. 
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APPENDIX B. REQUIREMENTS ELICITATION 

Members of the Scientific Computing Group at the Oak Ridge Leadership Computing Facility 

(OLCF), part of the National Center for Computational Sciences (NCCS) at Oak Ridge National 

Laboratory (ORNL), surveyed numerous scientists in a broad range of scientific domains and asked them 

to speculate on requirements for their scientific application(s) on Leadership Computing platforms in the 

next 3–5 years. A large fraction of the information, guidance, and plans outlined in this document is 

derived from the answers provided in these surveys from this expert community of leading computational 

scientists. Without their insight, knowledge, and experience, the application requirements outlined in this 

document would not have nearly the fidelity or significance. The survey questions are listed here.  

 

Project Overview 

 Project name 

 Contact information for the project (principal investigators, emails, phones, URL) 

 Scientific domain (chemistry, fusion, high energy, nuclear, other) 

 Team size 

 Team institutional affiliation(s) 

 Composition of team personnel by training and by chief technical or scientific focus area 

 Team resource allocation for code development, code maintenance, code utilization 

 Code(s) used and/or developed 

 Description of each code, including hyperlinks to home page 

 Development history (including where and who) 

  

Science Motivation and Impact 

 Why does your science need leadership computing (use of a large fraction of a large-scale HPC 

system)? 

 Without leadership computing, can progress be made at all? Or as fast?  

 What science questions are you answering? 

 What impact will your answers have on your field? Other fields? 

 What do you consider to be the most exciting and important aspects of this research? 

 How will you use your results to confirm observations or measurements (e.g., are you simulating 

a particular experimental device, or will your findings be tested in other ways)?  

 Will your models have a predictive capability?  

 

Application Models 

 Briefly describe the basic physics or system being modeled by your code. 

 How do you envision your model(s) for science changing in the next several years as more 

advanced computer resources become available?  
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 What is the application area (molecular physics, nanoscale science, climate, environment, 

combustion, fusion, nuclear energy, biology, chemistry, astrophysics, nuclear physics, accelerator 

physics, QCD, aerodynamics, etc.)? 

 Are your models deterministic? Stochastic? Both? If deterministic, how are your models 

expressed (e.g., partial differential equations)? 

 Is the model steady or dynamic (e.g., boundary value problem or initial value problem)? 

 Are multiple, simultaneous physical processes modeled (i.e., multiphysics 

 How many independent variables or degrees of freedom per discrete solution point currently 

describe your physical system? 

 Does the nature of the model vary over space and/or time (e.g., more DOFs or different 

connectivity in different physical regions)?  

 How are these factors expected to change in the next several years as models are improved and 

more advanced computer resources become available? What new models or capabilities would be 

of chief importance to develop for use in improving computer hardware? 

      

Application Algorithms 

 What types of algorithms and computational mathematics are used (e.g., structured grids, 

unstructured grids, adaptive mesh refinement, spectral/FFT, dense or sparse linear algebra, Monte 

Carlo methods, finite state machines, combinational methods, graph traversal, dynamic 

programming, particles, backtrack/branch and bound, graphical model inference, finding nearest 

neighbors)?  

 How are these factors expected to change over the next several years? 

 If dense or sparse linear algebra, what methods are used? 

 If grids, what types of method are used (finite difference, finite element, etc.) (Eulerian, 

Lagrangian, MD)? 

 If AMR, what type of refinement is used (patch-based, cell-based, etc.)? 

 Do your algorithms adaptively change as a function of space and/or time based on the data?  

 Have you been able to quantify convergence properties and numerical errors of your algorithms?  

 What is the largest source of numerical error in your solution algorithms?  

 How are these factors expected to change over the next several years, as new algorithms are 

implemented and more advanced computer resources become available? What new algorithms 

would be of chief importance to develop for use in improving computer hardware? 

 How are these factors expected to change over the next several years as new algorithms are 

implemented and more advanced computer resources become available? What new algorithms 

would be of chief importance to develop for use in improving computer hardware? 

     

Application Parallelization Strategy 

 What is your current data decomposition model (e.g., distributed, domain replicated)? What is the 

primary axis of parallelism (e.g., space, time, task)? Are you instantiating parallelism with MPI 

tasks, threads, or both? 

 Do your science requirements dictate that your code scale in a strong sense (fixed problem size, 

increase concurrency), a weak sense (fixed problem size per node), or both? What parameter do 

you scale on? 

 Is your application load balanced?  

 What method is used for load balancing?  

 Does your application require dynamic repartitioning 

 What techniques, if any, are used to increase memory locality for improved cache utilization? 

 What is your current I/O model (e.g., parallel, serial through a single PE, hybrid)?  
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 How important is a fast underlying message-passing fabric to obtaining optimal performance 

from your code?  

 Is your code sensitive to network latency, bandwidth, or both?  

 Are your algorithms sensitive to on-node memory bandwidth?  

 How are these factors expected to change over the next several years? 

 Is the domain of dependence for any given state variable local (i.e., dependent upon other nearby 

state variables) or global?  

 What new parallelization, cache optimization, or I/O strategies are being considered? 

 Does your application have unexploited concurrency?  

 

Application Software 

 What platforms does your code run on? What is your preferred platform? 

 How many lines of code comprise the primary models you plan to run (single lines of code, 

function points, etc.)? 

 What computing and/or scripting languages are employed (Fortran, C, C++, Python, etc.)? 

 What libraries do your applications require, including I/O libraries such as NetCDF or HDF?  

 How are these factors expected to change over the next several years? 

 What compiler vendors are supported and typically used (PGI, PathScale, etc.)? 

 Are there functionalities in your code that could be offloaded to a library function?  

 To what extent does your team develop and use its own codes?  Codes developed by others in the 

DOE and general scientific community? 

 What software is used to achieve parallelism (MPI, OpenMP, PThreads, etc.)? 

 What software, if any, is used for I/O?  

 What data file formats are used (HDF5, NetCDF, PHDF5, pNetCDF, etc.)? 

 What analysis programs (data mining, visualization, etc.) do you run? (IDL, Matlab, VisIt, 

EnSight, AVS, Gnuplot, SCIRun, Python/Perl scripts, R, etc.)?  

 Can your application execute on a heterogeneous platform (i.e., nodes having different 

hardware)? 

    

Application Development Process 

 For the primary model(s) you plan to run, how often is a new software release issued?  

 What software development tools are used?  

 What is the biggest time bottleneck in the software development cycle?  

 Is the software you plan to run under active development?  

 How are these factors expected to change over the next several years? 

 Is there any structure imposed on the development of your software product (e.g., do you use 

software life-cycle model such as waterfall, evolutionary delivery, etc.)? 

 Please list the specific tools or processes used for the following software engineering practices: 

 Configuration management (revision control, etc.) 

 Quality control and testing 

 Documentation 

 Bug and issue reporting and tracking 

 Code reviews 

 Project planning 

 Project scheduling and tracking 

 Collaboration management 

 What build system do you use?  Is it ―maintenance free‖?  

 Does your code have a centralized software repository?  
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 What is the split between code development on computer center computers and code 

development on computers at other institutions? 

 Is your code developed by a single individual or by a team?  

 What is the maturity of your software in terms of age, testing breadth and depth, and ability to 

model the science problems planned? 

       

Application Software Quality Assurance (SQA) and Verification and Validation (V&V) 

 When moving your codes to ORNL resources, how do you plan to verify that the model(s) are 

behaving as expected?  

 What kind of testing (e.g., unit, regression, integral) do you perform? How many of each? 

 What is your solution validation strategy? 

 What is your verification strategy? How are your simulations verified (solving equations 

correctly)? 

 What is your validation (solving the right equations) strategy? What experimental facilities do 

you use for validation? Does your project have adequate resources for validation?  

 What confidence level (level of predictability) do you have in your current simulations? Can this 

be quantified (e.g., ―error bars‖)? If not, is this possible with more computational resources? 

What physics models are crudely represented today (i.e., have the highest uncertainties or 

sensitivities)? 

 What V&V tools and methodologies (e.g., method of manufactured solutions) do you use? 

 How are these factors expected to change over the next several years? 

      

Application Usage Workflow 

 Describe a typical use case for the code(s) you will run. An example would typically include 

problem definition, problem setup, main compute phase, postprocessing, data analysis and 

visualization, and dissemination of results. 

 What are the time-intensive bottlenecks for the use case outlined above? 

 What visualization and analysis tools do you typically use (e.g. NCO, Ferret, VisIt, IDL)? 

 What maximum simulation turnaround time can you tolerate and still move your science 

forward? 

 For a given processor count, what fraction of your simulation run time is spent in I/O? 

 What is the expected annual use of resources in terms of processor-hours, disk, and archival 

storage? 

 What is the size of a typical job in terms of core count, memory, disk, archival storage, and 

wallclock time? 

 What are your temporary and archival storage size needs for analysis dumps and restart dumps 

(expressed as a function of the simulation core count)? 

 Do you archive all of your data from a simulation, or just a fraction of it?  

 What size are the external communities your code or datasets support? 

 What is the number of users? 

 What proportion of your output data do you transfer to your home institution? 

 How are these factors expected to change over the next several years? 

 Are your computational experiments sequential (i.e., the current dependent upon the previous 

result)?  

 What turnaround time would allow detailed parameter studies and optimization?  

 How much time do you spend analyzing current runs?  From the end of the simulation to the time 

you publish? 
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 What are the frequency and size (in terms of fraction of simulation image) of your restart and 

graphics dumps?  

 What is the steady-state use of resources on a production basis per month, in terms of processor-

hours, disk, and tertiary storage rate of change?  

 Does your analysis program read in all of your data (all of the variables, all of the timesteps 

 What is your current bottleneck in analysis (e.g., data movement, coming up with new routines 

for new analysis, trying to decide which routine will work best with a new dataset, comparing 

results to older data and experimental data)? 

 What is the split between interactive and batch use? 

 How do you monitor your running simulation? (ASCII output and run gnuplot? Transfer file over 

to your cluster and run another program? Real-time monitoring? Visualization tool on restart 

dumps?) 

 How do you use archival storage? Are your simulation datasets analyzed and used by many 

others, or are they for single-user backup? 

 Based on past experience, what do you anticipate increased computing capabilities will provide?  

 Better turn-around time for the project? 

 More users and incremental improvement in use with little or no change in scale or 

quality? 

 Reduced granularity, resulting in constant solution time, though more accurate results? 

 New applications permitting in new approaches and new science? 

 How, specifically, has your use changed with specific facilities increases? 

 How are these factors expected to change over the next several years? 

      

 Application Performance 

 Do you have a normalized performance metric for your application (e.g., grind time)?   If so, 

what is it?  Is it being tracked?  

 What is the maximum demonstrated scalability of the code (in a weak and/or strong sense)?  

 What is the maximum projected scalability of the code? How was this figure obtained? 

 What is the greatest hindrance to scalability at large core counts? What algorithms are primarily 

responsible? 

 Does your application have a few identifiable performance bottlenecks?  

 Are these bottlenecks localized in software?  

 What do these parts of the code do?  

 Is it likely that significant performance improvements could be attained by implementing further 

code optimizations?  

 Using alternative compilers, compilation options, or libraries? 

 What fraction of your simulation run time is spent in communication? 

 How much memory per core does your code typically require?  

 What fraction of machine peak speed does the code typically attain? What is the primary limiting 

factor (memory bandwidth, communication bandwidth, load imbalance, I/O, etc.)? 

 If hardware flop rate or memory capacity was doubled, how would you make use of these added 

resources?  

 Communication questions  

 For the primary interprocess communication tasks of your code, what is the typical 

number of other processes communicated with by each process? Does the communication 

topology vary over space and/or time? 

 What is the distribution of message sizes? 

 What kind of message passing calls does you code use (blocking, asynchronous). 

 Memory questions  
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 What is your application’s normalized memory usage (e.g., double precision words 

required per discrete solution point or cell)? What fraction of this can be accounted for by 

the permanent state variables representing the physical system you are modeling?  

 Does your application require an extensive amount of indirect addressing? What is the 

aggregate computational intensity (flops per memory reference)? 

 Computation questions 

 What fraction of the total cycles is devoted to floating point ops, integer ops, logical ops, 

data movement, etc.? 

 What is the ―efficiency‖ of the code, and how is it measured?  

 What-if questions  

 How might the quality (fidelity of physics models) of your science change with platform 

peak speed and aggregate memory? 

 How might the productivity of your science output change with platform peak speed and 

aggregate memory?  
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SCIENTIFIC

LIAISONS
(domain specific 
scientists)

COMMUNICATION

WITH USERS
(multiple channels, 
easy and frequent 
access)

TRAINING CURRENT

AND FUTURE USERS
(workshops tailored to 
user needs)

OUTREACH TO THE

NEXT GENERATION
(learning opportunities for 
student and faculty)

 

User surveys conducted by an independent third party of 

OLCF users with 48% response rate from 226 surveys 

showed: 

 Overall result in 2008 was 4.2 on a scale from 1 to 

5 where 5 is very satisfied 

 Every question scored 3.5 (satisfactory) or higher 

User surveys, as well as our frequent and close interaction 

with users, enable us to see problems immediately and 

continually improve our facility.   

APPENDIX C. USER SUPPORT 

 

One of the key 

components to 

bridging the 

gap between 

application 

scientists and the 

quickly changing 

landscape of computing is providing impeccable user support, from 

basic machine usage issues to complex algorithm development and 

implementation.  The OLCF addresses the needs of its users through two support 

teams, the User Assistance and Outreach Group (UAO) and the Scientific Computing 

Group (SciComp).  Using a multifaceted approach, users have access to the level of support 

and features necessary for projects success. 

 

The OLCF provides experts in user support, including Ph.D.-level liaisons from science fields who 

are also experts in developing and optimizing code for the OLCF systems.  Large projects are assigned 

primary, secondary, and visualization liaisons to maximize opportunities for success on the leadership 

computing resources.  Liaisons address user needs in scientific computing, visualization, end-to-end 

workflow, and runtime performance.   
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Scientific Liaison  

A critical area in which the OLCF excels is in assisting the user communities in porting, tuning, and 

scaling applications to run on these highly scalable systems. The Scientific Computing Group within the 

OLCF provides a liaison to each project to assist in these activities. Our customers have told us that 

without the liaisons, using these large systems would be much more difficult and less productive. As we 

begin deploying accelerator-based computer systems, this activity will make the difference between 

effectively using the systems and not. Already, multiple members of the group are developing algorithms 

for accelerators and heterogeneous processor technology. 

Duties include:  

 Providing guidance and experience to the project team 

 Improving performance and scalability of the project application software 

 Assisting in redesigning, developing, and implementing strategies that increase effective use of 

OLCF resources  

 Scalable algorithmic choices and library-based solutions 

 Assisting in the planning of new code and algorithm development 

 Providing an advocacy interface to the OLCF resource decision entities  

 Resource Utilization Council 

 Technology Council 

 Software Council 

 

 

Visualization Liaison 

Visualization is an integral component to scientific computing; allowing scientists to delve into their 

data as well as immediately convey their science to a larger audience. The OLCF provides a visualization 

liaison to every INCITE project for their post-analysis data processing needs. Support services include: 

 Support of visualization tools 

 Conversion of data 

 Statistical analyses 

 Production of publication-ready images 

 Production of movies and animations 

 Highlighting of science successes to visitors 

 Research of new data exploration techniques 

 Writing of custom visualization tools and algorithms 

 Parallel data analysis support 

 Large display support 
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APPENDIX D. SURVEY OF APPLICATIONS 

The applications listed here are a sampling of the leadership-class applications ported to the Jaguar 

system.  These codes possess high potential for achieving breakthrough science results. The codes span 

many domains of science and a wide variety of models, algorithms, and software that collectively stress 

all aspects of a leadership-class computational resource. These applications originate from many different 

institutions. For each code in this list the following are summarized: physical models, numerical 

algorithms, scaling performance, and functional software requirements (system software and 

mathematical libraries). The code data is based in large part on details graciously provided by the relevant 

code authors and subject matter experts. A list of codes is given in Table D.1. Details for each code are 

provided in the text following the table. 

 

Table D.1. Representative applications ported to the Jaguar system 

Science Category Research Area Code(s) 

Biology Biophysics GROMACS, LAMMPS, NAMD 

Chemistry Chemistry MADNESS, NWChem, CP2K, QMCPACK 

Earth Science Climate 

Geosciences 

Ocean Modeling 

CAM 

PFLOTRAN 

POP 

Engineering Combustion S3D 

Fusion Fusion Energy AORSA, GTC, TGYRO 

Materials Material Sciences 

Nanoelectronics 

Nanosciences 

DCA++, gWL-LSMS, VASP 

OMEN 

LS3DF 

Nuclear Energy Neutron Transport Denovo, UNIC 

Physics Astrophysics 

Condensed Matter 

Lattice Gauge Theory 

Nuclear Physics 

Chimera, FLASH 

CASINO 

MILC/Chroma 

MFDn, NUCCOR 
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D.1 Biology 

Biophysics: GROMACS 

Molecular dynamics simulator 

http://www.gromacs.org 

 

GROMACS is a versatile package for performing molecular dynamics, i.e., simulating the Newtonian 

equations of motion for systems with hundreds to millions of particles. It is primarily designed for 

biochemical molecules like proteins, lipids, and nucleic acids with many complicated bonded interactions, 

but since GROMACS is extremely fast at calculating the nonbonded interactions (that usually dominate 

simulations), many groups are also using it for research on nonbiological systems (e.g., polymers). 

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

C, F90 MPI None None 

Math 

Libraries: 

Library Function Functionality 

FFT fftw_create_plan 

fftw 

fftw_destroy_plan 

Creates/destroys an object with information 

required to compute FFT in the FFTW 

library 

Algorithms: Ordinary Differential Equations of Newton’s Dynamic; PME, PPPM, Ewald summation 

Scaling: A representative breakdown of CPU cost for a time step is 85% for force computation, 

10% for neighbor finding, and 5% includes time integration, application of boundary 

conditions, etc. Typically, for biomolecular systems, the force computation is dominated 

by short-range pairwise interactions and long-range Coulomb interactions.  The 

traditional method for solving the long-range Coulomb part are Ewald summations with 

the solution to the smooth summation part accomplished via distributed 3-D FFTs on a 

grid to which particle charge density is interpolated. The 3-D FFT’s have a scale 

computationally O(NlogN) but the communication overhead of the distributed 3-D FFT’s 

make them scale poorly with system size – several all-to-all communication patterns. If 

we ignore the cost of FFTs (which typically only require >50% of the force computation 

time for large systems), classical MD simulations scale as O(N) in both memory and 

CPU cost, where N is the number of particles simulated.traditional method for solving the 

long-range Coulomb part are Ewald summations with the solution to the smooth 

summation part accomplished via distributed 3-D FFTs on a grid to which particle charge 

density is interpolated. The 3-D FFT’s have a scale computationally O(NlogN) but the 

communication overhead of the distributed 3-D FFT’s make them scale poorly with 

system size – several all-to-all communication patterns. If we ignore the cost of FFTs 

(which typically only require >50% of the force computation time for large systems), 

classical MD simulations scale as O(N) in both memory and CPU cost, where N is the 

number of particles simulated. 

Other: Cellulosic Ethanol: A Simulation Model of Lignocellulosic Biomass Deconstruction. 

Load balancing uses  neutral territory methods with staggered domains.   
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Biophysics: LAMMPS 

Large-scale Atomic/Molecular Massively Parallel Simulator  

http://lammps.sandia.gov/  

 

LAMMPS is a classical molecular dynamics (MD) code developed primarily at Sandia National 

Laboratories over the past ten years. LAMMPS uses atomistic-based modeling of molecular systems such 

as biomolecules, material surfaces, and chemical systems. The atomistic modeling uses Newtonian 

(classical) mechanics for the system where the atoms are represented by a point mass and charge. 

Additional terms in the physical model include two-, three-, and four-body terms and pairwise interaction 

(electrostatic and van der Waals interactions) beyond the fourth body interaction. Computationally, MD is 

similar to the N-body problem. Unlike gravitational or plasma simulations, the forces in MD are mostly 

short range, and particle densities do not reach high values. The timestep in an MD simulation is limited 

by the need to accurately integrate atomic motion between strongly interacting atoms (e.g., between two 

atoms coupled by a harmonic bond). For computational efficiency, LAMMPS uses neighbor lists to keep 

track of nearby particles. The lists are optimized for systems with particles that are repulsive at short 

distances, so that the local density of particles never becomes too large. On parallel machines, LAMMPS 

uses spatial-decomposition techniques to partition the simulation domain into small 3-D subdomains, one 

of which is assigned to each processor. Processors communicate and store ―ghost‖ atom information for 

atoms that border their subdomain. LAMMPS is most efficient (in a parallel sense) for systems whose 

particles fill a 3-D rectangular box with roughly uniform density. 

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

C++  MPI  None  None  

Math 

Libraries: 

Library Function Functionality 

FFTW  fftw_create_plan 

fftw 

fftw_destroy_plan  

Creates/destroys an object with information 

required to compute FFT in the FFTW 

library  

Algorithms: A spatial decomposition algorithm and a particle-particle/particle mesh (PPPM) method 

and particle mesh Ewald algorithm. Complex 2-D and 3-D parallel FFT are also used. 

Scaling: A representative breakdown of CPU cost for a timestep is 85% for force computation, 

10% for neighbor finding, and 5% includes time integration, application of boundary 

conditions, etc. Typically, for biomolecular systems, the force computation is dominated 

by short-range pairwise interactions and long-range Coulomb interactions.  The 

traditional method for solving the long-range Coulomb part are Ewald summations with 

the solution to the smooth summation part accomplished via distributed 3-D FFTs on a 

grid to which particle charge density is interpolated. The 3-D FFT’s have a scale 

computationally O(NlogN) but the communication overhead of the distributed 3-D FFT’s 

make them scale poorly with system size—several all-to-all communication patterns. If 

we ignore the cost of FFTs (which typically only require >50% of the force computation 

time for large systems), classical MD simulations scale as O(N) in both memory and 

CPU cost, where N is the number of particles simulated. 

Other: There is no runtime load balancing in LAMMPS. 
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Biophysics: NAMD 

Molecular dynamics code designed for simulation of large biomolecular systems 

http://www.ks.uiuc.edu/Research/namd/ 

 

NAMD is a parallel molecular dynamics code designed for high-performance simulation of large 

biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as 

tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop 

computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. 

NAMD uses the classical molecular dynamics force field, equations of motion, and integration methods 

along with the efficient electrostatics evaluation algorithms employed and temperature and pressure 

controls used. Features for steering the simulation across barriers and for calculating both alchemical and 

conformational free-energy differences are present.  

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

C++ MPI Charm++ None 

Math 

Libraries: 

Library Function Functionality 

FFTW  fftw_create_plan 

fftw 

fftw_destroy_plan  

Creates/destroys an object with information 

required to compute FFT in the FFTW 

library  

Algorithms: Verlet algorithm to propagate ODEs 

Scaling: A representative breakdown of CPU cost for a time step is 85% for force computation, 

10% for neighbor finding, and 5% includes time integration, application of boundary 

conditions, etc. Typically, for biomolecular systems, the force computation is dominated 

by short-range pairwise interactions and long-range Coulomb interactions.  The 

traditional method for solving the long-range Coulomb part are Ewald summations with 

the solution to the smooth summation part accomplished via distributed 3-D FFTs on a 

grid to which particle charge density is interpolated. The 3-D FFT’s have a scale 

computationally O(NlogN) but the communication overhead of the distributed 3-D FFT’s 

make them scale poorly with system size – several all-to-all communication patterns. If 

we ignore the cost of FFTs (which typically only require >50% of the force computation 

time for large systems), classical MD simulations scale as O(N) in both memory and 

CPU cost, where N is the number of particles simulated.  

NAMD implements runtime load balancing by the use CHARMM++ to migrate work 

between the processors. 

Other: 2002 Recipient of the Gordon Bell Award 
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D.2 Chemistry 

Chemistry: MADNESS 

Multiresolution Adaptive Numerical Scientific Simulation 

http://code.google.com/p/m-a-d-n-e-s-s/ 

 

MADNESS provides a high-level environment for the solution of integral and differential equations in 

many dimensions using adaptive, fast methods with guaranteed precision based on fast methods and 

multiwavelet analysis and novel separated representations. There are three main components to 

MADNESS. At the lowest level is a new petascale parallel programming environment that increases 

programmer productivity and code performance/scalability while maintaining backward compatibility 

with current programming tools such as MPI and Global Arrays. The numerical capabilities built upon 

the parallel tools provide a high-level environment for composing and solving numerical problems in 

many (1–6+) dimensions. Finally, built upon the numerical tools are new applications with initial focus 

upon chemistry, atomic and molecular physics, material science, and nuclear structure. 

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

C/C++, Python, 

Fortran 

MPI, Global Arrays   

Math 

Libraries: 

Library Function Functionality 

BLAS   

Algorithms: Fast methods with guaranteed precision based on multiwavelet analysis, separated 

representations of functions and operators, partitioned singular value representations, and 

bandwidth-limited bases for efficient sampling in space and evolution in time.  

Scaling: Scaled to 130K+ cores on Jaguar XT5 

Other: MADNESS enables scientific applications by addressing the difficulty of solving 

equations in multi-scale systems implicit from quantum-scale models to simulations of 

turbulent, reactive flow. Current utilization of MADNESS is in a density functional 

theory (DFT) application for chemistry with developments in fluid dynamics and climate 

modeling.  
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Chemistry: NWChem 

Quantum chemistry application 

http://www.emsl.pnl.gov/docs/nwchem/nwchem.html  

 

NWChem provides many methods to compute the properties of molecular and periodic systems using 

standard quantum mechanical descriptions of the electronic wave function or density. In addition, 

NWChem has the capability to perform classical molecular dynamics and free-energy simulations. These 

approaches may be combined to perform mixed quantum mechanics and molecular mechanics 

simulations. 

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

GNU make, 

FORTRAN77/C  

Global Arrays, 

ARMCI  

ChemIO   

Math 

Libraries: 

Library Function Functionality 

PEIGS   Symmetric eigensolvers, Cholesky 

decomposition 

 ScaLAPACK   Symmetric eigensolvers, Cholesky 

decomposition, linear solvers 

 LAPACK   Various dense linear algebra operations 

 BLAS   Various dense linear algebra operations 

 FFTPACK   Discrete FFT 

Algorithms: NWChem uses both local basis function (atomic orbitals) and plane waves to compute 

the solution of the Schrödinger equations. 

Scaling: NWChem is made of various modules whose scalability can vary greatly. For example, 

the DFT module scales between O(N) and O(N
3
) (where N is the number of basis 

functions), while the CCSD(T) codes scales as O(N
7
). 

Other: NWChem is an open-source computational chemistry package for high-performance 

computing as well as conventional workstation clusters. The science enabled by this 

application can be seen in the long list of associated publications. 
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Chemistry: CP2K 

Atomistic and molecular simulations of solid state, liquid, molecular, and biological systems 

http://cp2k.berlios.de/ 

 

CP2K is a suite of modules, collecting a variety of molecular simulation methods at different levels of 

accuracy, from ab-initio DFT to classical Hamiltonians, passing through semi-empirical NDDO 

approximation. It is used routinely for predicting energies, molecular structures, vibrational frequencies 

of molecular systems, and reaction mechanisms, and is ideally suited for performing molecular dynamics 

studies. CP2K provides sophisticated interaction potentials to understand complex reactions at interfaces.  

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

GNU make, 

Fortran90, CUDA 

MPI, OpenMP   

Math 

Libraries: 

Library Function Functionality 

BLAS/LAPACK, 

ScaLAPACK, FFTW 

pdpotrf, 

pdsygst, 

pdsyevd, 

pdtrsm 

 

Algorithms: Hamiltionians: Classical, semi-empirical, local and non-local DFT and QM/MM. 

Algorithms: Molecular Dynamics, Monte Carlo. Free Energy tools and Ehrenfest MD. 

FFT and sparse linear algebra based. 

Scaling: Varies from O(N) to O(N
3
) where N is the size of the basis set. 

Other: CP2K enabled a comprehensive first principles study of the free energy of transfer of 

hydronium from bulk to interface. 
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Physical Chemistry: QMCPACK 

Quantum Monte Carlo Package 

http://code.google.com/p/qmcpack/ 

 

The quantum Monte Carlo package was developed at the University of Illinois and is openly released 

under UIUC/NCSA Open Source License. It is a chemistry code designed for high-performance 

computers. Simulations start from electronic structure calculations using density functional theory (DFT), 

Hartree-Fock (HF), and other many-body methods.  

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

Cmake, C++ MPI, OpenMP HDF5, libxml2  

Math 

Libraries: 
BLAS/LAPACK, FFTW, einspline, boost 

Algorithms: Quantum Monte Carlo (QMC) algorithms: Diffusion Monte Carlo (DMC), Variational 

Monte Carlo (VMC). Particle-based algorithms using dense linear algebra and spline 

grids for wavefunctions. 

Scaling: QMC scales as O(N
2
–N

4
) where N is the number of particles. 

Other: Quantum Monte Carlo calculation of the energetic, thermodynamics, and structure of 

water and ice. 
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D.3 Earth Science 

Climate: CAM 

Community Atmosphere Model: Numerical modeling of the earth’s climate 

http://www.ccsm.ucar.edu/models/atm-cam/ 

 

The general circulation of the atmosphere is modeled by approximations to the primitive equations of 

geophysical flows in a hydrostatic formulation. These are conservation laws for mass, momentum, 

energy, and transported constituent species expressed as partial differential and integral equations. A fully 

active land surface model (CLM) with vegetation modeling and soil hydrology and river routing is 

included in all CAM simulations.  

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

Fortran 90 MPI NetCDF  

Math 

Libraries: 
Cray SciLib,  SGI SCSL 

Algorithms: CAM can be configured to utilize either of three dynamical cores. The Spectral Eulerian 

core employs spherical harmonic basis functions to predict the evolution of the large-

scale flow. The Semi-Lagrangian Spectral core is run on the same grid, but is formulated 

in a way that preserves positive-definite behavior for critical advected constituents such 

as water vapor. The Finite Volume dynamical core employs a finite-difference method. 

Like the Semi-Lagrangian Spectral core, it also can be configured to guarantee positive-

definite behavior for critical advected species. Numerous subgrid-scale physical 

processes are parameterized, with their effects providing a forcing term to the dynamics. 

Examples include shortwave and longwave radiative transfer, convective adjustment and 

clouds.  

Scaling: The finite volume dynamical core has the best scaling characteristics of the three 

available options because it is formulated with a 2-D data decomposition (X and Y). The 

Eulerian and semi-Lagrangian spectral cores only decompose along the Y dimension. 

 Current development will enable scaling to thousands of processors by increasing 

resolution, adding computational complexity, and implementing more-scalable data 

distributions. The model is formulated in a hybrid MPI/OpenMP fashion to take 

advantage of modern cluster architectures. 

Other: Good connectivity to the Earth System Grid is required. 
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Geoscience: PFLOTRAN 

Modeling reactive flows in porous media  

http://ees.lanl.gov/pflotran 

 

PFLOTRAN (Parallel FLOw and TRANsport) solves multiphase, multicomponent reactive flow and 

transport equations in nonisothermal, variably saturated media. The code consists of two modules, which 

can be run separately or in coupled mode. The module PFLOW simulates Darcy flow, solving mass 

conservation equations for water and other fluids and an energy balance equation. The module PTRAN 

solves mass conservation equations for a multicomponent geochemical system. The reactions included in 

PTRAN involve aqueous species and minerals. 

System 

Software: 

Programming 

languages: 

Communication libraries: I/O libraries 

and functions: 

Operating system 

functions: 

Fortran 90  MPI  None  None  

Math 

Libraries: 

Library Function Functionality 

PETSc  SNESSolve, 

KSPSolve, 

DAGlobalToLocal, 

MatFDColoring  

Newton solves, Krylov solves, halo 

exchanges, multi-color finite difference 

Jacobian  

 BLAS  BLAS Level 1 and 

2  

Dot product, etc.  

Algorithms: PFLOTRAN uses a first-order finite-volume discretization on a Cartesian grid (extension 

to unstructured grids is being developed). Within both the PFLOW and PTRAN modules, 

time-stepping is fully implicit (backward Euler). In coupled mode, flow velocities, 

saturation, pressure, and temperature computed from PFLOW are fed into PTRAN. For 

transient problems, sequential coupling of PFLOW and PTRAN enables changes in 

porosity and permeability due to chemical reactions to alter the flow field.  

A PETSc-based Newton-Krylov solver framework is used to solve the system of 

nonlinear equations arising at each time step. Because we employ PETSc, a wide variety 

of nonlinear and linear solver options can be easily employed by making the appropriate 

selection for the given problem at runtime. We usually employ an outer, quasi-Newton 

solver with line search and an inner, BiCGSTAB Krylov solver preconditioned with an 

additive-Schwarz method with an overlap of 1, with ILU(0) applied on each subdomain. 

The Jacobian matrix can be explicitly calculated (analytically for some cases, via finite-

difference for others) or its action can be applied on the fly (though this somewhat 

restricts choice of preconditioners).  

Adaptive mesh refinement (AMR) is currently not supported; we plan to use the 

Chombo framework to introduce support for hierarchical block-structured AMR. 
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Ocean Modeling: POP 

Parallel Ocean Program to model ocean circulation in three dimensions  

http://climate.lanl.gov/Models/POP  

 

POP is an ocean circulation model derived from earlier models in which depth is used as the vertical 

coordinate. The model solves the 3-D primitive equations for fluid motions on the sphere under 

hydrostatic and Boussinesq approximations. A wide variety of physical parameterizations and other 

features are available in the model and are described in detail in a reference manual distributed with the 

code. Because POP is a public code, many improvements to its physical parameterizations have resulted 

from external collaborations with other ocean-modeling groups, and such development is very much a 

community effort. 

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

Fortran 90, C, GNU 

Make, CAF 

(optional)  

MPI, OpenMP 

(optional)  

NetCDF  None  

Math 

Libraries: 

Library Function Functionality 

None   

Algorithms: Spatial derivatives in POP are computed using finite-difference discretizations which are 

formulated to handle any generalized orthogonal grid on a sphere, including dipole and 

tripole grids which shift the North Pole singularity into land masses to avoid time-step 

constraints due to grid convergence.  Time integration of the POP model is split into two 

parts. The 3-D vertically varying (baroclinic) tendencies are integrated explicitly using a 

leapfrog scheme. The very fast vertically uniform (barotropic) modes are integrated 

using an implicit free surface formulation in which a preconditioned conjugate gradient 

solver is used to solve for the 2-D surface pressure. 

Scaling: Strong scaling to 10K cores. 

Other: POP is the ocean component of the Community Climate System Model (CCSM) and has 

been used extensively at LANL in ocean-only mode for eddy-resolving simulations of 

the global ocean and for ocean-ice coupled simulations with the CICE model. 
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D.4 Engineering 

Combustion: S3D 

Combustion modeling in flames 

Chen, J. H. et al., “High fidelity simulations for clean and efficient combustion of 

alternative fuels,” SciDAC2008: Scientific Discovery through Advanced Scientific Computing 

125:12028 (2008). 

 

S3D solves a fully coupled system of time-varying partial differential equations (PDEs) governing the 

full compressible reacting Navier-Stokes, total energy, species and continuity equations coupled with 

detailed chemistry. The PDEs are supplemented with additional constitutive relationships for the ideal gas 

equation of state, and detailed high-fidelity models for reaction rate, molecular transport, and 

thermodynamic properties. In this formulation, after the initialization of the primitive variables for each 

time step, the convective, diffusive, and chemical terms in the conservation equations are updated, once 

for each of the six stages of the fourth-order accurate explicit Runge-Kutta time advancement solver. 

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

Fortran 90  MPI  None  Mkdir 

Math 

Libraries: 

Library Function Functionality 

None   

Algorithms: S3D is based on a high-order accurate, nondissipative numerical scheme. It has been 

used extensively to investigate first-of-a-kind fundamental turbulence–chemistry 

interactions in combustion topics, including premixed and nonpremixed flames and 

autoignition. Time advancement is achieved through a fourth-order explicit Runge-Kutta 

method, spatial differencing is achieved through high-order (eighth-order with tenth-

order filters) finite differences on a Cartesian structured grid, and Navier-Stokes 

Characteristic Boundary Conditions (NSCBC) are used to prescribe the boundary 

conditions. The equations are solved on a conventional structured mesh.  

This computational approach is very appropriate for the problems selected. The 

coupling of high-order finite difference methods with explicit R-K time integration make 

very effective use of the available resources, obtaining spectral-like spatial resolution 

without excessive communication overheads and allowing scalable parallelism. 

Scaling: The parallelism in S3D can basically be described as explicit nearest-neighbor local 

communication. With this design, the code is compute-bound, which has been 

empirically observed. The code exhibits good weak scaling behavior. 

Other: Capable of Direct Numerical Simulation of Diesel Jet Flame Stabilization at High 

Pressure 
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D.5 Fusion 

Fusion Energy: AORSA 

The All-ORders Spectral Algorithm code: High-resolution solutions for mode conversion and high 

harmonic fast wave heating in tokamak plasmas 

http://www.csm.ornl.gov/~shelton/fusion.html 

 

AORSA solves Maxwell-Boltzmann equations for the wave electric and magnetic fields and for the 

distribution function fs(r, v, t), representing the density of species in a 6-D phase space. The time-

evolution of this function is determined using self-consistent electric and magnetic fields. The wave fields 

and particle distribution function can be separated into a time-averaged slowly varying part, (E0, B0, fs
0
), 

and a time harmonic rapidly oscillating part, [E(r)e
-iωt

, B(r)e
-iωt

, fs
1
(r,v)e

-iωt
], where ω is the frequency of 

the wave. Solving the linearized Boltzmann equation gives the rapidly varying part of the distribution 

function fs
1
(r, v) in terms of the equilibrium part fs

0
. For the rapidly oscillating, time harmonic wave 

fields, Maxwell’s equations reduce to a generalization of the Helmholtz wave equation. The numerical 

solution is expensive because of the nonlocal nature of the plasma current, the geometric complexity of 

the plasma boundary, and the enormous range of spatial scales that must be treated. AORSA takes 

advantage of today’s parallel computers and solves its equations in the general integral form with no 

restriction on wavelength relative to orbit size and no limit on the number of cyclotron harmonics. 

AORSA has been generalized to treat nonthermal (i.e., non-Maxwellian) plasma components. 

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

Fortran 77/90 BLACS NetCDF None 

Math 

Libraries: 
HPL, ScaLAPACK, PBLAS, FFTPACK, PGPLOT 

Algorithms: AORSA uses a fully spectral method to solve the wave equation, and the resulting set of 

linear equations is solved using ScaLAPACK libraries or HPL, modified for use with 

complex coefficient systems. This avoids complicated convolutions associated with 

calculating the plasma current and, at the same time, includes cyclotron harmonics of 

arbitrarily high order. For an N × N grid in 2-D, AORSA generates a dense matrix of 

approximately 0.70*(3*N
2
). For example, the medium-size ITER problem (350 × 350) 

requires the solution of a double complex valued linear system of order 254,823. The 

larger ITER problem (580 × 580) required to resolve the mode-converted waves requires 

solution of a linear system of order 68,758. 

Scaling: Linear scaling up to 48,000 processors; prefer 2–3 times the memory of Jaguar’s 

processors (1.3 Gbytes/processor available to code); domain decomposition with MPI; 

50% of peak on Jaguar 

Other: AORSA could do a complete simulation of mode conversion heating in ITER with a 

realistic antenna geometry and non-Maxwellian alpha particles.  
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Fusion Energy: GTC 

Gyrokinetic particle simulation of transport barrier dynamics in fusion plasmas  

S. Ethier, W. M. Tang, and Z. Lin, “Gyrokinetic Particle-in-Cell Simulations of Plasma Micro-

Turbulence on Advanced Computing Platforms,” Journal of Physics: Conference Series 16, 1 

(2005). 

 

There are three versions of GTC.  

GTC, developed at Princeton Plasma Physics Laboratory (PPPL), is a global code for turbulence transport 

simulations. It uses a shaped plasma in general geometry with electrostatic electron dynamics based on 

the delta-h scheme with the nonadiabatic part of delta-f.  

 

The GTC version developed at the University of California–Irvine (UCI) has electromagnetic electron 

dynamics based on the hybrid scheme along with a global code for both turbulence and gyrokinetic MHD 

simulations.  

 

Finally, the GTC-neo (PPPL) code has neoclassical transport simulations in general toroidal geometry 

and in fully operational collision operators. The GTC code has shown steady-state simulations of ion 

temperature gradient (ITG) turbulence with adiabatic electrons. The GTC code developers were able to 

add the velocity space nonlinearity term, which helps produce an ion current ratio of 2.5%. Using ITG 

simulations with GTC, they were able to show turbulence spreading for shaped and circle plasmas. 

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

F90, C  MPI, OpenMP ADIOS  Timers (through 

MPI)  

Math 

Libraries: 
PETSc 

Algorithms: Gyrokinetic Vlasov equation PDE in Eulerian coordinates: MHD equations are time-

dependent PDEs in Eulerian coordinates, and the Gyrokinetic-Darwin-Maxwell 

equations are time-independent PDE in Eulerian coordinates. GTC solves the 

Gyrokinetic Vlasov equation using a PIC method (ODE in Lagrangian coordinates). It 

also solves the Gyrokinetic-Darwin-Maxwell equations with finite elements with 

specialized fast Poisson solvers. 

Scaling: Mature PIC code, nearest-neighbor, good scaling to 5,000 processors, and has been 

demonstrated on a number of systems utilizing MPI and OpenMPI. The code has run 

long simulations on the Cray XT series with 4,800 processors for over 100 wall-clock 

hours per simulation. The code has scaled on over 16K processors on the IBM Blue 

Gene. The code has shown 96–98% on multicore Opteron processors. GTC has achieved 

3.7 TF on the Earth Simulator.  GTC has scaled to over 100K cores. 
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Fusion Energy:  TGYRO 

Nonlinear tokamak microturbulence package  

http://fusion.gat.com/theory/Tgyrooverview 

 

Temperature and density profiles in tokamaks are fundamentally limited by pressure-gradient-

driven turbulence and to a lesser extent by cross-field transport caused by collisions so-called 

neoclassical transport. A first-principles description of these transport processes can be obtained 

via direct kinetic simulations, but to date, these have been far too computationally expensive to 

be considered for modeling and performance-prediction purposes. To solve the inverse problem, 

modelers use reduced models for core thermal and particle transport where a typical modeling 

scenario may require the evaluation of thousands of local transport fluxes. By developing an 

iteration scheme suitable for solving the inverse problem, we have been able to obtain steady-

state temperature profiles for DIII-D plasmas using GYRO to repeatedly calculate turbulent 

particle and energy fluxes. These so-called transport solutions also include first principles 

neoclassical fluxes computed using NEO. TGYRO oversees execution of multiple simultaneous 

instances of both GYRO and NEO.   

Developed at General Atomics (starting in 1999) by J. Candy and R. Waltz, GYRO uses a fixed 

(Eulerian) grid to solve the 5-D gyrokinetic-Maxwell equations. Operation is flexible, with the 

capability to treat a local (flux-tube) or global radial domain (with an adaptive source to maintain 

the equilibrium profiles), a full or partial torus, general (Miller shaped) or simple circular 

plasmas, adiabatic, drift-kinetic or gyrokinetic electrons, electrostatic or electromagnetic 

fluctuations, finite parallel velocity and shear, and experimental or user-defined physical input 

parameters. All transport channels are treated: ion and electron energy transport plus turbulent 

energy exchange, plasma and impurity particle transport, and toroidal angular momentum 

transport.  

System 

Software: 

Programming 

languages: 

Communication libraries: I/O libraries 

and functions: 

Operating system 

functions: 

Fortran 77/90  MPI  MPIIO  Timing only  

Math 

Libraries: 
BLAS/LAPACK, UMFPACK, MUMPS, FFTW 

Algorithms: GYRO uses a mixture of finite-difference, finite-element, spectral and pseudo-spectral 

discretization schemes. Radial derivatives are computed using arbitrary-order finite-

difference formulae, whereas 2-D gyro averages are treated using a mixed spectral (in the 

binormal direction), pseudo-spectral (in the radial direction). Orbit motion (advection) in 

the poloidal plane is treated using a third-order upwind scheme, whereas the poloidal 

field dependence is represented using adjustable-order finite elements. Velocity space 

integrals (2-D) are computed using novel high-order 2-D Gaussian quadrature schemes, 

which is the most accurate integration scheme used by any gyrokinetic code (Eulerian or 

PIC). Time integration through either a semi-implicit IMEX-RK scheme (ideal for large, 

global-scale simulations), or an explicit 4th-order RK scheme (ideal for simulations 

which resolve the full electron-temperature-gradient physics time and space scales). 
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D.6 Materials 

Materials Science: DCA++ 

Quantum Monte Carlo calculations for materials characterization 

A. Maier et al., “Quantum Cluster Theories,” Review of Modern Physics 77, 1027 (2005). 

 

The two-dimensional Hubbard model is a simplified description of the electronic degrees of freedom of 

the superconducting copper oxide planes in high-temperature superconductors (HYSC). DCA++ is based 

on a dynamic cluster quantum Monte Carlo algorithm to solve, in a controlled way, lattice models of 

strongly correlated electron systems such as the 2-D Hubbard model. The dynamic cluster method 

approximates the effects of correlations in the bulk lattice with those of a finite-size quantum cluster. This 

enables a mapping of the bulk lattice problem to an effective cluster embedded in a self-consistent bath 

designed to represent the remaining degrees of freedom. Recently, this technique has been applied 

successfully to show that the 2-D Hubbard model of high-temperature superconductors does have a 

superconducting transition in the range of parameters and temperatures characteristic of the cuprates. The 

new computational capabilities even established the fact that pairing in the Hubbard model is mediated by 

spin fluctuations. While the success in describing the physics of the cuprates with high-end simulation 

results of the Hubbard model is remarkable, it is important to link a generalized Hubbard-like model to 

actual cuprate HTSC to understand material-specific properties such as the huge differences in 

superconducting transition temperatures between different HTSC materials. 

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

C++ MPI  None  None  

Math 

Libraries: 

Library Function Functionality 

BLAS   

Algorithms: The computational workhorse to solve the effective quantum cluster problem is a 

generalized version of the Hirsch-Fye QMC algorithm. This algorithm performs a 

stochastic Markov-chain walk, along which measurements are made periodically. The 

central quantity that has to be measured and updated along this walk is the single-particle 

Green’s function G of the effective cluster problem. G is a matrix of size N*t, where N is 

the total number of sites and orbitals treated with correlations in the quantum cluster 

calculation and t is the number of time-slices used in the integration path integral. A 

majority of the CPU time is spent updating G that is calculated by a vector outer product 

followed by a matrix update, which may be completed by the BLAS call DGER. Since 

DGER has a relatively low computational intensity (only two floating point operations 

per memory access), a reformulation of the underlying Hirsch-Fye algorithm is used, in 

which the frequent calls to DGER are delayed and hence replaced by fewer and much 

more cache-efficient matrix multiplies (BLAS call DGEMM). This allows the code to be 

run for large problems with high efficiency on superscalar processors.  

Other: 2008 Recipient of the Gordon Bell Award 
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Materials Science: gWL-LSMS 

Electronic structure calculations based on density functional theory 

http://www.ccs.ornl.gov/mri/repository/LSMS  

 

This code implements a first principles electronic structure calculation based on density functional theory. 

LSMS stands for locally self-consistent multiple scattering, an order-N method that is well suited to solve 

all-electron electronic structure problems as they appear in nanostructures—particularly magnetic 

nanostructures. The method is formulated within the local spin density approximation to density 

functional theory and solves the single-particle Dirac equation as well as the nonrelativistic Schrödinger 

equations. The LSMS code won the Gordon Bell prize in 2009. 

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

Fortran 77/90, C++  MPI2  HDF5 ctime (or 

equivalent)  

Math 

Libraries: 

Library Function Functionality 

BLAS  ZGEMM  Dense double complex matrix-matrix multiply  

 BLAS  ZGEMV  Dense double complex matrix-vector multiply  

 LAPACK  ZGETRF  Double complex factorization of a dense matrix  

 LAPACK  ZGETRS  Double complex triangular matrix solve  

 LAPACK  ZGETRI  Double complex matrix inverse formation  

Algorithms: LSMS solves the Kohn-Sham equations of density functional theory using Multiple 

Scattering theory to calculate its Green function and consequently the resulting densities 

by calculating the trace of the product of the observables and Green’s function. The main 

computational effort involves inversion of a matrix of dimension that scales linearly with 

the size of the system. To achieve linear overall scaling with system size, LSMS takes 

advantage of the fact that most observables depend only on their local environment, so 

by taking only a fixed-size neighborhood of atoms into account, LSMS keeps the size of 

the matrices independent of the system size after the range of this local interaction zone 

has been determined. 

Scaling: Parallelization is achieved by assigning system atoms to different processors. Integration 

of these ab initio methods with a classical statistical physics method (generalized Wang-

Landau in particular) as the energy function will allow another level of parallelism in the 

random walkers used. This combined code will naturally scale to >200,000 cores when 

investigating the thermodynamic behavior of 1,000–10,000 atom nanoparticles. 

Other: 2009 Recipient of the Gordon Bell Award 
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Materials Science: VASP 

Vienna Ab-initio Simulation Package for molecular dynamics simulations of large biomolecular systems 

http://cms.mpi.univie.ac.at/vasp  

 

Plane wave-based density functional calculations, together with all-electron-derived pseudo potentials, 

comprise a powerful and flexible method. Their well-controlled accuracy vs. computational cost makes 

them ideal for the study of novel systems in which the electronic structure is not well understood, or in 

which tiny differences determine the outcome of the simulations. Such accuracy is critical when 

performing quantum molecular dynamics (QMD) simulations, which enable studies of the evolution of 

nanoscale systems and their environment at finite temperature, as well as investigations of biomolecular 

reaction mechanisms, structural changes and temperature-dependent phase transitions.  

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

Fortran90, C (minor)  MPI  None Getrusage  

Math 

Libraries: 

Library Function Functionality 

BLAS D/ZGEMM Double complex/real general matrix-matrix 

multiply 

 BLAS (D/Z)TRMM Double complex/real triangular matrix- matrix 

multiply 

  P(D/Z)TRTR  

 ScaLAPACK P(D/Z)POTRF  Matrix inverse, Cholesky decomposition, 

Eigenvector computation 

  P(D/Z)HEEVX  

Algorithms: Planewave code that solves the density functional equations in a plane wave basis 

defined by a sphere of vectors in Fourier space. All atoms are represented by ab initio 

pseudopotentials, of either a norm-conserving, ultrasoft, or projector-augmented wave 

type. The latter two offers much improved accuracy and reduced computational costs 

(flops and memory) over the simpler norm-conserving potentials, particularly for systems 

containing transition metal atoms. For calculations of up to 1000 atoms, the main 

computational effort involves (1) evaluation of the pseudopotential contributions to the 

energy and forces, and (2) parallel Fourier transforms between real and reciprocal 

(Fourier) space. The former involve linear algebra operations using standard BLAS, 

while the latter utilize vendor 1-D FFT transforms and custom routines for highly 

efficient parallel 3-D transforms.  

Scaling: Although the method is in-principle cubic scaling, in practice it scales quadratically up to 

1000 atoms using recent numerical advances. Appropriately configured, VASP currently 

delivers a large fraction of peak performance, typically 30–50%, for up to 1000 

processors. 
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Nanoelectronics: OMEN  

Atomistic and full-band quantum transport simulator designed for post-CMOS devices 

http://cobweb.ecn.purdue.edu/~gekco/omen 

 

OMEN is a two- and three-dimensional Schrodinger-Poisson solver based on the sp
3
d

5
s* semi-empirical 

tight-binding method. This bandstructure model has been chosen for (i) its ability to reproduce the 

principal bulk characteristics of electrons and holes, (ii) its straightforward extension to nanostructures, 

and (iii) its atomic description of the simulation domain. Carrier and current densities are obtained by 

injecting electrons and holes at different energies into the device and by solving the resulting system of 

equations in the Wave Function or in the Non-equilibrium Green’s Function formalism. The 2-D or 3-D 

Poisson equation is expressed in a finite-element basis where the tight-binding charges sit on node 

position. OMEN will enable the calculation of full transistor characteristics of realistic semiconductor 

devices, using quantum mechanics in an atomistic representation.  

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

C/C++, Fortran    

Math 

Libraries: 
SuperLUdist, MUMPS, PARPACK, LAPACK/BLAS 

Algorithms: Recursive Green’s Function; The Schrödinger equation is solved with open boundary 

conditions (OBCs) either in the Wave Function (WF) or in the Non-Equilibrium Green’s 

Function (NEGF) formalism. The resulting charge and current densities are self-

consistently coupled to the Poisson equation in a finite-element basis. 

Scaling: Scaled to 222,730 cores. The computation of the bias points, the energy and momentum 

integrations, as well as the spatial domain decomposition have been parallelized so that a 

single simulation can run on a number of processors Ncpu up to O(10
4
) with a speed-up 

factor close to Ncpu. 

Other: OMEN enables discovery of new nanoscale technologies for faster switching, smaller 

feature size, and reduced heat generation. The creation of a new switch will revitalize the 

semiconductor industry in 2015. Designers will be enabled to directly address questions 

of quantization and spin, tunneling, phonon interactions, and heat generation for 

nanoscale devices. 

 

 

  

http://cobweb.ecn.purdue.edu/~gekco/omen/scale_32768.html
http://cobweb.ecn.purdue.edu/~gekco/omen/scale_32768.html
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Nanoscience: LS3DF 

Linear Scaling 3-D Fragment code for electronic structure calculations 

Lin-Wang Wang, “Linear Scaling 3-D Fragment Method for Large-Scale Electronic Structure 

Calculations,” Lawrence Berkeley National Laboratory (2008). 

 

New linearly scaling three-dimensional fragment (LS3DF) method for large scale ab initio electronic 

structure calculations. LS3DF is based on a divide-and-conquer approach, which incorporates a novel 

patching scheme that effectively cancels out the artificial boundary effects due to the subdivision of the 

system. As a consequence, the LS3DF program yields essentially the same results as direct density 

functional theory (DFT) calculations at a much smaller computational cost.  

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

Fortran MPI   

Math 

Libraries: 
ESSL, BLAS2, LAPACK, FFT 

Algorithms: LS3DF divides a large system into small pieces called fragments, and then calculates the 

electron wavefunctions and the charge density of each piece independently using a small 

group of processors. The charge densities of all the pieces are then patched together to 

determine the charge density of the entire system. Finally, a Poisson equation is solved 

for the whole system charge density, until a self-consistent charge density for the entire 

system is achieved. 

Scaling: The fragments of the LS3DF algorithm can be calculated separately with different groups 

of processors. This leads to almost perfect parallelization on tens of thousands of 

processors. After code optimization, they were able to achieve 35.1 Tflop/s, which is 

39 percent of the theoretical speed on 17,280 Cray XT4 processor cores. Their 13,824-

atom ZnTeO alloy calculation runs 400 times faster than a direct DFT calculation, even 

presuming that the direct DFT calculation can scale well up to 17,280 processor cores. 

These results demonstrate the applicability of the LS3DF method to material simulations, 

the advantage of using linearly scaling algorithms over conventional O(N
3
) methods, and 

the potential for petascale computation using the LS3DF method. 

Other: LS3DF simulations allow for a better understanding of nanostructure solar cells to 

improve their efficiency and viability as a mainstream solution for renewable solar 

energy. 
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D.7 Nuclear Energy 

Neutron Transport: Denovo 

Nuclear reactor neutron transport solver  

 

Progress in nuclear technology requires simulations that model many coupled physics systems, including 

Boltzmann transport equations, a powerful algorithm for analyzing transport phenomena with many-step 

gradients in both density and temperature. For nuclear reactor simulation, the size of the equations to be 

modeled is tremendous—five orders of magnitude in space and ten in neutron energy. Denovo is a 

parallel transport solver which is the first-of-a-kind, mathematically consistent, two-level approach to the 

multiscale challenge. With present algorithms, a solver that incorporates the separating out of processes 

for all scales would require 10
17

 to 10
21

 degrees of freedom (DOF) for a single time-step, which is beyond 

even exascale computational resources. Denovo is a significant advance over current technology, because 

it allows fully consistent multi-step approaches to high-fidelity nuclear reactor simulations that cannot be 

performed with current technology.  

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

C++, Python, F95 MPI Silo, HDF5  

Math 

Libraries: 

Library Function Functionality 

Trilinos   

Algorithms: Denovo incorporates a wavefront algorithm to sweep across spatial domain. The angular 

domain is in the process of being thread-parallelized and the energy domain will be 

decomposed as well. We are evaluating the performance of several acceleration/solver 

approaches to the eiganvalue form of the transport equation, including the 

Trilinos/Anasazi solvers, a traditional non-linear CMFD approach, and a shifted-

eigenvalue coupled with Krylov solver. 

Scaling: Denovo scales to the petaflop level by uncoupling the multi-level, phase-space 

parameters of the equations. 

Other: This multi-level approach with advanced computing can provide an extremely high-

fidelity capability to understand the power distribution within a nuclear reactor in an 

approach that can be coupled with computational fluid dynamics and conjugate heat 

transfer solvers to understand the performance of a nuclear reactor during nominal, and 

potentially transient, operating conditions. 
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Neutron Transport: UNIC 

Neutron transports simulations in nuclear reactors 

 

UNIC is developed at ANL as part of the DOE Nuclear Energy Advanced Modeling and Simulation 

(NEAMS) program. UNIC models how neutrons move inside the reactor core. The simulation of 

processes in reactor cores is challenging because of large length scales, a complicated distribution of 

materials, and the intricacies of the physical data. Calculating and simulating these processes requires 

simulation over several orders of magnitude and energy, and the resolution of strong local fluctuations. 

UNIC solves large-scale nuclear reactor core problems governed by the seven dimensional (three in 

space, two in angle, one in energy, and one in time) Boltzmann equation. The goal of this simulation 

effort is to reduce the uncertainties and biases in reactor design calculations by progressively replacing 

existing multi-level averaging (homogenization) techniques with more direct solution methods. As the 

algorithms are refined, they will be used to solve coupled physics problems in such a way that thermal, 

hydraulic, and structural feedbacks are accurately represented in realistic reactor transient simulations. 

This will lead to a significant reduction in cost and better assessments of the safety of fast reactors—

nuclear reactors where the fission is sustained by fast neutrons.  

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

C++ MPI   

Math 

Libraries: 

Library Function Functionality 

PETSc, MeTIS   

Algorithms: Currently UNIC has two solvers for the neutron transport equation which are based upon 

the second-order even parity transport equation and utilize a spherical harmonics and a 

discrete ordinates approximation for the angular approximation. A third solver based on a 

first-order method of characteristics has also been implemented in order to provide a 

more efficient capability of explicit geometry modeling. UNIC uses an unstructured 

mesh and to represent the complex geometry of a reactor core, billions of spatial 

elements, hundreds of angles, and thousands of energy groups are necessary, which leads 

to problem sizes with petascale degrees of freedom. 

Scaling: UNIC shows weak scalability of over 80% on 131,072 cores on Jaguar XT5. 

Other: Scalable simulation of unstructured, deterministic neutron transport in fast reactor cores. 
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D.8 Physics 

Astrophysics: CHIMERA  

3-D modeling of core collapse supernovae 

S. W. Bruenn et al., “Modeling Core Collapse Supernovae in 2 and 3 Dimensions with Spectral 

Neutrino Transport,” Journal of Physics: Conference Series 46, 393–402 (2006). 

 

CHIMERA solves the equations of radiation hydrodynamics in a ray-by-ray approach: the hydrodynamic 

evolution is followed in two or three spatial dimensions and the neutrino radiation transport is constrained 

along radial rays. This is an excellent approximation for the core-collapse supernova problem: for much 

of the evolution, the configuration is roughly spherical on scales probed by the neutrino interactions with 

the surrounding matter. In addition, thermonuclear kinetics are evolved in each spatial zone via a local 

nuclear burning module.  

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

F90 MPI HDF5, pnetCDF None 

Math 

Libraries: 
LAPACK 

Algorithms: Piecewise Parabolic Method (PPM) is a finite-volume discretization of the Euler 

equations (a particular example of a Godunov method). VH1 is a Lagrangian remap 

version of PPM (i.e., the hydro step is performed on a Lagrangian mesh and remapped 

back to the primary Eulerian mesh during each timestep). CHIMERA includes all the 

PPM technology of VH-1 along with a fully implicit, multigroup flux-limited diffusion 

neutrino transport solver. The transport solver uses a variety of Krylov solvers. 

Scaling: Explicit Eulerian hydrodynamics is shown to scale to thousands of processors on the 

NCCS XT series. CHIMERA is under active development on the Cray XT series. Its 

scaling characteristics are essentially identical to VH-1, as the transport solves that mark 

the added physics in CHIMERA are local. 

Other: The world’s first core-collapse supernova simulations in 3-D with realistic neutrino 

transport. The simulations would also likely include magnetic fields, some 

approximation to general relativistic gravity, and realistic nuclear burning. 
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Astrophysics: FLASH 

Modular, parallel, multiphysics simulation code for handling general compressible flow problems found 

in many astrophysical environments 

http://flash.uchicago.edu  

 

FLASH is designed to solve compressible, reactive flow problems in dense stellar environments, like 

those found in novae, X-ray bursts, and Type Ia supernovae. The code incorporates solvers for 

hydrodynamics, nuclear burning, gravity, and a variety of other physical processes. The code also has 

considerable functionality for cosmology problems in the form of particle-mesh solvers. 

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

Python, F90, C  MPI  HDF5, pnetCDF  GNU make  

Math 

Libraries: 
No external libraries 

Algorithms: FLASH uses an explicit, PPM-based method, hence is a finite volume, nearest-neighbor 

code. It uses block-structured AMR. FLASH includes modules to perform passive and 

active particle tracing, nuclear burning, multigrid and multipole gravity solves, complex 

equations of state, and front tracking via massive scalar advection. 

Scaling: FLASH recently completed a 64,000 processor-driven turbulence run on the LLNL BG/L 

platform. The code exhibited good scaling. 

Other: The code could perform a full-star deflagration simulation, including any possible 

transition to detonation, in the white dwarf at resolutions finer than 0.01 km. This would 

be a 100× leap in resolution for these kinds of simulations and would allow for real 

validation of the chosen subgrid model for flame turbulence. 
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Condensed Matter: CASINO 

First-principles electronic structure calculations using Quantum Monte Carlo methods 

http://www.tcm.phy.cam.ac.uk/~mdt26/casino2.html  

 

In contrast to other first-principles methods, such as density functional theory (DFT), QMC provides 

essentially exact answers, with no or few approximations in the entire method. The method is therefore 

ideal for providing benchmark answers for delicate problems such as those in optical properties of 

nanostructures, catalysis, reaction pathways, and many other problems involving transition metals where 

common DFT approaches are suspect. Indeed, practical implementations of DFT are based on a 

parameterization of QMC data. Although calculations are substantially more expensive than DFT, 

structures of several hundred atoms have been examined.  

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

Fortran 90 MPI None Timing 

Math 

Libraries: 
BLAS  

Algorithms: Atomistic QMC calculations have many features in common with both molecular 

dynamics calculations (e.g., the movement of individual particles, Ewald sums for long 

range forces) and with quantum chemical and DFT electronic structure methods (e.g., 

representation of wave functions in an underlying Gaussian or plane-wave basis, possible 

use of pseudopotentials). A generalized Metropolis algorithm is used for Monte Carlo. 

The population of walkers is dynamically load balanced across processors ensuring very 

high parallel efficiency (>90%). The Monte Carlo and dynamic nature of the algorithms 

could take advantage of fault-tolerant parallel environments, if available: the loss of a 

few walkers due to a failed processor can be compensated for with only minor overhead. 

Scaling: The computational requirements scale with the second to fourth power of the number of 

electrons and atoms, depending on the quantities being measured. The scalability of 

QMC calculations depends on a combination of the size of materials system under study, 

the physical quantities of interest (energies, forces, optical excitations), as well as the 

quality of trial wave function that can be obtained using more approximate methods. 

Based on current experience with these governing factors, publication-quality QMC 

calculations will scale to systems of 1,000–10,000 electrons on 10,000–100,000 

processors without major developments to existing code. Hard scaling could be further 

improved by dividing each walker over several processors. Although this development 

has not been done, an additional order of magnitude of scalability might be reasonably 

achieved. 

Other: Possible to study a key scientific problem in an area of materials science such as 

catalysis, hydrogen production (photodissociation of water on titanium dioxide surface), 

hydrogen storage in organic and solid state nanostructures, as well as magnetic systems. 
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Lattice Gauge Theory: MILC/Chroma 

Numerical studies of quantum chromodynamics 

MILC: http://physics.indiana.edu/~sg/milc.html  

CHROMA: http://usqcd.jlab.org/usqcd-docs/chroma/ 

 

Lattice QCD calculations are performed in two steps. In the first, one performs Monte Carlo calculations 

to generate gauge configurations, which are representative samples of the QCD ground state. These 

configurations are stored, and, in the second step, they are used to calculate a wide variety of physical 

quantities.  

During the past few years, a great deal of progress has been made through the use of improved 

formulations of lattice QCD (improved actions). The USQCD Collaboration, which consists of nearly all 

the lattice gauge theorists in the United States, is making use of the three formulations we consider to be 

the most promising: the improved staggered (Asqtad) action, the domain wall fermion (DWF) action, and 

the Wilson-Clover action. Each of these actions has important strengths for addressing different physics 

questions: The Asqtad action is computationally efficient, and is enabling precise tests of the Standard 

Model; the DWF action possesses nearly exact chiral symmetry for finite lattice spacing, eliminating 

many problems associated with operator mixing; and the anisotropic Wilson-Clover action enables 

correlation functions to be examined at short distances to extract excited states. 

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

C, C++  MPI  POSIX 

compliant I/O 

system calls and 

large file (>2 

GB) support  

Standard UNIX 

like system calls 

(current QK kernel 

functions appear 

sufficient)  

Math 

Libraries: 

Library Function Functionality 

None   

Algorithms: The generation of gauge configurations will be carried out with the recently developed 

Rational Hybrid Monte Carlo (RHMC) algorithm. This algorithm provides a major 

improvement over older ones. Indeed, our proposed work could not be accomplished 

without it. The single most computationally intensive step in our calculations is the 

inversion of large sparse matrices, which is performed using the conjugate gradient 

algorithm. 

Scaling: Configuration generation is computationally intensive, but the memory, I/O, and storage 

requirements are modest. The code is compact and relatively straightforward to optimize. 

Jobs are run in a small number of streams and can be handled by a few people. By 

contrast, the calculations of physical quantities from the configurations typically require 

many fewer floating-point operations, but have significantly greater I/O and storage 

needs than configuration generation. 
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Nuclear Physics: MFDn  

Many Fermion Dynamics – nuclear  

https://hpcrd.lbl.gov/scidac09/talks/Vary_SciDAC_2009.pdf 

 

MFDn is a state-of-the-art configuration interaction nuclear shell model application, capable of 

calculating the energy spectrum, wavefunctions and observables for light nuclei, using two- and three-

body interactions. One major challenge for nuclear science is to provide a consistent theoretical 

framework that accurately describes all nuclei, and can be used predictively. Toward this aim, MFDn 

allows for ab initio investigations with two-body and three-body interactions derived from effective field 

theory within the microscopic no-core shell model approach. These interactions provide a long sought 

after bridge between low-energy nuclear physics and quantum chromodynamics (QCD), the fundamental 

theory describing the strong interaction.     

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

Fortran90 MPI, OpenMP 

(optional) 

MPI-IO  

Math 

Libraries: 

Library Function Functionality 

None   

Algorithms: MFDn solves the nuclear many-body problem as a large-sparse matrix eigenvalue 

problem. It generates the governing Hamiltonian matrix and uses the Lanczos algorithm 

(iterative Krylov solver) to solve for the lowest eigenvalues of interest.  

Scaling: Problem size scales by number of particles and size of model space allowed. Features 

intense integer arithmetic operations. Currently scales to 200K+ cores on the hex-core 

upgraded Jaguar XT5. 

Other: Used to investigate the nuclear structure of carbon-14 to explain its anomalously long 

half-life useful in carbon-dating. 
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Nuclear Physics: NUCCOR  

Nuclear Coupled-Cluster Oak Ridge 

D. J. Dean and M. Hjorth-Jensen, “Coupled-Cluster Approach to Nuclear Physics,” Physical 

Review C 69, 054320 (2004).  

 

Nuclear scientists strive to understand the properties of atomic nuclei from the interactions of protons and 

neutrons, or ultimately, from quarks and gluons. Indeed, nuclei are the only link between QCD and the 

atomic and macroscopic world. For medium mass nuclei, the coupled-cluster approach is the only 

microscopic method presently available. NUCCOR iteratively solves for the one- and two-body 

amplitudes of the coupled, non-linear algebraic CCSD (coupled-cluster with single and double 

excitations) equations that arise from application of an exponentiated cluster excitation operator onto a 

reference many-body wave-function (usually taken as a single Slater determinant).  

System 

Software: 

Programming 

languages: 

Communication 

libraries: 

I/O libraries 

and functions: 

Operating system 

functions: 

F90  MPI  MPI-IO  None  

Math 

Libraries: 

Library Function Functionality 

BLAS   Matrix-matrix; matrix-vector 

 BLAS   Tensor-tensor multiplies of (size 1002 × 1002 

and 10004 (100 particles and 1000 basis states)) 

Algorithms: Solves a nonlinear set of coupled algebraic equations. A complete calculation for a given 

nucleus proceeds in the following manner. Generate the effective two-body interaction 

for the problem. This is done by renormalization of bare nucleon-nucleon potentials via 

sums of ladder diagrams (the G-matrix approach), a Hamiltonian similarity 

transformation and projection to the model-space, and a renormalization group (RG) 

method that obtains the low-momentum part of the interaction. The RG approach, also 

known as Vlowk, will be utilized to investigate three-body effects. Second, the two-body 

interactions obtained from the first step are calculated in a ―spin-coupled‖ representation 

and must be decoupled. Once matrix elements have been decoupled and MPI-I/O written 

to a file, the resulting 4-index array of matrix elements is block-distributed among the 

processors with a MPI-I/O read. This is an extremely efficient (and crucial) part of the 

overall algorithm. The final step involves calculation of the NUCCOR amplitudes. The 

present code uniformly distributes the interaction matrix elements across processors on 

two of the four indices. Each processor maintains a complete copy of the amplitudes. 

Thus each processor performs a partial sum of the equations to obtain new amplitudes 

with an allreduce to obtain the new copies of the amplitudes for the next iteration step.  

Scaling: The computational requirements scale as No
2
Nu

4
, where No and Nu are the number of 

occupied and unoccupied single-particle orbitals, respectively. 

Other: NUCCOR is the workhorse for the developing time-dependent coupled cluster 

application that will provide the first ever microscopic calculations of nuclear fission. 
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