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EXECUTIVE SUMMARY

The Multiphysics Object-Oriented Simulation Environment (MOOSE) is an open-source framework that
supports many of the US Department of Energy’s (DOE’s) Nuclear Energy Advanced Modeling and Sim-
ulation (NEAMS) technical areas (TA). These TAs develop and use NEAMS physics and coupling mod-
ules in multiple ways to enable the research and development of complex physics models. In addition to
the MOOSE framework, the NEAMS Workbench user interface provides a common analysis environment
with user-interaction accelerators that streamline the tasks of model creation, review, execution, and out-
put inspection. In FY 2024, objectives were realized in the MOOSE framework application development
support and user-oriented improvements. Application development improvements support both develop-
ers and users with an expanded Reactor Module and Mesh System, stateful material property support for
mortar contact, and customizable convergence criteria. Additionally, new user-oriented features were im-
plemented in the MOOSE framework language server, including autocompletion snippets, definition from
source and find reference navigations, and syntax overrides. Lastly, improvements were made to the input
interpreter necessary to support the MOOSE language server and the NEAMS Workbench so that they can
interact with syntactically incomplete user inputs. These improvements and more were intended to address
stakeholder feedback and improve developer and user ability to conduct advanced nuclear energy modeling
and simulation in support of DOE and industry needs.

ix



1. INTRODUCTION

The MOOSE (Multiphysics Object-Oriented Simulation Environment) framework (G. Giudicelli et al. )
is the critical basis for modeling and simulation tools developed by the US Department of Energy (DOE)
Nuclear Energy Advanced Modeling and Simulation (NEAMS) campaign. The framework provides a plat-
form for methods research and development, as well as single and multiphysics applications, in support

of the the U.S. Nuclear Regulatory Commission’s objective of safety analysis and licensing readiness for
advanced reactors (Commission et al. ) and the Department of Energy’s plans for advanced reactor
deployment. This report documents the continued efforts to improve foundational features and usabil-

ity in the MOOSE framework and the NEAMS Workbench analysis environment in FY 2024, following
accomplishments in FY 2023 (Shemon, Miao, Kumar, Mo, Jung, Oaks, Lee, et al. ). The NEAMS
Multiphysics Applications Technical Area (TA) has the responsibility of maintaining and improving the
MOGOSE framework to support the numerous MOOSE-based physics applications developed across other
NEAMS campaigns’ TAs and users: Thermal Fluids, Structural Materials and Chemistry, Fuel Perfor-
mance, and Reactor Physics.

Stakeholder feedback identified priority improvements in usability centered around enhancing the MOOSE
language server and associated user interactions in the NEAMS Workbench, as well as the finite element
mesh (FEM) generation capabilities. The MOOSE language server updates focused on input autocomple-
tion improvements, new language server features to accelerate understanding, navigation, and editing user
input, along with other enhancements. Improvements were focused on (1) streamlining input for repeated
mesh objects; (2) enabling support for quadratic elements (preserving the volume of circular surfaces like
fuel pins while also reducing mesh density requirements for physics applications); (3) implementing 3D
meshing capabilities such as revolving mesh construction (useful for pebble-bed reactor (PBR) conical ge-
ometries or molten salt reactor (MSR) tanks); (4) adding more features, such as control drum construction
and the ability to stitch dissimilar assemblies, to the Reactor Geometry Mesh Builder (RGMB); (5) assess-
ing the optimal path to adding Monte Carlo constructive solid geometry (CSG) support within MOOSE;
and (6) continuing to support users with mesh generation and understanding their evolving needs.



2. MOOSE USER INTERFACE INTEGRATION UPDATES

2.1 INPUT PROCESSING ENHANCEMENTS

2.1.1 Full Support for pyhit

In FY 2023, the Hierarchical Input Text (HIT) parser in MOOSE was replaced with the WASP-HIT in-
terpreter for all downstream C++ usage. This involved the implementation of an adapter pattern so that
all access to input data from C++ would use the underlying WASP-HIT NodeView class transparently
through wrapper interfaces. However, within the MOOSE framework, there is an entirely separate use of
HIT through a Python interface called pyhit. This is a collection of Python bindings that is generated for
the C++ HIT nodes and is used for applications such as the TestHarness and MooseDocs systems.

The remaining HIT logic used through pyhit needed to be adapted in FY 2024. Support for the complete
set of pyhit functionality using WASP was added. The legacy HIT implementation was subsequently re-
moved, and WASP-HIT was made the exclusive parser. This eliminated duplicate maintenance efforts and
potential for inconsistencies between the two.

Some areas of HIT were only accessed downstream by Python through pyhit rather than being accessed
directly by C++. These areas had not been covered by the previous development of the adapter class. Mul-
tiple updates were required to fully support all of these pyhit scenarios:

Updating WASP-HIT lexical patterns with all the TestHarness and MooseDocs scenarios.

Modifying MooseDocs Python logic to address changes in the extraction of input blocks.

Capturing inline comments in the HIT tree separately to properly render with round trips.

Using state information in WASP-HIT to process multiple nested brace expression levels.

Adding support of blank node types in the parse tree to compress consecutive blank lines.

Replacing explode functionality used by HIT utilities with parsed render expansion logic.

Updating pyhit to use the WASP-HIT wrappers revealed needed performance improvements. For exam-
ple, the retrieval of values from the HIT node tree with C++ is templated based on the expected value type,

e.g.,

1 std::vector<int> ints
2 std::string text

root_node->param<std::vector<int>>(path);
root_node->param<std::string>(path);

However, pyhit heavily uses the Field: :kind () method to get parameter values from the parse tree,
e.g.,



k = node.kind()
if k == FieldKind.Int:

return int(f.intVal(Q))
elif k == FieldKind.Float:

return float(f.floatVal())
elif k == FieldKind.Bool:

return bool(f.boolVal())
return f.strVal().decode('utf-8'")

O N O Vvl i W DN =

When pyhit was updated to use the adapter interfaces, a significant slowdown was observed in the startup
time of the MOOSE TestHarness system. To fix this, the HIT Field: :kind () logic was updated to di-
rectly use the wrapped WASP token type rather than deduce type from the string value through a series of
expensive try{} / catch{} blocks. This improved the MOOSE TestHarness startup time by ~875% be-
cause Python relies on the Field: :kind() method so extensively. It decreased the TestHarness startup
from ~70 seconds to ~8 seconds for moose/test and moose/modules combined.

2.1.2 Include External Input

A feature that has been requested by MOOSE developers and users is the ability to define portions of input
in external files and then include those files from within another input file. This capability was added to
the WASP input processing prior to FY 2024, but it had not previously been utilized in the HIT wrapper
interfaces described in Section 2.1.1.

In FY 2024, minor updates were added to WASP to catch error conditions like circular input file inclu-
sions. After the legacy HIT implementation was removed to make WASP-based HIT the exclusive input
processor in MOOSE, the ability to include external files was unlocked in the HIT adapter. The !include
filename syntax can be used at any arbitrarily nested context of input. The £ilename can be any file in
the current directory, relative path, or absolute path as long as it contains syntactically complete blocks or
parameters.

This allowed users to define pieces of input that were common to many problems once in a single input
file. That file could then be included by multiple inputs wanting to reuse the same shared input specifica-
tion. For example, observe the following set of input files:

basefile.i:

[Block®1]

param@la = value®la

linclude include_param_from_basefile.i
param®@lc = value®lc

linclude include_block_from_basefile.i
[Block®3]

1
2
3
4
5 [1
6
Vi
8 param®@3a = value®3a
9

L]




include_param_from_basefile.i:

1 param®1lb = value01lb

include_block_from_basefile.i:

1 [Block02]

2 param®2a = value02a

3 linclude include_param_from_included.i
4 param®2c = value02c

5 []

include_param_from_included.i:

1 param®2b = value02b

This example demonstrates the ! include construct being used to import various types of input compo-
nents from multiple input contexts. The result is that using basefile.i as the base input file will re-
cursively comprise all contents included from downstream files. This effectively results in the following
equivalent specification:

[BlockO1]

param@la = value®la
param®1lb = value®1b
param®lc = value®lc

[Block®2]
param®2a = value02a
param®2b = value02b

1
2
3
4
5 [1
6
7
8
9 param®2c = value®2c

10 [1

11 [Block®3]

12 param®3a = value03a
13 [1

2.1.3 Merge of Input Blocks

After gaining the ability to include external input files (as described in Section 2.1.2), MOOSE users then
wanted to allow block parameters to be split across input files. For example, suppose the following two

files are used to define a problem with the idea that the tst_pp postprocessor subblock would be the merged
definition specified over both inputs:



basefile.i:

linclude included.i

1

2 ...

3 [Postprocessors]

4 [tst_pp]

5 type = ConstantPostprocessor
6 []

7 [1

included.i:

1 [Postprocessors]
2 [tst_pp]

3 value = 5.0
4 []

5 [1

However, this was not possible and failed with the following error from the same block being specified
twice:

A UserObject with the name "tst_pp" already exists.
You may not add a Postprocessor by the same name.

The input processing was updated to combine parameters from blocks that have the same name. The ex-
ample above, which previously failed because of a duplicate block name error, will now run as desired.
The tst_pp postprocessor subblock will be made up of the type = ConstantPostprocessor parame-
ter from basefile.i and the value = 5.0 parameter from included.i merged together to become:

1 [Postprocessors]

2 [tst_pp]

3 type = ConstantPostprocessor
4 value = 5.0

5 []

6 [1]

2.1.4 Override Value Syntax

In addition to the capabilities described in sections 2.1.2 and 2.1.3, users wanted to put groups of default
settings common to multiple problems in a shared input file and be able to include those default settings
while overriding certain values as needed. For example, suppose the following two files are used to define
a problem with the idea that defaults.i contains default settings that are used unless overridden by the
specifics.1i input:



specifics.i:

linclude defaults.i

1

2 ...

3 [Functions]

4 [f]

5 value = '${fparse new_expression}'
6 []

7 [1

defaults.i:

1 [Functions]

2 [£f]

3 type = ParsedFunction
4 value = '0'

5 []

6 [1]

However, this was not possible and failed with the following errors from the same parameter being speci-
fied twice:

defaults.i:4.5: parameter 'Functions/f/value' supplied multiple times
specific.i:4.5: parameter 'Functions/f/value' supplied multiple times

The ability to override the values of parameters when using included files was added to the input process-
ing. This enabled choosing the parameter setting with precedence for conflicting specifications in included
files. It also improved flexibility by allowing common settings to be included and overridden by problem
specific values as necessary. Either the concise param := value syntax or verbose param :override=
value syntax may be used, and both are equivalent, e.g.,

file_a.i:

1 linclude file_b.i

2 [Block]

3 param_01 := value_01_from_file_a
4 param_02 :override= value_02_from_file_a
5 param_03 = value_03_from_file_a
6 param_04 = value_04_from_file_a
7 [1




file_b.1i:

1 [Block]

2 param_01 value_01_from_file_b
3 param_02 value_02_from_file_b
4 param_03 := value_03_from_file_b
5

6

param_04 :override= value_04_from_file_b

L]

If file_a.1i is used as the base input file, it would effectively result in the following specification:

1 [Block]

2 param_01 = value_01l_from_file_a
3 param_02 = value_02_from_file_a
4 param_03 = value_03_from_file_b
5 param_04 = value_04_from_file_b
6 []

So the previous example, which failed because of duplicate parameter errors, can now be specified as:

specifics.i:

linclude defaults.i

1

2 ...

3 [Functions]

4 [£]

5 value := '${fparse new_expression}'
6

7

[]

(]

defaults.i:

1 [Functions]

2 [£]

3 type = ParsedFunction
4 value = '0'

5 []

6

L]

The '${fparse new_expression}' value will override the '®"' value for the expression parameter.

The WASP NodeView wrapped by each HIT node can be accessed using the hit: :Node: : getNodeView()
method. The first step to accomplishing this was updating the WASP processor so it would accept an op-



tional override specifier. Then, a new is_override() interface that indicates whether the override syntax
was used when specifying a parameter was added to the WASP NodeView.

Previously, the WASP NodeView to HIT node tree building logic did not check if a parameter had already
been defined. Parameters defined multiple times in the same context were simply re-added to the HIT node
tree for each occurrence. The MOOSE Parser later walked all hit: :Field nodes in the tree and threw

an error for any duplicate parameters. The final step was updating the WASP NodeView to HIT node tree
build logic to use the NodeView: :is_override () and do the following:

If the current WASP NodeView (wasp_child) is a field of type KEYED_VALUE or ARRAY, then:
e Look forahit::Field node of the same name and context in the tree, and if not found:
— Create new hit: :Field node from wasp_child and add to the tree as is standard.
e But,ifahit::Field node with the same name and context is found (found_node), then:
— Get override settings of previously added found_node and new wasp_child with:
% override_old_node = found_node.getNodeView().is_override()
% override_new_node = wasp_child.is_override()
— Then, use the following conditions and decide how to handle those nodes in the tree:
% 1f (loverride_old_node && !override_new_node):
- Leave previously added found hit: :Field node found_node in the tree.
- Create new hit: :Field node from wasp_child and add to the tree also.
- The MOOSE Parser will throw an error for the duplicate parameters later.
* 1f (loverride_old_node && override_new_node):
- Remove previously added hit: :Field node found_node from the tree.
- Create new hit: :Field node from wasp_child and add to the tree.
# 1f (override_old_node && !override_new_node):
- Leave previously added found hit: :Field node found_node in the tree.
- Do not create new hit: :Field node from wasp_child for the tree.
% 1f (override_old_node && override_new_node):

- Throw an error as override syntax was specified twice for same parameter.

2.2 AUTOCOMPLETION ENHANCEMENTS

2.2.1 Partial Input Scenarios

In FY 2023, autocompletion assistance was added to the MOOSE language server. This covered the com-
pletion of all blocks and subblocks for any context, all parameters (global, action, and object) for any block
context, and all values for any parameter context. This context-aware autocompletion was the most valu-
able and widely used feature added for assisting users with input creation. However, real-world use of the
autocomplete functionality revealed a broad user scenario that was not yet supported.

Prior to the FY 2024 development, the MOOSE language server required that the current state of the in-
put document be at least structurally sound according to HIT syntax in order for the autocompletion logic
to return any results. But users wanted the ability to autocomplete within syntactically incomplete docu-
ments, and this was not available. This would allow a much more natural way to interact with input. En-
abling it was a three step process.



First, the WASP input processing needed to support error recovery. This involved making lexer and parser
updates to handle numerous erroneous input scenarios. These included parameters without equal signs

or values, blocks without names or terminators, and block names without closing braces. These changes
properly captured failure messages while allowing parse tree construction to continue after the error condi-
tions were encountered.

Second, the MOOSE language server autocompletion was modified to only emit values for parameters
that have defaults. Previously, an insertion value was decided for every parameter using information like
enumerated choices and types. This was necessary when WASP did not support error recovery to make the
input syntactically complete so that it could be captured fully in the parse tree. But this completion logic
was changed so it no longer tries to determine an insertion value. Instead, param = is simply emitted
with no value when any parameter without a default is chosen. This is now acceptable since the WASP
processor has been updated to recover from this state and build the remainder of the parse tree.

Finally, new autocompletion logic was added to the MOOSE language server for each of the partial input
cases that support error recovery. These scenarios are listed below.

2.2.1.1 Parameter Missing Value After Equal Sign

In FY 2023, one of the features implemented with the MOOSE language server was the autocompletion of
parameter values. This subset of the completion capabilities was predicated on the request context coming
from an existing value node that had a parameter or array parent. A series of checks were implemented
using the parent context of that value node to determine what category of options should be presented to
the user, e.g.,

active / inactive parameter value - all defined child subblock names

boolean type parameter value - "true" and "false" string literals

e enum type parameter value - enum choices with description strings

assoc syntax parameter value - associated syntax path input queries

type named parameter value - object action names verified by tasks

When one of the response choices was selected, it would replace the parameter value that already existed
in the input and was the origin location of the completion request. After the WASP error recovery develop-
ment described above, however, it was no longer guaranteed that this class of completion requests would
originate from existing value nodes. The objective became to enable autocompletion of parameter values
when a value is not already present in the input.

Due to the structure of partial input being completed in this scenario, the cursor may not be directly at-
tached to a piece of text representing a terminal node in the parse tree. Instead, the cursor could follow
after an arbitrary amount of whitespace to the right side of a param = statement that has no value. In this
case, the logic that finds the node associated with the request location would return the parent block con-
text because the range of positions representing the parameter spans from the name declarator to the equal
sign.

Whenever the request context was reported to be from within a block context, extra measures were added
to move backward character by character and continually check each position until the context changed. If
the first change of context points to an equal sign, then the request context is updated to be that node rather
than the parent block node.

The language server autocompletion conditions that previously triggered the actions listed above only
when the context of the completion request was from a value node were then updated to also trigger when



the request context was from an equal sign node. Figure 1 shows an example of this in practice with the
NEAMS Workbench autocompletion of block type values when there is not a value already specified in the
input for that parameter.
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Figure 1. Partial input autocompletion when no value is specified for the parameter.

2.2.1.2 Partial Parameter Name Filtered by Prefix

The ability to autocomplete within any block and be provided all parameters that are valid to exist in that
block context was another feature added to the MOOSE language server in FY 2023. Similar to the imple-
mentation previously described for values, this parameter completion was also strictly tied to the type of
node from which the request originated. In this case, parameter completion was only available when the
request was from directly inside a block context.

This meant that the cursor location had to be inside a block but not within the bounds of any child parame-
ters of that block. A user could not begin typing the name of a parameter and then request autocompletion
options while their cursor was still attached to the partial name because this request would not originate
from a direct block context.

One of the updates during WASP error recovery development was to store standalone string primitives in
the parse tree as childless declarator type nodes. In this scenario, the partial name attached to the cursor
when autocomplete is requested is a parameter declarator type node. This means that the request originates
from a parameter declarator context.

The language server conditions that previously triggered parameter completion only when the context of
the completion request was from a block node were updated to also trigger parameter completion when the
context of the request was from a parameter declarator node. Additionally, the data specified by the user
for the partial parameter name were captured to use as prefixes for filtering the items provided to the user.
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Parameters are only added to the list of available options if they begin with these prefixes.

One other change necessary to support this completion scenario was that the line and column range of the
partial parameter name data specified by the user was captured. These positions were added to each item in
the filtered list of options to be used as replacement ranges so that the partial name already specified in the
input would be replaced by the full parameter name upon completion. Figure 2 shows an example of the
NEAMS Workbench using this feature to autocomplete parameters from the context of a partial parameter
name that is used as a prefix to filter available options.

L J ® NEAMS Workbench
File Edit View Help

Reload Saveas Closetab Print Paste = Undo Find
Navigation ° o testid |

Filter document "Mesh (GeneratedMesh) - add -

- testi ... App:Moose - Moose 1 ~| Run ~ View ~ Edit -

= document

1 [Mesh]
= Mesh (GeneratedMesh) 2
g

type = GeneratedMesh
type i

a dim = 2
[ 4 add
i i is i i i vali s is permi s ing up

add_sideset_names
add_subdomain_ids

add_subdomain_names
*

The listed subdomain ids will be assumed valid for the mesh. This permits setting up sub...
The listed subdomain names will be assumed valid for the mesh. This permits setting up s...
custom user named block

L;ﬂ—ﬂ Line: 4, Col: 6 ~/Mesh (GeneratedMesh)/add/decl Validation MessagesJ

Figure 2. Partial input autocompletion from an incomplete parameter name context.

One unplanned, yet fortunate, side effect of this partial parameter name filtering capability is the way it

is handled by the VS Code client. VS Code sends autocomplete requests for each keystroke rather than
requiring the user to always use a special key combination. This means that the list of available options is
automatically displayed and filtered as the user types the parameter prefix.

2.2.1.3 Partial Name of Block with Prefix Filtering

In addition to the autocompletion of parameters and values, another feature implemented for the MOOSE
language server in FY 2023 was the ability for autocomplete and add blocks that are allowed to exist in a
given context. All valid blocks were gathered and provided as options only when the request originated
from the root level of the document or from directly inside another block context.

This meant that users were not able to begin typing a block name after an opening brace and then request
autocompletion options. Their cursor would be attached to the partial block name, so this request would
not originate from either the document root context or direct block context that was required for this type
of completion. The WASP error recovery development updated the input processing to capture the partial
name attached to the cursor as a block declarator type node in the parse tree so this request would originate
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from a block declarator context.

Similar to the changes described above to support partial parameter name autocompletion, the conditions
that trigger the gathering of blocks to be provided as autocomplete options were updated to include the
block declarator context. The partial block name data specified by the user were also captured and used to
filter blocks from the list that do not begin with the prefix.

The line and column range of the partial block was again captured to use as a replacement range so that the
full block name would overwrite the partial name upon completion. The opening block brace was also re-
moved from the insertion text because it would already exist in the input with this scenario. Figure 3 shows
an example of this feature being used from the context of a partial block name in the NEAMS Workbench
to autocomplete blocks for which the specified prefix is used to filter the provided options.
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Figure 3. Partial input autocompletion from the context of an incomplete block name.

Just like with partial parameter name autocompletion, VS Code sends autocomplete requests for every
keystroke while the user is typing the partial block name prefix. As the user types, all of the available
blocks are displayed and automatically filtered in a completion list. In the future, integrating this feature
into the NEAMS Workbench will be useful because this feature has been effective in assisting input cre-
ation.

2.2.1.4 Unclosed Start Block Brace Without Name

The user may also wish to request autocompletion immediately after typing an opening block brace and be
provided all blocks available in a given context without needing to recall any block name prefix informa-
tion. This was also not possible after the FY 2023 development efforts because the request would originate
from the context of the opening block brace attached to the cursor.



During the WASP error recovery development, a special case was added to capture this scenario of an
opening block brace with no name specified by manufacturing an empty name token and adding an empty
block declarator leaf node to the parse tree. Because an empty block declarator has been added to the tree
at the same byte offset location as the opening block brace, the context for the autocompletion request
would once again come from a block declarator context in this case.

The updates to the autocompletion logic previously described to support partial block names also sup-
ported this scenario where no partial name is specified after the opening block brace. The node associated
with this request would not have any data, so the filter prefix would be empty in this case. Therefore no
block names are filtered from the list of provided options.

The line and column information manufactured for the empty block declarator node is identical to the line
and column of the preceding opening brace node. This meant that upon selection of a block from the list,
the autocompletion would actually remove the opening block brace from the input in this special scenario
because it matches the column of the empty node. An update was needed to avoid this by bumping the
columns in the replacement range out by one character. Figure 4 shows an example of this being used for
autocompletion in the NEAMS Workbench from the context of an unclosed opening block brace attached
to an empty block name declarator.
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Figure 4. Partial input autocompletion at the opening brace of a block with no name.

2.2.1.5 Missing Terminator for Block or Subblock

A common process used for creating input with a MOOSE language server enabled client involves first
writing a block declarator (e.g., [Executioner]) followed by a new line and then requesting autocom-
plete to choose parameters that should be added for the new block context. It is natural to want to create
input in this manner without first adding a terminator (e.g., []) to close the block context. However, this



was not possible after the FY 2023 development because it temporarily left the input in an erroneous state
without terminating the block.

Prior to the WASP error recovery, nodes belonging to unterminated blocks were not stored in the parse
tree. This meant that there was no way for the autocompletion request context in this scenario to be from
the block without a terminator because no components of that block existed in the parse tree. The error
recovery development captured all specified pieces of input, even when errors such as unterminated blocks
occurred.

After these WASP updates properly added the block context to the tree, another issue presented itself with
this completion scenario. The logic that searches the tree to find which node is associated with the request
location would crash when the line and column from the request were past the end of the document and
the final block did not have a terminator. It could not handle this edge case. This was updated to return the
parent node when the given position was past all content defined in the input.

The autocompletion logic was also updated to first check if the line and column from the request are greater
than the last position defined in the parse tree. If this is the case, then the last line and column from the in-
put are used to capture the final node in the document.

If this final node is not a block terminator, then it is a sibling of the requested context, so the context for
completion becomes the parent of this node. If this final node is a block terminator, then the parent block
of this terminator is a sibling of the requested context, so the context for completion becomes the grandpar-
ent of this node. In either case, the completion request context will be the unterminated block as intended.

With these changes, users can now create input using the natural workflow described above. They are no
longer required to first add a terminator for each block and then move the cursor above this terminator to
autocomplete the parameters in that block context. Figure 5 shows an example of autocomplete using these
updates to provide parameters to the NEAMS Workbench when the context of the request is from a block
that does not have a terminator.

2.2.2 Adding Required Input

As the MOOSE language server gained traction and became more widely used, new features were re-
quested by the user and developer communities to assist with their workflows for input creation. One of
these requests was that when autocompletion is used to create a new input context, all parameters that are
required to exist in that context are automatically added to the input. This request is applicable to the fol-
lowing two scenarios with regard to autocompletion. Both of these cases either add a new context to the
input entirely or change an existing context within the input to become something else.

1. When autocomplete is used to add a new block for a given context, e.g.,
e adding a whole [Mesh] block from the root level of the document
e adding a whole [Partitioner] block to a [Mesh] block context

2. When autocomplete is used to update the value of a type parameter inside an existing block, e.g.,
e changing type = Steady to type = NonlinearEigen within an [Executioner] block

e autocompleting type = to be type = MTICMult within an [InitialCondition] block

It was noted in the motivation of this feature request that certain categories of input blocks, such as com-
ponents related to actions or physics, often have a long list of parameters that are mandatory to exist in the
input. It was also made apparent how valuable to users it would be if the parameters that must always be
specified were included automatically by the autocompletion logic.

14



&  Workbench

eoe NEAMS Workbench
File Edit View Help

Reload Saveas Closetab Print Paste = Undo Find
Navigation ° o testi@ ‘

Filter ....App:|Moose - Moose 1 *‘ Run ~ View ~ Edit ~
[Stesti |1 [Mesh]

= document 2 type = GeneratedMesh
= Mesh (GeneratedMesh) (3 dim = 2
type R |

active
add_sideset_ids
add_sideset_names
add_subdomain_ids
add_subdomain_names
allow_renumbering
alpha_rotation
beta_rotation

If specified only the blocks named will be visited and made active

The listed sideset ids will be assumed valid for the mesh. This permits setting up bound...
The listed sideset names will be assumed valid for the mesh. This permits setting up bou...
The listed subdomain ids will be assumed valid for the mesh. This permits setting up sub...
The listed subdomain names will be assumed valid for the mesh. This permits setting up s...
If allow_renumbering=false, node and element numbers are kept fixed until deletion

The number of degrees that the domain should be alpha-rotated using the Euler angle ZX% ...
The number of degrees that the domain should be beta-rotated using the Euler angle ZXZ c...

bias_x The amount by which to grow (or shrink) the cells in the x-direction.
bias_y The amount by which to grow (or shrink) the cells in the y-direction.
bias_z The amount by which to grow (or shrink) the cells in the z-direction.
block id IDs of the block id/name pairs

block_name
boundary_id

boundary_name

build all_side_lowerd mesh
centroid_partitioner_direction
construct_node_list from side list
construct_side_list_from node list
control_tags

coord_block

Names of the block id/name pairs (must correspond with "block_id"

IDs of the boundary id/name pairs

Names of the boundary id/name pairs (must correspond with "boundary id"

True to build the lower-dimensional mesh for all sides.

Specifies the sort direction if using the centroid partitioner. Available options: x, y,...
Whether or not to generate nodesets from the sidesets (usually a good idea) .

If true, construct side lists from the nodesets in the mesh (i.e. if every node on a giv...
Adds user-defined labels for accessing object parameters via control logic.

Block IDs for the coordinate systems. If this parameter is specified, then it must encom...

coord_type Type of the coordinate system per block param

displacements The variables corresponding to the x y z displacements of the mesh. If this is provided...
elem_type The type of element from libMesh to generate (default: linear element for requested dime... _]|
enable Set the enabled status of the MooseObject.

gamma_rotation
gauss_lobatto_grid
ghosted_boundaries
ghosted_boundaries_inflation
ghosting_patch_size

inactive
include_local_in_ghosting
length_unit

max_leaf size

The number of degrees that the domain should be gamma-rotated using the Euler angle ZXZ ...
Grade mesh into boundaries according to Gauss-Lobatto quadrature spacing.

Boundaries to be ghosted if using Nemesis

If you are using ghosted boundaries you will want to set this value to a vector of amoun...
The number of nearest neighbors considered for ghosting purposes when 'iteration' patch ...
If specified blocks matching these identifiers will be skipped.

Boolean used to toggle on the inclusion of local elements along with the ghost elements ...
How much distance one mesh length unit represents, e.g. 1 cm, 1 nm, 1 ft, S5inches

The maximum number of points in each leaf of the KDTree used in the nearest neighbor sea...

nemesis If nemesis=true and file=foo.e, actually reads foo.e.N.0, foo.e.N.1, ... foo.e.N.N-1, wh...
nx Number of elements in the X direction
ny Number of elements in the Y direction

Number of elements in the Z direction
Boolean to turn on ghosting auxiliary fields

NEEATITM. fan 1iRManhe:BanliantadMank sinlann ——Ainteihatad_manh $n mnand £5ad an bha mamme

nz
q output_ghosting
L X

mrn11AT remn

<

Figure 5. Partial input autocompletion from the context of a block with no terminator.

This would prevent the user from having to use autocomplete over and over again to fetch every required
parameter one by one after already adding the block. Instead, autocomplete could collect all of the param-
eters that are not optional for the new input context and add each one with an empty value field inside the
block. The user would then only need to fill in the values for the provided parameters rather than having to
first search for every one that is required in the list and add them manually.

For the first scenario, in which autocomplete is used to insert entirely new blocks to the input, the full syn-
tax path of each block option from the list that could possibly be selected is used to gather all of the action
parameters that are valid to exist in that new block context. For the other case of using autocomplete to add
or change the value of a type parameter in an existing block, the full syntax path of the parent block is used
along with each type value option that could possibly be selected by the user to gather all of the action pa-
rameters and object parameters that are valid to exist in that combination of block and type context.

Then, for each new input context that would be created if the associated option is the one chosen from the
list, the collection of parameters valid to exist in that context is traversed. Any parameter that is said to

be required and is not set elsewhere in the framework gets formatted for completion with an equal sign
and the proper indentation level. The parameter is then appended to a text list that will be inserted into the
document within the block if that option is selected by the user.

The names of all parameters that already exist in the input as siblings of the autocomplete request location
are also gathered. Parameters that exist in this set do not get added to the insertion text list for that option
because they have already been specified by the user. This prevents parameters, which are allowed to be
specified only once, from being added to the input a second time when the user just changes a type value
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using autocomplete.

The required parameters are only inserted when the user actually selects the block name or type value in

the autocomplete list by clicking or pressing return. It does not perform any live updates to the input by
adding and removing parameters while the user is typing partial block names and type values or scrolling
through the list of available options. Although a separate set of parameters may be gathered and constructed
for every possible selection in the list, only the single set associated with the option that the user chooses
will be inserted into the input at the time of selection. The lists for all of the other options are built so that
they are ready to be used in case they get selected, but these lists are simply discarded otherwise.

This capability could not have been added without the WASP error recovery development and the updates
to support autocompletion of absent parameter values described in section 2.2.1 happening first. Prior to
those efforts, it was not possible to insert these required parameters into the input without values (e.g.,
param = ) and then use autocomplete to add values when options are available. Those features were nec-
essary prerequisites for this feature. Figure 6 shows examples of the required parameters that are collected
and automatically added for various contexts in the NEAMS Workbench when autocompleting new blocks
and block type values.
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Figure 6. Required parameters added when autocompleting blocks and type values.

2.2.3 Completion Kind Icons

Client editors like VS Code have the ability to choose an icon to display for every item in an autocomplete
list based on what value the language server provides for the completionItemKind field of that option.
However, after the initial autocompletion capabilities were implemented for the MOOSE language server
in FY 2023, it was discovered that VS Code was not presenting different icons for the various categories of
options available. The editor was, in fact, always displaying the same icon for all autocomplete options in
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every list, regardless of the type or context.

This was happening because the autocompletion logic on the server side was not performing the required
examination of item properties to properly communicate their types to the client. Therefore, type intro-
spection was added to the MOOSE language server using constructs like the registered syntax, factories,
and data of each component. This logic was used to choose a completionItemKind value for every auto-
completion option that would be provided to users by the client and then to apply the chosen values to the
associated items in the response list.

Providing clients like VS Code with this information enabled icons to be used as a way to quickly differen-
tiate separate groups or categories of available options. This update automatically led to more feedback for
an improved experience. This increased the potential of recognition through visual cues, which can allow
faster autocompletion speeds from a user perspective. Figure 7 shows an example of VS Code presenting
an autocomplete list of parameters in which the icons being displayed for all of the items are based on the

provided completionItemKind values.
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Figure 7. Autocomplete icons used in VS Code based on the provided introspection.

The NEAMS Workbench does not yet support using the completionItemKind fields from completion
responses to display icons. However, the MOOSE language server uses a specific value for this field to
indicate any parameter that is mandatory to exist in the input. The NEAMS Workbench is able to use this
setting and prepend a (REQUIRED) tag to the description label of any parameters in the list that must be

specified.

2.2.4 Snippet Syntax Support
After the development in FY 2023, whenever autocomplete was used to insert a new block into the input,
the cursor was left in the location immediately following the block. After autocomplete is used to add an



input block, the next action for a user will most commonly be to add an element inside that block. But with
the cursor being positioned after the terminator of newly added blocks, it left for a somewhat clumsy in-
teraction involving the user consistently needing to either click inside the block or use their arrow keys to
move the cursor back to the intended context to add this element.

Similarly, when autocomplete was used to add a new parameter that had a default value, the cursor was left
in the location immediately following that default value. In this case, a user usually intends to either up-
date that default value or at least view the available options as their following action. However, the cursor
being positioned at the end of the default parameter values created another awkward editing experience.
The user was required to either select the entire value to replace it or arrow backward to trigger autocom-
plete again directly from the beginning of the value context.

Both of these scenarios involving the position of the cursor as well as the selection of text after autocom-
pletion are actually already supported by the language server protocol. However, this construct had not
been previously been added to the autocomplete logic. It was requested that this capability be utilized by
updating the MOOSE language server to provide autocompletion text formatted as snippets.

However, snippet formatting should not be added to the autocomplete insertion text across all cases. Cer-
tain client editors may not support the ability to properly apply snippet syntax to autocompletion. If the
MOGOSE language server always formatted its completion responses as snippets, then clients that do not
support the capability would insert mangled text with invalid decorative characters directly into the docu-
ment.

These editors would not use those special syntax constructs for their intended purpose to control actions
like movement, selection, and placement of the cursor upon completion. Special care needed to be taken
so that the snippet syntax would only be applied to autocomplete responses when the client editors support
the snippet capability for autocompletion. Fortunately, one of the requirements in the protocol is that a
client must notify the server in the initialization request if this is one of their capabilities.

Similar to completionItemKind discussed in section 2.2.3, another optional field available for each au-
tocomplete response item is insertTextFormat. This field is used to indicate the format of text to be
inserted when a completion item is selected and to define how it should be interpreted by the client. This
property is not required to be set for any of the items in the completion response. If the field is omitted,
then the default interpretation is for the insertion text to be treated as plain text. If a language server in-
tends for a client to treat any completion item as a snippet, then the server must set this field for that item.

The only two options allowed for this property are plain text, which is inserted without any formatting ap-
plied, and the snippet format. If the insertTextFormat field is specified to indicate that the snippet for-
mat is being used for insertion text, then various formatting constructs can be taken advantage of to assist
with input creation. Client editors can use these to decide how to handle the inserted text and provide a
better user experience. For example, tab stops can be used to control cursor movement during autocom-
pletion, and placeholders can be used to select values so they can easily be updated. This allows users to
easily navigate and complete multiple areas of the input quickly.

The MOOSE language server is derived from an abstract base language server class in WASP that imple-
ments all of the general protocol logic that is not language specific. Any language server implementation
that is derived from this will inherit all of the common behaviors and attributes that are shared among all
servers without having to worry about implementing pieces not specific to their language. Prior to FY
2024, the insertTextFormat field did not exist in the autocomplete packets defined at this base server
level. Because the protocol defines this as an optional property, it was never required to exist for the com-
pletion items and was not added during the initial development of the base class.
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If insertTextFormat could be explicitly set to indicate the snippet format, then the completion item text
could be updated with snippet formatting to improve user interaction. For example, placeholders could be
used for parameter completion (e.g., param = ${1:value}) so that values are automatically selected in
the client, and tab stops could be used for block completion (e.g., [Block]\n $0\n[]) to automatically
move the cursor inside any added blocks.

However, because this field was missing entirely, it was impossible for any derived servers to set the prop-
erty. This meant that the default plain text behavior of text insertion with no formatting applied was the
only option available for any client. This required an update to add this field to the base autocompletion
item packets and then propagate its availability throughout all of the necessary interfaces in the package.

The MOOSE language server was then updated to check if the connected client editor claimed to support
the snippet autocompletion capability in its initialization request. The VS Code editor, for example, added
snippet completion years ago, whereas the NEAMS Workbench was updated in FY 2024 to support a lim-
ited snippet syntax. If a client does have this capability, then the insertTextFormat field is set to indi-
cate that snippet formatting is being used, and the insertion text items are formatted with snippet syntax.
But if the client does not claim to support snippet completion, then the autocomplete logic leaves its re-
sponses in the plain text format. The MOOSE language server currently uses snippets for the following
two cases:

e When a parameter with a default is completed, the value is selected so a user may easily change it.
An example is using autocomplete to add a parameter named enable with true for a default value.

— If the client does not support snippets, this is sent, and the cursor gets placed after the value:

enable = true

— If the client does support snippets, this is sent to indicate that the value true will be selected:

enable = ${1:true}

e When a block is completed, the cursor is put on a blank line in the block and indented two spaces.
An example is using autocomplete to insert a new block named Postprocessors into the input.

— If the client does not support snippets, this is sent, and the cursor gets placed after the block:

[Postprocessors]

(]

— If the client does support snippets, this is sent to indicate the cursor will be at the $0 location:

[Postprocessors]
$0

(]
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2.3 GENERAL SERVER ENHANCEMENTS

2.3.1 Show Hover Description

The MOOSE language server was updated to add hover support for all available input documentation
types. This enabled the ability for a user to hover their cursor over a piece of input in a client editor and
be presented with a popup tooltip showing the description of the component. This new hover capability is
predicated on the request context coming from either the key or value of a valid parameter. If the request
context is from any other type of node in the input, then an empty string is always returned in the response
to the client.

Otherwise, the full syntax path of the parent block context for the parameter, as well as the value of the
type parameter in that block (if one exists), is captured. These block path and type values are used to gather
the set of all global parameters, action parameters, and object parameters that are valid to exist at the con-
text of the request location. This full collection of parameters is then used to query the documentation
string defined for the following three scenarios:

o [f the hover request context is the key of a parameter, then respond with its registered description.
o [f the hover request context is an enumerated type value, then respond with its item description.

o If the hover request context is the type value for a block, then respond with its class description.

If the request is from a parameter key that is not valid to exist in its context, then an empty string is re-
turned. Likewise, if the request is from an enumerated type value that has not had a documentation string
defined, then it will return an empty response string. Furthermore, if the request is from a type parameter
value that not a registered object, then it will also return an empty string in the response. Figure 8 shows an
example of this capability being used to hover over the key of a parameter in the NEAMS Workbench and
being shown a popup tooltip displaying its documentation string.

2.3.2 Tree Symbol Kind Icons

Client editors like VS Code have the ability to choose an icon to display for every item in the naviga-

tion tree outline view based on what value the language server provides for the symbolKind field of that
symbol. But after implementing the initial hierarchical document symbols capability in FY 2023 for the
MOGOSE language server, it was found that VS Code did not display different icons for the numerous types
of symbols that should be available. Instead, the client always displayed the same icon for all document
symbols in the outline tree regardless of what kind of input context each symbol was referencing.

This was due to a lack of introspection necessary in the server to determine a classification for each sym-
bol when building the document symbol tree. The logic used to build the hierarchical symbols directly
traverses the NodeView tree created by WASP processing, so the type stored in each NodeView was ex-
amined in conjunction with the input data captured in each leaf to choose a suitable symbolKind value for
each symbol inserted into the tree. These values were then added to every symbol in the hierarchy before
providing the tree to the client.

Editors like VS Code were then able to use this information to associate an appropriate icon with each
symbol and apply it when constructing the outline view. This created a more feature-rich experience by
increasing the amount of feedback that was available to be provided to users. It resulted in a better way to
visually discern between different components in the tree to allow for potentially quicker navigation to the
intended pieces of input.

A separate reason for implementing the symbol analysis was of likely greater value than the aesthetic im-
provements the icons contributed to the editor. The document symbol tree was being created at too fine a
level of granularity, and it displayed far too much detail in the VS Code outline view. Although this issue
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Figure 8. Hovering the cursor over a parameter key to show its documentation string.

was somewhat overwhelming to VS Code users, the NEAMS Workbench needed all of these symbols to
perform other tasks such as reconstructing positions used by its document structure, breadcrumb trail, and
cursor context. The NEAMS Workbench does not yet use symbolKind values for any purpose, but it does
already filter down its own navigation tree level of detail by removing all decorative and terminal value
symbols to present a much more coarse and manageable hierarchy.

Other, more general client editors like VS Code that use the MOOSE language server also needed a way
to filter down their document outlines and remove elements that only clutter up the view without adding
any value. This was the second big advantage of breaking down the document symbols into categories and
applying relevant symbolKind values. The symbolKind value was set to SymbolKind: :Property for
all decorative syntax (e.g., [, 1, and =) in the tree, and the field was set to SymbolKind: : String for all
terminal value nodes.

The SymbolKind: : Property value was then able to be filtered in the VS Code extension logic to hide
all decorative nodes from the outline view. Likewise, the SymbolKind: : String value was filtered to hide
all terminal values. By using these two special classifications in the server when building the hierarchical
symbols and then simply updating the extension to ignore the categories when constructing the outline, it
filtered the view to significantly clean up what is presented to users. Figure 9 shows an example of a too
granular VS Code outline before this capability (on the left) compared with after the symbolKind values
were added to filter the level of detail (on the right).

2.3.3 Find References in Input
The MOOSE language server was updated to add support for a new capability to find all input references.
When provided with location where an input component is defined, the ability to traverse the entire input
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Figure 9. VS Code outline before symbol analysis (left) and after (right).

and use metadata to find references to all locations where that definition is used as the value of a parame-
ter throughout the input is now available. Users can now take advantage of this feature to request a list of
references from a client and quickly navigate to each location.

For example, if a user requests references to a variable named [u] defined in a [Variables] block, a list
of all locations where that variable is used will be presented in the editor. Every target reference has a file,
line, and column position associated. This information is used to provide a method for navigation. The list
will even contain the location of any references that exist in externally included input files.

This references capability is only applicable when the context of the request comes from a block name
declarator because block names are where the source definitions originate. If references are requested from
any other type of input component, then an empty response list is always returned. The first step is that a
map from all registered syntax paths to their associated parameter types is constructed. This map is cur-

rently as follows:
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Subblock Syntax Path Registered Type(s)

Mesh/* MeshGeneratorName
Functions/* FunctionName

MeshDivisions/* MeshDivisionName
Distributions/* DistributionName

Samplers/* SamplerName

Variables/* VariableName + NonlinearVariableName
AuxVariables/* VariableName + AuxVariableName
Materials/* MaterialName
FunctorMaterials/* MaterialName
Postprocessors/* PostprocessorName + UserObjectName
VectorPostprocessors/* VectorPostprocessorName
Reporters/* ReporterName

Positions/* PositionsName

Times/* TimesName

Outputs/* OutputName

Executors/* ExecutorName

UserObjects/* UserObjectName
Adaptivity/Indicators/* | IndicatorName
Adaptivity/Markers/* MarkerName

MultiApps/* MultiAppName

Next, the syntax path registered for the location of the request context is obtained. This registered syntax
path is used to query the previously built map to gather all parameter types associated with the request con-
text. The entire input tree is then recursively walked to collect all parameter nodes that match any associ-
ated parameter type and also have a value matching the name specified in the input for the block at the re-
quest context location. These location nodes, which match both type and value, are used to build response
objects that are inserted into a list of references and returned to the client editor. Figure 10 shows an exam-
ple of the NEAMS Workbench using this capability to find all references to a definition and navigating to
the line and column positions associated with each response location.

2.3.4 Navigation to Definition

Users are now able to quickly navigate to the definition of a component. In addition to navigating within
an input, users can conduct definition navigation where a definition resides in the source code of the ap-
plication. Specifically, if a user has access to the source code, then a definition request from the value of a
block type parameter will navigate to the source code file and highlight the line where that object type was
registered. This provides a significant benefit to the application user who is also a framework developer.

Additionally, users can now conduct definition navigation involving multiple input files. Because the new
file include feature allows users to split inputs across files, it is possible for the definition of a component
to reside in an included file. The ability to navigate to definitions that exist in external files is also avail-
able.
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2.4 ERROR CONTEXT ENHANCEMENTS

With the extensive development of the language server capability, it has become increasingly important to
associate as many errors as reasonably possible to a location within the input file. Some association has al-
ready been achieved through the paramError () method, in which a developer can tie an error to specific
parameter. However, the mooseError () method, which is used for a general error, was context-less.

For example, a context-less error looked something like this:

ek ERROR e
The following error occurred in the Kernel "diff", of type "Diffusion".

You did something bad.

This is not particularly useful for presentation to the user within an input file when using the language
server. Although it would have been possible to parse the output of the error header (the Kernel diff com-
ponent) and find the corresponding syntax in input, this is a tedious task and is not general. A significant
overhaul to the inner propagation of input file context was added to the mooseError () system. This over-
haul enables the overwhelming majority of errors to contain at the very least the context of the object that
they were produced within (if not more). The error above would then be presented as follows:

*%% ERROR ***
/path/to/input.i:5:1:
The following error occurred in the Kernel "diff", of type "Diffusion".

You did something bad.

This additional context enables the majority of errors to be tied to a specific location in input. This allows
the errors within input to be presented by the language server.

Internally, this was achieved by detailed bookkeeping of the parse node associated with every object within
the error context. The paramError () context was also improved by associating parameters in objects that
are set via action parameters to be associated with the corresponding action parameters.

2.5 DOCUMENTED ERRORS

Situations exist in which an error scenario or an unsupported capability is well known and is described

in an application repository issue. Issues are at the forefront of feature development and community sup-
port, which commonly include detailed discussions about issues and oftentimes include textual descrip-
tions of resolutions to issues. To make issues easily available to both users and developers, a standard syn-
tax for producing an error that is associated with an issue was implemented. This error is produced by the
mooseDocumentedError message as follows:

object.mooseDocumentedError ('moose", 1234, "Something something your error");

In this example, the error should be associated with the moose repository issue #1234, which will produce
the following error:

R ERROR B
/path/to/input.i:5:1:
The following error occurred in the Kernel "diff" of type "Diffusion".

Something something your error

This error is documented at github.com/idaholab/moose/issues/1234.
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2.6 VSCODE EXTENSION UPDATES

With the deployment of the MOOSE language server, substantial changes to the official VSCode MOOSE
Language Support extension (Schwen, D and Giudicelli, G ) became necessary. Previous versions of

the extension implemented a separate language server using the Microsoft/vscode-languageserver-node
library. This language server would launch a MOOSE executable to dump a static description of the MOOSE
syntax in JavaScript Object Notation (JSON) format. No MOOSE server process was kept running and no
simulation objects were constructed. Although this approach guaranteed minimal memory usage, the lim-
itation to static syntax by design did not allow the autocompletion of runtime items, such as variables or
objects added by actions and material property names.

Beginning with version 1.0.0, the built-in static syntax language server was dropped; instead, a MOOSE
executable in language server mode was launched. The Idaho National Laboratory (INL) VSCode exten-
sion developers coordinated with the ORNL language server developers to improve compliance with the
language server protocol for the best possible user experience in VSCode. The extension currently pro-
vides dynamic syntax completion, preselection of inserted default values for quick overwriting, a clean
outline view for fast input navigation, icons indicating the type of autocompleted values, and hover support
for documentation strings.

[Users/schwd/Programs.noindex/moose/modules/chemical_reactions/chemical_reactions-...
Last updated 2 minutes ago

[Users/schwd/Programs.noindex/mooseftest/moose_test-opt
Last updated 11 minutes ago

[Users/schwd/Programs.noindex/moose/unit/moose-unit-opt
Last updated 7 months ago

Figure 11. VSCode extension user interface for selecting the language server MOOSE executable.

In the current version of the extension, the user is prompted to select a MOOSE executable from anywhere
in the current VSCode workspace. The extension compiles a list of executables and sorts them by modifi-
cation date. A default executable can be added to this list in the top position by setting the
MOOSE_LANGUAGE_SERVER environment variable. This enables setting up binary-only environments where
the MOOSE executable is not located in the current workspace (software as a service).

The extension has now been deployed since March 2024, and future developments will focus on incorpo-
rating user feedback. A planned change is to bring back the automatic executable detection from previous
versions to make the extension minimally intrusive.
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3. CARDINAL INTEGRATION STATUS

In FY 2024, the Workbench team has continued to integrate Cardinal (Novak et al. ) into the NEAMS
Workbench to run on Sawtooth. Cardinal is now available as a container on Sawtooth. The NEAMS Work-
bench now integrates this new feature by loading the Cardinal container as part of the initialization pro-
cess. After loading the container, the Cardinal executable cardinal-opt is available in the path and is used
to run jobs on the HPC platform. This updated workflow was tested with a case taken from the tutorial
folder that is testftests/chi/sfr_pincell. Screenshots of the different steps are shown below. First the Cardi-
nal container is activated with the localhost feature (Figure 12). Once the activation process is finalized,

T ~ o x

File Edit View Help

Navigation CE]

[ Local configurations a %

Name Description

1 Cardinal wraps the spectral...

2| nercheron Heron is a newly develope.

3/ ncremoose MOOSE is a An open-sourc..

Select row(s) for application setup and activation.

| Activate

Figure 12. Activate Cardinal container through the localhost feature.

the master input file nek_master.i is opened with the NEAMS Workbench and submitted to the queue (Fig-
urel3). The submission process consists of clicking on the Run button, which opens a widget with PBS
options to edit, and then clicking on Ok to submit the job to the queue (Figure 14). Once the job starts, the
solver output is redirected to the Output. After completion of the job, the numerical solution can be visu-
alized with the built-in ParaView GUI (Figure 15). This test showcases basis capabilities of the NEAMS
Workbench to run Cardinal on Sawtooth. The following points of improvement were identified for future
work:

e Some Cardinal test cases (G. L. Giudicelli et al. ) require users to pass two input files to the
executable. This capability is not currently available with the NEAMS Workbench but will be made
available soon.

e Cardinal relies on the third-party package NekRS, which requires additional preprocessing and post-
processing steps to convert the mesh to a Nek-compatible format and to visualize the numerical so-
lution with ParaView or Vislt. As part of an effort to integrate Nek5000 to the NEAMS Workbench,
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Figure 14. Submit jobs to the Sawtooth queue.

the same preprocessing and post-processing steps were supported. Further integrating Cardinal to
the NEAMS Workbench will require leveraging this work to streamline the workflow.

28



£

File Edit View Visualization Help
Close tab

Navigation EE)

Filte

nek master.i

NEAMS Workbench A - O X

nek_master.i X sfr_pincell::nek_master_out.e X sfr_pincell::nek_master_out_nek0.e X Visualization GUI e®
wp as @ 8 ab fz (> ¢ ~ ~ 3 builtin:
Kab> DD Time: |0 X¥agbhtga:0? Beea 8§ bt
:
Ll oWl NEH RN PTBBB R A 220 Renderviewl 0 B 0O & ®

Properties | Information = Multi-block Inspector

] ¥ Delete ?
(use Esc to clear text) &5
ource =
V| 2% temperature
@ flux_integral

@ max_temp_bison

@ max_temp_interface

@ min_temp_bison

@ min_temp_interface
power

@ synchronization_to_nek

v Apply Displacements

Displacement [y
Magnitude

Edge Blocks )

Blocks | Assemblies = Materials

v Blocks o
V| Unnamed block ID: 0 Type: HEX8
V| Unnamed block ID: 1 Type: WEDGE

Check Selected Blocks | |Uncheck Selected Blocks

Face Blocks [0}

— 6.7e+02

Generate File Id Array
— 665 = Display (Unstructurec (9 & @ I
Representation | syrface With Edges -

Coloring

o temperature -

Edit MIEIEIE)ENLND
styling
Opacity
— 635 Lighting

temperature

Specular . 0 =
— 6.3e+02

Figure 15. Visualize numerical solution with ParaView.

e Cases using OpenMC have additional XML input files that are generated by a Python script. This
step currently requires users to call the Python script at the command line. Discussions will be held
soon with the Cardinal lead and developers to see how some of the above points could be addressed.
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4. ADVANCED REACTOR MESHING CAPABILITY ENHANCEMENT IN MOOSE

Generation of finite element meshes for NEAMS applications is a roadblock to users who are accustomed
to traditional physics codes with much simpler geometry input. To address this user roadblock, MOOSE’s
native finite element meshing capabilities have been continuously improved since 2021. The primary ob-
jective has been of to provide a free, open-source, easy-to-use meshing tool for advanced reactor geome-
tries. The MOOSE Reactor Module (Shemon, Miao, Kumar, Mo, Jung, Oaks, Richards, et al. ) and
Mesh System are now the most commonly used mesh generation tools for analyzing reactor core geome-
tries with NEAMS tools, particularly for any multiphysics problem containing reactor physics. User feed-
back has been overwhelmingly positive, and users have been attempting to use the tools for increasingly
complex applications. Through user feedback, capability gaps are continually identified and addressed to
further improve the user experience.

The meshing improvements addressed this year were (1) streamlining input for repeated meshing objects;
(2) enabling support for quadratic elements (preserving the volume of circular surfaces like fuel pins while
also reducing mesh density requirements for physics applications); (3) implementing 3D meshing capabil-
ities such as revolving mesh construction (useful for PBR conical geometries or MSR tanks); (4) adding
more features, such as control drum construction and the ability to stitch dissimilar assemblies, to the
RGMB; (5) assessing the optimal path to adding Monte Carlo CSG support within MOOSE; and (6) con-
tinuing to support users with mesh generation and understanding their evolving needs.

4.1 STREAMLINING REPEATED INPUT BLOCKS

When using patterned meshes (e.g., assemblies, cores), users sometimes reported that they needed to nearly
duplicate multiple blocks of input to achieve their desired mesh. These nearly duplicated input blocks con-
tained tiny differences related to ID changes. This resulted in excessively long input files and introduced
the likelihood of user errors. Two improvements were made this year to streamline the input files for pat-
terned meshes.

4.1.1 Multiple Reporting ID Assignment in Patterned Mesh Generators

When creating patterned meshes (e.g., repeated assemblies or pins), MOOSE offers the option of automat-
ically assigning reporting IDs to different zones (e.g., pin ID, assembly IDs, plane IDs). Specifically, the
patterned mesh generators (PatternedHexMeshGenerator, PatternedCartesianlMeshGenerator)
were originally designed to assign a single reporting ID based on the user’s selected assignment scheme.
For example, the reporting ID at the assembly level was only permitted to be one of the following assign-
ment schemes:

e Cell: Assign unique reporting ID values for each cell (pin) in the lattice in sequential order.
e Pattern: Assign ID values based on the input cell types.
e Manual: Assign ID values based on user-defined mapping.

However, MOOSE did not conveniently support the assignment of multiple reporting IDs at the same level
(e.g., pin ID and ring ID both assigned at the pin level), so blocks of input had to be copied and pasted
throughout the input file with only slight syntax changes, causing excessive length and potential for er-
rors. For example, in fuel cycle analysis, multiple assembly level reporting IDs are useful for tracking both
assembly type and movement of assemblies across cycles. As another example, postprocessing also often
requires multiple reporting IDs to easily extract solution quantities. By defining reporting IDs for each pin
location and pin type, users can postprocess pin-wise distributions and quantities from specific pin types
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without setting up complicated post processors. Therefore, the reporting ID capabilities in the patterned
mesh generators were extended to support multiple reporting ID assignments.

Multiple reporting IDs can now be assigned in a single input block by providing an array of reporting ID
names in the reporting ID variable id_name. Corresponding assignment schemes should be provided as an
array of the same length in the assign_type parameter. The id_pattern parameter must contain manual ID
patterns that correspond to each manual assignment scheme specified in assign_type.

Figure 16 demonstrates the new multiple reporting ID assignment capability for a hexagonal assembly. In
this case, four IDs are assigned simultaneously at the pin level: pin_id, pin_type_id, man_id_I, man_id_2.
The latter two are specified to be manual patterns in assign_type, and so two manual patterns are specified
in id_pattern. The first manual ID man_id_I uses the first pattern defined in id_pattern, and the second
manual ID man_id_2 uses the second pattern defined in id_pattern.

[core]
type = PatternedHexMeshGenerator
pattern = '1 0 1;
00 0 0;
1010 1;
00 0 0;
1601
id_name ='pin_id
pin_type_id
man_id_1
man_id_2"'
assign_type = 'cell
pattern
manual
manual'’
id_pattern = '2 2 2;
211 2;
2101 2;
211 2;
2 2 2]
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Figure 16. Multiple reporting ID Assignment in PatternedHexMeshGenerator.

4.1.2 Shifting Internal Sideset IDs in Patterned Mesh Generators

Motivated by liquid-metal fast reactor assembly load pad contact calculations, which require unique in-
ternal sidesets on each hexagonal duct, an option was added to the patterned mesh generators to reassign
interface boundary IDs for each lattice cell component (generally a pin or assembly). This feature enables
users to effortlessly create a lattice mesh with unique interface IDs on each pattern, thereby eliminating the
need to duplicate input pattern meshes with different interface ID settings.

The interface boundary IDs for each lattice cell can now be shifted by specifying a 2D vector pattern in in-
terface_boundary_id_shift_pattern matching the dimensions of pattern. The values in interface_boundary_id_shift_pattern
are used to shift the standard interface ID of each lattice cell during the stitching process. This shifting

procedure produces unique interface boundary ID values for each unit within the lattice.

31



Figure 17 demonstrates the shifting of interface IDs for a 7-assembly configuration in which the standard
interface ID of the constituent assembly was 103. The stitched assemblies contain interface IDs of 1103,
2103, etc., rather than 103.

[core]
type = PatternedHexMeshGenerator
pattern = ' 0 0;
00 0;
00

interface_boundary_id_shift_pattern =
'1000 2000;
3000 4000 5000;
\ 7 E—

6000 7000’ \ !

6103

)

L N I I e

tl

Figure 17. Shifting interface boundary IDs in PatternedHexMeshGenerator

4.2 QUADRATIC ELEMENT CAPABILITIES DEVELOPMENT

When the MOOSE Reactor Module tools were originally developed, only linear elements were supported
for simplicity. As the functionalities and user base of the Reactor Module continue to expand, interest in
enabling quadratic elements has emerged. In FY 2024, major efforts have been made to implement mesh-
ing capabilities using quadratic elements for all the MOOSE Reactor Module meshing tools that are com-
monly used for reactor core and reactor components meshing.

Notes on 2D Quadratic Elements

The quadrilateral quadratic elements include QUADS and QUAD9. Compared to its linear counterpart
(QUAD4), a QUADS element has one midpoint node on each of its four sides (edges) to enable the use
of quadratic shape functions. A QUAD9Y element has an additional central node inside the element. This
node helps capture more complexity and lower errors.

The most common triangular quadratic element is TRI6, which, compared to its linear counterpart
(TRI3), also has one midpoint node on each of its three sides (edges). A TRI7 element has an additional
central node inside the element. This node introduces third-order terms and makes TRI7 an incomplete
third-order element. TRI7 is mostly useful either as a lower-D element in a 3D mesh or in some special-
ized contexts, but TRI6 is the element that is generally used for its own sake.

All the aforementioned elements have EDGE3 elements as their edges; that is, they can be stitched to-
gether to form meshes without creating hanging nodes.

4.2.1 PCCMG Based Generators

PolygonConcentricCircleMeshGenerator and its derived mesh generators, including AdvancedConcentric-
CircleGenerator, CartesianConcentricCircleAdaptiveBoundaryMeshGenerator, and HexagonConcentric-
CircleAdaptiveBoundaryMeshGenerator, have been upgraded to support quadratic elements. The specifi-
cation of linear or quadratic elements is controlled by two input parameters: "tri_element_type" (options:
TRI3, TRI6, and TRI7) and "quad_element_type" (options: QUAD4, QUADS, and QUAD?Y). TRI3 and
QUAD4 specify linear elements and the others specify quadratic elements. An example mesh of quadratic
elements generated by PolygonConcentricCircleMeshGenerator can be found in Figure 18.
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[gen]
type = <
PolygonConcentricCircleMeshGenerator
num_sides = 5
num_sectors_per_side = '4 4 4 4 4'
background_intervals = 2
polygon_size = 5.0

background_block_ids="30 35"
background_block_names="back_in back_out«
tri_element_type=TRI7
quad_element_type=QUAD9

preserve_volumes = on
external_boundary_id = 9999
external_boundary_name = 'polygon_out'

(1

Figure 18. Quadratic element meshing in PolygonConcentricCircleMeshGenerator

The use of AdvancedConcentricCircleGenerator is similar to PolygonConcentricCircleMeshGenerator
because they do not require other mesh generator inputs to function. However, both CartesianConcentric-
CircleAdaptiveBoundaryMeshGenerator and HexagonConcentricCircleAdaptiveBoundaryMeshGenerator
depend on an input mesh that is then used for adaptive meshing. Therefore, in addition to the two input pa-
rameters used to control the element order, the orders of the input meshes defined by "meshes_to_adapt_to
must be consistent with the designated element types (Figure 19 shows an example).

n

4.2.1.1 Circular Radius Correction for Volume Preservation

A noteworthy subtopic for further discussion is the radius correction for quadratic elements to preserve
circular areas (and volumes after extrusion). The radius correction is achieved by applying a correction
factor (f,.,r) on the radius of each circular region to ensure that the meshed circular region with corrected
radius (reorr = feorr * Toriginat) has the same area as the perfect circle with the original radius (7originar), as
shown in the Eq. 1:

2
S mesh (fcorr : roriginal) = S circle (roriginal) = T original> (D

where S ;.51 (r) is the actual area of the mesh as a function of the radius. S ,,.5,(r) is the summation of the
areas of all the linear and quadratic elements that construct the mesh. Because the area function is propor-
tional to square of radius (S esn(r) r?), the correction factor Jeorr can be deduced as follows:

S circle (r ariginal)

f corr = )

S mesh (’"original)

For linear elements, correcting the polygonization effect is straightforward because the area of a poly-
gonized area is simply the summation of a series of isosceles triangles. However, 2D quadratic elements
have sides (each defined by two vertices and one midpoint) with quadratic shapes rather than polygonized
shapes. Consequently, the error in an uncorrected circular mesh consisting of quadratic elements is much
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[gen]

type = <
HexagonConcentricCircleAdaptiveBoundaryMeshGenerator

num_sectors_per_side '4 4 4 4 4 4'
background_intervals = 2
hexagon_size = 5.0
sides_to_adapt = 0
meshes_to_adapt_to = 'fmg'
tri_element_type = TRI7
quad_element_type = QUAD9

[1

%S

Figure 19. Use of HexagonConcentricCircleAdaptiveBoundaryMeshGenerator to generate a mesh
with its Side 0 adapting to Side 3 of an input quadratic mesh.
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smaller than that of a similar mesh with linear elements. Nevertheless, the quadratic side still deviates from
a true circular boundary, necessitating correction.

In this context, a full or partial circle consisting of TRI6 elements, with the center of the circle as one of
their vertices, is used to calculate the area of the quadratic element mesh. The volume attribute of the TRI6
element in libMesh is directly utilized for area calculation, allowing for the production of a correction
factor. This approach is also applied to other mesh generators that involve volume preservation (also dis-
cussed in this section).

4.2.1.2 Azimuthal Block Splitting

The AzimuthalBlockSplitGenerator is used to modify a mesh generated by PolygonConcentricCircleMesh-
Generator and its derived generators. The mesh generator has been upgraded to support quadratic el-
ements. The generator automatically detects the element order of the input mesh and applies the corre-
sponding splitting algorithm so that no additional input is needed (Figure 20 shows an example).

[Mesh]
[cd]
type =
PolygonConcentricCircleMeshGenerator
num_sides = 6
num_sectors_per_side = '4 4 4 8 4 4"
background_intervals = 1
ring_radii = '4.2 4.8'

ring_intervals = '2 1'

ring_block_ids = '10 15 20'

ring_block_names = 'center_tri center
cd_ring'

background_block_ids = 30
background_block_names = background
polygon_size = 5.0
preserve_volumes = true
tri_element_type = TRI6
quad_element_type = QUAD9

[1

[cd_azi_define]
type = AzimuthalBlockSplitGenerator
input = cd
start_angle = 280
angle_range = 100
old_blocks = '10 15 20'
new_block_ids = '100 150 200'
new_block_names = 'center_tri_new <

center_new cd_ring_new'

preserve_volumes = true

[1

[]

Figure 20. Block splitting performed by AzimuthalBlockSplitGenerator.

4.2.2 Patterned Hex/Cartesian Generators

PatternedHexMeshGenerator and PatternedCartesianMeshGenerator have been upgraded to support
quadratic elements. Whether linear or quadratic elements are generated is controlled by a single input
parameter, "boundary_region_element_type" (options: QUAD4, QUADS, and QUADY). An example
quadratic element mesh generated by PatternedHexMeshGenerator can be found in Figure 21. An example
mesh of quadratic elements generated by PatternedCartesianMeshGenerator can be found in Figure 22.
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[hex_1] .
type = < o n
PolygonConcentricCircleMeshGenerator - :
tri_element_type=TRI6 25 s,
quad_element_type=QUAD8 pr. S B
o 8 /g R
] ‘f\ N\ QW2 /1‘
[pattern] | &8 St |
type = PatternedHexMeshGenerator K L1y > %
inputs = 'hex_1' } < B
background_intervals=2 t: E;HW? »
hexagon_size=18 be: -
duct_sizes=17 ! S LS 2
duct_intervals=1 ‘v 7///\\\\\\ ///m\\\\\ \J
uniform_mesh_on_sides=true V S Ity
boundary_region_element_type=QUADS L - ;} § <
pattern = '0 0; i 1T =
00 0;
00 % >
‘ -
[1 R o

Figure 21. Quadratic elements meshing in PatternedHexMeshGenerator.

[square_1]
type = <«
PolygonConcentricCircleMeshGenerator
num_sides = 4
tri_element_type=TRI6
quad_element_type=QUAD8

[]
[square_2]
type = «
PolygonConcentricCircleMeshGenerator
num_sides = 4
tri_element_type=TRI6
quad_element_type=QUADS8

[]

[pattern]

type = PatternedCartesianMeshGenerator
inputs = 'square_l square_2'
square_size=44

duct_sizes=21

duct_intervals=2
uniform_mesh_on_sides=true
boundary_region_element_type=QUAD8
pattern = '0 0 0 O;

0
0;
0

(=2 — ]
[ —]

1
0
0

(]

Figure 22. Quadratic elements meshing in PatternedCartesianMeshGenerator.
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4.2.3 Patterned Hex/Cartesian Periphery Modifiers

PatternedHexPeripheralModifier and PatternedCartesianPeripheralModifier utilize FillBetweenPointVec-
torsTools to replace the outmost layer of the quad elements of the 2D hexagonal/cartesian assembly mesh
with a transition layer consisting of triangular elements so that the assembly mesh can have nodes on des-
ignated positions on the external boundary. This boundary modification facilitates the stitching of assem-
blies that have different node numbers on their outer periphery as a result of differing numbers of interior
pins and/or different azimuthal discretization.

The quadratic element option has been enabled for these two mesh generators. The element order is au-
tomatically determined by the element order of the input mesh. Because FillBetweenPointVectorsTools
only supports linear meshes, a linear transition layer mesh is first generated before being converted into a
second-order mesh by adding midpoints on the corresponding geometric centers. Then, the midpoints on
the boundary subject to stitching are further adjusted to match the input mesh to facilitate stitching. An
example of using PatternedHexPeripheralModifier to modify a quadratic mesh is provided in Figure 23.

[Mesh]
[hex]
type = <
PolygonConcentricCircleMeshGenerator
num_sides = 6
num_sectors_per_side = '2 2 2 2 2 2'
background_intervals 1
ring_radii = 4.0
ring_intervals = 2
ring_block_ids = '10 15'
background_block_ids = 20
polygon_size = 5.0
preserve_volumes = on

quad_element_type = QUADS ﬂ “
tri_element_type = TRI6 !\ ﬂ
[ 0 //
[pattern] ﬂ& ﬂ&
type = PatternedHexMeshGenerator ﬂ” ‘“
inputs = 'hex' w ﬂ
pattern = '0 0; Ef n
00 0; }’1

00

background_intervals = 2
hexagon_size = 15
boundary_region_element_type = QUADS8

[1

[pmg]
type = PatternedHexPeripheralModifier
input = pattern
input_mesh_external_boundary = 10000
new_num_sector = 10
num_layers = 2

[1

[]

Figure 23. A quadratic mesh with peripheral region modified by PatternedHexPeripheralModifier.

4.2.4 Peripheral Rings
PeripheralRingMeshGenerator has been upgraded to support quadratic element meshing. The element or-
der is automatically determined by the order of the input mesh elements on its external boundary. If the
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external boundary consists of pure EDGE?2 elements, QUAD4 (linear) elements are used to construct the
peripheral ring mesh. On the other hand, if the input mesh has EDGE3 elements on its external boundary,
QUADO (quadratic) elements are generated. Note that mixed element order is NOT supported. An exam-
ple of using PeripheralRingMeshGenerator to generated a peripheral ring mesh using QUADO elements
for an quadratic input mesh is provided in Figure 24.

[Mesh]
[pcemg]
type = PolygonConcentricCircleMeshGenerator
num_sides = 8
num_sectors_per_side = '4 4 4 4 4 4 4 4’
background_intervals = 2
polygon_size = 5.0

preserve_volumes = on

tri_element_type = TRI6
quad_element_type = QUADS8

[1

[pr]
type = PeripheralRingMeshGenerator
input = pccmg
peripheral_layer_num = 4
peripheral_ring_radius = 15
input_mesh_external_boundary = 10000
peripheral_ring_block_id = 250
peripheral_ring_block_name = reactor_ring

peripheral_inner_boundary_layer_bias = 2.0
peripheral_inner_boundary_layer_intervals = 3
peripheral_inner_boundary_layer_width = 1

peripheral_outer_boundary_layer_bias = 0.5
peripheral_outer_boundary_layer_intervals = 3
peripheral_outer_boundary_layer_width = 1

peripheral_radial_bias = 1.5
[1
[]

Figure 24. Quadratic element mesh generated by PeripheralRingMeshGenerator.

4.2.5 XYDelaunay Generator and the Derived Generators

In previous years, NEAMS developed a set of triangular mesh generation tools that have since become
an indispensable part of many workflows. The libMesh Poly2TriTriangulator class uses the third-
party triangulator Poly2Tri, along with original triangulation adaptive refinement code, to allow for the
automatic generation of a triangular mesh within a user-defined connected 2D domain. The MOOSE
XYDelaunayMeshGenerator class integrates this triangulation capability with the MOOSE mesh gen-
erator system, with boundaries and holes defined by inputs from previous mesh generators, mesh gener-
ation and adaptivity option control via MOOSE input parameters, and stitching of hole meshes into the
holes they define. Lastly, the MOOSE mesh “subgenerator” API allows for complex mesh generators, such
as the MOOSE Reactors module, to combine complex subsystems into a single and much simpler task-
specific user interface.
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One flaw in this system, however, grew out of a typical shortcoming of mesh triangulation code: none of
the above capabilities supported anything other than linear triangles (using first-order inputs that might
also involve linear edges or at most bilinear quadrilaterals). Meshes with second-order (quadratic, bi-
quadratic, etc.) elements have always been supported in libMesh and MOOSE, and getting higher-order
domain approximation in this way can be critical for calculating accurate results on even the simplest of
curved geometries. However, this was unachievable for geometries that required unstructured triangle
meshing. Why mesh a circular subdomain cross section with a curved boundary if doing so would prevent
the gaps between those subdomains from being meshed afterward?

The following sections discuss the upgrade of both libMesh and MOOSE to enable quadratic element
meshing capabilities in the general purpose triangular mesh generation tools.

4.2.5.1 libMesh Updates to Enable Quadratic Element Capabilities for XYDelaunay

Because MOOSE supports the composition of outputs from many different mesh generator objects, the

first part of the solution to this problem was to ensure that different mesh generator codes (many of which
had also been written to only support first-order geometric elements) could be upgraded to support second-
order output, one by one, without creating incompatibilities between them. Support for mixed-order meshes
at the data structure level was added in libMesh PR #3752, which added mixed-order capability to the code
responsible for maintaining mesh topology by reconstructing neighbor links between elements, as well as
to the code responsible for stitching multiple meshes together into one.

To produce a higher-order mesh from a lower-order one, the libMesh methods all_second_order () and
all_complete_order() are used. These methods were designed to begin with input of consistent order,
but after libMesh PR #3707, they support inputs of mixed element order. These methods upgrade elements
selectively as necessary to produce the requested consistent output order in the mesh afterward while still
respecting any existing higher-order geometry in the input.

The third low-level change, libMesh PR #3816, added support for mixed-order inputs to our triangulation
code, allowing triangulations with quadratic boundary triangles to be generated to match curved boundary
inputs.

Lastly, MOOSE PR #27546 added MOOSE interfaces, regression tests, and documentation for all of these
new capabilities. A new ElementOrderConversionGenerator class gives users the ability to manually
upgrade (or downgrade, for completeness) their geometric element type. The XYDelaunayGenerator
now gives users control over element order there, and this control extends upward to Reactor Module mesh
generators that use the unstructured triangulation capability internally.

4.2.5.2 Quadratic Element Capabilities in XYDelaunayGenerator and Derived Mesh Generators

The aforementioned updates on the libMesh side were adopted by the XYDelaunayGenerator in MOOSE.
The order of the elements to be generated is controlled by the input parameter "tri_element_type" (options:
TRI3, TRI6, TRI7, DEFAULT). Currently, the DEFAULT is the same as the TRI3 option. In the future,
automation in mesh order determination might be added. By setting "tri_element_type",
XYDelaunayGenerator can generate triangulation mesh using the specified elements.

When generating a mesh of TRI3 elements for first-order boundary and hole meshes, or a mesh of TRI6/TRI7
elements for second-order boundary and hole meshes, the process is straightforward. However, if the
boundary and hole meshes are first-order (or mixed order) and “tri_element_type” is set to TRI6 or TRI7,

the second-order mesh is created by placing midpoints at the centers of the element sides. In this case, if a
first-order hole mesh needs to be stitched to the second-order triangulation mesh, the first-order hole mesh

is converted to a second-order mesh before stitching. Conversely, if the boundary and hole meshes are
second-order (or mixed order) and “tri_element_type” is set to TRI3, the first-order mesh is generated by
ignoring the midpoints in the boundary and hole meshes. Attempting to stitch a second-order hole mesh to
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the first-order triangulation mesh results in an error message. In Figure 25, a quadratic triangulation mesh
(TRI7) is generated based on a linear boundary mesh and a quadratic hole mesh that is eventually stitched.

[Mesh]
[fmg]
# a second-order hole
type = FileMeshGenerator
file = accg_one_layer_quadratic.e
(]
[ext]
# a first-order boundary
type = PolyLineMeshGenerator
points = '-4.0 0.0 0.0
0.0 -4.0 0.0
4.0 0.0 0.0
0.0 4.0 0.0'
loop = true

(]

[xyd]
type = XYDelaunayGenerator
boundary = 'ext'
holes = 'fmg'
stitch_holes = 'true'
refine_holes = 'false'
verify_holes = 'false'

add_nodes_per_boundary_segment = 2
refine_boundary = true
desired_area = 1.0
tri_element_type = TRI7
[1
[1

Figure 25. Quadratic mesh generated by XYDelaunayGenerator.

The same input parameter "tri_element_type" and the element order rules are inherited by the derived
mesh generators of XYDelaunayGenerator, including PeripheralTriangleMeshGenerator and
FlexiblePatternGenerator.

4.2.6 Summary of Quadratic Element Meshing Capabilities

After the systematic upgrades of the Reactor Module tools to support meshing with quadratic elements

in FY 2024, MOOSE’s intrinsic meshing tools are capable of performing general meshing tasks using
quadratic elements for reactor designs that do not involve complex and nontrivial geometry features. For
instance, the full-core heat-pipe microreactor (HP-MR) mesh available on the Virtual Test Bed (G. L. Giu-
dicelli et al. ; Stauff et al. ) can be generated using quadratic elements, as shown in Figure 26.

4.3 MESH REVOLUTION CAPABILITIES

The RevolveGenerator was developed to enable revolution of a 1D mesh into 2D, or a 2D mesh into 3D,
by revolving the input mesh around a user-defined axis. This new mesh generator provides an alternative
tool for increasing the dimensionality of a lower-dimension mesh (1D or 2D) in addition to MeshExtrud-
erGenerator/AdvancedExtruderGenerator. Each element is converted to one or more copies of its cor-
responding higher-dimensional element along an open or closed specific circular curve. Inspired by Ad-
vancedExtruderGenerator, RevolveGenerator provides similar styles of enriched features such as subdo-
main/boundary ID swap and extra element integers swap.

Revolving is a useful functionality for 3D meshing of components with axisymmetry, such as a reactor
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Figure 26. Linear and quadratic HP-MR meshes generated by MOOSE Reactor Module.
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dome, a fuel rod, and a tokamak magnet. Revolving is a powerful tool for generating a 3D mesh based on
an existing 2D-RZ mesh.

[Mesh]
[shg]
type = SimpleHexagonGenerator
hexagon_size = 1.0
block_id = '100 105'
block_name = 'hex_tri hex'
element_type = HYBRID
radial_intervals = 2
[]
[rg]
type = RevolveGenerator
input = shg
axis_point = '5.0 0.0 0.0’
axis_direction = '0.0 1.0 0.0’
nums_azimuthal_intervals = 32
(1
[1

Figure 27. Simple full-circle mesh revolution produced by RevolveGenerator.

4.3.1 Basic Revolving Functionality

RevolveGenerator revolves a lower-dimension mesh (1D or 2D) given by "input" into a higher-dimension
mesh (2D or 3D) along an revolving axis defined by "axis_point" and "axis_direction". RevolveGenera-
tor supports both linear and quadratic elements. Because revolution results in circular geometry features,
"volume_preserve" is an option for both linear and quadratic element order options.

By default, mesh revolution is performed along a full closed circular curve (i.e., 360 degrees) with a single
azimuthal section with uniform azimuthal discretization (as shown in Figure 27). Optionally, mesh revolu-
tion can be performed along a partial circular curve (as shown in Figure 28), and multiple azimuthal sec-
tions can be defined each with unique discretization (as shown in Figure 29). These options can be selected
by specifying "revolving_angles." As long as the summation of the angles listed in "revolving_angles" is
360 degrees, a full closed circular revolution is performed. Otherwise, a partial revolution is performed.
Both partial and full revolutions with multiple azimuthal sections can be performed in either the clockwise
or counterclockwise directions, as controlled by "clockwise."

Each azimuthal section can have separately defined subdomains, extra element integers, and boundaries.
The number of azimuthal elements in the different sections can be provided through "nums_azimuthal_intervals."

RevolveGenerator is also capable of handling the special condition in which some original mesh nodes are
located on the revolving axis, as indicated in Figure 30.

4.3.2 ID Remapping/Swap
In RevolveGenerator, three types of IDs from the input mesh can be remapped/swapped during revolving:
subdomain IDs, extra element integer IDs, and boundary IDs.

By default, the revolved higher-dimension elements retain the same subdomain IDs as their original lower-
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[Mesh]
[shg]
type = SimpleHexagonGenerator
hexagon_size = 1.0
block_id = '100 105’
block_name = 'hex_tri hex'
element_type = HYBRID
radial_intervals = 2
[]
[rg]
type = RevolveGenerator
input = shg
axis_point = '5.0 0.0 0.0’
axis_direction = '0.0 1.0 0.0’
nums_azimuthal_intervals = 32
revolving_angles = 175
[1
[1

O
o

Figure 28. Simple partial-circle revolving in RevolveGenerator.

[Mesh]
[shg]
type = SimpleHexagonGenerator
hexagon_size = 1.0
block_id = '100 105’
block_name = 'hex_tri hex'
element_type = HYBRID
radial_intervals = 2
[1
[rg]
type = RevolveGenerator
input = shg
axis_point = '5.0 0.0 0.0’
axis_direction = '0.0 1.0 0.0
nums_azimuthal_intervals = '4 8 16 32'
revolving_angles = '20 40 60 80'
subdomain_swaps = ' ;
100 200 105 205;
100 300 105 305;
100 110"

O

[]
(1

g o

Figure 29. Multilayered partial-circle revolving with subdomain ids swap in RevolveGenerator.



[Mesh]
[gmg]
type = GeneratedMeshGenerator
dim = 2

nx =5
ny = 6
x_max = 2.0
y_max = 5.0
[1
[rg]
type = RevolveGenerator
input = gmg
axis_point = '0.0 0.0 0.0’
axis_direction = '0.0 1.0 0.0'
nums_azimuthal_intervals = 32
[1
[1

Figure 30. Revolving with on-axis nodes in RevolveGenerator.
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dimension elements. RevolveGenerator provides an option to remap subdomain IDs for each azimuthal
section through "subdomain_swaps," which is a double indexed array input parameter. Each elemental
vector of "subdomain_swaps" contains subdomain remapping information for a particular elevation, where
the first elemental vector represents the first revolved azimuthal section. The elemental vector contain pairs
of subdomain IDs: the first subdomain ID is the input mesh subdomain ID that needs to be remapped, and
the second subdomain ID the new subdomain ID to be assigned.

Extra element integer ID remapping works in a similar manner as subdomain ID remapping. The extra
element integers to be remapped must already exist in the input mesh and need to be specified in
"elem_integer_names_to_swap." The remapping information of multiple extra element integers is pro-
vided as a triple-indexed array input parameter ("elem_integers_swaps"). For each extra element integer,
the syntax is similar to "subdomain_swaps." The following input example shows the remapping of two
extra element integers.

[Mesh]
[rg]
type = RevolveGenerator
input = fmg

axis_point = '5.0 0.0 0.0’
axis_direction = '0.0 1.0 0.0'

nums_azimuthal_intervals = '2 4 2'
revolving_angles = '30 60 30'
elem_integer_names_to_swap = 'element_extra_integer_1 element_extra_integer_2'
elem_integers_swaps = 'l 4 2 8;
2 8;
2 7 |
18 2 4;
2 4;
25
(]

(]

Boundary ID remapping also works similarly to subdomain ID remapping. During revolution, the lower-
dimension boundaries are converted into higher-dimension boundaries. A double indexed array input pa-
rameter, "boundary_swaps," can be used to remap the boundary IDs. Here, the boundary IDs to be remapped
must exist in the input mesh; otherwise, dedicated boundary defining mesh generators, such as SideSets-
BetweenSubdomainsGenerator and SideSetsAroundSubdomainGenerator, need to be used to define new
boundary IDs along different azimuthal sections.

4.4 3D MESH CUTTING

The CutMeshByPlaneGenerator is basically the 3D version of XYMeshLineCutter, which was developed
in FY2023. CutMeshByPlaneGenerator is used to slice a 3D input mesh along a given plane and discard
the portion of the mesh on one side of the plane. The input mesh, given by "input", must be 3D and contain
only first-order (i.e., linear) elements. The cutting plane is specified by "plane_normal" and "plane_point,"
which are the two points that represent the normal vector of the cutting plane and a point located on the
cutting plane, respectively. This mesh generator removes the part of the mesh located on the side of the
plane in the direction of the normal vector. The mesh is then smoothed to ensure a straight cut (instead of a
"zigzag" cut) along element boundaries as generated by PlaneDeletionGenerator, facilitating the follow-up
meshing steps and/or simulation.

CutMeshByPlaneGenerator can be used to cut a mesh to take advantage of symmetry when the original
mesh does not have element faces aligned on the cutting boundary.

45



[convert]
type = ElementsToTetrahedronsConverter
input = extrude

(1

Figure 31. Tetrahedralization done by ElementsToTetrahedronsConverter.

4.4.1 Tetrahedron Conversion

Cutting an element involves complex algorithms. For simplicity, in CutMeshByPlaneGenerator, the input
mesh is first converted into a mesh that only consists of TET4 elements so that only the cutting algorithm
for TET4 elements needs to be implemented. Tetrahedralization is achieved by splitting non-tetrahedron
linear elements—including HEX8, PRISM6, and PYRAMID5—into TET4 elements. Specifically, each
HEXS element is split into six TET4 elements, each PRISM6 element is split into three TET4 elements,
and each PYRAMIDS element is split into two TET4 elements. Note that the same tetrahedralization algo-
rithm has also been used to build a standalone mesh generator named ElementsToTetrahedronsConverter
(as shown in Figure 31).

4.4.1.1 Splitting of HEXS8 Elements

There are multiple ways to split one HEXS8 element into multiple TET4 elements, resulting in either five or
six TET4 elements (or even more if additional nodes can be added). A splitting method that does not re-
quire adding nodes needs to split each of the six quadrilateral faces of a HEXS8 element into two triangles,
which can be done in two different ways for each face. Because these quadrilateral faces could be shared
with neighboring HEXS or other types of elements, the splitting of the quadrilateral faces on neighbor-

ing elements must be performed consistently. To achieve a consistent splitting approach (a topic discussed
later in this documentation page) a HEX8 element needs to be split into six TET4 elements. An exam-

ple of this splitting is illustrated in Figure 32. Note that the splitting approach shown in Figure 32 is not
unique and will be discussed later.

4.4.1.2 Splitting of PRISM6 elements

A PRISMG6 element can be split into three TET4 elements. An example of this splitting is illustrated in
Figure 33. Note that the splitting approach shown in Figure 33 is not unique and will be discussed later.
Namely, the three quadrilateral faces of a PRISM6 element need to be split consistently with the neighbor-
ing elements.
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Figure 32. An example of splitting of a HEXS8 element into six TET4 elements.

Figure 33. An example of splitting of a PRISM6 element into three TET4 elements.
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4.4.1.3 Splitting of PYRAMIDS elements

A PYRAMIDS element can be split into two TET4 elements. An example of this splitting is illustrated in
Figure 34. Note that the splitting approach shown in Figure 34 is not unique and will be discussed later.
Namely, the one quadrilateral face of a PYRAMIDS element needs to be split consistently with the neigh-
boring elements.

Figure 34. An example of splitting of a PYRAMIDS element into two TET4 elements.

4.4.1.4 Consistent Splitting for Neighboring Elements

As discussed above, although splitting of non-TET elements into TET4 elements is not unique, it is cru-
cial to ensure that the splitting of the neighboring elements involves consistent splitting of the quadrilat-
eral faces. To achieve this, the following approach is used. There are two ways to split each quadrilateral
face into two triangles, which correspond to the two diagonal lines of the quadrilateral face. Therefore, to
ensure that one of the two diagonal lines is selected consistently for all the elements, the diagonal line is
selected that involves the node with the lowest global node ID among the four nodes of the quadrilateral
face.

4.4.2 Tetrahedron Cutting

Once all the elements of the input mesh have been converted into TET4 elements, the cutting method only
needs to be applied to TET4 elements. First, all the elements that are cut by the given cutting plane are
identified. For the TET elements involved, their relationship with the cutting plane can be categorized into
one of the six cases shown in Figure 35. For each of these six cases, new nodes are created at the intersec-
tion points between the cutting plane and the edges of the TET element. Then, the red part of the original
TET element is removed, and new TET element(s) are created, as shown in Figure 35. The cross sections
created by this cutting procedure are assigned a new boundary ID, as defined by "cut_face_id". Figure 36
provides an example of how CutMeshByPlaneGenerator can be utilized to cut an existing 3D mesh.

4.5 SUPPORT FOR MIXED-ORDER AND QUADS 3D EXTRUSION

Axial extrusion is commonly used to create 3D reactor models from 2D layouts. The subdomains on each
axial layer are reassigned to create an extruded geometry with nonuniform axial domains. Because of the
development of second-order capabilities that support QUADS and QUAD9 elements in many reactor
module generators, the AdvancedExtruderGenerator had to be upgraded to handle QUADS elements.
The algorithm for extrusion had to be modified slightly because the mid-plane in a 20-node hexagon (the
3D equivalent of a QUADS) only contains four nodes and not eight like the initial 2D shape. In the pro-
cess, mixed-order (linear and quadratic) mesh extrusion was enabled, even though mixed-order 2D meshes
are not currently supported within the Reactor Module.
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Figure 35. The six possible cases when slicing a TET element. The cutting plane intersection with the
element is shown as blue faces. The red part of the original TET element is removed after cutting, while
the blue part of the original TET element is kept and split into multiple TET elements if necessary.

[cut]
type = CutMeshByPlaneGenerator
input = extrude
plane_point = '0 0 1.2'
plane_normal = '1.0 1.0 2.0’
cut_face_id = 12345
cut_face_name = cut

[1

Figure 36. 3D plane cut performed by CutMeshByPlaneGenerator.
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4.6 DEVELOPMENT STATUS OF 3D MESH TETRAHEDRALIZATION
Previous sections discuss recent improvements to 3D meshing in MOOSE. This section summarizes addi-
tional efforts to specifically incorporate the Netgen library into MOOSE for general tetrahedralization.

4.6.1 Netgen Integration Status

To build upon the success of the 2D unstructured triangulation support that has been added to (and now
extended in) MOOSE, an attempt was made to integrate 3D unstructured triangulation (tetrahedralization)
capabilities in a similar fashion. Like the 2D XYDelaunayMeshGenerator, a new 3D
XYZDelaunayMeshGenerator would be able to take boundary and hole definitions from other MOOSE
mesh generators, generate a mesh of simplices (triangles or tets) in the domain defined by those inputs, and
stitch together input meshes to the new tetrahedral mesh, both metaphoricalliy and literally filling in the
gaps left by other types of mesh generation. A volume mesh generated by XYDelaunay must begin with
simple extrusions of 2D triangulations, but XYZDelaunay would be far more flexible.

The choice of software to integrate in this case was not an easy one. Delaunay tetrahedralization is not as
straightforward as Delaunay triangulation, so implementing a from-scratch mesh generator would be un-
wise. Many tetrahedralization codes already exist, but software compatibility issues and/or licensing issues
precluded their inclusion in MOOSE. For instance, a libMesh interface to the software TetGen has existed
for a long time; however, this interface exists under a license that permits it to be redistributed and built for
academic use but requires disabling the interface for the libMesh builds used by most MOOSE users. An-
other libMesh interface to QHull is license-compatible but lacks basic features that would be needed by a
useful MOOSE XYZDelaunay tool.

Netgen, a featureful mesh generation and optimization library under the same lesser general public license
as MOOSE, was ultimately chosen for this project. Netgen has a straightforward tetrahedralization API
and has more advanced features that the team hoped might become accessible for future projects after the
initial software work was completed for current use cases.

The primary concern was that other MOOSE developers and collaborators working with Netgen had ex-
perienced difficulty with direct software integration, likely due to the significant differences between Net-
gen’s CMake-based build system and the make and autotools build systems used by MOOSE and libMesh.
This was indeed a source of some difficulty, but as of libMesh PR #3793 it was solved. Netgen is now in-
cluded in the libMesh codebase via a git submodule, and the libMesh configure command executes the
Netgen CMake configuration as an optional dependency, enabled unless a system is lacking some Netgen
dependency or unless a user specifically disables it. To make enabling the tetrahedralization support as
easy as possible, the libMesh configuration of Netgen disables some of the broader Netgen features that
would introduce additional third-party dependencies; thus, the only significant new dependency to enable
Netgen is the cmake software itself.

As was done years ago in 2D, the new 3D mesh generation at the libMesh level followed a standard object-
oriented pattern there: an abstract base class to expose the interface, with multiple backends to allow users
to choose between different implementations depending on their license compatibility and feature needs.
Most of the newly developed software for this project was factored to be independent of that choice of im-
plementation; tools like boundary integrity testing (to validate user input), and converter tools to generate
boundary triangulations from volumetric inputs, are done entirely within the base class code. Other base
class utilities, such as support for automatic conversion of hexahedral into tetrahedral meshes, were written
to support unit testing of the new tetrahedralization features in libMesh, but may be made user-accessible
in MOOSE in the future.

A number of later modifications were made to the new libMesh tetrahedralization code, either as bugs
were found “downstream” via MOOSE or as this new feature was made compatible with more and more
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existing features in libMesh and MOOSE. Netgen is not an MPI-aware code, and libMesh PR #3926 makes
its interface with MPI-parallelized execution a bit more efficient and robust. Netgen error messages trig-
gered by invalid inputs are somewhat cryptic by MOOSE standards, and libMesh PR #3930 tries to in-
tercept certain types of both software and user errors to either correct them or at least return more user-
friendly error messages. Perhaps the greatest source of delay was a serious bug inside the Netgen code
itself. This bug was triggered first by certain quirks of node ordering on distributed-memory parallel test
runs. This was reported upstream along with a test case, and both the test code and the bug fixes in Netgen
were recently incorporated into libMesh PR #3939.

Perhaps the largest development culture difference was fixed in libMesh PR #3940, which disables a con-
figuration decision in Netgen that, while useful for optimization on an individual developer’s machine, was
causing serious incompatibilities when activated on the MOOSE build farm and distributed to MOOSE
users on older CPU microarchitectures via the MOOSE conda binary packages.

The new tetrahedralization mesh generation in MOOSE is designed with features similar to the previous
triangulation mesh generation. Inputs may be provided from other mesh generators in one of two formats:
a direct specification of a boundary manifold as a mesh of lower-dimensional elements (edges for a trian-
gulation, or triangles for tetrahedralization), or an indirect specification via a volumetric mesh whose outer
boundary is interpreted as the domain boundary to consider. The direct specification is useful for mesh
generators that work from some parametric representation of a boundary, whereas the indirect specification
is compatible with the widest variety of existing mesh generators and is necessary for dealing with meshes
that are used first to define “holes” in the new mesh and then stitched into those holes afterward. The fea-
ture set for basic mesh generation cases is now complete in MOOSE PR #28298.

4.6.2 Future Tetrahedral Generation Directions

Unfortunately, Netgen may not be able to perfectly meet the needs of some more advanced users. Obtain-
ing optimal mesh quality in 3D is significantly more difficult than in 2D, and Netgen is designed to use

an advancing front method to try to improve the final mesh quality over what might be expected from a
method based on pure Delaunay tetrahedralization combined with optional point insertion and mesh refine-
ment. Unfortunately, with the advancing front method, point insertion is not optional for some users. This
issue is a minor handicap for typical Finite Element Method users, for whom a slightly overrefined mesh
might only mean a slight increase in computational cost. For these users, this cost is more than balanced
out by the benefits of having smoother meshes elsewhere, but the team also had some initial interest from
users of the Pebble-Tracking Transport (PTT) method, which requires precise placement of tetrahedral ver-
tices; for the PTT method, arbitrary point insertion and mesh refinement are thus not allowable.

Because the new tetrahedral mesh generation design followed an object-oriented pattern, however, this
mistake is not irreparable. The work to factor Tetgen-based and Netgen-based tetrahedralization capabili-
ties into a common interface could be reused by any future generator backends. Because of the difficulties
of 3D mesh generation—such as the fact that even in the all-tetrahedral case no standard algorithm exists
for obtaining a unique, globally optimal solution for a fixed set of points—a wide variety of different soft-
ware packages with this capability have been released over the years.

Although most of the dozens of alternatives that were briefly investigated turned out to be unsuitable for
MOGOSE integration, three packages with Berkeley Source Distribution (BSD) licensing (or BSD-equivalent
licensing), compatible software architectures, and choices of algorithm might be suitable for PTT users.
The integration of any of these would likely be much faster than the integration of Netgen because com-
mon code would be shared and common build system work would be easily repurposed by the new back-
end. Providing alternative algorithm options might also be useful to for non-PTT mesh generation because
different generation algorithms can have different levels of resulting mesh quality depending on the domain
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to be meshed.

Regardless of backend, user uptake of tetrahedral meshing technology would be greatly facilitated by ad-
ditional work to make the complete 3D workflow as user-friendly as the current 2D workflow. To bound a
2D domain for triangulation, it is now easy in MOOSE to specify an analytically defined boundary via a
parsed function in the input file describing a parameterized curve. A single-parameter function cannot de-
scribe a 2D manifold to bound a 3D domain in the same way, and an atlas in higher dimensions is hard to
specify analytically, so other options need to be explored. Netgen has capabilities for surface triangulation
from CSG, which may be useful in this regard; alternatively, surface definitions based on level sets of 3D
parsed functions may be considered.

Additionally, the implementation of tetrahedral meshing technology can be enhanced by developing a se-
ries of mesh generators that either utilize or support tetrahedral generation capabilities. For example, a
3D transition layer mesh generator could be created to connect specific surfaces of two or more input 3D
meshes. Simultaneously, a surface mesh generator could be designed to produce inputs for the tetrahedral
mesh generator based on logical operations, such as unions/intersections/subtraction of input 3D meshes,
offering an alternative to direct analytic surface definition. As mentioned before, these logical operations
may be achieved using Netgen’s intrinsic CSG features.

4.7 AUTOMATIC AREA FUNCTION FOR XYDELAUNAYGENERATOR
Previously, XYDelaunayGenerator provided two ways for the users to control the size of the generated
triangular elements:

e desired_area: A single constant value can be provided as the uniform requirement for the maximum
triangular element area. Elements with areas larger than the value given by "desired_area" are fur-
ther refined until the criterion is met.

o desired_area_func: A parsed space-dependent area function can alternatively be provided to intro-
duce location-dependent area requirements for the triangular elements.

The aforementioned approaches offer users limited capabilities in controlling the element size, especially
the localized element size. Therefore, the element quality could be poor if there is large variation in EDGE
element size in the input external and holes boundary meshes. To improve the mesh quality in such cases,
an additional option has been developed and added to XYDelaunayGenerator for better element size con-
trol.

The new option features an automatically generated area function calculated based on inverse distance
interpolation of the EDGE element size of the external and holes boundaries. There is also an option to
include a background value for those regions away from those boundaries. This feature is enabled by
"use_auto_area_func," and the related parameters include "auto_area_func_default_size,"
"auto_area_func_default_size_dist," "auto_area_function_num_points," and "auto_area_function_power".
The development of this new feature involved implementation on both the libMesh and MOOSE sides.
The demonstration of the new feature, in comparison with the existing element size control options, is il-
lustrated in Figure 37.

4.8 DATA DRIVEN MESH GENERATION

Use cases of the Reactor Module were identified in which the output mesh object at each mesh genera-
tion stage was not strictly required to build the final output mesh. Namely, for homogenized neutronics
calculations, the base heterogeneous mesh providing the design of the reactor was not needed to build the
homogeneous mesh. Using the metadata only up until a certain point in the generation tree was found to be
an alternative pathway for mesh generation. By not generating the physical mesh for the entire generation
tree, significant time savings are also possible.
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Figure 37. Examples of using different element area limiting options.

This use case led to the development of a data-driven mesh generation capability. A mesh generator that
supports data-only generation can override the generateData () method and declare itself as a generator
that supports this capability. The user can then specify a given mesh generator in the tree to be data-driven
via the Mesh/data_driven_generator input parameter. All of the generators in the execution tree above
said generator are executed in data-only mode (given that they support it), and no physical mesh is gener-
ated. All of the generators after the data-driven generator (including the data-driven generator itself) are
executed as normal, not in data-only mode.

4.9 UPDATES TO REACTOR GEOMETRY MESH BUILDER (RGMB)

Based on stakeholder requests for expanded capabilities, a number of updates were made to the Reactor
Geometry Mesh Builder (RGMB) mesh generation system. These updates are covered in the following
subsections.

4.9.1 Setting Mesh Block Names Based on User-provided Region ID Mapping

By default, RGMB mesh generators—consisting of PinMeshGenerator, AssemblyMeshGenerator, Con-
trolDrumMeshGenerator (added in FY 2024 and explained in Section 4.9.4), and CoreMeshGenerator—
define two block names for the entire output mesh. One name is defined for the triangular elements in the
mesh and another name is defined for the quadrilateral elements in the mesh. In Griffin, such a block name
convention was not compatible with existing capabilities in the Griffin Materials system. Therefore, an
additional parameter, region_id_as_block_name, was added to the ReactorMeshParams mesh genera-

tor, which isthe initial mesh generator that is defined before invoking RGMB mesh generators; the Reac-
torMeshParams mesh generator stores global information about the RGMB mesh generation workflow.
By setting this parameter to true, the region ID mapping provided by the user at each mesh generation
stage (pin, assembly, control drum if defined, and core) are used to set the block name of the output mesh.
Specifically, the block name will be defined as

RGMB_<LEVEL_IDENTIFIER>_REG<REGION_ID>, where <LEVEL_IDENTIFIER> is a unique iden-
tifier that is based on the level (pin, assembly, drum, or core) of the final mesh generator and the type_id

53



(unique identifying ID among structures that share the same level). Correspondingly, <REGION_ID> is
the region ID associated with the mesh element. In addition, if the element under consideration is triangu-
lar, the suffix _TRI is appended to the block name to ensure that quadrilateral and triangular elements do
not share the same block name. For example, if the final mesh generator is an assembly structure with a
type_id of 1, the quadrilateral elements that have a region ID 5 will have block name
RGMB_ASSEMBLYI_REGS, and triangular elements that share the same region ID will have block name
RGMB_ASSEMBLYI1_REG5_TRI. This naming convention ensures that every region ID defined on the
output mesh will have one or two (in case of both triangular and quadrilateral elements) unique block
names associated with it.

Figure 38 shows the default block naming convention as well as the block naming convention when re-
gion_id_as_block_name is set to true for a hexagonal pin with 2 ring regions, a single background region,
and 2 duct regions. Notice how the innermost ring region is composed of quad and tri elements, so two
block names (distinguished by different colors) are defined in the righthand image in order to avoid differ-
ent element types from sharing the same block name.

Block name mapping
region_id_as_block name = false
Region ID mapping (default RGMB behavior)

Block name mapping
region_id_as block name = true

Figure 38. Default block naming conventions. Region ID mapping (left), default block name mapping
(middle), and block name mapping with region_id_as_block_name = True (right) for a hexagonal pin
structure with 2 ring regions, 1 background region, and 2 duct regions.

4.9.2 Enabling Data-Driven Generation in RGMB Mesh Generators and Griffin SFR workflows

In FY 2023, RGMB mesh generators were chosen as the candidate workflow for converting from hetero-
geneous mesh representations to equivalent homogeneous mesh representations for use by Griffin in down-
stream physics calculations (Shemon, Miao, Kumar, Mo, Jung, Oaks, Lee, et al. ). Because RGMB
mesh specifications and region ID mappings are stored entirely as mesh metadata, this conversion process
from heterogeneous to homogeneous mesh could occur entirely by inspecting just the mesh metadata de-
fined on the heterogeneous mesh. Thus, an optimization that was pursued in FY 2024 was to bypass gen-
eration of an intermediate heterogeneous mesh and define the output heterogeneous mesh purely from the
metadata defined on the heterogeneous mesh generator. Depending on the size of the heterogeneous core
mesh and the mesh discretization that is employed within this mesh, the time savings from bypassing mesh
generation of the heterogeneous mesh could also be quite significant.

Figure 39 shows the input file where a conversion from an input heterogeneous mesh defined by RGMB
to an output homogeneous mesh created by Griffin’s EquivalentCoreMeshGenerator takes place. The pa-
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[Mesh]
[rmp]
type = ReactorMeshParams
. # Remaining parameters ommitted for brevity
(]
[pinl]
type = PinMeshGenerator
reactor_params = rmp
. # Remaining parameters ommitted for brevity
(1
[assemblyl]
type = AssemblyMeshGenerator
inputs = pinl
. # Remaining parameters ommitted for brevity
(]
[pin2]
type = PinMeshGenerator
reactor_params = rmp
. # Remaining parameters ommitted for brevity
(]
[assembly2]
type = AssemblyMeshGenerator
inputs = pin2
. # Remaining parameters ommitted for brevity

(1

[het_core]
type = CoreMeshGenerator
inputs = 'assemblyl assembly2'

. # Remaining parameters ommitted for brevity

[1
[hom_core]

type = EquivalentCoreMeshGenerator

input = het_core

target_geometry = full _hom # Convert het. mesh to homogeneous mesh
(]
[ ]
type = TransformGenerator
input = hom_core
transform = TRANSFORM
vector_value = '1 0 Q'
(]
data_driven_generator = hom_core

1

Figure 39. Input file that leverages data-driven generation for defining an output homogeneous mesh

(het_core) from an input homogeneous mesh (hom_core). All mesh generators that come before
data_driven_generator (in red) do not generate an output mesh and only define metadata on the mesh,
whereas the data_driven_generator (in blue) reads in metadata from the input mesh to create an output

mesh. All mesh generators that follow data_driven_generator (in green) behave as normal and will modify

the input mesh and generate an output mesh.
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rameter Mesh/data_driven_generator, explained in Section 4.8, points to the homogeneous mesh created
by Griffin. This tells the MOOSE (G. Giudicelli et al. ) mesh generator system that all mesh genera-
tors that precede hom_core should not generate an output mesh and should only be responsible for defining
metadata on the mesh. The data-driven generator (hom_core) is then expected to generate an output mesh
by reading the metadata defined on the input mesh generator (het_core); all mesh generators that follow
will behave as typical mesh generators by modifying the input mesh and generating an output mesh.

This new mesh generation workflow was tested for generating the assembly homogenized mesh for the
full-core 3D Advanced Burner Test Reactor (ABTR) problem. The total mesh generation time on a single
processor was 27.3 seconds when data-driven generation was not used and was 1.7 seconds when data-
driven generation was used. These time savings are largely due to the fact that construction of the 3-D,
full-core heterogeneous mesh is a costly meshing operation. Because metadata can instead be used to gen-
erate the target output homogeneous mesh, this heterogeneous mesh generation step can be entirely by-
passed.

4.9.3 Support for Flexible Assembly Stitching in RGMB Mesh Generators

In the example discussed in Section 4.9.2, one aspect of the mesh generation workflow that led to some
confusion among users was related to the generation of the heterogeneous mesh. For the ABTR example,
specifically, hanging nodes were present at interfaces where heterogeneous and homogeneous assemblies
were stitched together. This is because assembly structures created by RGMB’s AssemblyMeshGenera-
tor are stitched together without ensuring that the number and placement of nodes on both sides of the
assembly interface agree with each other, as shown in Figure 40. For the purposes of converting the het-
erogeneous mesh to the homogeneous one, the presence of hanging nodes in the heterogeneous mesh does
not affect the generation of the homogeneous mesh, which is generated entirely through mesh metadata
and not from inspecting a physical mesh. However, the ability to generate and visualize a heterogeneous
input mesh without hanging nodes was identified as a feature for streamlining RGMB mesh generation,
especially for users who need to run physics calculations on a fully heterogeneous mesh.

Upon further testing of the RGMB mesh generation system, three scenarios were identified in which hang-
ing nodes could occur during the assembly stitching phase into a core lattice:

1. Stitching of two assemblies that have a different number of pins in the pin lattice.

2. Stitching of two assemblies that have constituent pins that have different number of azimuthal sec-
tors per side.

3. Stitching of a heterogeneous assembly (one with a defined pin lattice) with a homogeneous one.

The lefthand column of images shown in Figure 40 illustrates how these hanging nodes can occur for each
of the three cases explained above for hexagonal assembly structures. To address the issue of hanging
nodes, a new parameter in ReactorMeshParams, flexible_assembly_stitching, is defined to facilitate flex-
ible stitching of assembly structures. When this parameter is set to true, the mesh subgenerator calls are
modified to ensure that the assembly interface has a fixed number of sectors at the outermost assembly
boundary interface for all constituent assemblies. The effect of setting this parameter to true is shown in
the righthand column of images in Figure 40. For each of these images, each side of the assembly bound-
ary interface has six uniformly spaced sectors, thus mitigating the issue of hanging nodes. The number of
sectors defined at the outer assembly interface is controlled by the optional ReactorMeshParams parameter
num_sectors_at_flexible_boundary.

To explain what is happening under the hood to facilitate flexible assembly stitching, the following steps
are carried out through mesh subgenerator calls to generate the assembly mesh structure:
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Assembly Stitching — Case 1

Assembly Stitching — Case 2

Assembly Stitching — Case 3

Figure 40. Assembly stitching. Three scenarios in which hanging nodes could occur when assemblies are
stitched together with CoreMeshGenerator (left column of images), along with how flexible patterning
fixes this issue by setting ReactorMeshParams/flexible_assembly_stitching to true (right column of
images).
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1. Generate assembly mesh structure using PolygonConcentricCircleMeshGenerator and Patterned-
HexMeshGenerator | PatternedCartesianMeshGenerator as normal.

2. Delete the outermost layer of the assembly mesh using BlockDeletionGenerator. For heterogeneous
assemblies with duct regions, the outermost layer is the outermost duct layer. If duct regions are not
present in the heterogeneous assembly, the outermost layer is the background layer. For homoge-
neous assemblies, the outermost layer is the entire assembly mesh.

3. Re-mesh the deleted outer layer using FlexiblePatternGenerator. This mesh generator, covered in
the milestone report from FY 2023 (Shemon, Miao, Kumar, Mo, Jung, Oaks, Lee, et al. ), uses
the auto area function (described in Section 4.7) to triangulate the layer that was deleted instead. The
use of FlexiblePatternGenerator also ensures a fixed number of sectors at the assembly boundary.

The use of flexible_assembly_stitching preserves the behavior of extra element ID generation and block
naming conventions for the mesh layer that was deleted and then triangulated, and this parameter can be
used in conjunction with data-driven generation. This single parameter also significantly simplifies the
mesh generation process for the user so that the user does not need to be concerned with the specific mesh-
ing operations required to prevent hanging nodes from occurring. Additionally, the RGMB system will
throw a warning at the core-level if it suspects that flexible assembly stitching is needed based on how the
assembly structures are defined and flexible_assembly_stitching is not set to true.

As an example of how flexible assembly stitching can be used on a full-scale mesh, the righthand image
of Figure 41 shows a quarter-core slice of the heterogeneous ABTR mesh. The top right image in Figure
41 shows the mesh element discretization using a naive stitching algorithm in RGMB, and it can be clearly
seen that this leads to hanging nodes at the interface between heterogeneous and homogeneous assemblies.
However, this issue can resolved by the flexible assembly stitching option in RGMB, as shown in the bot-
tom right image of Figure 41. This option ensures that the placement of nodes is identical on both sides of
this assembly boundary interface.

4.9.4 Defining Control Drum Structures with RGMB Mesh Generators

With a general way to stitch assemblies together using the RGMB workflow, as described in Section 4.9.3,
RGMB mesh generators can now also be extended to support the definition of control drum structures. The
control drum is a series of two concentric rings surrounded by a background region that can optionally be
discretized azimuthally into a drum pad region to signify the presence of a strong absorber region that can
rotate around the centerpoint of the mesh structure. A diagram of the various regions within a hexagonal
control drum is shown in Figure 42 for the case when a drum pad is and is not explicitly defined.

In general, stitching such a mesh structure into the assembly lattice of a reactor core can be a challenging
task to ensure that hanging nodes do not occur. However, as explained in Section 4.9.3, a similar procedure
can be performed in which the background region is triangulated to ensure that a fixed number of sectors is
defined at the outer boundary of the control drum mesh. Thus, a new mesh generator, ControlDrumMesh-
Generator, was defined to be used exclusively with RGMB mesh generators to facilitate stitching of con-
trol drum mesh structures into the assembly lattice of a reactor core. In terms of mesh subgenerator calls,
ControlDrumMeshGenerator performs the following steps:

1. Define two concentric circles using AdvancedConcentricCircleGenerator with user-defined inner
and outer radii and apply a uniform azimuthal discretization also based on user-defined input.

2. Triangulate the background region with FlexiblePatternGenerator using the auto area function and
define a fixed number of sectors at the outer boundary of each side of the control drum mesh struc-
ture.
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Mesh discretization
flexible_assembly_stitching = false

Mesh discretization
flexible_assembly_stitching = true

Figure 41. Heterogeneous ABTR mesh (left) with a zoom in of what the mesh elements look like at
the interface of heterogeneous and homogeneous assemblies when flexible assembly stitching is not
used (top right) and when flexible assembly stitching is used (bottom right).

Drum inner

Drum (no explicit pad)
Drum pad
Drum ex-pad

Background

Figure 42. Various regions for a control drum mesh structure with a drum pad region explicitly
defined (left) and without a drum pad region defined (right).
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3. If a pad region is requested by the user, iterate through all mesh elements of the drum region and
set the region ID / block name of elements that fall within the range of the start and end angle of the
pad region (both angles are defined by the user). If the pad angles do not align with the azimuthal
discretization of the drum region, define additional azimuthal nodes to ensure that the pad placement
lines up exactly with the azimuthal discretization of the drum region.

Figure 43. Mesh discretization for a control drum region where the azimuthal drum discretization
does not line up with the start and end angles of the drum pad region. The left image shows what the
control drum mesh looks like without a drum pad region defined, and the right image shows the same
control drum mesh with drum pad start and end angles of 90 and 180 degrees, respectively.

To illustrate the details of the final step, Figure 43 shows the mesh discretization of a control drum mesh
where the azimuthal discretization of the drum region does not line up with the placement of the drum
pad region. In this example, the left image shows a scenario in which 17 azimuthal discretizations are re-
quested in the drum region. In the right image, the drum pad start and end angles are 90 and 180 degrees,
respectively (the convention for drum angles is to start in the positive y direction and rotate clockwise).
Therefore, ControlDrumMeshGenerator is also responsible for automatically adding additional azimuthal
nodes at the start and end angles of the drum region.

To use ControlDrumMeshGenerator, ReactorMeshParams/flexible_assembly_stitching needs to be set to
true. Moreover, ControlDrumMeshGenerator preserves basic RGMB functionality found in other mesh
generators such as extra element ID mappings, data-driven generation, and setting the block name from
the region ID mapping. When the region IDs of the control drum mesh are being set, three values need to
be specified per axial layer when a drum pad region is not defined. These values represent the three radial
regions (drum inner, drum, and background) of the mesh. When a drum pad is explicitly defined, an addi-
tional region ID value that represents the region ID of the drum pad region needs to be provided per axial
layer.

Additionally, the structure created by ControlDrumMeshGenerator can be used directly within CoreMesh-
Generator as an input assembly structure. This allows for the stitching of heterogeneous assemblies with
a pin lattice directly with control drum regions. As an example, Figure 44 shows the 2D Empire mesh de-
fined entirely with RGMB mesh generators. The images on the left and right hand sides show the mesh
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discretizations in regions where flexible assembly stitching is used to stitch dissimilar assemblies together.

Figure 44. 2D Empire mesh generated from RGMB mesh generators (center), and zoomed in areas
(left and right) showing mesh discretizations of regions where dissimilar assemblies are stitched
together.

4.9.5 Adding Depletion ID Generation to RGMB

A depletion calculation in Griffin requires an integer ID tag, named depletion ID, to specify the depletion
region setting in the core domain. Elements are grouped into separate depletion zones based on their de-
pletion ID value. Unique isotopic inventories of depletable materials are defined in each depletion zone.
This enables RGMB to generate core mesh files that can be used for fuel cycle calculation. Users can en-
able the depletion ID generation option by setting the input parameter generate_depletion_id to "true" in in
the final level of mesh generation stage. The following mesh generators support depletion ID generation:
AssemblyMeshGenerator, ControlDrumMeshGenerator and CoreMeshGenerator. For example, if a user
generates an assembly mesh, the depletion ID option should be specified in AssemblyMeshGenerator. If a
core mesh is generated, the depletion ID option should appear only in the CoreMeshGenerator.

The input parameter depletion_id_type controls the level of details in the depletion ID assignment. Users
can select "pin" or "pin_type" for depletion_id_type. All pins in the core will have separate depletion ID
values if depletion_id_type is set to "pin", whereas using "pin_type" will result in unique ID values for
each individual pin type in the assemblies.

4.10 MONTE CARLO CONSTRUCTIVE SOLID GEOMETRY SUPPORT

The goal of this work is to create a generalized and automated process for creating Monte Carlo (MC)
constructive solid geometry (CSG) definitions from MOOSE geometry input to support the reactor anal-
ysis needs in the reactor physics community. Specifically, users of MOOSE-based nuclear reactor analysis
software currently must manually develop the MC CSG models of the geometries to generate group cross
sections (such as for deterministic neutronics analysis), create reference results, and do code-to-code com-
parisons. Manually creating these MC CSG models is a complex and tedious task that requires users to be
familiar with the syntax and complexities of a specific MC code and to understand how CSG models are
created. Because these models can be large and complex, this process is both time consuming and prone to
human error. Implementing an automated process for converting MOOSE-based geometries to MC CSG
geometries will improve the workflow efficiency and reduce user error in neutronics analysis.

The goal this year was to investigate how a generic MOOSE-to-MC process could be implemented into
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[core]
type = CoreMeshGenerator

pattern = ' 1 1;
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generate_depletion_id = true
depletion_id_type = 'pin' or 'pin_type'
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depletion_id type = pin

depletion_id type = pin_type

Figure 45. Depletion IDs generated by RGMB.
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the MOOSE framework and to determine the effort required and timeline for implementation. At a high
level, the process will be to generate a new CSG object that contains the equivalent CSG description of the
MOOSE mesh generator’s (MG’s) input. This section outlines the details of the planned code implementa-
tion, how it will connect to specific MC codes, and the anticipated implementation timeline.

4.10.1 Code Implementation Plan
A new base CSG class is to be added at a high level to the MOOSE framework (located at

/moose/framework/[src/include]/csg/). This base class will have subclasses that contain the basic
common infrastructure required for generating CSG objects for all MGs, including the overarching generic
generateCSG() method (akin to generate(), which already exists on all MGs) and any common util-
ities or common data types that are used across multiple MGs (creating simple surfaces, transformations,
universes, and for data retrieval etc.). Each MG will then have its own unique implementation of the equiv-
alent CSG operations or geometry definitions. If an MG does not have an implemented CSG generation
method, the default behavior will be to throw an error in the event that a CSG geometry is requested by the
user. These generation methods will be called in the same order that MGs are processed during the stan-
dard mesh generation process. It is important to note that mesh generation will not be required to generate
the CSG object because the data required comes from the MG directly and not from the mesh. A visual
depiction of this workflow is shown in Figure 46 where a CSG object (right) is created and modified at the
same time and in the same order that the MGs are processed (left), using the information from the MGs to

create the equivalent CSG definition (right flowing arrows).

CSG Object

/

J/

Data for CSG equivalentof A [~

generateCSG() >

-~
il TR 2

T

!

generateCSG() "

Data for CSG equivalent of B « ) .,

MG C generateCSG() L
Data for CSG equivalent of C -~

Figure 46. A visual representation of the process for generating a complete CSG object defined by
the MGs A, B, and C (left). The generateCSG() process for each MG uses data defined on that
particular MG to create the equivalent CSG representation on the right. The dotted lines on the right
indicate where data may be necessary to flow between CSG representation to ensure consistency.

Implementing the CSG workflow such that it parallels the MG generation process will ensure the pres-

ence of data that may need to be transferred or referenced throughout the creation of the CSG object. This
CSG workflow assumes a level of self-consistency between parent and child MGs that parallels the level of
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consistency required for CSG definitions. Therefore, the assumption is that all information necessary for
defining an equivalent CSG object of a particular MG is theoretically retrievable from that MG directly. In
the case where some information is needed from a previous MG to build the current CSG definition, that
data can be accessed from within the CSG object’s data (dotted lines on the right side of the diagram in
Figure 46). An important note regarding this workflow is that the MGs and any generated meshes are never
modified in the CSG generation process; data is only retrieved from the MGs and used to modify the CSG
object.

Figure 47 shows a specific example of this workflow for a basic model of a core that uses the RGMB PinMeshGenerator,
AssemblyMeshGenerator, and CoreMeshGenerator. The CSG definitions of the pins are generated

first, followed by the assembly, and then the full core. The data for defining a pin is stored in the pin uni-

verse of the CSG object, but the assembly CSG universe has knowledge of the pin universe and its unique

ID, and can gather information about the pin if necessary. The core CSG universe operates similarly in

how data is stored and accessed.

4 p
Pin CSG Universe:
generateCSG() —| List of radii, material IDs ™
generateCSG()— Assembly CSG Universe: «,f" I,"
Pitch, lattice map, etc. /
o S

CoreMG generateCSG() Core CSG Universe: - -~
Pitch, lattice map, etc.

Figure 47. A specific example of the CSG generation workflow when used on a full core model using
RGMB MGs.

4.10.2 Connection to Monte Carlo Codes

The goal of this implementation is to be able to create a generic, fully equivalent CSG model of the MOOSE
mesh geometric definition (not the generated faceted mesh) that can then be connected to any MC code.

The process for generating the exact code-specific syntax or input will need to be implemented as code-
specific methods (eg, toTitanCSG() or toOpenMCCSG()) in the CSG class. This final conversion step to
an MC code will occur after the full equivalent CSG object has been generated for the MOOSE geometry.

Of important note is the use of the terminology “equivalent CSG” throughout the description of this pro-
cess. At the most basic level, CSG models are built by defining surfaces, applying Boolean operators to
surfaces to create cells, applying various transformations, and repeating cells through uses of universes.
However, most MC codes used for reactor physics support user-defined engineering units that remove the
requirement to define rudimentary surfaces and cells directly, such as the common definition of a pin in
OpenMC (Romano et al. ) or Shift’s frontend Titan (Pandya et al. ). The equivalent of this level
of engineering unit support for reactor physics is the MOOSE Reactor Module MGs, with the RGMB MGs
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being near equivalents of these reactor engineering units. This means that an “equivalent CSG” definition
of the PinMeshGenerator in RGMB would similarly be lists of radii and material IDs, which are what
are typically used in MC codes to define a pin unit as well. However, if the MG used in the model is the
AdvancedConcentricCircleMeshGenerator (which can also be used to define a pin-like structure), the
equivalent CSG definition would be a series of cylinder surfaces joined via Boolean unions and/or intersec-
tions to form a series of cells with a specified material ID fill. Creating equivalent CSG definitions rather
than strict rudimentary CSG definitions in all cases should make the direct connection to most MC codes
more straightforward. In some cases, there may not be support for a particular engineering unit in an MC
code, in which case it would be the requirement of that MC code’s specific implementation to further break
down the definition into usable units.

Additional requirements to fully define an MC model that can be used for a simulation are the material
compositions and the physics/simulation settings. Defining materials is fairly standard across MC codes:

a material is given a unique user-defined name or ID and then built by specifying the canonical ZAID for
each nuclide and the nuclide amount or concentration (exact syntax may differ). In most MC codes, the
details of a material definition are stored as data separate from the geometry definition. The geometry defi-
nition has information about the material ID that fills each region, which is then used to access material in-
formation during a simulation. This data separation is similar in MOOSE: materials are defined separately
and region IDs are used to define the fill in a specific region of space. The same type of region or mate-
rial ID connection would be done for the CSG definitions as well. Methods could be implemented in the
CSQG class to convert MOOSE-based material definitions to MC code-specific definitions that can be ex-
ported to users (or using block IDs as material placeholders if materials are not explicitly defined), further
reducing the burden for manual generation of the MC input. Defining simulation parameters (number of
histories, source parameters, tallies, etc.) from direct MOOSE input would not be as easy or possible be-
cause those parameters are specific to MC simulations only. This part of the MC input would be required
to be manually created by users or implemented as code-specific methods in MOOSE. The latter method
would require additional MOOSE input blocks. The former method is recommended because the definition
of most simulation parameters for MC codes is generally not considered complex or time consuming for
users.

4.10.3 Implementation Plan

The full implementation of CSG support in MOOSE will require multiple years and involve different groups
of developers. Table 1 shows the anticipated timeline for implementation and prototyping tasks and in-
dicates which NEAMS technical area will complete that task. Generally speaking, all MC code-agnostic
tasks are to be completed by the Multiphysics technical area, whereas any MC code-specific tasks are to

be completed by the Reactor Physics technical area or other MC code developers (as shown in Figure 48).
The table indicates any task dependency (shown in third column) and the order of the tasks listed implies
preliminary prioritization of which MGs will be supported first. Adhering to this timeline depends on ade-
quate funding in each technical area to complete the designated tasks.

4.11 USER SUPPORT

The recent launch of the MOOSE Reactor Module sparked a surge in adoption of MOOSE meshing tools
among NEAMS application users. Comprehensive support was provided to ensure that users could har-
ness these tools effectively. The transition to MOOSE meshing tools has been swift and widespread across
NEAMS Multiphysics Applications Drivers activities. Yet, some applications still push beyond the current
limits of the Reactor Module, presenting opportunities for future enhancements. This section describes the
team’s efforts in developing meshes for various reactor types, presenting the versatility of MOOSE Reactor
Module.

Microreactor Support The Kilowatt Reactor Using Stirling TechnologY (KRUSTY) is an experimental
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Table 1. Implementation plan and targeted prototyping goals for CSG support

NEAMS
Task TA Depends On
Ownership

1. Implement the generic CSG framework in MUIti.Ph}fSiCS
MOOSE that can be used by an MG Applications

2. Design the specific CSG methods fgr Multiphysics
RGMB and Patterned Generator MGs in the Applications Task 1
Reactor Module

3. Implement CSG support for remaining MUIﬁ.PhXSiCS Task 1
Reactor Module MGs Applications

4. Develop MC code-specific conversion Reactor tﬁ)in;gie:f?ezﬁp;e;x;i

Physics

methods for supported MGs y of MGs in Tasks 2 and 3
5. Implement generic material composition MUIti‘Ph}fSiCS Task 1

support in MOOSE Applications

6. Prototype Goal: generate a complete Multiphysics

CSG model of a detailed 3D full core reg- | Apslications | L2oKS 2 and 3
ular hexagonal lattice reactor

7. Prototype Goal: generate a complete CSG

model for a specific MC code of a detailed ReacFor Tasks 4-6

3D full core regular hexagonal lattice reactor Physics

8. CSG and MC code-specific support for Multiphysics

additional MOOSE MGs used to generate Applications Tasks 2-4

irregular reactor geometries

MOOSE Mesh

Generic equivalent

MC code specific

Generator CSG definition input file

Multiphysics Applications Reactor Physics

Figure 48. A high-level depiction of the MOOSE-to-CSG workflow and indication of which NEAMS
technical area is in charge of the development tasks for that part of the workflow.

66



reactor developed by NASA and the Department of Energy at the Nevada National Security Site. KRUSTY
is designed to demonstrate a full-scale Kilopower reactor operation for space applications (Gibson et al.
KRUSTY utilizes the highly enriched uranium fuel system for low-power (1-10 kWe) space and surface
power systems and the heat pipes to transfer thermal energy to Stirling engines (Poston et al. ). The
initial KRUSTY mesh was developed in FY 2022 using MOOSE mesh generation tools. This early ver-
sion was based on a simplified model from Los Alamos National Laboratory. As meshing technology
progressed in FY 2023, it became possible to create more complex geometric meshes (Shemon, Miao,
Kumar, Mo, Jung, Oaks, Lee, et al. ). This advancement led to the development of a more detailed
KRUSTY model, which utilized recently implemented MOOSE Reactor Module objects, allowing for the
creation of intricate mesh structures while preserving mesh volumes. In the current FY, the team devel-
oped a visual guide that demonstrates the process of KRUSTY mesh generation using the MOOSE Reactor
Module (Kun Mo, Emily R. Shemon, Yinbin Miao, Yan Cao, Soon Kyu Lee, Aaron J. Oaks, Nicolas E.
Stauff ). This instructional video showcases the steps involved in creating complex 3-D KRUSTY ge-
ometries and components. The visual aid has been employed to highlight the capabilities of the MOOSE
Reactor Module at two significant events: the 2024 Modeling, Experiment and Validation School and the
STARFIRE workshop.

Molten Salt Reactor Support The Molten Salt Reactor Experiment (MSRE), an SMWth reactor utiliz-
ing molten fluoride salt with highly enriched U-235 in the fuel salt, was successfully operated in 1960s
(Haubenreich and Engel ). This experiment demonstrated the practicality of the molten salt reactor
concept for the first time. In FY 2022, the original full-core mesh was developed with MOOSE mesh gen-
erators, primarily relying on FillBetweenSidesetsGenerator and AdvancedExtruderGenerator objects. This
original mesh was subsequently modified with the latest mesh generators to incorporate additional reactor
components, preserve volumes for precise neutronics calculations, and reduce mesh density for improved
computational cost. In FY 2023, the updated mesh was employed to conduct Multiphysics transient sim-
ulations coupling Griffin and SAM codes (Shemon, Miao, Kumar, Mo, Jung, Oaks, Lee, et al. ). At
the request of the Molten Salt Reactor Application Drivers team, the MSRE dome mesh was developed
by transforming a 3-D cylinder into a 3-D spherical cap, as shown in Figure 49. This mesh alteration was
achieved using ParsedNodeTransformGenetator, which allows for precise control of curvature radius and
height of the dome and cylinder according to user requirements.

Figure 49. The curved upper head mesh and MSRE mesh with upper and lower heads.

Test Reactor Support The INL reactor physics analysis team requested assistance in utilizing the MOOSE
Reactor Module to mesh the Transient Reactor Test Facility (TREAT) reactor geometries for neutronics
analysis. Located at the National Reactor Testing Station, TREAT is an air-cooled, graphite-moderated re-
actor designed to safely conduct high-power integrated burst transients over a large sample volume. This
facility operated for 35 years before being assigned in standby in 1994 and then restarted in 2017 to fulfill
transient fuel testing research (Okrent et al. ; Pope et al. ). In response to the INL team’s request,
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the team demonstrated that the MOOSE Reactor Module is capable of generating the TREAT reactor ge-
ometries. The 2-D reactor mesh comprises standard fuel assemblies and control rod fuel assemblies, as
illustrated in Figure 50. The fuel assembly was generated using PolyLineMeshGenerator and XYDelau-
nayGenerator, creating and meshing octagon-shaped fuel blocks and square shaped zircaloy cans in ac-
cordance with geometrical specifications listed in the baseline assessment report (Bess and DeHart 2015).
For the control rod fuel assembly, the center circle and rings were generated with ParsedCurveGenerator
and meshed with XYDelaunayGenerator. After two assembly types were generated, PatternedCartesian-
MeshGenerator was employed to arrange the assemblies, and AddMetaDataGenerator was used to add
metadata to individual assemblies.

Figure 50. TREAT 2-D standard fuel assembly (top-left) and control rod fuel assembly (top-right)
meshes and the reactor mesh (bottom).

Fast Reactor Support The Civil Nuclear Energy Research and Development Working Group (CNWG),
established in 2012, is a collaborative effort between the United State and Japan. CNWG aims to facilitate
joint civil nuclear research and development (R&D) work and to build upon collaborative R&D objectives
outlined in the US-Japan Joint Nuclear Energy Action Plan (U.S. Department of Energy 20244). As part
of its sub-working groups, research activities in advanced reactor R&D include exploring innovative metal
fuel core designs, materials, modeling and simulation, and advanced fuels that offer improved safety and
efficiency (U.S. Department of Energy 2024b). At the request of the NEAMS Fast Reactor Applications
team at Argonne National Laboratory (ANL), fast reactor meshes were developed using the MOOSE Reac-
tor Module. The CNWG neutronics benchmark problem’s fuel and sodium assembly meshes were devel-
oped using PolygonConcentricCircleMeshGenerator and combined using PatternedHexMeshGenerator to
form a 3-D core. Notably, the benchmark problem required a selected assembly to be translated and tilted
by user-specified amounts to examine the impact of new neutron leakage pathways. The team employed
ParsedNodeTransformGenerator to select specified nodes on the target assembly and applied numerical
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functions to translate and tilt them, as shown in Figure 51.

Target
Assembly

Figure 51. Fast reactor benchmark problem meshes with translated and tilted assemblies.
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S. CONCLUSIONS

In FY 2024, significant improvements in MOOSE user interface integration were completed. Improve-
ments to input processing enabled commonly requested features: file includes, block merger, parameter
overrides, and autocompletion of partial input. Additionally, MOOSE language server updates increased
user efficiency with increased documentation accessibility, more capable navigation, accelerated input edit-
ing via snippets and inclusion of required parameters, and an official VSCode 1.0 MOOSE input editor
plugin that makes available to application developers the same user interaction advantages but within their
familiar application code editor. These improve both MOOSE application developer and user interaction
accuracy and efficiency and help shorten the feedback loop. Progress was made with the Cardinal appli-
cation integration into the NEAMS Workbench with the addition of an available INL high-performance
computing configuration that supports single-input interaction and job launch in the NEAMS Workbench.

This report also documents recent improvements to MOOSE’s meshing capabilities. Improvements in-
clude (1) streamlining input for repeated meshing objects; (2) enabling support for quadratic elements
(preserving the volume of circular surfaces like fuel pins while also reducing mesh density requirements
for physics applications); (3) implementing 3D meshing capabilities such as revolving mesh construction
(useful for PBR conical geometries or MSR tanks); (4) adding more features, such as control drum con-
struction and the ability to stitch dissimilar assemblies, to the RGMB; (5) assessing the optimal path to
adding Monte Carlo CSG support within MOOSE; and (6) continuing to support users with mesh gen-
eration and understanding their evolving needs. All of the new features added directly support the use of
NEAMS tools for advanced reactor analysis. Next year, the Monte Carlo CSG generation task will kick
off in earnest, and 3D mesh generation options will be further matured and integrated for specific reactor
applications.
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