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Abstract. SYCL is a portable programming model that strives to be perfor-

mance-portable across heterogeneous computing devices. Towards understand-

ing and improving performance portability of SYCL for machine learning work-

loads, benchmarks for basic operators in deep neural networks (DNNs) are de-

veloped for performance evaluation. These operators could be offloaded to het-

erogeneous computing devices such as graphics processing units (GPUs) to speed 

up computation. In this work, we introduce the benchmarks, evaluate the perfor-

mance of the operators on GPU-based systems, and describe the potential causes 

of the performance gap between the SYCL and Compute Unified Device Archi-

tecture (CUDA) kernels. We find that the gaps are related to the utilization of the 

texture cache for read-only data, optimization of the memory accesses with 

strength reduction, shared local memory accesses, and register usage per thread. 

We hope that the benchmarks for studying performance portability will facilitate 

discussion and interactions within the community. 

Keywords: Performance Portability, Benchmarks, DNN operators. 

1 Introduction 

Computing platforms upon which workloads are evaluated differ in the details of the 

hardware accelerators and software stacks [1, 2, 3]. Vendor-specific programming lan-

guages and libraries have been addressing many of these differences. For example, 

CUDA [4] and Heterogeneous Computing Interface for Portability (HIP) [2] are ad-

vanced programming models for NVIDIA and AMD GPUs, respectively. However, 

commonalities among these programming models exist and several portable program-

ming methods allow for writing a program targeting multiple platforms [5, 6, 7]. A 

portable programming model, which facilitates the execution of a program across mul-

tiple computing platforms, could improve programming productivity and exploit per-

formance potentials of programmable accelerators. In turn, the programming model 

may be improved in functionality and performance with the evaluation of applications 

and benchmarks. SYCL is a promising programming model for various hardware 
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accelerators. It is a royalty-free, cross-platform abstraction layer with an open and 

evolving specification for heterogeneous computing [8]. 

Previous studies evaluate SYCL by comparing the performance of applications and 

benchmarks in high-performance computing (HPC) on GPUs with vendors’ program-

ming models. In [9, 10, 11, 12, 13], the results show that whether the performance of 

running SYCL is competitive with using a vendor-specific programming model de-

pends on the programs and how they are optimized by developers and compilers. For 

example, migrating an optimized bioinformatics workload in CUDA required signifi-

cant code changes, and the SYCL implementation was about 2X slower [10]. After 

converting the Rodinia benchmark suite [14] to a variant of SYCL, the researchers ob-

serve that some SYCL kernels achieve performance portability and others see consid-

erable overhead, varying from 25% to 190%, due to their execution of more GPU in-

structions and/or underutilization of GPU resources [12]. Vendor-specific program-

ming models are mature in their toolchains and libraries for application development 

[15], but portable programming models could improve programming productivity with 

abstractions across vendors’ computing devices. Hence, it is worthwhile to study and 

improve performance and portability of portable programming models such as SYCL. 

On HPC systems with GPUs, obtaining reasonable performance portability requires 

nontrivial efforts for deep neural networks (DNNs) in SYCL. The performance of a 

neural network implemented in SYCL without optimization is almost 50% slower, and 

the optimization could reach 90% of the performance of the CUDA DNN library [16]. 

Towards improving performance portability of SYCL for machine learning workloads, 

we have been collecting and developing benchmarks for operators used in DNNs. 

DNNs are typically expressed as computation graphs in which nodes represent basic 

operations. These operators may be offloaded to GPU accelerators to speed up compu-

tation [17]. In the following sections, we will give a summary of each benchmark, eval-

uate the benchmarks in SYCL and CUDA on NVIDIA GPUs, explain the performance 

gaps, discuss related work, and conclude the paper with future work. We hope that our 

work will facilitate discussion and interactions within the community. 

2 Background 

2.1 Brief Introduction to SYCL 

Open Computing Language (OpenCL), a standard maintained by the Khronos group, 

has facilitated the development of parallel computing programs for hardware accelera-

tors [18, 19]. However, writing an OpenCL program tends to be error-prone [20, 21]. 

Based on the underlying concepts, portability, and efficiency of OpenCL and ease of 

use and flexibility of single-source C++ [22], SYCL combines a host program and a 

device program for the simplicity of writing a single program like CUDA, and for a 

compiler to statically type-check the correctness of the program. The SYCL buffer and 

unified shared memory (USM) are two abstractions for data management [8].  We 



choose USM for data management because it is a pointer-based approach that is close 

to data management in CUDA.  

A routine, which is sent by an application to a graphics device for execution, is often 

called a “kernel” in GPU computing. In contrast to CUDA, a SYCL program requires 

a programmer to explicitly specify a queue to which kernels are submitted for execution 

on a device. A SYCL queue is either in-order or out-of-order. For an in-order queue, 

kernels are executed in the order they were submitted to the queue. For an out-of-order 

queue, kernels could be executed in an arbitrary order subject to the dependency con-

straints among them. Because CUDA kernels are executed in the order they were 

launched, we choose an in-order queue for the SYCL benchmarks for consistency. 

2.2 Summary of the Benchmarks for DNN Operators 

The benchmarks for the operators are based upon open-source machine learning frame-

works and applications. We will expand the benchmarks to represent more operations 

from DNN. This section is a summary of the benchmarks listed in alphabetic order. All 

the benchmarks are implemented in both CUDA and SYCL. These benchmarks are 

available at https://github.com/zjin-lcf/HeCBench. 

Accuracy. The benchmark implements a function for computing prediction accuracy 

[23]. The kernel reads a label index from an “index” array, and then queries the value 

of a predicted label (p) from a “label” array with the index. The value p is compared 

against each predicted label in the array. A counter is incremented when the label’s 

value is larger than p. When two labels are equal, the counter is incremented based on 

the comparison of the labels’ indices. After the comparison of all labels, the accuracy 

rate is incremented when the counter’s value is below a threshold. 

Adam. The benchmark computes individual adaptive learning rates for parameters 

from estimates of first and second moments of the gradients [24, 25]. For each param-

eter in a timestep, the kernel computes a scaled gradient, updates a biased first moment 

and a biased second raw moment estimate, computes a bias-corrected first moment es-

timate and a second raw moment estimate, and finally adjusts the parameter based on 

the learning rate and corrected moments. 

Attention. The benchmark implements a mechanism that pays attention to what is rel-

evant to the currently processed information through content-based similarity search 

[26]. The mechanism is commonly used in different domains [27]. The benchmark con-

tains three compute kernels that are executed consecutively. For a “query” vector with 

d dimensions and a “key” matrix with n vectors where each vector has d dimensions, 

the attention mechanism first computes a similarity score by a dot product of the 

“query” vector with each “key” vector. The result is a vector of n dimensions. Then, it 

is processed with a softmax function. Finally, a dot product of the normalized vector 

with each column of the n × d “value” matrix produces the weighted sums of vectors.  
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ChannelShuffle. The benchmark implements the channel-shuffle function that divides 

a four-dimensional (4D) tensor into groups and rearranges them while maintaining the 

shape of the original tensor [28]. The benchmark evaluates the shuffling performance 

for the channel-first and channel-last orderings of a tensor. 

ChannelSum. The benchmark implements the channel sum function that computes the 

per-channel sums of a 4D tensor [23]. The benchmark evaluates the sum performance 

for the channel-first and channel-last orderings of a tensor. For the channel-first order-

ing, a 2D GPU thread block is assigned to compute the sums. For the channel-last or-

dering, a 1D GPU thread block is assigned to compute the sums. The sum reduction in 

a thread block is implemented using a library call for reusable software components 

such as CUB [29]. 

Clink. The long short-term memory (LSTM) network is a type of recurrent neural net-

works that can be used for temporal signal prediction tasks, such as handwriting recog-

nition and speech recognition [30]. The network comprises a hidden layer and an output 

layer. The hidden layer consists of an input gate, a forget gate, a cell gate, an output 

gate, a cell node, and a hidden node [31]. The benchmark implements inference of a 

one-layer and five-node LSTM network. At each time step, the network reads an input, 

updates the values of all gates and nodes, and then generates an output based on the 

hidden node’s value. 

Concat. The benchmark concatenates two tensors into a new tensor [32]. The one ten-

sor is of shape (batch_size, beam_size, num_head, sequence1, hidden_dimension) and 

the other tensor (batch_size, beam_size, num_head, sequence2, hidden_dimension). 

The two tensors have the same shape except in the concatenating dimension. 

CrossEntropy. The benchmark computes a loss function (the negative log-likelihood) 

in the backward propagation phase of training a neural network. The benchmark sup-

ports the data types of half-, single-, and double-precision floating-point formats. The 

performance can be measured with the bandwidth metric [33]. 

DenseEmbedding. The benchmark adds values from a dense embedding table and val-

ues from an input array and stores the sums in an output array [23]. The input and output 

arrays are each accessed with a base address and a stride. The base address is read from 

an “offset” array indexed by a “batch” number while the stride equals the embedding 

dimension. The access range is determined by the difference of two consecutive offset 

values in the “offset” array. 

Dwconv. The benchmark applies a 2D depth-wise convolution [34] over an input signal 

composed of several input planes. Each input channel is convolved with its own set of 

m filters [23]. m determines how many filters are applied to one input channel (i.e., the 



number of output channels generated per input channel). The height and width of each 

filter are 1, 3, or 5. The stride, padding, and dilation for both dimensions are one.  

Expdist. The benchmark implements a simplified Bhattacharyya distance function be-

tween two sets of points [35]. In the implementation of the benchmark [36], the first 

kernel produces cross terms for two sets of points using a Gaussian kernel. The second 

kernel reduces these terms to a final sum in parallel. 

Flip. The benchmark reverses the order of elements over axes of a tensor [23]. After 

the flip, the elements are reordered, but the shape of the array is preserved. The bench-

mark assumes that the order of elements over all axes of a tensor will be reversed, and 

the sizes of all dimensions are the same. 

Gd. The benchmark implements gradient descent to solve a binary classification prob-

lem with logistic regression [37]. The benchmark requires an input file for evaluation. 

The data are read from the file and stored in memory as a compressed sparse matrix for 

sparse features. The number of iterations for training is 100 by default to reduce the 

training time. 

Gelu. The benchmark applies the Gaussian error linear unit function [38] over the sum 

of a source array and a bias array. The approximate algorithm is “tanh” [23]. The source 

array is organized as a 3D tensor where a hidden dimension is the first dimension, a 

sequence length is the second dimension, and a batch size is the third dimension. The 

bias array is a 1D array. The two arrays are stored in memory using the half-precision 

floating-point format for reduced memory footprint. The array elements are converted 

to single-precision floating-point numbers for the arithmetic operations. 

Glu. The benchmark applies a gated linear unit function over a tensor. The gating mech-

anism is useful for language models as it allows a model to select which words or fea-

tures are relevant for predicting the next work [39]. In the implementation of the bench-

mark, the split dimension must be divisible by two. It is assumed that the sizes of all 

dimensions of a tensor are the same.  

Logprob. The benchmark computes a log probability (a logarithm of a probability) of 

each token in a batch of sequences [23]. There are two compute kernels in the bench-

mark. The first kernel applies the log-softmax function [40] on the output values from 

the “logits” layer. The second kernel accumulates the probabilities along the sequence 

dimension in a batch of sequences. 

Mask. The benchmark applies mask operations over a batch of regions [23]. The mask 

types include a sequence mask, a window mask, masks of upper and lower parts of a 
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matrix. Each mask operation is implemented as a compute kernel. When a mask is ap-

plied, the output value is set with a predefined value. When not masked, the output 

value is equal to the input value. 

Maxpool3d. The benchmark applies 3D maxpooling, a form of filtering commonly 

used in convolutional neural network, over an image set [41]. The size of the filter is 

equal to the stride of the filter. The horizontal and vertical strides are the same. 

Meanshift. The benchmark is an implementation of the mean shift clustering algorithm 

[42]. The algorithm computes the weights of nearby points by applying a Gaussian 

function on the squared distance to the current estimate for re-estimation of the mean. 

The process is repeated until the mean shift converges. There are two implementations 

in the benchmark. The optimized implementation takes a tiling approach by using 

shared local memory available in GPUs while the other does not utilize any shared 

memory. 

Multinomial. The benchmark finds the location in a multinomial probability distribu-

tion in which the value of a sample falls. When the values of the distribution are 

weights, they will be normalized to probabilities. A prefix sum (scan) operation is per-

formed on the normalized probabilities before a sample is compared with the scan re-

sults to find the location. The largest index where the distribution is non-zero will be 

selected from the distribution [23]. 

3 Evaluation 

3.1 Experimental Setup 

We evaluate the benchmarks on GPU-based computing platforms in the Experimental 

Computing Lab (ExCL) at Oak Ridge National Laboratory. The ExCL provides diverse 

computational resources in terms of chips, memories, and storage. On the first platform 

(P1), the host has an AMD EPYC 7513 32-core processor, and the device is an NVIDIA 

Tesla V100 GPU with 32 GB memory. On the second platform (P2), the host has an 

Intel Core i7-9700 processor, and the device is an NVIDIA GeForce RTX 2080 GPU 

with 8 GB memory. On the third platform (P3), the host has an AMD EPYC 7513 32-

core processor, and the device is an NVIDIA Tesla A100 GPU with 80 GB device 

memory. On the fourth platform (P4), the host has an AMD Ryzen Threadripper 3970X 

processor and the device is an NVIDIA GeForce RTX 3090 GPU with 24 GB memory. 

On the fifth platform (P5), the host has an AMD EPYC 9454 48-core processor, and 

the device is an NVIDIA H100 GPU with 94 GB memory. The SYCL programs are 

compiled with the Intel oneAPI toolkit and the oneAPI for NVIDIA GPUs plugin. The 

plugin adds a CUDA backend to the SYCL compiler [43]. The version of the toolkit is 

2024.2.0. The CUDA versions from the NVIDIA system management interface are 



12.2 and up. The versions of the CUDA compilation tools are 12.3 and 12.4. The of-

floading GPU architectures are “sm_70”, “sm_75”, “sm_80”, “sm_86” and “sm_90”.  

There is a warmup run for each benchmark and each run executes GPU kernels for 

at least 100 iterations. When a benchmark produces multiple timing results, they are 

added together. For performance evaluation, we average the kernel execution time 

measured with the C++ chrono library. The kernel time includes the time of launching 

all kernels from a host processor, kernel execution time on a device, and the time of 

waiting for all kernels to complete.   

3.2 Experimental Results 

Figure 1 shows the ratios of the SYCL kernel time to the CUDA kernel time on the 

GPUs. When the ratio is over one, it means that the SYCL kernel time is longer than 

the CUDA kernel time. We find that the “glu” and “flip” benchmarks in SYCL cause a 

“CUDA out-of-memory” runtime error on P2, so their ratios are not available in the 

figure. The geometric means across all benchmarks on the four platforms are 1.021, 

1.042, 1.053, 1.059 and 1.030, respectively. While most SYCL benchmarks achieve 

reasonable performance portability, there exist performance gaps for certain bench-

marks across the platforms. 

Understanding the Performance Gap. Compiler optimizations are often evasive for 

application developers and domain scientists, so the causes of the gap might be better 

understood by analyzing the GPU assembly codes generated by the compilers and the 

results of profiling the kernels using the vendor’s performance profiler. 

 

Fig. 1. Comparison of the SYCL and CUDA kernel time on the four computing platforms 

with NVIDIA GPUs 
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Utilization of the Texture Cache for Read-only Data. On NVIDIA GPU architectures, 

the texture cache often has higher bandwidth and longer latency than the global memory 

cache, so it may offer higher performance for an application with sufficient parallelism 

to cover the longer latency. On the other hand, the cache can only be used for data that 

is read-only for the lifetime of the kernel. The CUDA compiler does not assume that a 

pointer in a CUDA kernel references read-only data unless the pointer is marked with 

both “const” and “__restrict__” [44]. 

The SYCL compiler has implemented an experimental extension to its CUDA 

backend to allow read-only data to be cached in the texture cache. However, the SYCL 

compiler needs to know which data will be cached explicitly from a programmer. To 

enable the feature in the SYCL compiler, a SYCL kernel must call the specific function, 

as shown in Listing 1, in the device code to cache data. The function will call the ap-

propriate low-level built-in function based on the type of the data the pointer points to. 

For example, in the “clink” benchmark, the input and output read-only weights and 

biases in the network could be cached to improve the kernel performance and perfor-

mance portability. 

 

namespace sycl::ext::oneapi::experimental::cuda { 

    template<typename T> T ldg(const T* ptr); 

} 

Listing 1. The SYCL templated function allows users to load a register variable to the non-co-

herent read-only texture cache [45]. 

Straight-Line Strength Reduction. Programs, which access arrays for matrix multiply 

or dot product, usually have unrolled loops (either unrolled automatically by a compiler 

or manually by a programmer) that iterate over an array with a fixed access pattern. The 

expressions that compute the indices or pointer addresses of these accesses may be par-

tially redundant [46]. For example, in the “attention” benchmark, the last kernel accu-

mulates over the product of the score and value elements. The relevant code snip-

pets of the kernel are shown in Listing 2. This computation order does not eliminate the 

1 for (int i = 0; i < n; i += 4) { 

2   sum += score[i  ] * value[ i   *d + j]  

3   sum += score[i+1] * value[(i+1)*d + j] 

4   sum += score[i+2] * value[(i+2)*d + j]  

5   sum += score[i+3] * value[(i+3)*d + j] 

6 } 

 

 

 

Listing 3.a.  Unrolling the loop by a factor of 4  

1 for (int i = 0; i < n; i += 4) { 

2   p0 = &value[i*d+j] 

3   sum += score[i  ] * (*p0)

4   p1 = p0 + d 

5   sum += score[i+1] * (*p1) 

6   p2 = p1 + d 

7   sum += score[i+2] * (*p2) 

8   p3 = p2 + d 

9   sum += score[i+3] * (*p3) 

10 } 

Listing 3.b.  Strength reduction 

 

float sum = 0; 

for (int i = 0; i < n; i++) 

  sum += score[i] * value[i * d + j]; 
 

Listing 2. The code snippets for describing the straight-line strength 



partial redundancy between (i+1)*d and (i+2)*d. However, (i+2)*d could be 

replaced with (i+1)*d+d that takes only one extra add operation. 

We find that both compilers can automatically unroll the loop in Listing 2 to increase 

instruction-level parallelism. In Listing 3.a, the loop is manually unrolled by a factor of 

four to illustrate the effect. However, the SYCL compiler may emit inefficient code in 

terms of addressing the value array by following the source code. In contrast, the 

CUDA compiler optimizes the addressing of the strided elements of the value array 

with a constant offset for the add operations in each loop iteration. Listing 3.b shows 

the optimization applied manually in the source code. 

Listing 4.a shows the assembly codes generated by the CUDA compiler for the code 

snippets in Listing 2. Analyzing the codes indicates that the compiler can apply the 

1  ld.global.nc.f32     %f12, [%rd29]; 

2  ld.global.nc.f32     %f13, [%rd28]; 

3  fma.rn.f32           %f14, %f13, %f12, %f29; 

4  add.s64              %rd20, %rd29, %rd4; 

5  ld.global.nc.f32     %f15, [%rd20]; 

6  ld.global.nc.f32     %f16, [%rd28+4]; 

7  fma.rn.f32           %f17, %f16, %f15, %f14; 

8  add.s64              %rd21, %rd20, %rd4; 

9  ld.global.nc.f32     %f18, [%rd21]; 

10 ld.global.nc.f32     %f19, [%rd28+8]; 

11 fma.rn.f32           %f20, %f19, %f18, %f17; 

12 add.s64              %rd22, %rd21, %rd4; 

13 add.s64              %rd29, %rd22, %rd4; 

14 ld.global.nc.f32     %f21, [%rd22]; 

15 ld.global.nc.f32     %f22, [%rd28+12]; 

16 fma.rn.f32           %f29, %f22, %f21, %f20; 

17 add.s32              %r22, %r22, 4; 

18 add.s64              %rd28, %rd28, 16;- 

 

Listing 4.a.  The GPU assembly codes gen-

erated by the CUDA compiler for the code 

snippets in Listing 2  

 

1  cvta.global.u64     %rd15, %rd14; 

2  ld.global.nc.f32    %f6, [%rd25]; 

3  ld.global.nc.f32    %f7, [%rd15]; 

4  fma.rn.ftz.f32      %f8, %f7, %f6, %f18; 

5  add.s64             %rd17, %rd14, %rd16; 

6  cvta.global.u64     %rd18, %rd17; 

7  ld.global.nc.f32    %f9, [%rd25+4]; 

8  ld.global.nc.f32    %f10, [%rd18]; 

9  fma.rn.ftz.f32      %f11, %f10, %f9, %f8; 

10 add.s64             %rd19, %rd17, %rd16; 

11 cvta.global.u64     %rd20, %rd19; 

12 ld.global.nc.f32    %f12, [%rd25+8]; 

13 ld.global.nc.f32    %f13, [%rd20]; 

14 fma.rn.ftz.f32      %f14, %f13, %f12, %f11; 

15 add.s64             %rd21, %rd20, %rd16; 

16 ld.global.nc.f32    %f15, [%rd25+12]; 

17 ld.global.nc.f32    %f16, [%rd21]; 

18 fma.rn.ftz.f32      %f18, %f16, %f15, %f14; 

19 add.s32             %r14, %r14, 4; 

20 add.s64             %rd25, %rd25, 16; 

Listing 4.b.  The GPU assembly codes 

generated by the SYCL compiler after ap-

plying the strength reduction manually 

 

1  .shared .align 4 .b8  local_data[768] 

2  .shared .align 4 .b8  valid_data[256] 

3   mov.u32         %r14, %ntid.x; 

4   mov.u32         %r15, %ctaid.x; 

5   mov.u32         %r1, %tid.x; 

6   mad.lo.s32      %r2, %r15, %r14, %r1; 

7   mul.lo.s32      %r16, %r2, 3; 

8   shl.b32         %r17, %r1, 2; 

9   mov.u32         %r18, valid_data; 

10  add.s32         %r3, %r18, %r17; 

11  mov.u32         %r19, local_data; 

12  mad.lo.s32      %r4, %r1, 12, %r19; 

… … 

13  st.shared.f32   [%r4], %f48; 

14  st.shared.f32   [%r4+4], %f49 

15  st.shared.f32   [%r4+8], %f79; 

16  st.shared.f32   [%r3], %f80; 

 

 

 

Listing 5.a.  The assembly code snip-

pets generated by the CUDA compiler 

for the optimized “meanshift” kernel 

1       .extern .shared .align 4 .b8  shared_mem[] 

2       ld.param.s32    %rd22, [param_0]; 

3       ld.param.s32    %rd23, [param_1]; 

4       mov.u64         %rd24,  shared_mem; 

5       add.s64         %rd25, %rd24, %rd23; 

6       add.s64         %rd26, %rd24, %rd22;  

7       mov.u32         %r1, %ntid.x; 

8       cvt.u64.u32     %rd27, %r1; 

9       mov.u32         %r2, %ctaid.x; 

10      mov.u32         %r3, %tid.x; 

11      cvt.u32.u64     %r4, %rd31; 

12      mul.lo.s32      %r5, %r3, 3; 

13      mul.wide.s32    %rd32, %r3, 4; 

14      add.s64         %rd1, %rd25, %rd32; 

15      mul.wide.u32    %rd33, %r5, 4; 

16      add.s64         %rd2, %rd26, %rd33; 

17      add.s32         %r6, %r5, 1; 

18      mul.wide.u32    %rd34, %r6, 4; 

19      add.s64         %rd3, %rd26, %rd34; 

20      add.s32         %r7, %r5, 2; 

21      mul.wide.u32    %rd35, %r7, 4; 

22      add.s64         %rd4, %rd26, %rd35; 

23      add.s64         %rd7, %rd25, 4; 

24      add.s64         %rd8, %rd26, 12; 

        … … 

25      st.shared.f32   [%rd2], %f72; 

26      st.shared.f32   [%rd3], %f73; 

27      st.shared.f32   [%rd4], %f74; 

28      st.shared.f32   [%rd1], %f75; 

 

Listing 5.b.  The assembly code snippets 

generated by the SYCL compiler for the op-

timized “meanshift” kernel 
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optimization of strength reduction (L4, L8, L12) automatically. Listing 4.b shows the 

codes generated by the SYCL compiler after applying the optimization manually. We 

observe that the type conversion instructions (L1, L6, L11) are generated by the SYCL 

compiler to convert 64-bit signed numbers to 64-bit unsigned numbers. These instruc-

tions may be optimized away when 64-bit signed numbers are considered valid memory 

addresses for the load instructions. 

Shared Local Memory Accesses. We find that the SYCL compiler may generate more 

instructions for addressing shared local memory in a kernel. Listing 5.a shows the as-

sembly code snippets generated by the CUDA compiler for the optimized version of 

the “meanshift” kernel. In the optimized version, two single-precision floating-point 

arrays, “local_data” and “valid_data”, are statically allocated in the CUDA shared 

memory space (L1 and L2). The 32-bit base addresses to the arrays are stored in regis-

ters using two “move” instructions (L9 and L11). In contrast, the SYCL local accessors 

allocate device local memory for the two arrays and then pass the underlying pointers 

to the kernel function. The assembly code snippets in Listing 5.b indicates that only a 

single array will be dynamically allocated (L1). The 64-bit base address to this array is 

stored in a register (L4). Then, the load instructions load 32-bit address variables from 

two kernel function parameters for computing the 64-bit base addresses to the two “log-

ical” arrays. 

In the optimized kernel, each thread stores three consecutive elements to “lo-

cal_data” and one element to “valid_data”. In Listing 5.a, the CUDA compiler gener-

ates three “store” instructions with a base register and constant offsets to store the reg-

ister contents to the shared local memory whose addresses are computed by the sum of 

the base register and the offsets. On the other hand, the SYCL compiler generates three 

“store” instructions that use a unique register each for addressing the local array. The 

content of each register needs to be computed with a multiply instruction that multiplies 

two 32-bit numbers to produce a 64-bit result and a 64-bit add instruction. The two 

instructions may be combined to a single multiply-and-add instruction. Comparing the 

two addressing modes shows that the CUDA compiler could generate fewer instruc-

tions with more efficient register allocation for accessing shared local memory. 

Register Usage Per Thread. Occupancy is the ratio of the number of active warps per 

multiprocessor (MP) to the maximum number of possible active warps on NVIDIA 

GPUs. Alternatively, it is the percentage of the hardware’s ability to process warps that 

are active. While higher occupancy does not always equate to higher performance, low 

occupancy always affects the hardware’s ability to hide memory latency, resulting in 

performance degradation. Register availability is an important factor to determine oc-

cupancy. Register storage allows threads to store variables in registers for fast accesses. 

However, the register resource must be shared among all threads resident on a multi-

processor. Registers are allocated to an entire thread block. When each thread block 

uses too many registers, the number of warps that can be resident on a MP is decreased, 

thereby lowering the occupancy of the MP. When the SYCL compiler causes high reg-

ister utilization of a SYCL kernel, programmers may explore the impact of the register 



usage upon the kernel performance by adjusting the maximum number of registers per 

thread manually (e.g., -Xcuda-ptxas -maxrregcount=32) at compile-time. 

4 Related Work 

Previous studies described other compiler optimizations that could improve perfor-

mance portability of SYCL in scientific domains. In [47], the authors find that the 

SYCL compiler did not unroll a nested loop automatically in the epistasis detection 

kernel while the CUDA compiler fully unrolls the loop. Unrolling the loop manually 

with a compiler pragma significantly improves the kernel performance. After evaluat-

ing a set of bioinformatics kernels in SYCL and CUDA, the authors find that the use of 

an out-of-order SYCL queue in a host program and the choices of a math function from 

the SYCL math library in device code can lead to performance gaps on an NVIDIA 

GPU [11]. In addition, evaluating the CUDA and SYCL kernels for all-pairs distance 

calculation shows that the sizes of memory addresses, widths of memory accesses, and 

sub-word accesses contribute to the performance gaps on an NVIDIA GPU [48]. In 

[49], the authors conduct a performance portability study of tensor contraction using 

SYCL. They find that one of the major performance differences compared to the CUDA 

programs arise from differences in register usage. The “__launch_bounds__” primitive 

in CUDA informs the compiler of the launch configuration. The compiler could adjust 

resource usage based on the configuration. In a molecular docking case study [50], 

comparing the performance of the CUDA and SYCL applications shows that 2X higher 

register pressure in SYCL causes 2X lower kernel occupancy on an NVIDIA GPU. In 

[51], the authors show that a newer version of the SYCL compiler reduces the number 

of divergent branches and instructions for atomic operations, but the CUDA compiler 

utilizes fewer registers, reducing the number of memory transfers involving shared 

memory and between global memory and the Level-1 cache. 

5 Conclusion 

SYCL is a cross-platform programming model with an open and evolving specification 

for heterogeneous computing. As a portable programming model, obtaining reasonable 

performance portability is important for both application and compiler developers. In 

this paper, we introduce the benchmarks for DNN operators written in CUDA and 

SYCL, evaluate the performance of the kernels in the benchmarks on the four GPU-

based computing platforms, and describe the causes of the performance gap by analyz-

ing the assembly codes and profiling results from the toolchains. We find that the utili-

zation of the texture cache for read-only data, the optimization of the memory accesses 

with strength reduction, the accesses of shared local memory, and the register usage per 

thread contribute to the performance gap between the SYCL and CUDA kernels on 

NVIDIA GPUs. 

Our future work will evaluate performance portability of the SYCL implementation 

on other vendors’ devices. We hope that the efforts of studying performance portability 
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of SYCL with the development of benchmarks in multiple programming languages will 

promote discussion, interactions, and feedback within the community.  
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