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1. INTRODUCTION

In unattended monitoring scenarios, automated radiation detection algorithms must be able to detect low
signal-to-noise ratio (SNR) anomalies in a potentially dynamic and noisy background and report these
anomalies in a timely fashion. Dynamic and noisy backgrounds complicate the use of simple gross-counting
algorithms because they can lead to either high false positive rates or low sensitivity. Algorithms that use
the entire spectrum have been the most successful in this area; notable examples are the NSCRAD algo-
rithm [1] developed at Pacific Northwest National Laboratory and recently the nonnegative matrix factor-
ization approach [2] developed at Lawrence Berkeley National Laboratory (LBNL). These approaches use
either spectral regions of interest or spectral decomposition to detect threat isotopes in the background.

Systems that are used for these applications are often composed of one or more radiation detectors that
generally have spectroscopic capabilities, one or more computers that reads data from the sensor(s) and
feeds data to a radiation anomaly detection algorithm (which may also perform isotope identification), and
a rechargeable battery system for powering the device while it is deployed. Of these components, the com-
puter(s) responsible for ingesting the radiation data and running it through an anomaly detection algorithm
consumes the vast majority of the available power. As an example, the Bridgeport SiPM-3000 silicon pho-
tomultiplier array and multichannel analyzer designed for operating a scintillation detector typically con-
sumes about 0.3 W of power [3], whereas the NVIDIA Jetson Xavier NX computing platform, which is
aimed at edge computing applications, can consume between 7.5 and 15 W of power [4].

During the past decade, research has demonstrated tremendous success in using advanced machine learn-
ing algorithms for radiation anomaly detection, as was demonstrated in the deep neural network (DNN)
R&D sponsored “Detecting Radiological Threats in Urban Areas” algorithm competition held on the Top-
coder platform [5, 6, 7]. Unfortunately, these advanced algorithms generally come at the cost of increased
computational demand, which in turn comes at the cost of increased energy consumption [8, 9]. This in-
verse relationship between algorithm performance and energy consumption limits the potential capabilities
of these systems and forces their designers to make compromises in their design. By contrast, neuromor-
phic computing enables the implementation of these powerful machine learning methods without the ex-
treme power consumption because units communicate using discrete rather than continuous signals [9, 10].

Neuromorphic technology is a cutting-edge field that promises to significantly revolutionize the ways in
which advanced machine learning algorithms are designed and implemented across broad application
spaces. In particular, neuromorphic computing enables traditionally power-hungry algorithms to be imple-
mented in this new paradigm that significantly reduces their power consumption while reducing the form
factor of the computing hardware. This project is the first formal investigation into the use of neuromor-
phic computing for improving current radiation anomaly detection methods in the proliferation detection
space, rendering this effort both novel and potentially revolutionary in its impact on operations. Aside from
the energy-saving advantages that neuromorphic computing provides, spiking neural networks (SNNs),
which are the primary neuromorphic algorithm architecture, also have certain characteristics that enable
them to be highly effective and efficient at processing spatiotemporal data streams [9, 11]. This capability
may improve the neuromorphic algorithm’s performance relative to traditional algorithm methodologies
that do not inherently process data temporally.

This report details the two-year rapid development, construction, and testing of neuromorphic SNN algo-
rithms running on an embedded radiation detection system consisting of a NaI(Tl) gamma-ray detector
and a combination of commercial-off-the-shelf (COTS) and custom electronics. Accomplishing the project
goals involved leveraging the previous development of the TENNLab neuromorphic computing framework
[12], the Caspian neuromorphic simulator, and the field-programmable gate array (FPGA)-based µCaspian
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neuromorphic hardware platform [13, 14] from Oak Ridge National Laboratory (ORNL) and University of
Tennessee, Knoxville (UTK). The following sections describe the embedded hardware that was developed
for this project and the data generated to train and evaluate algorithms, detail algorithm development, and
evaluate the system with neuromorphic algorithms integrated with hardware in an experimental campaign.
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2. HARDWARE AND SOFTWARE DEVELOPMENT

This section details the hardware design and power consumption of the embedded hardware system devel-
oped in this project, shown in Figure 1. This system was custom-designed to demonstrate the ultra low-
power capabilities of neuromorphic computing for autonomous radiation monitoring. Two custom printed
circuit boards (PCBs) were designed to integrate a low-power FPGA to host the neuromorphic processor,
an embedded multichannel analyzer (MCA), a silicon photomultiplier (SiPM)-based NaI(Tl) scintillation
detector, and an ultralow-power microcontroller. This hybrid design takes advantage of digital commu-
nications and traditional computing architectures when more appropriate while benefiting from the ultra
low-power custom neuromorphic implementation for the primary processing component. The scope of this
project was limited to optimizing the power consumption of the computing subsystem only. The SiPM and
MCA were chosen for their low power use, comparable to the computing subsystem power target, but were
not specifically optimized in this project.

Figure 1. The embedded neuromorphic platform, detector, and casing.

2.1 DETECTOR SIGNAL PROCESSING

This project focused primarily on developing the hardware for the low-power neuromorphic computing
subsystem and leveraged COTS components for the MCA and NaI(Tl) SiPM detector. However, the COTS
components were selected to be suitable for an embedded system and a reasonable power budget. Most
commercial MCAs are designed for communications and power over USB or Ethernet. An early power
analysis showed that both USB and Ethernet required significantly more power than protocols such as a
universal asynchronous receiver and transmitter (UART) or serial peripheral interface (SPI), which are
more commonly found in low-power microcontroller-based designs. The GBS Elektronik GmbH MCA527
nano MCA was chosen for this project because it uses a lower power UART communications interface
and has a smaller footprint than other options. The MCA527 nano uses the same digital signal processing
(DSP) and signal processing firmware as the larger desktop variant but does not include the power supply
electronics; therefore, it allows better integration with the high-efficiency power supply of the host system
and lower overall power consumption.

Following is a description of the signal processing from radiation sensor to neuromorphic processing to
provide background information for the hardware description sections. The NaI(Tl) scintillator emits pho-
tons as a result of incident gamma radiation. The SiPM then induces a photocurrent pulse that is integrated
by a charge-sensitive amplifier (CSA) and then digitized with a sampling rate of 10 MHz.

3



The peak voltage observed in the integrated pulse is proportional to the energy of the incident radiation,
and a spectroscopic filter is used to extract these peaks from the digitized waveform. The peaks are accu-
mulated into a histogram of pulse heights to construct the gamma-ray spectrum observed by the detector.

Each bin of the spectra represents a range of energies determined by a calibration to account for variations
in the detector and the resolution of the histogram. The microcontroller queries the MCA for the current
gamma spectrum, inserts it into a moving window sum, applies a calibration, and encodes the result into
spikes. This spike sequence is then transferred to the input first in, first out (FIFO) of the neuromorphic
coprocessor for inference. After the neuromorphic coprocessor has processed the encoded spike train, the
microcontroller reads output spikes from the FIFO and applies a threshold to the spike rate to detect an
anomaly.

2.2 CUSTOM HARDWARE

The custom hardware consists of two printed circuit boards: (1) a mixed-signal carrier board that integrates
COTS detector components and (2) the “Nuclide” board, which is the general-purpose computing and neu-
romorphic processing system. Figure 2 shows a block diagram of the system. The mixed-signal carrier
board was designed to preprocess the analog signal from the NaI(Tl) SiPM detector and drive the analog-
to-digital converter (ADC) of the digital MCA, which estimates and then communicates the gamma-ray
spectra to the main processing board. A low-power fully differential amplifier (FDA) was developed to
drive unbuffered input of the ADC and incorporates antialiasing and out-of-band filtering to increase the
SNR of the signal of interest before digitization. The carrier board also contains power electronics required
to supply the various voltages for the MCA’s DSP and the SiPM detector from the single cell Li-ion bat-
tery design of system.

The “Nuclide” board utilizes a low-power STM32U5 based on the ARM Cortex-M33 core, a Lattice iCE40
UltraPlus FPGA, lithium-ion battery charger, and high-efficiency power supplies. This board was de-
signed to also support other applications and projects related to neuromorphic computing and has been
instrumented to enable power measurements of the various subsystems. Board-to-board style connec-
tors are available to extend the functionality of the board with any peripheral that has a UART, SPI, or
Inter-Integrated Circuit (I2C) digital interface, or custom interface logic can be used on the FPGA. These
connectors are currently being used for the organic light-emitting diode (OLED) display and a wireless
communications module based on the Nordic Semiconductor nRF52840 transceiver. Figure 3a shows the
printed MCA carrier board, and Figure 3b shows the custom microcontroller unit (MCU) and FPGA board.

An STM32U5 series microcontroller from STMicroelectronics functions as the host for the neuromorphic
coprocessor and has a maximum core clock frequency of 160 MHz with many low-power states and other
power-management features. The microcontroller manages numerous peripherals, including an external
512 MB NAND storage for data, a temperature and humidity sensor, various power supply controls, a mul-
tifunction USB interface, and several board-to-board connectors used for extensions such as a wireless
communications module and display. In the system’s lowest power mode, almost all of these peripherals
are clock gated if they are integrated inside the microcontroller or power gated via switches if they are ex-
ternal.

The previously developed µCaspian neuromorphic core functions as a coprocessor and is implemented on
the low-power Lattice iCE40 FPGA [13, 14]. The microcontroller loads the FPGA image via a SPI. After
configuration, the same interface is used to configure and control the neuromorphic core. The µCaspian
core is a digital event-driven processor operating on spikes occurring in the SNN. Thus, the processor’s
runtime is directly proportional to the number of input spikes and the resulting internal spikes that occur.
Memory regions are only accessed in response to a spike event, which in turn causes information about the
neuron’s properties and synapse routing to be accessed.
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Figure 2. A block diagram illustrating the components of the detection system.

(a) Custom MCA carrier board
with supporting power electronics.

(b) Custom PCB for the MCU and FPGA
with lithium-ion battery power supply.

Figure 3. Custom printed circuit boards developed in this project.
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Recent additions support lower-power operation when integrated with the microcontroller host. Most im-
portantly, clock gating was added, significantly reducing power consumption when the system is not pro-
cessing events. The design primarily achieves energy efficiency by quickly and efficiently evaluating the
SNN, and then clock gating while idle. A hardened SPI core available on the FPGA is used for the SPI
interface instead of programmable logic, saving both resources and power. Finally, an interrupt request sig-
nal and a FIFO buffer were added to allow the core to process all events without waiting and before wak-
ing the microcontroller from its low-power sleep state.

Every 500 ms, the microcontroller queries the MCA for the accumulated spectrum, inserts it into a mov-
ing window sum, applies a calibration, and encodes this calibrated input spectrum into spikes. This spike
sequence is then transferred to the input FIFO of the neuromorphic coprocessor. The microcontroller then
enters a low-power sleep state until the coprocessor finishes processing the events and makes an interrupt
request to wake up the microcontroller. Once awake, the microcontroller reads the output spikes from the
output FIFO and applies a threshold to the spike rate to check for an anomaly.

2.3 SOFTWARE AND FIRMWARE

An extensible software development kit (SDK) was built for developing firmware for the neuromorphic
platforms. The SDK is based on the Zephyr real-time operating system (RTOS) and adds support for this
custom platform. This support includes device drivers, application code, and host computer utilities for
working with the platform. All project software is version controlled using Git and is hosted on ORNL’s
internal Gitlab instances. The SDK is hierarchical and uses a metatool to automatically clone various inter-
nal and external projects into a development workspace. A block diagram of some of the components and
the hierarchical design is illustrated in Figure 4.

Figure 4. A depiction of the extensible software development kit.

To facilitate software development, a Visual Studio Code editor workspace automates the setup and build
process, features a full-featured debugging configuration, and includes a curated list of additional plug-
ins. Documentation is automatically generated from the source code repositories and includes a “getting
started” guide.

The microcontroller firmware is based on the Zephyr1 RTOS and leverages the power management fea-
tures of the operating system whenever possible. An RTOS offers preemptive priority scheduling capabil-
ities required for real-time computing. Moreover, the main advantages are the device driver abstractions

1https://www.zephyrproject.org/

6

https://www.zephyrproject.org/


and application-level interfaces that make software easy to port to different hardware platforms. The power
supply system was designed to have high efficiency, even with very low output current, and is capable of
recharging lithium-ion batteries via USB or solar cells. A full internet protocol (IP) networking stack is
also available via USB-emulated Ethernet. The internal flash of the microcontroller has been partitioned
into several regions for the bootloader, a primary and secondary firmware image, and various nonvolatile
configuration options. A larger 512 MB flash integrated circuit (IC) is used for additional storage and is
not removable, so it meets the security requirements of nuclear facilities. However, an optional configu-
ration allows the storage to be easily accessed via the USB interface, which is similar to that of a typical
USB storage device. Larger objects such as the FPGA images and neuromorphic network configurations
are stored in the higher capacity storage and can be selected at runtime. This storage can also be used to
record data that can be read later for further analysis or archival.

2.4 POWER ANALYSIS

Table 1 shows the average power consumption by each subsystem. The computing subsystem typically op-
erates with nonessential peripherals disabled, resulting in the lowest power consumption. However, during
laboratory testing, it is useful to enable many of the peripherals to simplify data collection and support de-
bugging. Therefore, both power figures are given in the table. Power consumption is largely determined by
the time each component is online; thus, optimizing sleep time for each component is important to reduce
overall power consumption. A timing diagram and the runtime for each component for a typical 500 ms
periodic interval is shown in Figure 5. The majority of this runtime is for communications between the
components, and this time can vary depending on baud or clock rate settings. The total power consump-
tion is largely determined by how long each component can remain in low-power sleep status during each
interval.

Table 1. Power consumption by subsystem and components

Subsystem Components Typical power (maximum power)

Sensing SiPM, CSA 70 mW
Sensing MCA 215 mW
Computing MCU, FPGA 6 mW (37 mW)

Total 291 mW (322 mW)
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Figure 5. A timing diagram of the interaction between the MCA, MCU, and FPGA.

3. TRAINING AND EVALUATION DATA DEVELOPMENT

Comprehensive and realistic labeled radiation datasets are needed in order to develop neuromorphic-capable
radiation anomaly detection algorithms. Like other machine learning algorithms, neuromorphic-capable
spiking neural networks benefit from large datasets that adequately span the statistical domain of the prob-
lem space. Initially, the project used the Top Coder dataset, which has already been developed and peer-
reviewed through the DNN R&D Modeling Urban Search Environments (MUSE) program, and was used
to hold two data competitions: one among government competitors and another held publicly [5, 6, 7].
This same dataset was used initially to train, test, and evaluate the neuromorphic-capable radiation anomaly
detection algorithms.

However, additional data were needed to include a more diverse set of sources and shielding combina-
tions. To this end, a new radiation dataset was created based on Monte Carlo simulations for the ORNL
7000 area. A detailed 3D Monte Carlo radiation transport model was used to generate detector response,
for both background and threat sources, for a detector at several positions along a path near a static source.
The background and threat source simulations were used to generate time-series synthetic datasets simulat-
ing the response to background, and they injected sources to a detector moving past threat sources at vary-
ing detector speeds, distance of closest approach, threat source type, threat source activity, and background
composition. Synthetic datasets generated by detailed simulations are useful for radiation algorithm devel-
opment because the ground truth for both background and threat source responses is well known, making
labeling straightforward. This section details the radiation transport simulations and how they were used to
create time-series datasets for 2 × 4 × 16 in. and 3 × 3 in. NaI(Tl) detectors.

3.1 ORNL 7000 AREA RADIATION TRANSPORT SIMULATIONS

For this project, a radiation transport model was developed for the Shift Monte Carlo code [15] based on
the 7000 area of the ORNL campus. The model geometry is shown in Figure 6, compared with a Google
Earth image of the environment, representing an area of approximately 1,200 × 600 ft. Nine separate vol-
umetric background sources were attributed to the soil, concrete, and asphalt as appropriate in the model,
each with concentrations of 1 Bq/kg for potassium, uranium, and thorium. This methodology enabled the
creation of a realistic background using any concentration of Naturally Occurring Radioactive Material
(NORM) chosen when generating the synthetic data set.
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Figure 6. The 7000 area of the ORNL campus. (top) A Google Earth representation of the area and
(middle) the corresponding model developed for the Shift Monte Carlo code. (bottom) Source locations (in

yellow) and detector path (in orange) for the radiation transport calculations designed to create synthetic
data in the Shift ORNL 7000 area model.
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The threat sources placed in the Shift 7000 area simulations are shown in Table 2 and were located at
standoff distances of 1, 2, 3, 4, and 5 m from the detector path, as shown in the bottom portion of Figure 6.
The detector path traveled down the center of the road (as shown) as it approached and passed the source
at the appropriate standoff distance. Although the end use case scenario for this system is envisioned as be-
ing a static detector–dynamic source system, the static source–dynamic detector scenario is much easier to
simulate with the tools developed in previous programs [6, 16] because the dynamic source scenario would
require many source simulations along the road. This configuration is expensive to compute compared
with one source and one background simulation required for the static source–dynamic detector scenario.

Both threat and background simulations calculated gamma-ray flux (and flux moments) in a 1 m3 vox-
elized mesh along the detector path. Calculated mesh flux moments were then processed into pulse-height
mesh spectra for a specified detector type in a postprocessing step using a methodology described in Ce-
lik et al. [17]. This methodology started with the 2 × 4 × 16 in. detector response function developed in
the TopCoder competition but ended with a 3 × 3 in. detector response function developed for this project
using characterization data acquired in an experimental characterization.

Table 2. Source list for ORNL 7000 area simulations. Source shielding materials included stainless
steel and polymethyl methacrylate.

Isotope Activity (or mass) Shielding
241Am 1 µCi Bare and 1 cm SS
133Ba 1 µCi Bare and 1 cm SS
57Co 1 µCi Bare and 1 cm SS
60Co 1 µCi Bare and 1 cm SS
137Cs 1 µCi Bare and 1 cm SS
177Lu 1 µCi Bare and 8 cm PMMA
WGPu 0.5, 1, 2, 4, 8 kg Bare and 1 cm SS
HEU 1, 2.5, 5, 10, 25 kg Bare and 1 cm SS

3.2 ORNL 7000 AREA SYNTHETIC DATASET GENERATION

Monte Carlo generated background and threat source pulse-height tallies (units of counts per second).
These height tallies were used to generate time-series synthetic datasets that simulate a detector mov-
ing down the road by scaling background and threat source mesh voxel pulse-height tallies based on how
much time the detector spent in each voxel given its speed and using Poisson sampling to generate realistic
random noise. Data were generated in a series of runs, each a single detector passing down the road with
a different set of parameters, including detector speed, detector offset from source, threat source type (in-
cluding background only), threat source SNR, and potassium/uranium/thorium background activities. For
these datasets, potassium/uranium/thorium background activities were informed from data measured at the
Fort Indiantown Gap facility [18].

For a run with a predefined detector offset, detector speed, and threat source type, corresponding Monte
Carlo–generated background and source pulse-height mesh tallies were loaded. Background pulse-height
mesh tallies were scaled by chosen background activity concentrations, and source pulse-height mesh
tallies were scaled by the chosen source activity. Threat source activities, α, were calculated using the
summed threat background pulse-height spectrum at the distance of closest approach, S and B respec-
tively, and the chosen SNR using the following equation:

SNR =
αS

√
αS + B

→ α =
(S · (SNR)2) ± S · SNR

√
4B + SNR2

2S 2 . (1)
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Finally, based on the detector speed and chosen integration time, the time the detector spent in each mesh
voxel along the road was used to scale the pulse-height mesh tally to produce an average gamma-ray spec-
trum (in units of counts) for each voxel along the road. The background and source spectra were then sam-
pled, using Poisson statistics, to generate the random noise a real detector would measure over a short pe-
riod of time. Finally, the background and source spectra were added together to produce the final dataset.
Two example high SNR runs are shown in Figure 7.

Figure 7. Two sample high-SNR runs from the (left) 2 × 4 × 16 in. NaI(Tl) and (right) 3 × 3 NaI(Tl)
detectors.

These generated data were separated into two datasets—a training dataset and a test dataset—to create two
independent datasets to train and evaluate networks. This procedure was performed twice in this project:
once for a 2 × 4 × 16 in. detector response function developed in the TopCoder competition, and once for
a 3 × 3 in. detector response function developed in an experimental characterization campaign using detec-
tors purchased in this project. This project started with the 2 × 4 × 16 in. detector response function, even
though this detector is not used in the final system design, because it was available to use while the sys-
tem with the 3 × 3 in. system was being constructed. Data from the 2 × 4 × 16 in. dataset generally have
higher count rates and less absolute variability in gamma-ray spectra because the detector is larger and has
a higher efficiency. Parameters used in the 2 × 4 × 16 in. and the 3 × 3 in. training and test datasets are
listed in Table 3.

Table 3. Parameters used for 2 × 4 × 16 in. and 3 × 3 in. training and test datasets

Parameter
2 × 4 × 16 in. 3 × 3 in.

Training Testing Training Testing
Number of runs 13,350 13,350 29,400 17,460
Total time (days) 29.5 29.5 42.4 54.4

Source types Table 2 Table 2
SNR Range 0.5–9.0 0.5–9.0 1.0–10.0 1.0–10.0

Detector offsets (m) 1, 3, 5 1, 3, 5 1, 2, 3 1, 3, 4
Detector speeds (m/s) 0.3, 1.4, 2.5 0.3, 1.4, 2.5 0.5, 0.95, 1.4 0.15, 1.1, 2.0
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4. NEURMOPRHIC ALGORITHM DEVELOPMENT

4.1 INTRODUCTION

The objective of the algorithm development is to develop an efficient and effective radiation anomaly de-
tection algorithm that can be used as a trigger (tip and queue system) for activating higher-power/lower-
efficiency algorithms and sensors. Neuromorphic algorithms take inspiration from the human brain and,
more generally, biological neural networks to create artificial neural network (ANN) models with high
computational and energy efficiency. The type of neural network methodology used in neuromorphic sys-
tems is called an SNN, named after the discrete “spiking” behavior of neurons in biological systems. In
an SNN, each neuron is treated as a time-dependent dynamic system, better expressed as an ordinary dif-
ferential equation where the neuron’s response depends not only on the input to the neuron but also on the
previous state of the neuron itself. Many models of spiking neurons exist, but this project focused on the
two most efficient models, the integrate-and-fire (IF) neuron and the leaky integrate-and-fire (LIF) neu-
ron. These two models are indeed highly efficient, and they are the only models supported by the Caspian
neuromorphic hardware architecture.

Training SNNs is notoriously challenging, at least when compared with the simplicity and reliability of
gradient descent via back propagation commonly used for traditional ANNs. Back propagation is not a vi-
able training method for SNNs because spiking neuron models are nondifferentiable. Approximations of
back propagation do exist, but they often do not leverage the temporal feature learning capability of SNNs
because of the stateless nature of back propagation. As such, various other training algorithms have been
developed based on Hebbian learning principles, spike-time dependent plasticity (STDP), and evolution-
ary adaptation. The Evolutionary Optimization of Neuromorphic Systems (EONS) learning methodology
was leveraged because of its demonstrated success in real-world applications [19]. This methodology was
originally created by one of the senior members of this project, Dr. Katie Schuman.

The TENNLab Framework [12], developed by researchers at UTK and ORNL, was used develop, train,
evaluate, and deploy an SNN model for this project. The TENNLab Framework enables researchers to
design and train SNNs using a variety of SNN training algorithms, including EONS. One of TENNLab’s
unique capabilities is that, by design, it enables hardware/software co-design. The SNN models are trained
on accurate hardware simulators of the neuromorphic hardware system being used, with all of the compu-
tational and numerical limitations of the hardware. This strategy ensures that models trained via the frame-
work are deployable on hardware after training without loss of accuracy or reliability caused by differences
in hardware constraints and numerical precision.

4.2 ALGORITHM MOTIVATION

To guide the algorithm development process, the requirements, purpose, and desirable characteristics of
the resulting model were first established. These guiding features listed and described as follows motivate
the design decisions made throughout development.

• High Anomaly Detection Rate: The algorithm must have a high true positive rate to ensure reliabil-
ity and sensitivity in the anomaly detection task.

• Low False Alarm Rate: False alarms (false positives) must be minimized to improve operational
efficiency. In addition, because the algorithm is intended as a trigger for higher-power processes,
false positives reduce the energy efficiency of the overall system.

• Energy Efficiency: As the primary component of the software, the algorithm is largely responsible
for managing the overall energy of the system.
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• Compactness and Sparsity: In order to run on the µCaspian neuromorphic hardware, the SNN
must be quite small. In addition, because µCaspian is an event-driven architecture, activity sparsity
in the network reduces latency and, thus, power consumption.

• Real-Time Detection: The algorithm must be capable of real-time detection to be useful for the
intended operation as a top and queue system and to provide remote operators with anomaly alarms
as soon as they are triggered.

An algorithm characterized by all of these traits is difficult to achieve. Prior work has demonstrated that, in
scenarios characterized by an unknown and dynamic background radiation environment, machine learning–
based approaches can yield significantly higher performance than traditional statistical or physics-based
approaches [20]. Specifically for anomaly detection, deep learning models using unsupervised learning
approaches, such as the autoencoder radiation anomaly detection (ARAD) model, outperform principal
components analysis (PCA)-based models, sequential probability ratio test (SPRT) algorithms, and the
ubiquitous kσ algorithm in both simulated and real-world anomaly detection scenarios [21]. Nevertheless,
machine learning models based on traditional deep learning technology are not without significant disad-
vantages. To operate in real time, the largest of these models often require consumer-grade GPUs, which
are not feasible to deploy for more than a few hours on battery power. Existing hardware specifically de-
signed for running deep learning models at the edge, such as the NVIDIA Jetson Orin nano, consumes
more than 15 W of power when active, again limiting their utility for the desired application of long-term
unattended deployment.

By contrast, neuromorphic computing seeks to develop hardware/software solutions that enable the com-
putational performance of deep learning models while reducing the power to a level feasible for embedded
and low-power edge computing devices. As stated in Section 4.1, neuromorphic SNNs are notoriously
challenging to train effectively. As such, developing, training, and testing the SNN model for radiation
anomaly detection was a significant part of the technical development cycle in this project.

4.3 INITIAL DEVELOPMENT

The first iteration of the SNN model was developed during the first year of the project. This iteration demon-
strated the feasibility of using SNNs for radiation detection tasks using a known and well-understood
dataset for development. This stage of development also set the foundation for the algorithm training and
evaluation pipeline for the rest of the project’s development cycle. A detailed account of the initial devel-
opment of the algorithm model was presented and published in the 2022 International Conference on Neu-
romorphic Systems (ICONS) conference proceedings [22].

4.3.1 Dataset

We used the Urban Radiation Search Dataset, which was developed over the course of several years by
an ORNL, Los Alamos National Laboratory, and LBNL team through the DNN R&D sponsored MUSE
project. This dataset will be referred to as the Topcoder dataset throughout the rest of this report.

The Topcoder dataset is fully synthetic, simulating a vehicle-borne 2 × 4 × 16 in. NaI(Tl) detector moving
through an urban city street. The background radiation is highly dynamic, with materials in the simulated
buildings containing naturally occurring 238U (and daughters), 232Th (and daughters), and 40K in variable
concentrations in line with experimentally validated concentrations [16]. The dataset contains six unique
shielded and bare source configurations placed in various locations in the simulated city blocks. These
sources are highly enriched uranium (HEU), weapons-grade plutonium (WGPu), 131I, 60Co, 99mTc, and
a mixture source containing both HEU and 99mTc. The methods used to generate this dataset are outlined
in detail in prior work [6]. Details on how the dataset was designed and distributed and how it can be ac-
cessed are also described in prior work [7].
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Table 4. Parameter selection for the initial hyperparameter optimization experiment

Parameter name Parameter values
Initial nodes 10, 50, 100
Initial edges 100, 300, 500

Encoding bins 1, 2, 4
Encoding method spike, spikes, temporal, rate

4.3.2 Experimental Design

4.3.2.1 Algorithm Design and Operation

The initial version of the SNN algorithm operated in a stateless manner. The SNN processed each 1 s in-
tegrated gamma-ray spectrum sequentially and produced a binary value as the output: 0 indicating no
anomaly and 1 indicating an anomaly. During each inference, the SNN is presented with a normalized
spectrum containing 128 (initially) energy bins between 0 and 3 MeV, with each input neuron mapping to
a single energy bin. In this case, the spectra are normalized to integral unity. The normalized count data in
each bin are converted into a spike train according to the defined encoding method, and these spike trains
are processed through the network for a defined period of time (50 ms). A spike rate decoder converts the
spike train of the output neuron into a binary value, which is output as described above. After inference
on a single spectrum, the SNN’s state (neuronal activity and propagating speaks) is reset before the next
inference. This workflow is illustrated in Figure 8.

Spectrum

1024 bins

Bin Normalize Encode Run SNN Decode

64 bins

Alarms

Energy
Calibration

Figure 8. Inference workflow for NeuroRad SNN algorithms.

4.3.2.2 Hyperparameter Optimization

Without a precedent on the ideal set of initial design decisions and hyperparameter selections for SNNs on
these types of tasks, a large hyperparameter optimization experiment was necessary. An ORNL-developed
tool called the Data-Efficient Framework for Exploration (Deffe) was leveraged to explore the design space
in coordination with EONS. Because of the many variables to consider, the initial experiment performed
a search across a selection of parameters that strongly influence the SNN’s behavior. These parameters
are shown in Table 4. The “initial nodes” parameter refers to the number of neurons initially generated for
each candidate SNN in the EONS population. The “initial edges” parameter refers to the number of con-
nections (synapses) between neurons in each SNN. The “encoding bins” and “encoding method” parame-
ters determine how input data are encoded into spikes.

4.3.2.3 Fitness Function

EONS optimizes the population of SNNs for a user-defined fitness function. The initial experiment used
the F1-score as the fitness function. The F1-score is shown in Eq. (2), where the variables are defined as
follows. The true positive rate (TPR), also known as recall, measures the ratio of the true positive (TP),
or in this case, the anomalous source encounters that were correctly identified as an anomaly, to the total
number of anomalies (P). The positive predictive value (PPV) measures the ratio of TP to the sum of TP
and false positive (FP). EONS seeks to maximize the F1 score via the optimization process.
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F1 = 2
TPR × PPV
TPR + PPV

(2)

4.3.2.4 Reference Algorithms

In order to benchmark the performance of the optimized SNN, its performance was evaluated against the
performance of two reference algorithms evaluated on the same testing dataset from the Topcoder set.
The two reference algorithms were the ubiquitous kσ algorithm [23] and a full-spectrum-based algorithm
called the spectral anomaly detector (SAD) [24]. A simple statistical anomoly detection algorithm, kσ an-
alyzes the windowed moving average of the background count rate and triggers an alarm when the fore-
ground window count rate increases above k multiples of the background standard deviation, σ. The user
sets the threshold value k, typically based on a receiver operating characteristic (ROC) curve to achieve the
desired balance between false positive and true positive rates. The theory underlying the kσ algorithm is
described in prior work [23]. Additional hyperparameters for the kσ algorithm are the widths of the back-
ground and foreground windows. A hyperparameter random search was performed in this study to opti-
mize these windows for the highest performance, and the threshold k was set at a value that resulted in a
false alarm rate (FAR) equal to that of the final SNN.

The second reference algorithm, SAD, is an algorithm that leverages the full gamma-ray energy spectrum
to perform anomaly detection. The algorithm leverages PCA to determine a set of background spectrum
components that can be combined to reconstruct any given spectrum in inference mode. Features in the
spectrum arising from nonbackground sources cannot be reconstructed using the background feature com-
ponents (SAD components are extracted from background-only data), and thus reconstruction error in-
creases. A threshold can be set by the user, beyond which the algorithm triggers an alarm. Like for kσ, this
threshold was set to match the FAR of the optimized SNN.

4.3.3 Results

Full details of the results are described elsewhere [22]. Following are some notable highlights from the
initial results:

• The SNN achieved a low FAR on the US Department of Energy Urban Search Challenge dataset
of only 0.5 per hour, despite the highly dynamic nature of the background radiation in the dataset.
This FAR is well below the 1 per hour standard outlined in the ANSI N42.34 [25] and ANSI N42.53
standards [26].

• Compared with the baseline kσ algorithm, the SNN achieved a probability of detection (PD) over
10 times higher than kσ when evaluated at the same FAR of 0.5 per hour. Further developments and
optimization in the latter half of 2022 resulted in an additional doubling of the SNN’s TPR relative
to the results published in prior work [22].

• A comparison was also made with a much more complex PCA-based spectral anomaly detection al-
gorithm from the literature. This algorithm tends to perform on par with top-performing algorithms
on this dataset. When evaluated at the same FAR of 0.6 per hour, the SNN achieved a PD about half
that of the PCA-based algorithm, indicating room for further research and development of the SNN
approach.

• The resulting SNN algorithm is small enough to fit on the smallest and lowest-power neuromorphic
µCaspian hardware design.

• The evolved SNN architecture highlighted some interesting characteristics of SNNs when trained
using EONS. Notably, the SNN heavily leverages the input neurons for computation as well as for
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simple data input. This observation is in contrast to typical ANNs, where the input layer is typically
responsible only for transmitting input data to deeper layers. Because EONS optimizes for both per-
formance and computational efficiency, this result was not surprising but highlights the efficiency of
our approach.

• The hyperparameter optimization study demonstrated that rate-based and spikes-based encoding
methods, both with one encoding bin, performed best among all encoding methods. Temporal en-
coding performed the worst and failed to generate any useful networks. A starting node and edge
size of 10 and 500, respectively, yielded the highest performing networks. As such, the model per-
formed optimally with fewer initial neurons and more connections between the neurons.

4.4 SECOND DEVELOPMENT ITERATION

Establishing the workflow and initial design decisions for developing, training, and evaluating SNNs for
radiation detection data allowed for further investigation of additional hyperparameters and evaluation of
the model on more realistic datasets. This section describes this effort and the resulting performance. Ad-
ditional details can be found in a paper that was presented and published at the 2023 ICONS conference
proceedings [27].

4.4.1 7000 Dataset

Although the Topcoder dataset was an ideal starting point for developing an algorithm development and
testing workflow, it did not accurately represent the intended use cases of the NeuroRad detection system.
First, it models a mobile detection system traveling at vehicle speeds up to 13 m/s. The result is a highly
dynamic background, especially when considering the high variation in the potassium/uranium/thorium
concentrations of the simulated buildings. The intended use of this system is for static or mobile deploy-
ment at walking speeds. Training a model for such a use case on dynamic data will likely result in an algo-
rithm with reduced sensitivity owing to the higher noise floor, which limits minimum detectable activity.
Second, a more expansive set of anomaly source terms was desired to evaluate performance at different
energy ranges. For these reasons, the dataset described in Section 3 was created based on prior work at
ORNL. For this second iteration of development, the 7000 dataset used to train the models still used the
original 2 × 4 × 16 in. NaI(Tl) detector. Future experiments incorporated a new detector model for the 3 ×
3 in. detector used in the final system.

4.4.2 Spiking Neural Network Features Developments

A new set of features to modify the behavior and capabilities of the SNN and methods of preprocessing the
input data were developed. These features are described in detail in prior work [27], but are summarized as
follows:

• Temporality: In the first iteration of the model, the SNN was essentially stateless between each in-
ference. As such, it could not leverage the temporal pattern of a passing source, relying solely on
spectral features for each spectrum, independent of features in past spectra. The team hypothesized
that, by allowing the network to maintain its state between each inference, it could learn to leverage
both the spectral and temporal features of an anomaly, thus improving performance. This feature
was thus implemented with a simple way to enable/disable it for comparison purposes.

• Spike Rate Thresholding: Rather than training the model to directly output a binary value indi-
cating the anomaly, the model was instead trained to output a high spike rate in the presence of an
anomaly and a low spike rate otherwise. This strategy enables the user to set an alarm threshold on
the spike rate, giving them the ability to tune the ratio between TPR and FAR to meet their specific
use case requirements. This feature resulted in the need to redefine the fitness function, which is de-
scribed in Section 4.4.3.
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Table 5. Parameter selection for the second hyperparameter optimization experiment performed

Parameter name Parameter values
Temporal True, false

Leak True, false
Energy binning scheme and count linear32, linear64, sqrt32, sqrt64, resnorm32, resnorm64, ROI

• Reduced Spectral Granularity: For a small detector, such as the one used in this project’s hard-
ware, 128 bins may result in a noisy spectrum. Reducing the number of energy bins would increase
the SNR at the expense of reduced peak resolution. To test the effect of different numbers of bins, a
new energy bin count hyperparameter was created.

• Nonlinear Energy Binning Schemes: Because of the nonlinearity of the detector’s energy resolu-
tion with respect to energy, a variety of energy binning schemes—including simple linear binning
(linear),

√
E binning (sqrt), and resolution normalized binning (resnorm)—were incorporated.

• Region of Interest (ROI) Binning: An additional binning scheme uses energy ROIs developed us-
ing the Censored Energy Window algorithm [28]. This algorithm develops a set of energy ROIs,
which may overlap the maximized SNR for a predefined set of sources.

4.4.3 Fitness Function

The spike rate thresholding features necessitated the development of a new fitness function because the
SNN no longer output an anomaly detection directly. The new fitness function is based on the ROC curve.
After each step in the training procedure, the resulting networks are processed through the entire validation
dataset, and a ROC curve is constructed by calculating TPR and FAR across thresholds. From this ROC
curve, the TPR at an operationally relevant FAR of 1 per hour, called TPR1, is extracted. One might con-
sider using the TPR1 directly as the fitness function; however, because the SNNs initially have FAR values
much greater than 1 per hour, TPR1 = 0 and any improvement in the value is left to random chance. To
avoid this issue, the F1 score was calculated using the network’s output spike decoder, just as was done
for the initial experiments, and combined with TPR1 extracted from the ROC curve. The resulting fitness
function is shown in Eq. 3.

F1 + TPR1 (3)

Initially, the F1 score dominated the fitness function, but eventually, the SNN’s FAR increases above 1 and
TPR1 begins to dominate.

4.4.4 Hyperparameter Optimization

With new features implemented, a hyperparameter optimization study was necessary to quantitatively eval-
uate their performance. Table 5 shows the investigated parameters and their values. The parameters in Ta-
ble 4 were set to the optimal values determined in prior experiments.

4.4.5 Results

The results of this study are outlined in detail in published work [27]; however, a summary of these results
is listed here:

• Temporality increased detection performance by 55%, indicating that the networks could leverage
temporal information to better detect sources. This significant performance improvement highlighted
the importance of leveraging the anomaly’s full spatiotemporal signature.
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• Leakage had little to no effect on the performance of this application. This good news means that
leakage hardware does not need to be implemented on the neuromorphic hardware design, resulting
in better computational and energy efficiency. The linear32 binning scheme had the lowest perfor-
mance across binning schemes.

• The sqrt binning scheme, which nonlinearly scaled bin width as a function of energy, yielded the
highest performance across all binning schemes. Additionally, using 32 bins in the spectrum as op-
posed to 64 did not decrease performance. Fewer bins decreases the size of the model and thus de-
creases inference latency and increases computational and power efficiency.

• The ROI input format yielded performance slightly higher than the sqrt method, however, the ROI
method has its own limitations that must be considered. Notably, ROIs are only optimized for a spe-
cific set of source terms; thus, an algorithm based on a fixed set of ROIs risks transferability limita-
tions to new sources on which the ROIs were not trained.

• Despite closing the gap between the SNN and the reference SAD algorithm, the best-performing
SNN’s TPR was about 20% lower than that of SAD, indicating an opportunity for additional opti-
mization.

4.5 THIRD DEVELOPMENT ITERATION
The third iteration of development did not incorporate any major new features. Instead, it focused on per-
forming a larger training operation comprising static hyperparameter configurations based on the findings
of the first two development iterations. Networks with ROI binning schemes were trained in addition to
networks with sqrt32 binning. Modifications to the data and fitness function are listed here:

• New detector model: The detector in the datasets for both the first and second development iter-
ation set measured 2 × 4 × 16 in., far larger than the 3 × 3 in. detector selected for the NeuroRad
system, and with a different geometry. The result is a significant difference in detector response that
leads to poor transferability of the algorithm to the real world. As such, a new detector response
function was used for the NeuroRad detection systems to generate a new dataset based on the 7000
model described in Section 3.

• Dataset size and characteristics: The dataset was expanded to include more runs for each source
term and background potassium/uranium/thorium configuration. In addition, the range of SNR val-
ues was expanded to incorporate more source encounters with low-integral SNR in an attempt to
improve the model’s low SNR performance.

• Fitness function: The fitness function was slightly modified, now being F1+2×TPR1. This function
more heavily weights the TPR1 metric in the fitness evaluation, which is more operationally relevant
than F1.

4.6 RESULTS
The third iteration of development resulted in two SNNs that significantly outperformed both the reference
kσ and SAD algorithms on the testing dataset: one with ROI binning and the other with sqrt32 binning.
All of the resulting networks from the EONS training run were evaluated on the testing set, and the top-10
performing models for each binning scheme were saved. Interestingly, the networks that performed best in
training did not always perform best in testing. One of the benefits of the EONS algorithm is that testing
the many candidate models enables evaluation of the ones that transfer the best to new scenarios. The best-
performing models on the test set were typically in the top 20% of models on the training set. The ROC
curves for the best-performing SNN with the ROI binning scheme and with the sqrt32 binning scheme are
plotted in Figure 9. Although the ROI model has the highest performance among all networks, the sqrt32
model may be a better choice in situations where the source of interest is not covered in the ROIs. In both
cases, the ROC curves for the reference kσ and SAD algorithms are shown for comparison.
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(a) SNN with ROI binning scheme. (b) SNN with sqrt32 binning scheme.

Figure 9. ROC curves for best performing SNN models on the 7000 dataset (third development
iteration) with the 3 × 3 in. NaI(Tl) detector model, compared with the reference kσ and SAD

algorithms.

5. EXPERIMENTAL CAMPAIGN AND RESULTS

To quantify overall system performance, a data collection campaign was conducted at ORNL’s Technical
Testing and Analysis Center (TTAC) facility from February 6–7, 2024. The purpose of this campaign was
to understand the system performance when the top-performing neuromorphic algorithms were run on the
new hardware outside of benchtop testing and virtual testbeds. This campaign allowed the project to col-
lect valuable data, including new backgrounds and source configurations not available in the lab. It also
allowed for an evaluation of the hardware performance.

TTAC is accredited by the National Voluntary Laboratory Accreditation Program to the ANSI/IEEE N42
Homeland Security Standards in the radiological, mechanical, environmental, and electromagnetic areas,
as well as to the radiation protection instrumentation standards. The facilities used for this experiment in-
cluded radiation sources and a track capable of moving sources past the (stationary) detector ranging from
0.5–2 m/s (or about 1–4.5 mph). The detector was placed on a table at a predetermined distance of closest
approach to the track, and data were recorded. A photograph of the experimental setup is shown in Fig-
ure 10. The facility has lead-lined curtains to the left and right of the ends of the track to shield the source
between passes and ensure the detector has time to return to background levels between passes.

The detector system was connected to a laptop for real-time data analysis to ensure the system was work-
ing as intended throughout the campaign. The system ran on battery power while collecting the overnight
background, ensuring that this functionality worked as intended. Throughout the testing campaign, calibra-
tion tests were performed and background spectra were collected to ensure that the energy calibration was
stable and that no additional sources were present in the data. In addition, the background data were used
to set algorithm thresholds to a false alarm rate of 1 per hour.

For this experimental campaign, industrial radioactive sources were chosen that spanned from low energies
(59.6 KeV 241Am) to high energies (173 keV and 1,333 keV 60Co) and in between (661 keV 137Cs). In ad-
dition, special nuclear materials (HEU and WGPu) were used. All sources were bare (no shielding) except
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Figure 10. Experimental setup. (top left) The track used in the experiment with yellow lead-lined
curtains. The detector (black cylinder) is located on a table 1-meter from the track. (right) Another view

down the track. The HEU spherical source is loaded on the track. (bottom left) The detector connected to a
laptop for real-time data analysis.

for the WGPu source, which used an approximately 5 mm thick copper shield to reduce signal from 241Am
buildup. The sources and experiment parameters are shown in Table 6. Before collecting dynamic data,
static long-dwell measurements were collected with each of the sources except for 152Eu at 1 m. These
data were used to create measured source templates for later injection studies and to predict SNR for vari-
ous offsets in the campaign.

Table 6. Source list for TTAC experiments

Isotope Activity (µCi) Shielding
241Am 36.0 Bare
137Cs 91.8 Bare
60Co 40.0 Bare
152Eu 39.2 Bare
HEU 2,950.0 Bare

WGPu 210,951.3 Copper shielding

Experiments were performed by moving each source past the detector system at various speeds (0.5, 1.0,
and 2.0 m/s) and source–detector standoffs (1, 2, and 3 m) at the point of closest approach. For each source/speed/standoff,
10 source passes were completed to generate statistics for detector system performance characterization.
The number of parameters (speed, offset, standoff, and number of passes) were chosen to complete the ex-
periments in 2 days. Table 7 lists all of the data collected during the TTAC campaign.

Table 7. Source list for TTAC experiments

Run # Source Source Standoff (m) # Repetitions
Speed (m/s)

1 Background — — 1
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2 Calibration — — 1
3 Calibration — — 1
4 137Cs 0.5 1 10
5 137Cs 1.0 1 10
6 137Cs 2.0 1 10
7 241Am 0.5 1 10
8 Background - - 10
9 241Am 1.0 1 10

10 241Am 2.0 1 10
11 60Co 0.5 1 10
12 60Co 1.0 1 10
13 60Co 2.0 1 10
14 152Eu 0.5 1 10
15 152Eu 1.0 1 10
16 152Eu 2.0 1 10
17 WGPu 0.5 1 10
18 WGPu 1.0 1 10
19 WGPu 2.0 1 10
20 HEU 0.5 1 10
21 HEU 1.0 1 10
22 HEU 2.0 1 10
23 HEU 0.5 2 10
24 HEU 1.0 2 10
25 HEU 2.0 2 10
26 WGPu 0.5 2 10
27 WGPu 1.0 2 10
28 WGPu 2.0 2 10
29 152Eu 0.5 2 10
30 152Eu 1.0 2 10
31 152Eu 2.0 2 10
32 60Co 0.5 2 10
33 60Co 1.0 2 10
34 60Co 2.0 2 10
35 241Am 0.5 2 10
36 241Am 1.0 2 10
37 241Am 2.0 2 10
38 137Cs 0.5 2 10
39 137Cs 1.0 2 10
40 137Cs 2.0 2 10
41 Background — — 1
42 Calibration — — 1
43 137Cs 0.5 3 10
44 137Cs 1.0 3 10
45 137Cs 2.0 3 10
46 241Am 0.5 3 10
47 241Am 1.0 3 10
48 241Am 2.0 3 10
49 60Co 0.5 3 10

21



50 60Co 1.0 3 10
51 60Co 2.0 3 10
52 152Eu 0.5 3 10
53 152Eu 1.0 3 10
54 152Eu 2.0 3 10
55 WGPu 0.5 3 10
56 WGPu 1.0 3 10
57 WGPu 2.0 3 10
58 HEU 0.5 3 10
59 HEU 1.0 3 10
60 HEU 2.0 3 10

The measured count rate as a function of time for all source measurements for 1 m/s source speed is shown
in Figure 11. As the source offset increases, the signal from the source becomes weaker and harder to de-
tect. Most sources were easily detected for slow speeds and close distances of approach. As the sources in-
creased in speed and distance of the closest approach, the detection probability decreased. Figure 12 shows
results for all 241Am measurements. The blue shaded areas indicate when the network spike count rate ex-
ceeded the detection threshold and an alarm was triggered. The alarm threshold was set to a false alarm
rate of 1 per hour, using background collected at TTAC.

Figure 11. Measured total count rates for each source for variable standoff distances for the source
moving at 1 m/s. For the 137Cs subplot, the dwell time at the end of the track was increased after the 1 m

standoff 137Cs measurements.

The probability of detection for each parameter set was calculated by counting the number of alarms and
dividing by the number of source encounters. Figure 13 shows algorithm results across all measured sources,
speeds, and standoffs for the top-performing network (network-242). This network performed well for
241Am, 60Co, and 137Cs but did not perform well for 152Eu, HEU, or WGPu. This result was surprising
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Figure 12. All data with alarms for 241Am. The source–detector standoff increases from left to right, and
the source speed increases from top to bottom.

because this network performed well in Monte Carlo–generated training and testing data. The next section
discusses an investigation into the cause of this poor performance.

Figure 13. Algorithm results for the top performing network on the TTAC data. The maximum
number of defections for each source/speed/standoff combination is 10.

The first major success of this campaign was demonstrating that the hardware worked as expected. No is-
sues arose while running on battery power, and the data are high quality. The system collected overnight
backgrounds on the battery without any data loss. The detector energy calibration of the system was sta-
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ble and did not change during the measurement campaign. Although the algorithms performed well for
the industrial sources, this campaign also revealed some discrepancies between how the SNN algorithms
performed in the lab and how they performed on synthetic data used in training. Understanding why these
discrepancies occurred will inform how we train these algorithms in the future.
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6. TTAC CAMPAIGN DISCUSSION

After the TTAC campaign, an investigation was conducted to better understand algorithm results. Dur-
ing the training and testing on synthetic data, the SNN algorithms performed well and outperformed other
anomaly detection algorithms such as kσ, SAD, and SPRT. One possible reason for the discrepancy be-
tween performance on synthetic data and measured data at TTAC is systematic differences in the data—
both in the background and threat source responses. To understand whether these differences were a factor,
this section compares measured and simulated background responses and studies algorithm performance
when experimental and simulated response functions are mixed.

6.1 BACKGROUND RESPONSE STUDY

If the background response measured at TTAC is significantly different than the synthetic background used
to train the SNN algorithms, then performance could be degraded. To better understand this issue, the
background at TTAC was compared with the average Monte Carlo–generated backgrounds used in train-
ing and testing (Figure 14). Discrepancies in the number of counts from 1,460 keV (40K) and 2,614 keV
gamma-ray peaks(208Tl—daughter from 232Th decay) are to be expected because concentrations of potas-
sium, uranium, and thorium vary in the environment and the Monte Carlo dataset was not generated for
this specific facility. Potassium, uranium, and thorium were varied in the Monte Carlo test and training
data to account for different environments, and Figure 14 represents only the average background in the
testing set.

The spectral shape at low energies in the TTAC is significantly different from Monte Carlo backgrounds.
This difference is likely owing to two main factors:

1. The low-energy scattering is much higher in the Monte Carlo simulations than the data measured at
TTAC.

2. The low-energy cutoff is different in the detector system than in the Monte Carlo simulation.

Therefore, the training and testing data did not have enough variation at low energies. This result is impor-
tant to the spectral encoding scheme, where the bounds of the incoming spike rate frequency are set to the
expected minimum and maximum variation in each spectral energy bin. The reasons why the low-energy
scattering is so much larger in the Monte Carlo simulations are under investigation, but if real-world back-
grounds are included in the training dataset, then the effect of this systematic difference can be minimized.

To determine whether the difference in backgrounds has a measurable effect on algorithm performance,
the long-dwell source data measured at TTAC was injected into the Monte Carlo backgrounds, and the
SNN algorithm was run over the results. Long-dwell backgrounds were subtracted from the long-dwell
static source measurements at TTAC to create background-subtracted source templates. These source tem-
plates were then scaled and Poisson sampled using a simple 1/r2 scaling based on source standoff and speed
to create new datasets for algorithm evaluation. The 152Eu source templates were not created because a
long-dwell static source measurement for this source was not taken. A new algorithm threshold was pro-
grammatically determined using the Monte Carlo backgrounds so that the false alarm rate was 1 per hour,
the same as used in the TTAC experiments. Algorithm results are shown in Figure 15. The results show
similar performance to the TTAC experiments, although a bit improved for 241Am and 137Cs, and a high
probability of detection for the industrial sources. The poor performance for HEU and WGPu continued.
This investigation indicates that, although the difference in background does affect algorithm performance,
it is not the primary culprit for poor performance.
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Figure 14. Comparison of various backgrounds: the average background in the Monte Carlo generated
testing set used to evaluate neural network performance, the background measured at TTAC, and a
dynamic background dataset collected via driving around the Knoxville, Tennessee, area. (left) The

time-normalized count rate for each background. (right) Each spectrum normalized by the total number of
counts.

Figure 15. Algorithm results for the top performing network on TTAC source templates injected into
virtual testbed backgrounds. The maximum number of defections for each source/speed/standoff
combination is 10. The 152Eu source templates were not created because a long-dwell static source

measurement was not taken, so results for this isotope are absent.

6.2 THREAT SOURCE RESPONSE STUDY

Next, the team investigated whether the source definitions used in the synthetic data were significantly dif-
ferent from the sources measured in the TTAC campaign and whether this difference affects algorithm per-
formance. The Monte Carlo–generated source’s tallies are compared with long-dwell TTAC source spec-
tra in Figure 16. At a high level, the measured TTAC and the Monte Carlo source spectra are similar, but
some differences exist. The measured data seem to contain a slight energy calibration error at low energies,
as shown by the 241Am data. Furthermore, as indicated by the background comparison, the Monte Carlo
data do not accurately reflect a low-energy cutoff in place in the measured data. The HEU data contain the
largest source of discrepancy, which is likely due to differences in source geometry and composition from
simulations.

A new dataset was generated by injecting Monte Carlo source spectra into measured TTAC backgrounds.
The top-performing SNN algorithm processed the results, using the same threshold calculated for the
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Figure 16. Comparison of the Monte Carlo generated source mesh tallies and measured long dwell
source spectra measured at TTAC. Both spectra are scaled.

TTAC measurements (the background is the same in both) to generate the probability of detection results
shown in Figure 17. The results exhibit improved performance over the TTAC experiments, with a high
probability of detection for the industrial sources and WGPu, but still poor performance for HEU. This ex-
periment indicates that the difference in source profiles is the primary driver of the discrepancy, although
the missing detections in HEU are still puzzling.

Figure 17. Algorithm results for the top performing network on TTAC source templates injected into
virtual testbed backgrounds. The maximum number of defections for each source/speed/standoff
combination is 10. The 152Eu source templates were not created because a long-dwell static source

measurement was not taken, so results for this isotope are absent.

6.3 DISCUSSION

This study indicates that the systematically different background at TTAC degraded algorithm performance
but was not the primary cause of the poor performance for HEU and WGPu. Differences in the source re-
sponses between testing and training seem to have a larger effect, especially for WGPu. With all of the
various source geometry and shielding configurations, the exact source response is impossible to predict
for an unknown source. However, more source geometry and shielding configurations can be included to
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span the response space as much as possible, with the hope that this change will be enough to improve al-
gorithm performance. The reason why HEU performance was so poor even when using synthetic source
responses remains unknown. This issue will be investigated in future work.
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