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EXECUTIVE SUMMARY 

Visual inspections by US Customs and Border Protection agriculture specialists have identified 
approximately 20,000 regulated, quarantined pests each year in agricultural products entering the United 
States. Most of these pests identified in the Agriculture Quarantine and Inspection (AQI) program are 
insects. 

Many pathogens are difficult to detect in agricultural products, particularly in the early stages of infection 
on live plants. New technologies can help to detect plant pathogens and the diseases that they cause. This 
technology assessment was performed for the US Department of Homeland Security Science and 
Technology Directorate (DHS S&T) through the Food, Agriculture, and Veterinary Defense (FAV-D) 
program to identify emerging technologies that could address this hard problem. These emerging 
technologies differ in their diagnostic sensitivities and specificities, as well as in their measurement time 
and training requirements. New instruments that detect volatile organic compounds characteristic of plant 
disease or pathogens could provide a less invasive inspection method. Dogs, which can successfully 
detect many concealed agricultural products, have also been trained to detect some plant pests and 
pathogens. Simple immunological tests offer sensitive and specific detection of many pathogens at the 
point of use. Advanced imaging methods that use AI to sort fruits and vegetables and recognize anomalies 
at high speeds could be used in cooperation with exporters to improve food quality and reduce pests at the 
point of origin. Advances in nucleic acid–based detection methods that have become gold standards for 
confirmatory diagnostics are now making those methods available for faster, point-of-use detection. 
These new methods should be developed in the context of USDA APHIS AQI operational requirements, 
which apply risk-based sampling protocols to protect agriculture, natural resources, and export market 
access while facilitating commerce and passenger transit. 
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1. INTRODUCTION 

Plant pests and diseases reduce the global yield of major crops by more than 20% [1]. Losses may 
increase due to the spread of plant pathogens caused by trade, movement of people and commodities, and 
domestic and global threats, including climate change [2-5]. The increasing frequency of plant disease 
pandemics illustrates this risk [6]. Furthermore, the increased volume of fruits, vegetables, and nuts 
imported into the United States raises the likelihood of plant pests entering the United States and 
spreading to economically significant domestic crops [7-9]. For example, citrus canker was introduced in 
Florida and was eradicated several times in the 20th century before the current epidemic of Xanthomonas 
axonopodis pv. citri emerged in the early 1990s and spread so widely as to make eradication impossible 
[10]. The Karnal bunt fungal disease (Tilletia indica) was probably introduced to the United States on 
imported wheat in the 1980s before spreading to wheat fields in the Southwest in the 1990s [11]. The use 
of unregulated antifungal agents to control plant disease in some countries increases the risk of importing 
antimicrobial-resistant, generalist pathogens to the United States, where they could cause environmentally 
transmitted disease [12; 13]. Preventing the spread of plant pests and diseases is a priority for the 185 
parties that have signed the International Plant Protection Convention [14]. 
 
Plant pests are defined in statute to include a broad range of insects, microorganisms, protists, and 
parasitic plants that can injure, damage, or cause disease in plants or plant products (Appendix B). In 
practice, pests may be understood to mean invasive insects and larvae that are readily detected due to their 
size, colors, and movement. However, this assessment effort focuses on the detection of pathogens in 
phytosanitary inspections that can cause serious plant diseases, an area that has received less attention. 
Specifically, this work assessed technology with the potential to detect regulated and quarantined or novel 
plant pathogens and the diseases that they cause in imported agricultural products that are relevant to the 
US Department of Homeland Security (DHS) mission to protect against cross-border threats. 
 
To prevent the importation and spread of plant pests, advanced technology is required to rapidly detect 
plant pathogens and their vectors. Current methods, which rely on manual inspections of samples from 
agricultural shipments, may be inadequate to detect emerging diseases [9]. Most plant pathogen detection 
methods were developed to diagnose diseases on agricultural plants, focusing particularly on leaves [15]. 
Therefore, detection methods for pathogens that are transmitted on agricultural products have been 
developed mainly to promote food safety or consumer acceptance. The diverse nature of plant pathogens 
complicates detection, but advances in plant pathology, spectroscopic instrumentation, imaging, and AI 
could foster technology development to expedite inspections; detect high-risk, emerging pathogens; 
facilitate identification; and reduce costs. A National Academies of Sciences, Engineering, and Medicine 
report identified technology for the “early and rapid detection and prevention of plant and animal 
diseases” as a major agricultural research goal for the next decade [16]. This technology assessment 
identifies opportunities to develop and deploy advanced plant pest detection systems that could address 
cross-border threats without impeding trade. 
 

2. BACKGROUND 

Phytosanitary regulations in the United States are enforced by several federal and state organizations. The 
US Department of Agriculture’s (USDA’s) Animal and Plant Health Inspection Service (APHIS) Plant 
Protection and Quarantine (PPQ) program implements phytosanitary standards under the International 
Plant Protection Convention that protect US agriculture and natural resources from invasive pests. 
Domestic phytosanitary responsibilities can be delegated to state-managed programs [17]. PPQ currently 
regulates 6,919 quarantined pests under the Plant Protection Act [18]. However, the Homeland Security 
Act of 2002 (Public Law 107-296) transferred most physical agricultural inspection functions performed 
upon entry to the US from USDA to the US Department of Homeland Security’s (DHS) Customs and 
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Border Protection (CBP) [19; 20]. APHIS/PPQ and CBP collaborate to inspect agricultural imports 
through the Agricultural Quarantine and Inspection (AQI) program and enforce regulations that protect 
against foreign pests and diseases [9]. APHIS/PPQ performs biosurveillance, develops pest risk 
assessments, and establishes quarantines. CBP inspects most agricultural product imports to detect pests 
or contraband. If an APHIS/PPQ identifier confirms an actionable pest, then CBP issues an Emergency 
Action Notification (EAN) to alert trade entities of non-compliance. A joint strategic plan outlines 
priorities for both agencies, including applying risk-based methods to efficiently use inspection resources 
to identify actionable pests while expediting trade and passenger movement [21]. In FY23, CBP 
intercepted 38,173 quarantine-significant pests among 882,387 agricultural cargo inspections [22]. In 
addition to performing agricultural inspections, CBP enforces regulations on customs duty, contraband 
items (including drugs, weapons, and currency), biological threats, and human smuggling while 
facilitating cross-border trade. 
 
Take the following example to contextualize the international flow of commerce: on a daily basis in fiscal 
year 2022, approximately 869,000 passengers and pedestrians and over 91,000 truck, rail, and sea 
containers carrying goods worth approximately $9.2 billion entered the United States through 328 US 
land, sea, and air ports of entry (POEs) [23]. The United States imported agricultural products worth more 
than $180 billion in 2023 (USDA GATS). The largest agricultural exporters to the United States include 
Mexico, Canada, Europe, South America, Latin America, and East Asia. CBP enforces cross-border 
regulations at US POEs for imported agricultural products. Enforcement locations include the major land 
border district in Laredo, land borders in Nogales and Otay Mesa, and airports and seaports in New York, 
Long Beach, Philadelphia, Wilmington, Houston, Miami, and Laredo [24]. Each POE receives a different 
mixture of agriculture products and consequently pests, which can vary seasonally. Cut flower imports are 
one example of the dynamic operating environment in which efficient and accurate inspection of 
agricultural products is required (Figure 1). PortMiami imports the majority of cut flowers into the United 
States. More than 1.3 billion flowers were imported to the US in 2022 for Mother’s Day, and 1,514 
significant pest interceptions were completed [25]. According to data from DAT Freight & Analytics, 
during the first week of February 2022, the load volume for refrigerated trucks—the type of truck that 
carries flowers—increased 77% compared to the week before. In the six weeks leading up to February 
14th, around 500 truckloads of roses leave Miami every day.  
 

  

Figure 1. Cut flower inspections for pests. (Left) Flowers inspected at the Miami Seaport. Credit: D. Graham 
(ORNL). (Right) CBP Agricultural Specialists inspecting cut flowers at Dulles airport. Credit: Anthony Guas (CBP). 
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Commercial shipments arriving at POEs are usually preceded by documentation, which CBP uses to plan 
agricultural inspections based on background information and APHIS guidance. For example, the Border 
Cargo Release Program, the National Agricultural Release Program (NARP), and its risk-based sampling 
(RBS) program successor provide dynamic inspection criteria for specific agricultural products. NARP, 
introduced in 2007, identifies low-risk commodities imported from Mexico that are inspected at a reduced 
rate. The National Cut Flower Release Program reduces inspections of certain high-volume, low-risk 
flower imports. If shipments are not automatically released, they may be inspected by CBP Agriculture 
Specialists to screen for pests. At sea ports, ISO steel shipping containers 40 ft in length may be subject to 
tailgate inspections portside or complete offloading and examination at a cargo warehouse. Ports are 
noisy, high-traffic areas with varying temperature, humidity, and precipitation and limited access to 
power or electronic communications. At air cargo facilities, perishable products may be unloaded in 
refrigerated warehouses where produce is staged for inspection. Finally, at land borders, trailers may be 
directed to a warehouse for unloading and inspection, and rail cars can be inspected at depots. In addition 
to performing agricultural inspections for pests, CBP also inspects shipments for contraband, often 
assisted by x-ray scanning technology or canines trained to detect concealed drugs or explosives. 
 
Phytosanitary inspections have several objectives. First, they verify that the cargo is correctly 
documented. Second, they screen for regulated pests using plans similar to the acceptance sampling 
techniques developed for product quality control [26], whereby a statistically determined selection of 
products are inspected to infer the quality of the entire batch. Third, APHIS/PPQ can use samples and 
records to identify new and emerging pests as part of an ongoing biosurveillance initiative. This data may 
inform future regulations or changes in inspection frequency. 
 
When cargo is opened for inspection, Agriculture Specialists use their training and experience to look for 
live pests, including evidence of plant disease. This visual inspection can be aided by hand magnifier 
lenses or loupes. If insect pests are detected, then they are collected using forceps or a fine paint brush 
and either transferred to a vial filled with alcohol or frozen, if insect colors must be preserved for 
identification by APHIS/PPQ identifiers [27]. This is a presumptive pest identification [28]. If these 
insects are common, non-actionable, and subject to the limited Cargo Release Authority granted by 
USDA to experienced CBP Agriculture Specialists, then the cargo may be directly released. Otherwise, 
the vials are transported to a USDA facility, where entomologists will examine them and determine 
whether the pest is quarantine-significant and actionable (confirmatory identification). At some POEs that 
are distant from USDA facilities, pests may be photographed, and the image electronically transferred to 
USDA, instead. The World Trade Bridge POE has photomicroscopes with a digital imaging capability to 
document pests (Figure 2). Digital images may be sent to USDA entomologists for pest identification, 
particularly from sites distant from USDA facilities or outside normal operating hours. In FY22, PPQ 
National Specialists performed 77% of identifications based on digital images [29]. 
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Figure 2. Microscope and stored digital image of an insect from the World Trade Bridge, Laredo, TX. Credit: 

D. Graham (ORNL). 

Pests are categorized as non-actionable (i.e., non-reportable or reportable) or actionable. If no pests are 
identified or submissions are determined to be non-actionable, then cargo is conditionally released from 
the port, warehouse, or import lot. Alternatively, when an actionable violation is detected due to a 
prohibited pest, an EAN is generated by CBP, and the cargo can be re-exported, destroyed, or directed to 
a licensed fumigation facility for treatment. 
 
During FY23, 87,519 pest interceptions were submitted to USDA, and 38,173 (44%) were determined to 
be quarantine significant. CBP issued 18,574 EANs for pests in FY23, along with 15,414 EANs for other 
agricultural products that did not meet entry requirements [30]. Between the years of 1984 and 2000, the 
majority of pests intercepted by USDA were insects, and 13.1% were plant pathogens [31]. The list of 
6,919 PPQ-regulated pests currently includes 582 fungi, 27 viruses, 26 bacteria, and 18 oomycetes; most 
of the remaining pests are insects [18]. There is no prescribed time limit for inspections, although 
importers, brokers, and CBP staff all share a goal of expediting trade and releasing cleared shipments as 
soon as possible. 
 
US regulations prohibit international passengers arriving at air, sea, or land ports of entry from bringing 
many agricultural products into the US to prevent the introduction of pests [31]. In contrast to commercial 
and permitted agricultural imports, these items are prohibited regardless of their pest status. Almost  
2.5 million passengers entering the US had agricultural inspections in FY23, resulting in 755,636 
Quarantine Materials Interceptions and 7,395 penalties being issued for undeclared prohibited agricultural 
items [30]. CBP uses a multi-layered security strategy to deter and intercept contraband, including 
passenger education, declaration forms, amnesty programs to discard prohibited items, interviews, 
baggage screening, and fines and seizure. CBP Agricultural Specialists and agricultural canine (AK9) 
teams screen passengers and their baggage using non-intrusive techniques (Figure 3). X-ray scanning 
systems, including common backscatter detection and 3D computed tomography, produce detailed images 
of baggage to identify undeclared agricultural products. Trained beagles and Labrador Retrievers in AK9 
teams are sensitive detectors for both meats and fruits and ambassadors for CBP agricultural  
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programs [32]. Subsequent intrusive inspections can result in confiscation of prohibited items, which may 
be checked for pests for USDA identification and disposition. Pest identification is not required for 
product confiscation or passenger processing. Although there is no time limit for passenger screening, all 
parties value rapid screening. New technologies that detect contraband and augment current methods 
could expedite passenger screening and increase interdictions of prohibited items. 
 

  

Figure 3. Agricultural canine teams screen international luggage to detect prohibited meats and agricultural 
products. Left, AK9 at the Philadelphia Airport. Credit: James Tourtelotte (CBP). Right, AK9 with seized plants 

and seeds at Dallas Fort Worth International Airport. Credit: CBP. 

3. AVAILABLE DETECTION TECHNOLOGIES 

Phytosanitary inspections currently use several technologies, which are described in this section, to 
identify concealed agricultural products imported by passengers and pests imported in agricultural cargo. 
These methods rely on visual inspection due to the diversity of plants, plant products, and pests in 
imports. Commercial traps for pests and spores have long been used to survey agricultural pests but could 
be adapted to survey agricultural cargo during transport. Immunological and molecular diagnostics based 
on validated confirmatory tests have been commercialized and adapted to low-cost, point-of-use devices 
that could be used for rapid presumptive tests to identify pests. These intrusive methods rely on risk-based 
sampling protocols to facilitate commerce and passenger transit. 
 
However, non-intrusive inspection methods complement current physical inspections. X-ray imaging is 
becoming ubiquitous at POEs because of its capacity for rapid inspections that detect many types of 
contraband. Agricultural canine teams rely on trained dogs’ excellent sense of smell to detect concealed 
meats, plants, and produce through non-intrusive inspections. Some canines can also detect many plant 
diseases and pathogens, although those dogs are not currently used to screen imported products. 

3.1 VISUAL INSPECTION 

APHIS/PPQ identifiers use visual taxonomic characterization as the primary tool for identifying both 
plant pests and diseases [33]. The International Plant Protection Convention defines an inspection as an 
“official visual examination of plants, plant products, or other regulated articles to determine if pests are 
present or to determine compliance with phytosanitary regulations” [34]. CBP Agricultural Specialists 
can detect small pests in agricultural products removed from their packaging, aided by simple magnifiers 
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and a white background. Because collection and 
confirmatory identification by APHIS/PPQ 
experts are required for proper quarantine actions, 
visual inspections of agricultural imports are 
required. However, strong light and good vision 
are required to spot miniscule insects and larvae. 
Pests obscured from view will not be detected. 
Therefore, specialists shake, sieve, or cut some 
agricultural products to identify concealed pests 
(Figure 4). Specialists usually rely on prior 
knowledge of pests expected in particular 
agricultural crops from known locales to rapidly 
screen for pests. The identification and 
classification of pests or disease by APHIS/PPQ 
experts also support biosurveillance objectives. 
  
Specialists can also identify pests or symptoms of 
plant disease on agricultural products, particularly 
in advanced stages of infection. At early stages of 
disease, symptoms may be obscure and difficult to 
detect. Under ideal conditions of 550 ft candle illumination with an 18% gray background, an inspector 
could detect 95% of 150 µm particles 95% of the time [35]. These results may translate well to insect pest 
detection, whereby dark, moving insects or larvae are detected under bright lights. However, most plant 
pathogens cannot be directly visualized without a microscope (< 100 µm), and similar disease symptoms 
could be caused by abiotic factors or non-actionable pests. Accurately detecting plant disease requires 
both acute visualization and specific recognition of disease symptoms that are caused by a regulated plant 
pathogen in an agricultural product [36]. 
 
Visual inspection may not be sufficient for the presumptive identification of disease-causing plant 
pathogens. For example, Tobamovirus Tomato brown rugose fruit virus (ToBRFV) is a quarantine pest 
that infects tomato and pepper plants, causing a mosaic pattern on leaves, reducing yield, and causing 
plants to produce blotchy fruit with wrinkled (rugose) surfaces [37; 38]. In 2019, APHIS/PPQ issued 
import restrictions on tomato and pepper plants and materials infected with ToBRFV [39]. Symptoms can 
be difficult to observe in fruit from plants infected late in the growth cycle [40]. Culling symptomatic fruit 
prior to industry certification is permitted by USDA, increasing the chances of infected fruit importation. 
Imported, infected fruit was sold at retail stores despite the import order, presumably because visual 
detection is difficult [41]. APHIS/PPQ has deployed ImmunoStrips® at POEs to perform presumptive 
immunological tests for symptomatic fruit, recognizing the limitations of visual inspections [42]. 
Limitations of visual detection and identification may be more problematic for future pathogens that can 
be readily transmitted to domestic farms [43]. 
 
Accurate visual inspections require excellent visual acuity and controlled environmental conditions [44]. 
For consistency in human visual inspections, eye examinations should result in 20/20 near-focus visual 
acuity, and a color blindness test must be passed as well [35]. Intensive training and experience are 
required to detect pests or diseases. Environmental conditions such as lighting, noise, and temperature 
affect human performance, in addition to organizational and management factors such as shift duration, 
workload, management support, training, feedback, engagement, and incentives. 

Figure 4. A CBP Agricultural Specialist performs a tailgate 
inspection of a shipping container to screen for pests in 

bulk grains. Credit: Jerry Glaser (CBP). 
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3.2 SAMPLING 

Sampling methods are integral to programs that inspect less than 100% of products, although they are not 
detection techniques. Because it is not practical to inspect each item in a shipment with intrusive methods, 
the International Standards for Phytosanitary Measures describes statistical and non-statistical methods 
for selecting samples in shipments [45]. Statistical methods can be used to estimate the risk that pests are 
present but not detected in a shipment with some level of confidence. For example, an APHIS/PPQ Risk 
Management plan may require using a hypergeometric table to randomly select a specified number of 
boxes from a shipment for inspection [45; 46]. Similar probability sampling strategies have been used 
since 1929 for acceptance sampling of products [26]. 
 
Non-random (non-probability) sampling is operationally relevant to detect pests when experience or 
separate information helps prioritize sampling. In contrast to simple random sampling, in which each 
member of a population has an equal chance of being selected, non-random sampling selects members 
based on other factors [47]. For example, convenience sampling selects the most accessible members, 
such as products near the door of a shipping container. Judgmental sampling relies on a specialist’s 
expertise to select members most likely to contain a pest. For example, an Agricultural Specialist 
examines edges of packaging materials to detect wood-boring and hitchhiking pests [48; 49]. CBP 
Agricultural Specialists frequently find insect pests on the floors of shipping containers or trailers [50]. 
Alternatively, CBP officers may inspect a particular pallet for contraband based on non-intrusive x-ray 
inspections. Snowball sampling examines members close to other members (acquaintances). An 
Agricultural Specialist could examine other peppers from a case that contains a pepper with visible pest 
damage to detect a live pest. Although non-random sampling is more difficult to incorporate into risk 
management plans, it can be an efficient and logical method of detecting pests using the experience of 
specialists [51]. 
 
A third sampling approach is the potential adoption of Bayesian methodology into the sampling strategy. 
This would require synthesis of external data sources that could be used to calculate a prior, which would 
then be used in a Bayesian analysis to calculate the probability of a pest’s presence. For instance, in the 
case of a shipment arriving from a location where a known outbreak exists, parameters such as the 
quantity and duration of the outbreak, quarantine and safety protocols at the point or origin, and en route 
data derived from onboard sensors could all be used to calculate a prior probability of the presence of a 
pest. This prior can then be incorporated into the sampling algorithm to determine which shipments to 
inspect. Forecasting models could also be used to predict invasive pest and pathogen risks [52]. Such an 
effort would require coordination with shippers and with other authorities at the ports of origin and would 
require a fairly extensive data integration effort. However, it is possible given the current state of 
technology and could serve to maximize the efficiency and efficacy of the sampling strategy if aligned 
with policies.  
 
Although sampling expedites inspections, facilitates trade, and supports APHIS/PPQ pest surveillance 
objectives, it does not necessarily allocate resources to prioritize detection and interception of high-risk 
and emerging pests [53]. Since 1987, APHIS/PPQ has used RBS at land border POEs to direct inspection 
resources to high-priority commodities [54]. The National Agriculture Release Program (NARP) is a 
science-based program that uses historical data to adjust the frequency of inspections of high-volume fruit 
and vegetable shipments with low rates of quarantine pest interceptions. The Agriculture Quarantine 
Inspection Monitoring (AQIM) program provides data and statistical analyses that support dynamic 
changes to RBS plans [55]. Future RBS programs will continue to optimize sampling and inspection 
methods to improve efficiency [56; 57]. 
 
Statistical sampling methods usually assume that a shipment is homogeneous—that is, a box selected 
randomly from a shipment has the same probability of carrying pests as any other box in the shipment. 
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However, shipping containers, trailers, and rail cars often contain multiple lots of agriculture products—
produced by different farms and packed at one or more processing facilities. These lots may have 
different levels of pest infestation and may need to be sampled independently [45]. Whereas some 
commodities, such as cut flowers, are sampled on an individual lot basis [27], other commodity shipments 
are treated as homogeneous. Therefore, random sampling for inspection may not always detect pests at 
the desired confidence level. 
 
Dynamic RBS plans will continue to be deployed to improve inspection efficiency. However, new pest 
and pathogen detection technology could change the assumptions about detection probability, which 
could reduce the number of samples required. Non-intrusive or less-intrusive inspection technology could 
detect pests and pathogens in aggregate shipments and potentially estimate the pest infestation level. 
Under current USDA regulations, pests must be isolated and sent to USDA staff for confirmation, so new 
sampling methods may be required to efficiently locate pests for a confirmatory identification based on a 
presumptive identification made using advanced techniques. 
 

3.3 CANINES 

Dogs have proven their ability to detect concealed agricultural products for USDA and CBP, working 
alongside Agricultural Specialist handlers in AK9 teams (Figure 5). USDA first trained Labrador 
Retrievers in 1979 to conduct mail and baggage inspections in controlled areas [58]. The Beagle Brigade, 
established by USDA in 1984 at Los Angeles International Airport, succeeded in both detecting plant and 
animal products and publicizing agricultural import restrictions. Larger Labrador Retriever dogs began 
working in cargo facilities again in 2001. Adopted dogs are trained at APHIS PPQ’s National Detector 
Dog Training Center in Newnan, Georgia, for 10 to 13 weeks [59], and they require continuous training 
on target scents to maintain skills. Dogs are trained to smell fruit, vegetable, and meat products, with 
greater than 85% success rates. Trained dogs can detect 85 odors. AK9s at airports may spend four hours 
per day sniffing passengers’ baggage, generally working for 30 minutes at a time. In Australia, a 
biosecurity detector dog program has been operating for 30 years, and dogs average 9,000 biosecurity risk 
items detected during their careers [60]. A dog’s career in an AK9 team may last 6 to 8 years before 
retirement. 
 

  

Figure 5. Beagles identify meat and agricultural products in luggage. (Left) An AK9 sits in luggage containing 
contraband agricultural products. Credit: Glenn Fawcett (CBP). (Right) A CBP Agricultural Specialist canine team 

inspects a closed bag. Credit: CBP. 
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Detector dogs have a renowned ability to detect scents at low concentrations and to distinguish scents 
with high specificity. Canines have an elaborate nasal airway, high neuronal density, and hundreds of 
millions of olfactory receptors that enable them to detect some volatile organic compounds (VOCs) at low 
parts per trillion concentrations [61; 62]. By sniffing targets and sensing multiple VOCs, dogs may 
integrate signatures to detect scents with high specificity [63]. Detector dog training includes both 
positive reinforcement (using food) for target scents and no reinforcement (withholding rewards) for non-
targets or distractor scents like processed foods, candy, and perfumes. Dogs are usually trained to report 
detecting a target scent by alerting—sitting or placing paws on the object. The dogs alert the same way, 
regardless of which target scent they detect. Detector dogs have long been used by US law enforcement 
agencies for the presumptive detection of controlled substances, creating substantial precedent and case 
law for their evidentiary use in prosecutions [64]. 
 
Dogs can also detect VOCs released by pathogens and disease processes [65; 66]. They have accurately 
detected cancer disease states in human stool and breath samples [67; 68]. Many animal pathogens 
produce VOCs that dogs can smell [69; 70]. German shepherds detected gypsy moth egg masses in 1976 
[71], and dogs from three breeds detected lanternfly egg masses in 2021 [72]. Recently, dogs have also 
been trained to detect plant pathogens with significant economic significance (Table 1). Eleven dogs 
detected Asian citrus canker caused by X. citri pv. citri in seedlings, fruit orchards, packing houses, and 
even isolated bacterial cultures [73]. The dogs detected X. citri infections with a good sensitivity (73%) 
and specificity (99%). The detector dogs usually required less than a minute to detect their targets and 
alert.  
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Table 1. Canine Detection of Plant Pathogens and Diseases 

Plant pathogen Dogs Accuracy 
Bacteria   
Xanthomonas citri pv. citri (Asian citrus canker lesions on fruit)a 11 0.98 
Candidatus Liberibacter asiaticus (huanglongbing, HLB of citrus)b 10 0.99 
Raffaelea lauricola (laurel wilt disease)c 3 0.994 
Bretziella fagacearum (oak wilt)d 2  
Clavibacter michiganensis (Bacterial Ring Rot)e  NDf 

Viruses   
Plum pox virus (PPV)g  0.99 
Potato virus Ye  ND 
Squash vein yellowing virus (SqVYV)h  ND 
Tomato chlorotic spot virus (TCSV)h  ND 
Tomato spotted wilt virus (TSWV)h  ND 
Tomato yellow leaf curl virus (TYLCV)h  ND 
Protozoa   
Plasmodiophora brassicae (clubroot)i 2 0.90 
Fungi   
Heterobasidion root diseasej 7 0.70  
Heterobasidion parviporum, Cronartium flaccidum and Peridermium pinik  ND 

Sources: 
a. [73] 
b. [74] 
c. [75] 
d. Cornell (unpublished, 2020) 
e. Nose Knows Scouting (unpublished) 
f. ND, Not determined. 
g. Gottwald et al. (unpublished) 
h. F1K9 (unpublished) 
i. Alberta Agriculture and Forestry (unpublished, 2019) 
j. [76] 
k. Lapland University of Applied Sciences & Agricultural Resources (unpublished, 2022) 
 
Detector dogs efficiently identified a variety of plant diseases caused by viruses, bacteria, fungi, and 
protists (Figure 6). They have also been trained to detect insect pests, including coconut rhinoceros beetle 
and Mediterranean fruit fly with 90% proficiency [77], as well as spotted lanternfly and Japanese beetle. 
Many of these studies require further validation in field tests or relevant work environments, using 
relevant agricultural products, additional dogs, distractor scents, and a large number of negative samples. 
AK9s require substantial resources, continual training, feeding, care, and exercise. They typically work 
for brief periods and are well-suited for scheduled inspections such as the arrival of an international flight. 
Their skills cannot be transferred to new dogs, and each dog may recognize a different combination of 
VOCs that comprise the target scent of the pathogen or disease. Despite these limitations, the success of 
detector dogs provides strong evidence for VOC signatures of many plant pests and diseases.  
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Figure 6. Detector dog training to detect plant pests and diseases. Credit: USDA 

3.4 TRAPS 

Traps for insects and fungal spores are simple tools for the collection of airborne pests. However, it is 
unclear who would pay the costs associated with the purchase and installation of traps in containers or 
trailers. 

3.4.1 Insect Traps 

Insect traps are widely used in agriculture and have a long history of innovation [78; 79]. They are a 
mainstay for the APHIS fruit fly exclusion and detection program [80]. Sticky traps covered with glue 
detect flying pests at low cost (Figure 7). Mechanical insect traps have been available since the 18th 
century and continue to evolve. Modern insect traps are equipped with smart monitoring solutions to 
allow insect counting and monitoring from a remote terminal. One example of a remote monitoring 
solution is the iSCOUT® product from Pessl Instruments GmbH (Weiz, Austria), which includes an 
insect-specific pheromone, feeding lure, or color trap; a digital camera; solar panel power source; and 
modem.  
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Figure 7. Pest traps. (Left) Yellow sticky trap for Asian citrus psyllid sampling in lime trees. Credit: David Bartels 
(USDA APHIS). (Right) Aerial spore trap. Credit: Kylle Roy (USGS). 

A trapping device would be ineffective for real-time detection at POEs but could be integrated into the 
overall pest detection strategy. For instance, a container or truck full of produce could be outfitted with a 
sticky trap or smart trap by a regulated vendor at the packing plant. The trap could be collected and 
analyzed at the POE to provide a profile of the entire cargo in a container. Alternatively, a smart device 
could be integrated with networking and GPS capabilities to enable continuous data transmission and 
location tracking to the POE while the shipment is en route. Upon arrival at the POE primary inspection, a 
verification could be used to alert the Agricultural Specialist that the sensor has arrived and give a simple 
report. For loads requiring further inspection, machine learning (ML) algorithms could be deployed to 
quantify and characterize the contents of the trap prior to arrival at the secondary screening station, and 
deliver actionable metrics (number of insects, probable species) to the secondary screener [81]. Traps may 
not effectively sample larvae and immature insects, and they may not collect effectively in refrigerated or 
frozen shipping containers. 

3.4.2 Fungal Spore Traps 

In 2001 to 2003, Phakopsora pachyrhizi, the causal agent of Asian soybean rust, was first detected in 
South America, where it caused up to 90% yield loss, destroying the Brazilian soybean industry [82]. In 
2003, Ray Schneider from Louisiana State University first detected this fungus in the continental United 
States [83]. He developed the ionic spore trap to capture rust spores through the air current, which was 
then collected on a membrane, which then can be washed and used for molecular confirmation. Since this 
technology emerged, several other spore-trapping devices have been implemented to collect spores from 
diseased fields and confirm their identity through molecular techniques [84; 85]. 
 
Traps have also been used to detect plant pathogens [86]. Spores of Botryosphaeriaceae spp. were 
trapped in California vineyards [87]. This fungus causes canker disease and dieback in many plants, 
including grapevines. Glass microscope slides coated with petroleum jelly were placed in the vineyard for 
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one week. After collection, spores were eluted into water and plated on agar growth medium for 
morphological identification and counting. A commercial version of this impactor particle collector with a 
vacuum pump was designed by Hirst for continuous collection over one week and is currently 
manufactured by Burkard Manufacturing (Hertfordshire, UK) [88]. An ionic spore trap was developed by 
Maverick PDM using electrostatic deposition to capture fungal spores [89]. Impaction, virtual impaction, 
cyclone, and electrostatic volumetric spore samplers have been used to survey airborne pathogens in 
many air samples [86; 89; 90]. Similar to insect traps, particle collectors could be deployed in sealed 
shipping containers during transport to survey dispersed pathogens. Compared to conventional sample-
based inspections, this method could survey an entire shipping container and could be used to do so in a 
less intrusive manner. This technology requires that the pathogen be suspended in aerosols or droplets for 
collection. However, fruits, vegetables, and flowers are often frozen, chilled, or packaged for distribution 
before importation, which would limit dispersal. Furthermore, a separate method of detection is required 
to identify pests and pathogens captured by the collector.  

3.5 X-RAY AND GAMMA RAY IMAGING 

CBP uses fixed and mobile x-ray imaging for non-
intrusive inspections to detect contraband and concealed 
products at most POEs; one such installation is shown in 
Figure 8 [91]. At the World Trade Bridge in Laredo, 
CBP uses a drive-through multi-energy x-ray portal 
system for secondary inspections of trucks [92]. The 
2020 Securing America’s Ports Act (Public Law 116-
299) required a plan to scan all commercial and 
passenger vehicles as well as rail freight entering the US 
using large-scale non-intrusive inspections. X-ray 
imaging is also used to screen some international mail 
and passenger luggage in secondary inspections at 
airport and land border POEs. For most applications, 
operators are looking for differences in  
x-ray scattering in the images or reconstructions that 
correspond to objects of different densities that may be 
undeclared or illicit—including narcotics, currency, weapons, and destructive devices. Low-energy 
gamma radiation imaging systems are also used to inspect truck and container shipments and offer better 
contrast [93; 94]. 
 
X-ray imaging systems often detect contraband fruit and meat products in baggage (Figure 9). The 
Australian Department of Agriculture, Fisheries and Forestry collects 3D x-ray images of biosecurity risk 
items, which could be used for ML to train future automated screening systems. However, systems 
designed to scan vehicles and baggage usually lack sufficient resolution to identify plant pests or 
pathogens. 
 

Figure 8. A car passes through an x-ray scanner at the 
land border in San Ysidro, CA. Photo credit: Josh 

Denmark (CBP). 
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Figure 9. Non-intrusive airport baggage inspection by x-ray scanner. (Left) Baggage x-ray scanner with 
automatic tag reader system at Brisbane International Airport. (Right) Remote screening room for 3D x-ray scans at 

Melbourne International Airport. Credit: Australia Department of Agriculture, Fisheries and Forestry [95]. 

At a smaller scale, x-ray computed tomography has been used to detect pests in fruit [96; 97] and for 
quality inspection of agricultural products [98; 99]. Both insects and fungi have been detected in wheat 
kernels using soft x-ray methods [100; 101]. A micro-focus x-ray source, which was deployed for the 
automated inspection of fruits to detect insect infestation and damage, used image processing algorithms 
to distinguish fruits with insect eggs from undamaged fruit with 97% sensitivity, 99% specificity, and 
98% accuracy [102]. Advances in ML and pattern recognition using AI could improve this system. 
Recent studies developed a soft x-ray line sensor system with deep learning tools to identify with 98% 
accuracy Hass avocados with internal rot caused by fungal infection [103; 104]. Although x-ray systems 
may not detect plant pathogens directly, they can detect disease damage to agricultural products with 
automated workflows that are less intrusive than current inspection methods. Damage from both insect 
pests and microbial pathogens could be detected. These high-resolution x-ray systems differ from the 
larger-scale non-intrusive inspection systems currently used to screen imports. 

3.6 IMMUNOLOGICAL AND MOLECULAR DIAGNOSTICS 

Culture-based methods to identify plant pathogens have been progressively replaced by molecular 
diagnostics to detect known pests and disease [105]. Methods and tools developed for human health 
diagnostics and environmental surveillance have been adapted for plant pathology. Serological or 
immunological methods, which typically use antibodies to recognize proteins or cell walls of pests, have 
been used in plant pathology laboratories since the 1960s [106]. Nucleic acid–based methods, including 
hybridization, targeted sequence amplification, and genome sequencing, have grown rapidly since the 
1970s and have flourished since the introduction of the polymerase chain reaction (PCR) method in the 
1980s [107; 108]. Molecular diagnostics typically combine extraordinary sensitivity with high specificity 
to detect markers of known pathogens [109]. However, these methods may not distinguish live pests from 
active infections nor dead pests from treated agricultural products. Most molecular methods are 
performed in laboratories for confirmatory identification, but this work focuses on technologies that can 
be applied at the point of use (i.e., on-site, close to the agricultural field or POE) for presumptive 
identification [110-112]. 
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reagent that detects all of the target pathogens (i.e., low sensitivity). Alternatively, closely related 
microbes that are not quarantined could cross-react to give a false detection (i.e., low specificity). 
Although LFIAs are considered rapid diagnostic tests, they still require 5 to 15 minutes to develop in 
addition to sample processing time. Agriculture specialists may not be available to read the tests within a 
fixed period if they are immediately assigned another task at a busy site. Faster tests or automation 
technology could mitigate this problem. 
 

3.6.2 Targeted Nucleic Acid Detection 

Nucleic acids (DNA or RNA) that are unique to plant pests have long been targets for molecular detection 
[107]. Hybridization of isolated nucleic acids with labeled DNA probes identified many pathogens and 
plant diseases in the laboratory. Since the 1980s, PCR has accelerated molecular detection and 
substantially increased sensitivity by amplifying nucleic acids to form DNA fragments that can be 
characterized by sizing or sequencing. These gene targets, sometimes called barcoding regions, have been 
used for two decades to identify plant pathogens to the genus or species level, such as bacteria, fungi 
[122], oomycetes [123; 124], and viruses. Because the barcoding region is useful in identifying these 
pathogens, quick analysis can be conducted for specific pathogens by designing nucleic acid amplification 
techniques such as digital droplet PCR (ddPCR), quantitative PCR, loop-mediated isothermal 
amplification (LAMP), and recombinase polymerase amplification (RPA) [15]. Most nucleic acid–based 
detection systems include three steps: extraction, amplification, and detection [125]. Several companies 
have built and marketed portable microfluidic devices for point-of-use nucleic acid extraction, 
purification, and detection—including BioFire Diagnostics (Salt Lake City, UT), Abbott Rapid 
Diagnostics, Cepheid (Sunnyvale, CA), Sony, GenePOC (Quebec, Canada), and Roche Molecular 
Diagnostics [110; 126]. However, these molecular diagnostic systems were developed to analyze human 
clinical samples for infectious diseases and have not been optimized to detect plant diseases. 
 
Isothermal nucleic acid amplification methods lower the barriers to point-of-use molecular diagnostics by 
performing assays at low, fixed temperature (reduced power consumption) and by amplifying lower-
quality DNA samples (reducing purification costs and robustness) [15; 111]. LAMP methods can be 
performed in less than 30 minutes to produce a visible color change with a signal that can be quantified 
using a smartphone camera or integrated sensor. A real-time LAMP assay detected Xylella fastidiosa with 
70–90% diagnostic sensitivity and 97–100% specificity [127]. Viruses also can be detected using LAMP 
[128], including a reverse transcription LAMP assay that detected several strains of plum pox virus [129]. 
Both LAMP and ddPCR methods have been shown to provide better analytical sensitivity than PCR to 
detect Phytophthora infestans in potato tubers [130]. LAMP devices are readily manufactured [131] or 
commercially available, such as the BioRanger (Diagenetix) with portable batteries or Genie® 
instruments from OptiGene. Assay reagents and validations are often developed in-house. Another 
isothermal method, RPA, has become competitive with LAMP. An RPA assay was used for the multiplex 
detection of Botrytis cinerea, Pseudomonas syringae, and Fusarium oxysporum [132]. A related method 
used toehold-mediated strand displacement to detect RNA from wheat rust using field-deployable 
colorimetric paper and a smartphone [133]. 
 
Downsides to these molecular techniques include longer analysis times, sensitivity to genetic variation 
[134], and false positive results. Reagents are highly specific for individual pathogens, although multiplex 
methods have been developed to assay for several pathogens at the same time. Control reactions are 
usually required to identify cross-contamination and inhibitors of the polymerases used in the reactions. 
Some test kits require cold storage, which could limit point-of-use testing. Due to their high costs for 
instrumentation and consumables, these devices are more commonly used to detect human diseases than 
plant diseases [135]. Molecular diagnostics could be completed at the point of origin (with supervision) 
before shipment or during transit.  
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4. EMERGING DETECTION TECHNOLOGIES 

This section evaluates unconventional technologies that could be used to detect plant pathogens and 
diseases on agricultural products. Detection, the presumptive identification of a pest by CBP Agricultural 
Specialists, must be confirmed by APHIS/PPQ experts who identify and classify pests. If the sensitivity 
of detection technology outpaces confirmatory identification technology, then improvements in detection 
efficiency may not increase pest interceptions or expedite commerce. Therefore, new technologies that 
improve specificity as well as sensitivity could benefit both CBP and APHIS/PPQ operations. 

4.1 AUTOMATED IMAGING 

As an alternative to visual inspection, optical systems can automatically image light reflected by plants or 
agricultural products to detect disease symptoms. In addition to the light spectra visualized by humans, 
automated systems can detect light reflected in the non-visible wavelengths, such as infrared and 
ultraviolet. Such systems can automatically process the digital images and apply pattern recognition 
algorithms augmented by AI or ML to spot diseases [136]. Similar to visual inspection, inspection via 
cameras offers views of plant surfaces or pests that are exposed to and reflect light. However, automated 
imaging systems can detect a broader range of light (including near-infrared (NIR) and thermal), evaluate 
more wavelength bands (hyperspectral imaging, HSI), and process images without fatigue. When 
incidents of a disease in agricultural products are low or the disease causes variable changes in products, 
it may be difficult to collect sufficient images to train AI/ML systems. Emerging tools, such as few shot 
learning and ML for anomaly detection could address this problem [137]. 
 
Automated systems are currently used to assess food quality and safety as well as to recognize, grade, and 
sort foods in real time [138; 139]. For instance, a high-throughput optical sorter was used to image up to 
8,800 kg of wheat kernels per hour with 675 nm light, detecting and rejecting kernels infected with 
Karnal bunt (T. indica) with 100% sensitivity when 8% of the kernels were discarded [140]. These 
instruments can also perform non-destructive analysis of fruits and vegetables for insect pest infestations 
[97]. Software developed and trained to detect anomalies on agricultural products can be easily 
transferred to new systems, scaling capacity quickly. 
 
The following sections discuss variations on this theme: multi-spectral imaging, HSI, and thermal 
imaging. Equipment using each class of imaging technology has been commercialized for automated food 
quality assessment and sorting. This application typically requires high diagnostic sensitivity and 
specificity for disease states but may not distinguish among pathogens. 
 

4.2 MULTI-SPECTRAL IMAGING 

Multi-spectral imaging is a widely deployed technology in crop monitoring today. Digital cameras that 
capture three spectral bands in the visible range, red, green, and blue (RGB), are ubiquitous on mobile 
phones and sophisticated photography equipment. More advanced systems include multiband imagers, 
such as the MicaSense (Seattle, WA) product line. The RedEdge-P product includes RGB bands as well 
as NIR and red edge (near thermal) bands. These instruments are commonly mounted on unmanned aerial 
vehicles and used to fly over field to detect crop anomalies. The advantage of multi-spectral over 
traditional RGB (three-band) imagery is the ability to calculate vegetation indices. One of the most 
common indices is the normalized difference vegetation index (NDVI). This is used to quantify the 
greenness of vegetation. NDVI is useful for assessing changes in overall plant health. A yellow or mottled 
leaf color may indicate the presence of a pathogen. The photochemical reflectance index is commonly 
measured to estimate leaf photosynthetic radiation use efficiency. Indices tuned to specific pests have 
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been developed, and this is an area of active research. Most often, the vegetation indices are combined 
with traditional RGB data processing—for instance, counting leaf spots—to ascertain the presence and 
severity of a disease. Many fungal diseases can be accurately detected and sometimes quantified using 
this technology. Most multi-spectral imaging systems for disease detection analyze plant leaf images 
[141; 142]. 
 
Multi-spectral image analysis has long been used to identify animal pests, including insects. The USDA 
APHIS Remote Pest Identification Program facilitates pest identification by sharing RGB images of pests 
from POEs with National Identification Services specialists across the country to confirm identification of 
quarantined pests and identify first-in-nation pests. The Australian Government’s Department of 
Agriculture, Water and the Environment partnered with the Commonwealth Scientific and Industrial 
Research Organisation to develop a mobile phone application used by biosecurity officers that uses AI to 
identify brown marmorated stink bugs, along with 45 different related species [143]. Deep learning 
methods of AI are well suited to train models to classify images of pests [144]. Applications for 
smartphones are readily available to analyze RGB images, including Google Lens, Picture Insect, Smart 
Identifier, and Seek. However, taxonomic classification accuracy depends on the image quality  
(Figure 11) [145]. 
 

    

Figure 11. Representative smartphone applications that identify plant pests or diseases using  
multi-spectral (RGB) images. 

Citrus fruits have been inspected using optical imaging for more than a decade because many diseases 
produce unique peel lesions (Figure 12) [138]. Fungi on the fruits have been detected using fluorescence 
from UV illumination [146] and Fourier transform infrared (FTIR), the preferred method of infrared 
spectroscopy [147]. ML and AI methods, including convolutional neural networks, have recently been 
used to develop classifiers that operate with high accuracy. A deep learning model that combined neural 
network with long short-term memory network models identified diseased citrus fruit in images with 98% 
accuracy [148]. This model classified multiple diseases with high accuracy, including canker disease 
(97%), scab (95%), melanosis (99%), greening (97%), and black spot (97%). 
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Figure 12. Imaging plant disease on fruit. (Left) Citrus greening caused by Huanglongbing (HLB); (Center) citrus 
blackspot caused by the fungus Phyllosticta citricarpa; and (Right) cucumber green mottle mosaic virus 

(CGMMV). Photo credits: USDA APHIS/PPQ. 

Disease detection in potato tubers has also benefitted from optical imaging and pattern recognition. A 
deep convolutional neural network detected four disease classes in RBG images of potato tubers with 
96% accuracy [149]. Another convolutional neural network system produced the user application 
‘ScabyNet’ to detect common scab on tubers from RBG images [150]. TOMRA Systems (Asker, 
Norway) has commercialized food sorting and grading equipment that collects multispectral images of 
fruit and uses deep learning methods to detect visible defects [151; 152]. For example, the TOMRA 
Spectrim X series powered by the LUCAi® grading system equipment detects >95% stem-related 
imperfections in apples, processing thousands of multi-channel fruit images per second. The TOMRA 
Neon optical grader processes up to 500 blueberries per second, removing >90% of green and red berries. 
NEWTEC (Odense, Denmark) manufactures optical sorting machines for potatoes, using automated 
imaging and ML to identify surface defects on tubers. However, the food processing industry does not 
require specificity for plant disease detection. It is concerned with classifying a product as either positive 
or negative for disease and damage to determine whether a food is consumable or saleable. Therefore, this 
equipment prioritizes sensitivity and speed. 

4.2.1 Hyperspectral Imaging 

HSI provides a high level of detail with respect to the light that an object reflects, potentially improving 
the ability to detect plant disease compared to that offered by multi-spectral imaging [153]. HSI splits a 
wide spectrum of light into narrow bands. HSI differs from multi-spectral imaging in that the bands are 
contiguous. Hyperspectral instrumentation can span the entire electromagnetic spectrum; however, the 
most common HSI instruments cover the spectra from approximately 400 to 2500 nm. Most HSI 
instruments cover only a portion of that range. The lower end, 400–1000 nm, is commonly referred to as 
visible and near-infrared (VNIR), whereas the 1000–3000 nm range is commonly referred to as 
shortwave infrared (SWIR). A few companies manufacture mid-wave infrared (MWIR) instrumentation 
(3000–5000 nm), but this is less common.  
 
Hyperspectral instrument architectures are categorized into spatial scanning, spectral scanning, and non-
scanning architectures. In a push broom spatial scanning architecture, the camera moves across the frame 
line by line to obtain the spectra. In whiskbroom architecture, the aperture is reduced to a single pixel. 
These architectures require stabilized mounts for accuracy. They are often used in aerial photography or 
for applications where the object is moving, such as a scenario in which items are moving along a 
conveyor belt. In spectral scanning, the entire scene is captured at once, but only one band at a time is 
recorded. This is similar to how a regular camera works. The hyperspectral effect is achieved by 
exchanging filters to remove various areas of the light spectrum. Spectral scanning requires that both the 
camera and the objects being scanned remain fixed. Movement by either instrument or subject causes 
distortion in the resulting image. In a non-scanning architecture, the entire dataset—the hypercube—is 
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captured at once. This modality is by far the most accurate and energy-efficient, as a single snapshot can 
capture all the information. Moreover, image acquisition is quicker, and smearing effects are reduced. 
However, the manufacturing costs and computational infrastructure required to process this type of 
imagery are currently quite high.  
  
Hyperspectral, narrow-band multispectral, and thermal imagery acquired at a high spatial resolution can 
be used to detect disease symptoms before they are visible, allowing growers to differentiate between 
infected plants and plants that may be affected by confounding environmental stresses. Often, such 
pathogen stress produces diverse symptoms (detectable responses of the plant)—for example, those 
similar to water stress or nutrient deficiency. This is because infection by certain vascular pathogens 
restricts water and nutrient flow through the crop xylem. Test results from high-resolution remote-sensed 
data (e.g., Worldview) indicate that disease incidence can be detected with overall accuracies ranging 
from 0.63 to 0.83 and kappa coefficients (κ) ranging from 0.29 to 0.68. However, detection of the early 
stages of disease with multispectral satellite data has been shown to be poorer, with κ values of 0.22–0.45, 
compared with κ values of 0.3–0.69 obtained from hyperspectral data. The addition of thermal-based crop 
water stress indicators to the satellite data is shown to improve the overall detection accuracies by 10–
15%. The results indicate that early detection of disease symptoms in the field is more achievable using 
hyperspectral and thermal data rather than common commercial multispectral high-spatial-resolution data. 
In general, it can be concluded that choosing and combining appropriate sensors for each plant–pathogen 
system and measuring with sufficient spatial resolution can enable specific and accurate measurements of 
above-ground signatures and symptoms of plant disease.  
 
All modalities and architectures of HSI have been applied to biological problems with varying levels of 
success [154]. The massive datasets produced by HSI require computer algorithms or AI/ML methods to 
accurately classify disease states. Examples of the powerful combination of HSI and AI/ML analysis to 
detect disease have been reported for grapefruit, wheat, and potatoes. A convolutional neutral network 
model classified hyperspectral images of grapefruit with eight different peel diseases with 99.8% 
accuracy [155]. HSI combined with a support vector machine classifier identified Fusarium head blight 
with 78–100% accuracy from 3 to 30 days post-inoculation [156]. This exceeded the accuracy of 
classifiers based on infrared thermography or chlorophyll fluorescence imaging. Sensitivity of detection 
was approximately 67% in a related study [157]. HSI was also used to detect Zebra chip disease in potato 
tubers caused by the bacterium Candidatus Liberibacter solanacearum using partial least squares 
discriminant analysis with 92% accuracy [158]. HSI data from VNIR–SWIR wavelengths were used to 
identify tubers with internal defects and demonstrated 96% classification accuracy using linear 
discriminant analysis [159].  
 
Commercial systems have been developed to sort and grade fruits and vegetables using HSI for 
nondestructive analysis. NEWTEC has developed and commercialized a pushbroom 900–1700 nm 
hyperspectral imaging system with a high-frame-rate camera to sort fruit, although few operational details 
about its data analysis workflow have been published [160]. Hyperspectral SWIR imaging with classifier 
analysis improved disease detection in onion bulbs, which can have healthy outer surfaces despite internal 
disease [161; 162]. 
 

4.2.2 NIR Spectroscopy and Imaging 

Organic molecules absorb NIR light in characteristic vibrational absorption bands between 800 and 3000 
nm wavelengths (12,500 to 3,333 cm−1 wavenumbers). These features are common in protein and 
carbohydrate molecules in plant cell walls. Light in the 700 to 900 nm wavelengths can penetrate up to  
10 mm into fruits, providing more insight into tissue than that possible with shorter-wavelength visible or 
longer-wavelength NIR radiation used in nondestructive imaging [163]. Therefore, NIR imaging can 
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reveal new information about biomarkers in diseased plant products that could improve the sensitivity and 
specificity of detection. FTIR with attenuated total reflectance (ATR) measurements can detect chemical 
signatures reflected from the surface of samples. Raman infrared spectroscopy uses an infrared laser to 
excite molecules and then measures infrared light scattered at other wavelengths. Both methods can be 
nondestructive, although sample preparation may improve imaging. Results are compared to spectral 
libraries to identify tested materials. Although pure fungal cultures also have characteristic NIR signatures 
[164], only diseased agricultural products are considered in this section. Both FTIR and Raman 
spectroscopy are commonly used by CBP and other law enforcement officers for the presumptive 
identification of hazardous chemicals and illicit drugs in less than one minute [165]. 
 
FTIR spectroscopy is the most common and familiar method of NIR analysis. Example applications to 
disease detection include studies on guava plants, tomato fruit, and potato tubers. An FTIR–ATR 
signature of leaves from guava plants infected by a root-knot nematode was reported but has not yet been 
validated for diagnostics [166]. A study of sour rot infection in tomato fruit used FTIR–ATR methods to 
classify diseased fruits with 83%, 97%, and 83% sensitivity for damaged, early infection, and late 
infection samples, respectively [167]. Specificities were 78%, 92% and 96% for the same groups of 
samples. Finally, FTIR was used to identify spectral biomarkers on the surface of tubers that correctly 
identified potatoes infected by the fungus Colletotrichum coccodes [168].  
 
FTIR spectrometers and NIR imaging systems are commercially available, although the computer 
software and applications in detecting disease in plant products are still in development. Portable and 
handheld FTIR systems are sold by Agilent, Bruker, Thermo Scientific, Smiths, and Mistra [169]. 
Limitations of FTIR technology include its high sensitivity to water, which can interfere with plant 
product analysis. In an ATR mode, FTIR measures surface properties and may not detect changes inside 
agricultural products. NIR imaging can also detect insect eggs and larvae inside agricultural products 
using non-destructive techniques [170; 171]. 
 
Raman spectroscopy measures the Raman scattering of infrared light after a sample surface is excited by 
an intense laser [172]. It is less sensitive to water than FTIR methods. Infections by Candidatus 
Liberibacter spp. that cause citrus greening disease in sweet oranges produced spectral anomalies that 
were detected by portable Raman spectroscopy with 86.9% sensitivity and 91.4% specificity [173]. 
Raman HIS was used to detect Acidovorax citrulli infections in watermelon seeds with approximately 
75% sensitivity, although further studies with more samples will be required to validate the method [174]. 
Pankin et al. compared FTIR and Raman spectroscopy for the detection of Fusarium fungal infections of 
oat grains [175]. The FTIR classification method detected diseased grains with 75% to 95% sensitivity 
and specificity, whereas the Raman classification method was more accurate, with 95% to 100% 
sensitivity and 100% specificity. Most studies using Raman spectroscopy to detect plant disease have 
focused on leaf imaging, and some disease states can also be detected using conventional RGB imaging 
[176]. Some spectral signatures may be generic responses to biotic and abiotic stresses, which will require 
further validation [177]. Due to the requirement for a spectral signature for a presumptive identification, 
Raman spectroscopy and imaging will be most useful for targeted identification of diseased plant products 
based on other information about the shipping consignment. Finally, Raman spectroscopy cannot be used 
for dark samples that fluoresce. Portable Raman spectroscopy systems are manufactured by Cobalt Light, 
Rigaku, Thermo Scientific, and B&W Tek. They are marketed for hazardous chemical and controlled 
substance characterization, and some are in use by CBP officers. 
 

4.2.3 Infrared (Thermal) Imaging 

Long-wave infrared (LWIR) and thermal imaging technologies have a long history in pest detection, 
particularly to detect insects. This technique detects concealed termites, hornets, rodents, and other 
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macroscopic pests [178]. Thermal imaging may also be useful to detect pests and hitchhikers in wood 
packaging materials and shipping containers. CBP uses thermal imaging to detect heat signatures of 
people and concealed weapons through non-intrusive inspections [179].  
 
Objects both reflect LWIR from illumination and emit thermal energy to dissipate heat. Plant and 
agricultural product temperatures are usually close to those of the ambient environment, so sensitive 
detectors are required to resolve temperature differences of only a few degrees. LWIR imaging and 
terahertz spectroscopy are often used to assess water movement in plants, through root uptake and leaf 
transpiration through stomata. Diseases caused by fungi and oomycetes can interfere with transpiration, 
enabling plant disease diagnosis by thermal infrared imaging [180] as well as terahertz time-domain 
spectroscopy [181]. Thermal imaging has also been used to detect pests in stored grains due to animal 
respiration [182] and damage to guava fruit caused by disease [183]. A study of this technology on apples 
showed that it successfully detected a decrease in temperature 48 hours after inoculation with a variety of 
fungal pathogens [184]. Thermal imaging identified the fungus Fusarium solani on heated tubers with 
98.5% accuracy [185]. Although LWIR hyperspectral sensors exist, they are normally used only when 
very precise temperature measurements are required. 
 
This technology could be deployed to quickly scan incoming cargo for signs of spoilage, thus indicating 
the presence of a pathogen. To maximize the efficacy of this effort, continuous monitoring of the 
temperature from the time of packing to the time of inspection would be desirable. If continuous 
monitoring is not possible, then a minimum baseline reading for such monitoring could be taken before 
packing and at inspection. Finally, if scans can be performed only at the POE, then differential analysis of 
the temperature gradients within a scan may be effective at pinpointing spoilage, thus targeting the efforts 
of visual inspections. Handheld thermal LWIR imaging equipment is commercially available from 
Teledyne FLIR, Fluke, Seek Thermal, etc., with many more manufacturers of fixed cameras in a $2 
billion+ annual market. Plugin thermal cameras are also available for smartphones, with lower resolution. 
These thermal methods may have limited specificity and could be difficult to apply in refrigerated 
shipping containers. 
 
Temperature differentials measured using thermal imaging are frequently less than 1 °C, requiring 
controlled conditions to accurately detect disease states [186]. Pulsed-phase thermography could be more 
sensitive to detect apple defects. In this method, apples are heated with a thermal pulse, and the 
temperature decay is measured by thermal imaging to detect surface and near-surface defects [187]. 
However, heating may not be acceptable or cost-effective for high-volume analyses of agricultural 
imports. Similar to commercial equipment that sorts and grades fruit using multispectral imaging, thermal 
imaging systems lack specificity for plant diseases. 
 

4.3 BIOGENIC VOLATILE ORGANIC COMPOUND DETECTION 

Plants produce thousands of biogenic volatile organic compounds (BVOCs) [188]. BVOCs are organic 
compounds that evaporate under normal conditions and are produced by biological systems. Terpenes 
(e.g., isoprene and α-pinene) emitted from leaves are the most abundant BVOCs, mixing with other gases 
to convey plant health status. Diseased plants release different BVOCs than those released by healthy 
plants [189], and bacteria, fungi, and oomycetes pathogens produce different BVOCs (e.g., butanone and 
pentanone) [190; 191]. Together, this BVOC profile is the basis for canines to detect diseases, discussed 
previously. The scents used for AK9 training could inform the development of mass spectrometry or 
electronic nose systems. Similarly, BVOC profiles detected by these systems could be used to advance 
AK9 training in the future. 
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4.3.1 GC-MS and PTR-MS 

BVOCs have traditionally been collected by adsorption, followed 
by thermal desorption and qualitative or quantitative analysis by 
gas chromatography–mass spectrometry (GC-MS) [192]. 
Manufacturers of portable GC-MS systems include 908 Devices 
(Boston, MA), FLIR, and Smiths Detection. Many more 
companies produce GC-MS systems for fixed installation in 
laboratories, including Agilent, Shimadzu, and Thermo Scientific. 
This method was used to detect pine seedlings infected by the 
fungal pathogen Fusarium circinatum, which release characteristic 
sesquiterpenes that are different from BVOCs released during 
infection by other Fusarium species [193]. Other species of 
Fusarium that infect wheat also emit signature BVOCs [194]. This 
method can be used to detect viral disease states as well: GC-MS 
was used to identify BVOC signatures of pepper yellow leaf curl 
virus infecting chili plants [195]. Insect pests such as bed bugs 
[196] produce other characteristic mixtures of BVOCs.  
 
This sensitive GC-MS method has been augmented by movable, 
fast (100 ms), and high resolution (>6000 m/Δm) methods such as 
proton-transfer-reaction mass spectrometry (PTR-MS), ion 
mobility mass spectrometry, and FTIR gas analyzers that enable real-time measurements of many 
compounds. PTR-MS systems are manufactured by IONICON Analytik (Insbruck, Austria), and field-
deployable ion mobility spectrometry systems are produced by Smiths Detection (Hemel Hempstead, 
UK), Leidos, Bertin Environics (Mikkeli, Finland), and Bruker. Portable FTIR gas analyzers are 
manufactured by Gasmet Technologies (Vantaa, Finland) and Bruker. BVOC analysis can be non-
intrusive and rapid, which expands its utility as a screening tool for presumptive detection.  
 
The recent development of proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) 
offers an alternative approach via direct intake of air samples for the detection of BVOCs in food and 
agricultural products (Figure 13) [197; 198]. The sample analysis time for the PTR-ToF-MS is on the 
order of seconds, compared to 20–30 min per sample for traditional VOC-detecting instruments such as 
the GC-MS. Despite this technology only recently becoming commercially available, numerous uses have 
been reported for agriculture pathogen detection that span grains, vegetables, and ornamental crops (refer 
to Table 3 below for examples). Though this technology is promising, multiple considerations and 
possible constraints must be addressed before its deployment for diagnostic purposes. First, a 
standardized sampling method must be developed. Numerous approaches exist for designing chambers 
and cuvettes for plant VOC sampling [199]. How extension to large transport containers can be achieved 
is an open question. Second, BVOC profiles differ among plant tissues and change during the course of 
pathogen infection. Third, data analysis workflows are still being developed, including classification 
systems that can translate peak data into accurate predictions of disease states. Classification does not 
require identifying the chemical responsible for each observed feature, and the absence of a signal for a 
compound can also inform the fingerprint [200]. At present, specific models of plant disease state BVOC 
profiles must be developed for each host–pathogen pair. 
 
ML and AI methods have proven valuable in developing tools to classify the disease state of plants and 
plant products based on complex BVOC profiles. Convolutional neural networks have been frequently 
used to extract features from the profiles and to develop predictive models [137]. Linear discriminant 
analysis was used to classify apples infected with two different bacteria based on BVOC profiles 
measured by PTR-MS [201]. This method showed 100% sensitivity and 86% specificity for Erwinia 

Figure 13. A proton-transfer-
reaction mass spectrometer 

analyzes a profile of VOCs in less 
than one second. 
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amylovora and 83% sensitivity and 83% specificity for P. syringae (Table 3). Fungal volatiles produced 
during growth on grains and cereals have been extensively characterized, including alcohols, aldehydes, 
esters, and furans [202]. These fingerprints may be sufficient for presumptive detection of fungal disease 
but would require confirmatory detection using another method to establish whether the pest is actionable. 
Another study of Fusarium spp. fungal infections on wheat or rice grains classified pathogens with 99% 
sensitivity and 99% specificity using PTR-MS analyses [203].  
 

Table 3. Plant Diseases and Pathogens Detected Using BVOC Markers 

Crop Disease Pathogen Representative BVOC 
markers 

Bacteria    
Potatoa Brown rot Ralstonia solanacearum 3-methylbutanoic acid 

2,2,3,4-tetramethylpentane 
2,3,4-trimethylhexane 
4-methyl-2-propyl-1-
pentanol 

Potatoa Ring rot Clavibacter 
michiganensis subsp. sepedonicus 

2-propanol 
3-methyl-3-buten-2-one 
toluene 

Tomatob Bacterial speck Pseudomonas syringae pv. tomato Hydroxylated monoterpenes 
3-Hexenyl esters 
Isoprenoid chlorides 

Applec Fire blight Erwinia amylovora 2-Ethoxy-2-methyl-propane 
3-Hexenal 
2-Hexenal 

Applec Blossom blight P. syringae subsp. syringae 2,4,4-Trimethyl-1-pentene 
Fungi    
Small grain 
cerealsd 

Fusarium head 
blight 

Fusarium spp. Acetylene 
Formaldehyde 
Pentanal 
Xylene 

Raspberrye Gray mold Botrytis cinerea N.D. 
Sources: 
a. [204] 
b. [205] 
c. [201] 
d. [203] 
e. [200] 

4.3.2 Electronic-Nose Sensors 

Although PTR-MS or GC-MS methods can be used both to measure BVOC profiles and analyze 
agricultural products, BVOC profiles and markers can also be used to design sensors using electronic 
nose (E-nose) technology or other portable detectors [206]. E-noses contain arrays of gas sensors with 
readout circuits and signal-processing electronics [207; 208]. Rather than identifying individual chemical 
components of a scent, E-noses integrate signals across sensors using classical algorithms or AI/ML. 
They have been extensively applied to measure food quality [209]. Cellini et al. used two commercial  
E-noses to detect E. amylovora infections of apples with 75% sensitivity and specificity [201]. An E-nose 
was used to distinguish pure cultures of fungi and oomycetes [210]. A graphene oxide–based sensor array 
functionalized with chemical ligands was used to sense BVOCs from tomato plant leaves associated with 
P. infestans infection [211]. E-nose measurements are usually completed within a few minutes. 
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The versatility, low weight, ease of use, short measurement time, and relatively low cost of E-nose 
devices makes them attractive frontline tools. However, compared to other BVOC analytical methods, E-
noses can have low analytical sensitivity as well as susceptibility to interference by temperature and 
humidity, which could limit their application for non-intrusive presumptive diagnostics [212; 213]. 
Several companies manufacture and distribute electronic nose instruments with proprietary sensors to 
detect VOCs. These include Sensigent (Baldwin Park, CA), Alpha MOS (Glen Burnie, MD), MUI 
Robotics (Nontaburi, Thailand), Electronic Sensor Technology (Newbury Park, CA), Plasmion 
(Augsburg, Germany), and the eNose Company (Zutphen, The Netherlands).  
 
As an alternative to electronic gas sensors, colorimetric indicators can be used in arrays to detect soluble 
gases associated with plant disease. Li et al. used ligand-functionalized nanoplasmonic materials to detect 
volatiles associated with P. infestans infections of tomatoes [214]. A smartphone was used to record and 
quantify color changes in the chemical sensors, resulting in 95% sensitivity and 100% specificity of 
detection. Nanomaterials can also be used in immunological and nucleic acid–based diagnostics, with the 
potential for hybrid diagnostic tests in the future [215]. 
 

4.4 TARGETED NUCLEIC ACID SEQUENCING 

The amplification and sequencing of marker genes or specific loci have revolutionized taxonomic 
classification in the laboratory. For example, many fungi can be identified by DNA extraction and 
amplicon sequencing with a fungal barcoding nrDNA region called the internal transcribed spacer (ITS) 
region [216]. However, detecting rust fungi using ITS is ineffective due to intraspecific and interspecific 
variation [134; 217]. Following the introduction of portable nucleic acid sequencers produced by Oxford 
Nanopore Technologies and Illumina (San Diego, CA), sequencing has become available as point-of-use 
technology. A Mobile And Real-time PLant disEase (MARPLE) diagnostics pipeline was developed for 
targeted sequencing of 242 genes to identify individual strains of wheat yellow rust pathogen (Puccinia 
striiformis f.sp. tritici) within 48 hours [218]. Targeted sequencing at the point of use may be an 
invaluable tool to identify new plant pathogens or strains—even if the cost, complexity, and speed make 
these methods unattractive for routine detection. 

4.4.1 Environmental DNA (eDNA) Analysis 

DNA isolated from soil, water, plant material, and air is collectively referred to as environmental DNA 
(eDNA). This emerging technique, first described in 2009, is capable of being deployed to monitor entire 
biological communities for organisms of interest. Marker genes or barcodes are amplified and sequenced 
from the environmental sample to characterize the community composition—a hybrid of targeted and 
untargeted nucleic acid analysis. It has been suggested that eDNA sampling from air, water wash, crop 
surfaces, etc. could be adopted at border control points to reduce instances of cross border outbreaks 
[219]. Researchers at the University of Canberra have noted the applicability of portable eDNA 
monitoring for protecting Australia from grain pests such as the Khapra beetle [220].  

4.5 UNTARGETED NUCLEIC ACID DETECTION 

The targeted methods to detect nucleic acids described above provide excellent sensitivity and specificity 
for individual pathogens. Many new formats for targeted molecular diagnostics have been proposed but 
not yet validated [221]. However, these methods may be too specific for a presumptive diagnostic test. 
They may fail to detect emerging pathogens or pathogens that have mutated sequences. Untargeted 
methods that do not rely on lists of known pathogens or sequences have become increasingly popular in 
clinical diagnostics [222]. These methods isolate DNA, RNA, proteins, or metabolites from samples and 
analyze the complex mixtures by sequencing or mass spectrometry. One study conducted in Kenya 
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demonstrated the applicability of untargeted analysis using a low-cost portable sequencing technology to 
detect plant viruses and pathogens on-site at a farm [223]. A pipeline has also been developed to identify 
plant pathogens from metatranscriptomic sequencing using RNA-seq technology [224]. The resulting 
datasets are ideal for biosurveillance because they are more likely to identify unknown, emerging, or 
unexpected pathogens and disease than other methods [108]. Untargeted methods may be more 
expensive, take longer to process samples and prepare libraries, require complex data analysis pipelines, 
and provide lower sensitivity than targeted analyses. 

4.6 BIOSENSORS 

Many of the immunological and nucleic acid–based techniques described above are time-consuming and 
require complex instruments and expertise. Consequently, many of them are better suited for 
confirmatory diagnostics in a laboratory than rapid, presumptive diagnostics in the field. Therefore, there 
is a strong interest in developing new biosensing systems for detecting plant pathogens with high 
sensitivity and specificity at the point of use [225]. Biosensors for detecting plant pathogens are based on 
biological recognition using different receptors (e.g., antibodies, DNA probes), along with optical and 
electrochemical techniques for reporting the output signals [225].  

4.6.1 Lab-on-a-Chip Electrochemical Biosensors 

Electrochemical biosensors, which combine microfluidic approaches with electrochemical biosensing, 
represent affordable, portable, and easy to use devices for food pathogen detection [226]. Lab-on-a-chip 
electrochemical biosensors feature quick detection time (ranging from a few minutes to 3 hours), accurate 
detection (with limits of detection as low as 4 colony forming units per mL whole bacteria, or 60 copies 
when the biorecognition element is genome-based), and relatively high-throughput (ability to combine 
multiple sensors on one platform to detect multiple pathogens at the same time) [226]. A rapid assay for 
X. fastidiosa using a lab-on-a-chip device with specific antibodies detected the pathogen spike on plant 
leaves at lower concentration than an ELISA method [227]. A microneedle system with a LAMP 
amplification platform and smartphone camera sensor was used to detect tomato spotted wilt virus RNA 
in tomato plant leaves [228]. This portable system detected virus-infected plants 5 days after infection 
with 98% sensitivity for lab-inoculated samples, 100% sensitivity for field samples, and 100% specificity 
for both samples. By combining extraction, purification, and measurement activities in a single device, 
these systems could provide a robust platform for field-based detection with high specificity. 

 
5. OPERATIONAL REQUIREMENTS FOR DETECTION TECHNOLOGY 

New technology to detect plant pathogens and disease must fit the needs of phytosanitary inspection 
organizations if it will be used to screen imports. Passenger and commercial cargo screening have 
different objectives and operational requirements in the US, as described above. This section considers 
how detection technology could be used at US POEs to inspect agricultural imports to complement or 
replace current methods. 

CBP has successfully integrated several types of detection technology into daily operations across major 
POEs. In 2018, CBP was required to increase chemical screening devices to interdict illegal drugs by the 
INTERDICT Act (Public Law 115-112). This new federal law included appropriations. As of October 
2020, CBP deployed 390 handheld electronic devices, including FTIR and Raman spectrometers, at POEs 
[165]. Additional field-testing kits have been deployed, including color changing test kits and fentanyl 
test strips. In keeping with a multi-layered approach, the above-cited illegal drug detection platforms are 
legally categorized as presumptive. Presumptive tests can be sensitive but less specific, and thus small 
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amounts of the substance can be detected [28]. The positive presumptive tests support further 
investigation to include additional searches and temporarily detaining of cargo. Confirmatory testing 
within a certified laboratory is utilized within the criminal legal system, a much more rigorous 
verification of the presence of an illegal chemical. This model presents a layered detection system for 
detecting illegal drugs with technology. These rapid, presumptive detection technologies complement 
targeting information, primary screening, and visual inspections at secondary screening to improve 
detection of cross-border threats. 

New technologies to detect plant pathogens and disease in agricultural products at US POEs would 
enhance the joint CBP–USDA AQI program [21]. Plant disease detection technology may have limited 
value if highly technical, specialized laboratory equipment is coupled with an intensive labor requirement. 
A similar model to implementing the successful chemical detection technology may be developed with 
plant disease detection technology. Utilizing technology that quickly identifies the presence of an 
agricultural pathogen is the first screening or presumptive test. However, plant pathogen detection differs 
from illegal drug detection due to the diversity of bacteria, fungi, viruses, and oomycetes that colonize 
plants. Most of these microorganisms do not significantly burden the plants, affect food quality, or 
impede agriculture. Therefore, most microorganisms are not regulated as quarantined pests. If a highly 
sensitive test detects microorganisms that cannot be readily classified by USDA identifiers or result in an 
EAN, then commerce could be slowed. Detecting dead pests or agricultural product damage without 
active disease would not be useful for the AQI program. Therefore, a strategy of applying a presumptive 
test with high sensitivity to detect disease at the expense of specificity for regulated pests may not be 
productive [229]. 

Useful tests for plant disease must balance sensitivity and specificity for regulated pests during the 
development and validation processes (i.e., high accuracy). This will not significantly increase the delay 
in moving agricultural products through the inspection process. Depending on the initial test results, 
further investigation with additional technology may be needed. Some of the rapid technologies described 
herein could prove useful for confirmatory identification by USDA staff, as well. In summary, working 
with existing technology implementation models could result in the development and adoption of one of 
the previously described technologies.  

Technology used for the presumptive detection of plant pests would need to provide results quickly and 
address stakeholders’ strategic priorities and the logistical constraints summarized in Table 4 [21]. 
Environmental conditions at POEs can have a degrading effect on the technology utilized to detect plant 
diseases. For example, air pollution is a significant concern at port facilities. Mobile sources such as 
combustion engines at ports release pollutants, including particulate matter, nitrogen oxides (NOx), sulfur 
oxides (SOx), VOCs, and air toxics [230]. Along with high humidity, salt water at seaports has a 
degrading effect on electronic components. Operating temperatures will vary substantially between open 
air inspections during the summer at the southern US border and among measurements performed in 
refrigerated warehouses or containers. Plant disease detection technology deployed at a POE will have to 
be hardened to withstand the environment, and testing under relevant operating conditions will be 
required. 

Operations must also consider power, training, reliability, and cost of any new detection technology. 
Agricultural specialists may not have access to electrical line power during inspections: battery-operated 
devices may be preferred. Training to use a new instrument and demonstrate proficiency could be a 
significant labor cost, depending on the technology and its human interface. The reliability of instruments 
and access to support or repair services is essential to maintain usability and build trust in the technology. 
Finally, costs of acquisition, maintenance, calibration, and consumables directly affect capacity and 
capability. Although it is premature to estimate the costs of the emerging technologies described herein, 
the development and commercialization process should consider foreseeable expenses. 
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New detection technology should consider the operational policies and priorities at the POEs and AQI 
program. Non-intrusive inspection methods are strongly preferred. These methods are faster, safer for 
Agriculture Specialists, and more acceptable to shippers and passengers. Transitioning from current 
intrusive visual inspections to mostly non-intrusive inspections would be a significant improvement in 
current screening processes. The time required to complete a measurement is also an important factor. 
There is no prescribed time limit for inspections, although importers, brokers, and CBP staff all share a 
goal of expediting trade and releasing cleared shipments as soon as possible. Versatile technology that can 
be used to detect a broad range of plant pests (including insects, nematodes, and microorganisms) would 
be preferred. Technology that can also detect other contraband or hazardous materials such as illegal 
drugs, contraband meats, wood packaging pests, undeclared agricultural products, weapons, or hazardous 
materials could be integrated into the CBP inspection workflow at POEs and would gain acceptance more 
quickly. 
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Table 4. Factors to Evaluate Potential Plant Pathogen and Disease Detection Technologies 

Factor Description 
TRL The technology readiness level measures the technical maturity of a system based on its demonstrated capabilities [231]. 
Validation Detection methods that have been tested independently from the developer and tested in multiple environments are more likely to 

meet operational performance requirements [232]. 
Cost Lower costs of equipment purchases, consumables, and lifecycle operations facilitate acquisitions to deploy capabilities at scale 

[233]. Total costs can be difficult to estimate at early stages of development. 
Time Short times to produce actionable results are preferred for perishable agricultural products and trade facilitation. 
Intrusiveness Non-intrusive inspections are usually preferred. Compared to intrusive methods, these methods are usually faster, reduce labor costs, 

and have higher acceptance from passengers, importers, and brokers. 
Sensitivity Presumptive tests should have high diagnostic sensitivity, the percentage of samples with pests that test positive [28; 234]. 
Specificity Confirmatory tests must have high diagnostic specificity, the percentage of samples without pests that test negative [28; 229]. High 

specificity in presumptive tests will reduce the number of unnecessary referrals for identification and will expedite commerce. 
Versatility Methods that can be used to detect a broad range of high-risk and emerging pests or other contraband will identify multiple threats to 

cross-border commerce [21; 235]. 
Interferences Components of a sample, cargo, or inspection environment that reduce the accuracy of tests will interfere with detection. 
Data analysis Methods that provide a clear and reproducible readout of pest detection are preferred. 
Training Detection methods that can be easily learned and executed without operator errors will be easier to adopt. 
Ruggedness Devices that resist damage and are easily repaired or replaced are more likely to be used consistently. 
Temperature Methods that can be performed onsite, in a full range of outdoor temperatures and refrigerated warehouses are preferred. 
Humidity Methods that can be performed onsite, in all US climate zones and refrigerated warehouses are preferred. 
Power Tailgate inspections at seaports and full-offload inspections in import lots may not have access to fixed electrical power. Battery-

powered devices may be preferred for some applications. 
Electronic 

communications 
Seaport and remote inspection locations may not have access to secure, reliable wireless or cellular networks. Self-contained devices 
may be preferred. 

Security Detection results could be sensitive, and devices should have strong cyberphysical security. 
Stakeholder 

acceptance 
Safe technology that can be easily explained to travelers and importers will improve the stakeholder experience [235]. Technology 
that addresses both CBP and USDA goals may promote acceptance [21].  
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6. TECHNOLOGY OPTIONS 

Two classes of new plant pathogen detection technologies described herein could be deployed to address 
the major operational requirements for phytosanitary inspections of imported agricultural products. 
Immunological diagnostic methods have proven successful for both animal and plant health, with 
increasing acceptance of point-of-use technologies that are rapid and inexpensive. BVOC detection 
methods have lower stages of technological readiness, but they have promising characteristics of rapid 
detection with lower intrusiveness than that of current inspections and tremendous versatility in detecting 
a broad range of pathogens, plant diseases, insect pests, and contraband materials. 
 
Table 5 compares nine classes of detection technologies, including five currently used in agricultural pest 
inspections. Current inspection methods that rely on visual detection by Agriculture Specialists are 
intrusive and could be less sensitive for detecting plant pathogens than insect pests. AK9 teams are 
currently used to screen mail and luggage for undeclared agricultural products. A new generation of 
canines that detects pests would need to be trained: it would be difficult to desensitize current AK9s to the 
agricultural products that are ubiquitous in import lots. X-ray methods will continue to be used to detect 
contraband at POEs, although it is unlikely that they can detect regulated pests with high specificity. 
Traps are limited to aerosolized particles such as spores, with significant interference and a requirement 
for a separate method to detect collected pathogens. Traps must be pre-deployed, requiring engagement 
with upstream packers and shippers. 
 
Automated imaging lacks specificity for many diseases and may not fit AQI program requirements. The 
tools currently reject a substantial quantity of products due to physical or environmental damage, or pests 
not subject to EANs. However, automated imaging combined with AI/ML methods of deep learning and 
pattern recognition could be adopted by packing companies and distributors to grade and sort agricultural 
products, improving quality and adding value for sales. USDA foreign commodity preclearance programs 
and trust fund agreements could be used as frameworks for collaborative engagement. For example, an 
agreement between the Mexican avocado industry and APHIS for importing commercial consignments of 
Hass avocados combines agriculture oversight by the National Plant Protection Organization of Mexico 
with biosurveillance, product cleaning and grading, and secure transport to the US [236]. Most costs 
would be paid by growers, packers, and exporters. 
 
Nucleic acid–based detection will likely remain the gold standard for confirmatory diagnosis of plant 
diseases. Improvements in targeted analysis will continue to reduce costs for point-of-use diagnostics. 
However, nucleic acid extraction requirements, matrix interferences, and amplification requirements of 
current methods require more time than other methods. These methods could detect nucleic acids from 
dead or inactive pathogens due to their low limits of detection. The high specificity and sensitivity of 
nucleic acid–based tests will become even more useful for USDA identifiers and biosurveillance of 
emerging pathogens. 
 
Antibody-based immunological methods have been validated and marketed to detect agricultural 
pathogens. Barriers to using them for routine pathogen detection include costs and total time required for 
testing. These methods can be highly specific, which may limit their utility for detecting multiple 
pathogens. Multiplexing, performing multiple immunoassays at the same time, could make these tests 
more attractive. Current immunoassays use antibody reagents from animals, which take time to develop 
and scale manufacturing. Advances in using libraries of nanobodies, selective peptides, and aptamers to 
rapidly develop assays could make these rapid tests available quickly to detect and exclude emerging 
pathogens before they become established in the US. 
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Automated BVOC detection could replicate the demonstrated successes of canines identifying scents 
from agricultural products and pests. Advances in the analytical sensitivity of mass spectrometry and the 
robustness of electronic noses create new opportunities for non-invasive detection. New AI/ML classifier 
tools can automate data analysis and report compositions in real time. Time requirements for BVOC 
analyses are decreasing, as traditional separation systems—like gas chromatography—are no longer 
required to deliver samples to modern ionization systems and mass analyzers. Key areas for the 
development of BVOC detectors include developing specific BVOC profiles of plant diseases, validating 
the accuracy of detector–classifier systems, addressing the limit of detection issues for less sensitive 
sensors like e-Nose devices, and mitigating the effects of temperature, humidity, and gas contaminants on 
detector performance in operational environments. These systems could also be used to detect agricultural 
contraband (including meats), illicit drugs, hazardous chemicals, and explosives. 
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Table 5. Relative Performance of Detection Technologies  

Factor Visual Canine Traps X-ray Immunological Nucleic Acid BVOC Automated Imaging Advanced Nucleic Acid 
Time 5 min 1–5 min (1–5 min) 2–5 min 10 min 20 min 1–20 min 2–5 min 2 days 
Intrusiveness High Med Med Low High High Med High High 
Sensitivity Med High Med Low Med High Med-High Med Low 
Specificity Med Med Low-High Low Med High Low Low High 
Versatility High Med Low-High High Med High Med High High 
Interferences Med Med High Low Med Med Med Med Med 
Data analysis Med Low N/A Med Low Med Med Med Med 
Automation Low Low Med-High High Med-High Med-High High High Med-High 
Training Med Med Low Med Low Med Med Med High 
Ruggedness N/A Low High Low High Low Med Med Med 
Temperature Low Low Med High Med Low High High Med 
Humidity Low Low Med Med Low Med Med Med Med 
Power N/A N/A Med High Low Med Med-High Med High 
TRLa Mb Mb Mb 3 Mb Mb 4 4 3 

a. The technology readiness level (TRL) indicated for the most advanced application of a technology to detect a plant pathogen or disease. Applications to detect a new pathogen 
may be at a lower TRL. 

b. Mature, the technology is commercially available or fully implemented.
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APPENDIX A. OBJECTIVES, SCOPE, AND METHODOLOGY  

A.1. OBJECTIVES 

This project assessed the state of technology to identify opportunities for the United States Department of 
Homeland Security (DHS) to develop and deploy advanced plant pathogen detection systems. The 
assessment could inform future research and development activities to demonstrate applications of the 
technology, test commercial systems, or refine specifications for sensor technology. This project was 
funded by the U.S. DHS Science & Technology Directorate (S&T) through the Food, Agriculture, and 
Veterinary Defense (FAV-D) program.  
 
The project adapted and applied the GAO Technology Assessment process [237]. This process includes 
Initiation, Design, Message Development, and External Review phases. The initiation phase engaged 
DHS S&T staff and stakeholders to focus the scope of the assessment to address mission requirements. 
The design phase included initial research, identification of technology options, and consultations with 
CBP stakeholders. The message development phase collected information about the capabilities and 
technology readiness level (TRL) of commercial and pre-commercial pest detection technology. Finally, 
the external review phase solicited and addressed feedback from DHS stakeholders, external subject 
matter experts, and USDA APHIS stakeholders in the AQI program. 
 

A.2. SCOPE 

This technology assessment focused on methods to detect plant pathogens and disease. We further 
focused on technology relevant to the mission space of DHS components. For example, US Customs and 
Border Protection (CBP) performs agricultural inspections on passengers, cargo, and international mail at 
US ports of entry (POEs) and could test new detection technology in future campaigns.  
 
This study did not evaluate technology to detect insect, nematode, or invasive plant pests. Human and 
animal pathogen detection was also not included.  
 

A.3. METHODOLOGY 

This technology assessment was based on international published literature, publicly available materials, 
and discussions with subject matter experts and stakeholders. We did not test any technology or 
independently reproduce reported tests in this project. Names of commercial products and companies that 
manufacture detection technology are included to illustrate the feasibility and TRLs of detection methods. 
Usage does not imply endorsement of a commercial product or service. 
 
Our DHS S&T Program Manager shared insights into CBP agriculture inspections based on a visit to the 
New York and New Jersey Port Authority. We conducted virtual interviews with CBP Program 
Managers, Supervisors, and Agriculture Specialists from the Office of Field Operations. We also visited 
CBP Agricultural Inspection operations at the Miami Port of Entry, including the Miami Seaport and 
Miami International Airport (MIA). At the MIA complex, we toured bonded commercial cargo 
warehouses with agricultural imports, the Miami International Mail Facility, and the Agricultural 
Inspection screening area for passengers at MIA. In-person meetings with CBP managers and Agriculture 
Specialists provided outstanding context to understand current inspection procedures, workload, 
operational requirements, and opportunities. 
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Subsequently, we visited two POEs overseen by the Laredo Field Office to observe agriculture 
inspections at a land border POE. We toured the import lot at the Hidalgo/Pharr Bridge, near Hidalgo, 
TX. We also toured the import lot at the commercial World Trade International Bridge, the passenger 
Juarez-Lincoln bridge, and the Laredo International Railway Bridge, all near Laredo, TX. Discussions 
with CBP staff at these sites complemented Miami discussions, with a different profile of agricultural 
imports and different operational requirements. 
 
A literature search was performed using internet search engines and reference databases during the period 
of September 2023 to March 2024. Unpublished reports and web pages were identified by internet 
searches and references from relevant materials. Citations of key papers and references from those papers 
were used to identify relevant examples of detection technology applications. Research scientists at 
ORNL provided expert guidance on strengths and limitations of specific detection methods. 
 
A virtual meeting with external subject matter experts was held on February 9, 2024, to gather feedback 
on draft findings and to identify technology best suited for the phytosanitary inspections of agricultural 
products. These experts from academia and agriculture extension services provided broad insight into 
basic research on pathogen detection as well as pragmatic information about the challenges of rapidly 
identifying pathogens in plants and agricultural products. 
 
Finally, a virtual meeting with USDA Animal and Plant Health Inspection Service Plant Protection and 
Quarantine staff was organized to gain a deeper understanding of the APHIS perspectives on pest and 
pathogen detection by CBP Agriculture Specialists and subsequent identification by USDA identifiers. 
This discussion helped to shape our description of operational requirements for detectors. 
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APPENDIX B. DEFINITIONS 

Accuracy (Diagnostic) 
The proportion of correctly classified samples based on the target characteristic. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
#	𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + #	𝑡𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
× 100 

 
Article 
Any material or tangible object, including a living organism, that could harbor living plant pests or 
noxious weeds. The term includes associated articles such as soil and packaging. Source: 7 C.F.R. § 330. 
 
Biogenic volatile organic compound (BVOC) 
Organic chemical compounds that evaporate under normal indoor atmospheric conditions of temperature 
and pressure [238] that are produced by biological systems. 
 
Contaminating pest 
A pest that is carried by a commodity, packaging, conveyance or container, or present in a storage place 
and that, in the case of plants and plant products, does not infest them. Source: ISPM5 [34].  
 
Economically significant domestic crops 
Agricultural field crops that were the largest contributors to the U.S. economy in 2022 included corn, 
soybeans, wheat, cotton, rice, peanuts, sorghum, oats and barley. Production of fruit (grapes, apples, 
strawberries and oranges), tree nut (almond, walnut and pistachio) and vegetable (tomatoes and potatoes) 
also had high horticultural value. Source: USDA ERS.  
 
Emergency action 
A prompt official operation undertaken to prevent the entry, establishment or spread of a pest in a new or 
unexpected situation not addressed by existing phytosanitary measures. Source: ISPM5 [34]. 
 
Insect 
Any of the numerous small invertebrate animals generally having the body more or less 
obviously segmented, for the most part belonging to the class insecta, comprising six-legged, usually 
winged forms as for example, beetles, bugs, bees, flies, and to other allied classes of arthropods whose 
members are wingless and usually have more than six legs, as for example, spiders, mites, ticks, 
centipedes, and wood lice. Source: 7 U.S.C. § 136 
 
Living 
Viable or potentially viable. Source: 7 C.F.R. § 330. 
 
Plant 
Any plant (including any plant part) for or capable of propagation including trees, tissue cultures, plantlet 
cultures, pollen, shrubs, vines, cuttings, grafts, scions, buds, bulbs, roots, and seeds. Source: 7 C.F.R. § 
330. 
 
Plant disease 
Physiological damage caused by living organisms (called pathogens), such as fungi, bacteria, viruses, 
nematodes, phytoplasmas, protozoa, and parasitic plants; and by nonliving agents, such as air pollutants, 
nutrient imbalances, and unfavorable environmental factors. Source: adapted from the American 
Phytopathological Society. 
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Plant pathogen 
A disease-producing organism or biotic agent. Source: D’Arcy et al. [34; 239]. 
 
Plant pest 
Any living stage of any of the following that can directly or indirectly injure, cause damage to, or cause 
disease in any plant or plant product: A protozoan, nonhuman animal or insect, nematode, parasitic plant, 
or microorganisms (bacterium, fungus, virus or viroid, infectious agent or other pathogen), or any article 
similar to or allied with any of the foregoing. Sources: 7 C.F.R. § 330 and 7 U.S.C. § 136. 
 
Plant product 
Any flower, fruit, vegetable, root, bulb, seed, or other plant part that is not included in the definition of 
plant; or any manufactured or processed plant or plant part. Sources: 7 C.F.R. § 330, [34]. 
 
Point-of-use diagnostics 
Tests performed near the area of plant growth or agricultural inspections to provide immediate actionable 
information. These simple tools are analogous to point-of-care tests for clinical diagnostics. Source: FDA. 
 
Quarantine pest 
A pest of potential economic importance to the area endangered thereby and not yet present there, or 
present but not widely distributed and being officially controlled. Source: ISPM5 [34]. 
 
Regulated non-quarantine pest 
A non-quarantine pest whose presence in plants for planting affects the intended use of those plants with 
an economically unacceptable impact and which is therefore regulated within the territory of the 
importing contracting party. Source: ISPM5 [34]. 
 
Selectivity (analytical) 
Extent to which the method can determine a particular compound in the analyzed matrices without 
interference from matrix components. Source: Bioanalytical Method Validation Guidance for 
Industry, FDA [240; 241]. 
 
Sensitivity (analytical) 
Lowest analyte concentration in the matrix that can be measured with acceptable accuracy and 
precision (i.e., lower limit of quantification). Source: Bioanalytical Method Validation Guidance for 
Industry, FDA [240; 241]. 
 
Sensitivity (diagnostic) 
A test’s capability to yield a positive result when the targeted characteristic is present –the effective 
accurate pathogen detection level. Source: Caldwell et al. [229]. 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
#	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

#	𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + #	𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
× 100 

 
Specificity (analytical) 
Ability of the method to assess, unequivocally, the analyte in the presence of other components that 
are expected to be present (e.g., impurities, degradation products, matrix components, etc.). Source: 
Bioanalytical Method Validation Guidance for Industry, FDA [240; 241]. 
 
Specificity (diagnostic) 
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A test’s ability to correctly yield a negative result when the targeted characteristic is not present  [229]. 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
#	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

#	𝑡𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + #	𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
× 100 

 
Surveillance 
An official process which collects and records data on pest presence or absence by survey, monitoring or 
other procedures. Source: ISPM5 [34]. 
 
Technology readiness level (TRL) 
A type of measurement system used to assess the maturity level of a particular technology. TRLs are a 
compendium of characteristics that describe increasing levels of technical maturity based on demonstrated 
(tested) capabilities. Sources: NASA and GAO [231] 
 
Vector 
A living organism (e.g., insect, mite, bird, higher animal, nematode, parasitic plant, human) able to carry 
and transmit a pathogen and disseminate disease. Source: D’Arcy et al. [239] 
 
Visual examination 
Examination using the unaided eye, lens, stereoscope or other optical microscope. Source: ISPM5 [34]. 
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