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ABSTRACT

The Dagstuhl Seminar 23352, titled “Integrating HPC, AI, and Workflows for Scientific Data Analysis,”
held from August 27 to September 1, 2023, was a significant event focusing on the synergy between High-
Performance Computing (HPC), Artificial Intelligence (AI), and scientific workflow technologies. The
seminar recognized that modern Big Data analysis in science rests on three pillars: workflow technologies for
reproducibility and steering, AI and Machine Learning (ML) for versatile analysis, and HPC for handling
large data sets. These elements, while crucial, have traditionally been researched separately, leading to gaps in
their integration. The seminar aimed to bridge these gaps, acknowledging the challenges and opportunities at
the intersection of these technologies. The event highlighted the complex interplay between HPC, workflows,
and ML, noting how ML has increasingly been integrated into scientific workflows, thereby enhancing
resource demands and bringing new requirements to HPC architectures, like support for GPUs and iterative
computations. The seminar also addressed the challenges in adapting HPC for large-scale ML tasks, including
in areas like deep learning, and the need for workflow systems to evolve to leverage ML in data analysis fully.
Moreover, the seminar explored how ML could optimize scientific workflow systems and HPC operations,
such as through improved scheduling and fault tolerance. A key focus was on identifying prestigious use
cases of ML in HPC and understanding their unique, unmet requirements. The stochastic nature of ML and
its impact on the reproducibility of data analysis on HPC systems was also a topic of discussion.

Seminar Aug 27–Sep 01, 2023 – https://www.dagstuhl.de/23352

2012 ACM Subject Classification Computational Engineering / Finance / and Science; Distributed / Parallel
/ and Cluster Computing; Machine learning

1. EXECUTIVE SUMMARY

Rosa M. Badia (Barcelona Supercomputing Center, ES)
Laure Berti-Equille (IRD - Montpellier, FR)
Rafael Ferreira da Silva (Oak Ridge National Laboratory, US)
Ulf Leser (HU Berlin, DE)

The Executive Summary for the Dagstuhl Seminar 23352 on “Integrating HPC AI and Workflows for
Scientific Data Analysis” encapsulates a comprehensive discussion on the integration of High-Performance
Computing (HPC), Artificial Intelligence (AI), and workflow technologies. The seminar, held from August
27 to September 1, 2023, was pivotal in highlighting the interdependence of these technologies for modern
Big Data analysis. With a focus on bridging the gaps between these historically siloed areas, the seminar
addressed the augmentation of resource demands due to the integration of AI into scientific workflows, the
challenges posed to HPC architectures, and the exploration of AI’s potential in optimizing workflow systems
and operations, including scheduling and fault tolerance.

The seminar proffered a nuanced understanding of AI+HPC integrated workflows, elaborating on the different
modes in which AI and HPC components could be coupled within workflows. These ranged from AI models
replacing computationally intensive components (AI-in-HPC) to AI models that operate externally to steer
HPC components or generate new data (AI-out-HPC), and to concurrent AI models that optimize HPC
runtime systems (AI-about-HPC). Such integration is vital for the future of scientific workflows, where AI
and HPC not only coexist but also co-evolve to foster more effective and intelligent scientific inquiry.

A shift in the paradigm of HPC systems towards real-time interaction within workflows was another focal
point of the seminar. Moving away from the traditional batch-oriented systems, the seminar shed light on
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the emerging need for workflows that support dynamic, on-the-fly interactions. These interactions are not
only vital for the real-time steering of computations and the runtime recalibration of parameters but also for
making informed decisions on cost-value trade-offs, thereby optimizing both computational and financial
resources.

The discussion also ventured into the realm of federated workflows, distinguishing them from the conventional
grid computing model. Federated workflows, or cross-facility workflows, emphasize the orchestration of
workflows across different computational facilities, each with distinct environments and policies. This
paradigm advocates for a seamless execution of complex processes, underscoring the necessity of maintaining
coherence and coordination throughout the workflow life cycle.

Contractual and quality-of-service (QoS) considerations in federated workflows, especially when crossing
organizational boundaries, were identified as critical areas of focus. The seminar highlighted the need for
formal contracts to manage the intricate bindings and dynamic interactions between various entities. The
role of a federation engine was emphasized as a tool for translating requirements, ensuring compliance, and
resolving disputes, thereby ensuring the workflow’s needs are met at each federation point.

Moreover, the seminar identified key challenges and opportunities at the intersection of these technologies,
such as the stochastic nature of ML and its impact on the reproducibility of data analysis on HPC systems. It
highlighted the need for holistic co-design approaches, where workflows are introduced early and scaled from
small-scale experiments to large-scale executions. This approach is essential for integrating the ’full’ workflow
environment, including ML/AI components, early in the process, thereby replacing expensive simulation
with fast-running surrogates and enabling interactive exploration with the entire software environment.

In summary, the Dagstuhl Seminar 23352 provided an in-depth exploration of the synergistic relationship
between HPC, AI, and scientific workflows. It paved the way for future research directions and practical
implementations, aiming to revolutionize scientific data analysis by harmonizing computational power with
intelligent, data-driven analysis. The discussions and outcomes of the seminar are poised to influence the
development of workflow systems and technologies in the years to come, signaling a shift towards more
integrated, adaptive, and efficient scientific computing paradigms.
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2. CHALLENGES

2.1 WORKFLOW DYNAMICS AND MANAGEMENT

Rosa M. Badia (Barcelona Supercomputing Center, ES)
Silvina Caino-Lores (INRIA - Rennes, FR)
Kyle Chard (University of Chicago, US)
Wolfgang E. Nagel (TU Dresden, DE)
Fred Suter (Oak Ridge National Laboratory, US)
Domenico Talia (University of Calabria, IT)

A broad definition of an integrated AI+HPC workflow is that of a workflow in which at least one HPC task
(i.e., an HPC simulation) and at least one AI task (e.g., a surrogate model) coexist in the same workflow
application. We also consider that such workflows can run on HPC systems, although not necessarily all their
components are executed on HPC systems.

We can then refine this definition according to how the AI and HPC components are effectively coupled,
ordered, and placed within the workflow. The first coupling mode is when an AI model is used to replace a
computationally intensive component, or the whole HPC simulation itself, of the workflow (AI-in-HPC). In
this scenario, only the inference part of the model is part of the workflow, the training of the model being
done offline. The second coupling mode captures scenarios where AI is used to steer the HPC components or
generate new data or parameterization. The AI model thus resides “outside” of the main HPC simulation
(AI-out-HPC). Here both training and inference can be part of the AI+HPC workflow, e.g., when using
reinforcement learning techniques. The last coupling mode is when the AI models are concurrent and
coupled to the main HPC tasks and run synergistically with simulations (AI-about-HPC). For instance, AI
models can be used to optimize the performance of the HPC runtime system/workflow manager/resource
manager/scheduler. Results of the HPC component are thus used to train the AI component as it runs and
allow for system-wide predictions and optimization. Note that these three coupling modes are not mutually
exclusive and are commonly combined within the same workflow.

2.1.1 Dynamic behavior in AI+HPC workflows

Most managers still treat static programming and execution. Expressing and handling dynamicity will become
critical for AI+HPC workflows.

1. Adding components. Users might want to add or interact with components of the workflow. How to
address this from a resource allocation and management perspective?

2. Alternative path in the workflow (branching). Workflows can have a traditional HPC component and a
surrogate model. These options have different computational complexities and might be triggered by
different conditions (e.g., low model accuracy). Dynamic resource allocation is needed in order to run
the HPC simulation, for example.

3. Feedback loop (i.e., steering, control loops). Ability to manage detection of errors, thresholds, hooks in
general, and change the behavior of the workflow accordingly. This can be due to the behavior of the
AI model (bias, overfitting, etc.). For example, monitoring malicious (or not malicious, just because of
data corruption) behavior in federated learning workflow, which are becoming increasingly present
in HPC (e.g., Integrated circuit model building at the advanced photon source, biomedical workflows
across Argonne Leadership Class Facility and Broad with APPFL).

4. Fault management, exception management. Ability to manage faults at the task level (software or
hardware, division by error, etc) and change the behavior of the workflow accordingly.

3



5. Other things to consider: security, privacy, provenance, etc.

Although points 3 and 4 are conceptually different (the former is motivated by application functionality,
the latter by application errors or runtime state), underlying mechanics in the runtime might be the same
to manage these events. These mechanics might not necessarily be exposed to the same degree to the end
user/application.

An additional problem can be how to detect these errors/faults. The workflow manager should provide this
functionality.

2.1.2 Resource Management

One of the main activities performed by Workflow Management Systems is resource management, taking
into account that the term resources include hardware infrastructure, software components and data.

We consider the following set of stages as the more common set for the workflow lifecycle under current
workflow management systems:

• Stage 1: Preparation of environment: performs the software dependency deployment (i.e., using
containers).

• Stage 2: Data and artifacts discovery/staging in. With artifacts we consider, for example, a pre-
processed dataset, a trained AI model, etc. This can be for example performed using Apache airflow
data pipelines that define the data movements that are needed before the actual computing execution.

• Stage 3: Compute resource provisioning. Current practices do not include elements of I/O scheduling
and allocation that favor AI workflow executions. Other extensions that can be considered for improving
convergence with AI are exploiting locality and reusing data blocks (for example reusing models for
inference tasks), both on disk and in memory, but currently there is insufficient locality exposure to
other elements in the system. Other ideas that can be leveraged in HPC come from the cloud, like
expressing data affinity.

• Stage 4: Deployment of the pilot job(s). The dynamicity of the pilot shapes/types to match dynamic
workload (e.g., MPI, single-core, GPUs, etc.).

• Stage 5: Execution of the actual computational workflows.

• Stage 6: Data and artifacts staging out.

• Stage 7: Cleanup.

The order of the stages might depend on the actual solution (e.g. using Conda environments, stage 1 is
executed after stage 3), or some stages will not exist in some cases (i.e., stage 4 maybe is not needed in some
cases).

We consider the following approaches are applied in workflows’ resource management:

1. Use of AI to inform the scheduler: AI can be used in multiple forms to assist the resource management.
We are listing a few below:

• To estimate the required resources and run time and manage faults.

• To learn from previous executions.

• To perform uncertainty management (knowing that user-provided estimates are inaccurate, mainly
for walltime, memory and, storage).
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The challenges arise on how to acquire, clean and assimilate the data necessary to train these models.
This includes, Identifying available data sources: user knowledge, scheduler logs, application/workflow
monitoring, hardware monitoring (e.g., bluefish, starfish, etc.).

2. Use of elasticity, heterogeneity and performance of AI in HPC systems. Optimally, workflow manage-
ment systems should be able to request heterogeneous resources to suit the AI and HPC workload on
demand (not just the amount of resources but the type of resource that will provide the desired level of
performance for a specific task). Currently, some systems implement workarounds to provide elasticity
within a static allocation (supported with Slurm and LSF, for example). Existing AI libraries may
require reengineering to improve their performance and unlock high scalability on HPC environments
(this might involve revisiting their interaction with the HW, I/O system, etc.). For example, some of
this is happening e.g., in the DOE world for Intel and AMD GPUs. Also, vendors are working on this
for specific hardware (e.g., cerebras, sambanova, graphcore, etc.).

2.1.3 Integration of Different Platforms and Systems

AI motivates the need for further integration of systems:

1. The integration of HPC, which typically operates on a batch-queue basis, with cloud technologies like
Kubernetes (K8s), presents a unique challenge in workflow management. A work in progress approach
is currently being explored, aiming to delegate parts of workflows to existing managers within each
facility, such as Zambeze and Fluence, without necessitating oversight of the entire computation. This
raises a pertinent question about the need to reevaluate and possibly redimension storage services in
HPC facilities to effectively accommodate the increasing demands of AI workloads.

2. The management and locality of data in distributed or cross-facility workflows present significant
challenges, particularly in terms of authentication, authorization, and policy adherence. Initiatives
like EU’s Gaia-X and Fenix, as well as the US’s OneID, are making strides in addressing these issues.
However, policy constraints often emerge as the most limiting factor in these contexts, impacting how
data is accessed and shared across different facilities.

3. Also workflow management (see example of federated learning).

4. In the Edge-to-HPC paradigm, a key strategy is to position tasks, such as training, close to the data
source at the edge, optimizing the use of edge nodes and HPC nodes. This involves adjusting the
granularity of tasks and the size of data in relation to the computing capabilities of these nodes. A
critical aspect of this approach is investigating the trade-offs between time-to-prediction and accuracy,
especially when implementing compression and filtering techniques. These methods can impact the
accuracy of AI models but are beneficial in reducing the data transfer and processing load. This
approach is not only applicable to AI models but can also extend to other data generation stages, like
HPC simulations, and is particularly relevant in scenarios requiring urgent computing and real-time
steering, where efficiency and response time are crucial.

5. The integration of programming models and environments for workflows that combine HPC and AI
presents a unique challenge, given the significant differences between HPC and AI programming
environments. To bridge this gap, there are ongoing efforts such as PyCOMPSs (Poiata et al. 2021),
which is based on Python, aiming to harmonize these distinct environments. This initiative represents
a step towards creating a more unified and efficient programming model that can cater to the diverse
requirements of both HPC and AI, facilitating smoother integration and more effective workflow
management in these complex computational domains.

In conclusion, while leveraging AI for scheduling in HPC systems promises efficiency gains, it also raises
the critical question of its impact on energy consumption. The trade-off between enhanced scheduling

5



performance and increased energy demands necessitates careful consideration. The path forward lies in
steering AI towards green computing, where AI not only optimizes computational tasks for performance
but also aligns with energy-efficient practices. This approach requires a delicate balance, ensuring that the
benefits of AI in HPC do not inadvertently escalate energy consumption, but rather contribute to a more
sustainable and environmentally conscious computing paradigm.

2.2 SUSTAINABILITY CONCERNS

Laure Berti-Equille (IRD - Montpellier, FR)
Timo Kehrer (Universität Bern, CH)
Christine Kirkpatrick (San Diego Supercomputer Center, US)
Dejan Milojicic (HP Labs, US)
Sean R. Wilkinson (Oak Ridge National Laboratory, US)

In this section, we delve into the crucial questions raised during our brainstorming sessions focusing on the
integration of sustainability in HPC and AI-driven scientific workflows. These discussions centered around
three main queries: (1) how to cultivate sustainability awareness, (2) the categorization of key sustainability
challenges specific to HPC+AI workflows, and (3) pinpointing where these challenges predominantly arise in
the workflow lifecycle. To tackle the first question on building sustainability awareness, we drew insights
from existing initiatives such as the Sustainability Awareness Framework (SusAF) (Sustainability Awareness
Framework (SusAF) 2023), adopting a multi-faceted approach that encompasses environmental, economic,
social, and technical dimensions of sustainability (Bash et al. 2023). Addressing the second question,
Fig. 1 provides a structured categorization of these sustainability challenges, recognizing that the list is not
exhaustive and acknowledging the existence of cross-cutting challenges that span multiple dimensions.

Figure 1. Categorized sustainability challenges in HPC+AI workflows.

For example, among cross-cutting challenges, sustainability awareness is a central challenge as people
(social dimension) don’t always understand how to measure the energy they’re consuming (this is especially
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difficult on a shared system) (technical dimension) and also the carbon footprint of their workflows (environ-
mental dimension) (Li et al. 2023). This is also difficult to measure if the amounts (energy, CO2) are not even
exposed somehow.

The re-usability challenge also belongs to both technical and social as for the latter, how to convince potential
users to re-use (parts of) existing workflows and actually make this re-use technically possible and easy for
various kinds of users (DevOps, domain scientist, data scientist, etc.). Another example of central challenges,
at the governance level and at the convergence of social, technical, economic and environmental dimensions
of sustainability is the deployment of sustainability-rated multi-objective policies where some priorities
can be defined adaptively depending of the application context and needs to favor either environmental, social
or economic considerations for example. As it’s commonly the case in many sustainability studies since the
UN 2030 agenda and its SDGs (Transforming our world: the 2030 Agenda for Sustainable Development
2023), we can also distinguish between high-level objectives and activities which need to be improved to
reach the objectives since both are challenging per se. In the figure, we note in italic the objectives whereas
the activities are in normal font.

2.2.1 Main Sustainability Challenges

• Environmental Sustainability. The main challenge we identified under the environmental sustain-
ability dimension is how to get certified provenance data to quantify or estimate the impact on
the environment and natural resources, i.e., provenance data about CO2 emissions, energy or water
consumption from authoritative sources (Shankar and Reuther 2022). The lack of traceability meta-
data makes it very difficult to know, for example, where the electricity comes from and distinguish
between renewable vs non-renewable energy, clean or green energy powering some given HPC+AI
workflows (Zhao et al. 2022). Similarly, reliable and continuously up-to-dated data about water-usage,
gas emission or waste management is currently missing, not detailed enough, or not trustworthy and
we cannot drill-down and quantify the impact of a single workflow on the environment (or drill-up
for a set of workflows of a given application) (Qi et al. 2023). As a consequence, there is a lack of
benchmark and a lack of gold standard that could be used as a reference for virtuous practice. More
generally, this leads to a lack of exposure and awareness regarding environmental impacts of the
workflow lifecycle.

• Social Sustainability. A central challenge is the lack of incentives individual researchers, service
providers, organizations, and funders have for nurturing sustainability. This is especially true for
researchers, who are incentivized to experiment, analyze, and publish results. Nowhere in the academic
process that relates to tenure and promotion are sustainability concerns accounted for, such as making
computing choices that are economically and environmentally sustainable. Similarly, funders have little
incentive to promote sustainability as they do not directly suffer the consequences of poor economic
or environmental choices. Another challenge in the social realm is making choices that maintain a
sustainable workforce. For example, a researcher has no incentive to use the workflow package or
machine learning (ML) software with the largest market share or that is most widely used and supported
at a computing center. If more researchers stayed with market share and understood platforms, it is
easier on research computing staff to support fewer packages, as well as software that is maintained
with security patches and bug fixes. The incentives for such dimensions are with service providers,
who have few ways to motivate researchers to factor other variables into their choice of research
computing components. One way to promote social sustainability values, including transparency,
accountability, and fairness, is to embed these principles in shared community values. The US
National Science Foundation (NSF) funded EarthCube initiative brought together geoscientists and
cyberinfrastructure builders to build innovative tools and invigorate the community with advanced
computing techniques. The EarthCube community, led by leaders elected by the membership and a
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funded coordination office, wished to imbue the context of the collective work with shared principles.
The principles included Responsibility, Dependability, Service, Openness-Transparency (among others).
By defining the shared values, EarthCube was able to tune strategic actions to model and encourage
these seemingly intrinsic qualities. This led to impactful work as shown in the recently released
EarthCube retrospective (EarthCube: A Retrospective 2011-2022 2023).

• The Technical sustainability of HPC+AI workflows can be considered in (at least) three ways: (1) that
of the HPC system itself, (2) that of the AI models used as tools and constructed by the workflow, and
(3) that of the workflow itself when considered as research software. Because current HPC systems
are short-lived and highly specialized, HPC workflows are usually tailored specifically to the systems
where they will run, and this causes problems in workflow portability (running a workflow on another
current HPC system) and workflow migration (running a workflow on a future HPC system).

• The Economic Sustainability relates to cost management of HPC+AIworkflows, as well as the entire
workflow ecosystem management, accounting for the end-to-end lifecycle of the workflows. Some of
the above challenges can be dependent (correlated or anti-correlated). Therefore, corrective actions
may have various indirect positive or negative impacts beyond what we can expect and there is not
yet a principled way of estimating and predicting the collateral effects of improving one dimension
or one objective over the others. For example, if we decrease the energy consumption of a workflow
the overall cost can however be increasing; loose-coupling of softwares can have a positive effect and
facilitate reuse, but may also increase the computation cost (Nassereldine et al. 2023). Nevertheless,
we should not compromise in making research progress.

2.2.2 Sustainability Challenges Across the Workflow Lifecycle

Finally, we attempt to address the third question “Can we pinpoint where the sustainability challenges are
predominant in the workflow lifecycle?” We decompose the workflow lifecycle into several stages and
consider the human, data, and AI planes (Fig. 2) (Dube et al. 2021).

Figure 2. Quasi reference model for sustainability in HPC+AI workflows.

Although it is not represented as a cycle, the workflow lifecycle is iterative and can have multiple feedback
loops. The data processing block can be decomposed into multiple blocks (data acquisition/collection, storage,
preprocessing, analytics, use, distribution, archival), and again not necessarily executed in a sequential
manner and some blocks (such as archival) may not be present in some workflows. Similarly, the ML model
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development block can be decomposed into various blocks such as feature engineering, model building,
training, tuning, validation and exec monitoring. Data and AI planes are predominantly supported by HPC
and AI softwares respectively. Our exercise consisted in mapping and locating the challenges we identified
previously into the generic workflow lifecycle because all the challenges may not be not occurring at every
stage and when they occur they may not be predominant or have a critical impact on sustainability. Empirical
experiments will surely be needed to verify our assumptions here.

For example, energy consumption could be reduced essentially targeting the data analytics stage with more
frugal methods, in particular during model training and tuning stages. Ensuring that the workforce (such as
domain and data scientists as well as Devops engineers) is sustainable is important during the early stage of
the application domain and goal specifications for designing the adequate workflow and framing the ML on
HPC problem and also during the deployment as well as continuously gathering reliable data characterizing
the environmental impact of the workflow (energy, gas emission, etc.). Reallocating computing resources or
data storage (vicinity) can save energy and reduce technical or environmental costs related to computation,
data storage and archival.

A follow-up of this preliminary discussion can be to identify the leverages in the workflow lifecycle where a
small improvement of some targeted tasks can have a huge positive impact on the sustainability dimensions.
Next, we could define Whatif scenarios and experiments to simulate the gain/loss in terms of sustainability
and support sustainability-rated multi-objective policies.

2.2.3 Use Cases

The following are some use cases that drive sustainability concerns:

• Physical limits: some sites cannot bring more power than they are designed for, therefore it is required
to do power-throttling and minimizing power consumption to conduct computation. Both this and the
next use case mean doing more (computation) with less (energy)

• Economically-driven: energy costs a lot of money, running an exascale computer costs even more than
buying it. Therefore it is required to be mindful when leveraging these computers to get most out of
large scale computations.

• Save the planet: many executives are making pledges to make their corporations net-zero or even
net-positives. It is non-trivial to achieve this and in many cases it means payments towards clean energy.
It entails both upstream and downstream explorations.

• Broader good: there is a public pressure for less consumption and for clean energy use. HPC and AI
computers consume lots of energy, so being mindful to use clean energy most of the time is one way to
alleviate the problem.

2.3 INTEGRATION AND STANDARDIZATION

Ilkay Altintas (San Diego Supercomputer Center, US)
Rosa Filgueira (University of St Andrews, GB)
Ana Gainaru (Oak Ridge National Laboratory, US)
Shantenu Jha (Rutgers University, US & Brookhaven National Laboratory, US)
Ulf Leser (HU Berlin, DE)
Bertram Ludäscher (University of Illinois at Urbana-Champaign, US)
Jeyan Thiyagalingam (Rutherford Appleton Lab., GB)
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2.3.1 Reference Architectures From a Workflow Perspective

To date, no established reference architecture for scientific workflow systems exists. Furthermore, there
neither exists a characterization of the precise functionalities a workflow system should encompass nor
where it should interface (and with which API) with other components of a distributed infrastructure. The
general components of a distributed infrastructure steered by a workflow system are depicted in the idealized
architecture shown in Fig. 3. From top to bottom, these include:

Figure 3. Main components of a typical distributed infrastructure steered by a workflow system.

• User interface. While many systems target developers and favor command line interfaces (Mölder
et al. 2021), others offer comprehensive graphical interfaces using the DAG-structure of workflows as
metaphor (Goecks et al. 2010). Graphical interfaces often are also associated with access to libraries of
available workflow tasks or control structures of a workflow language (Missier et al. 2010).

• Workflow specification. Many systems use specific domain specific languages for specifying a
workflow, which might resemble programming languages (Di Tommaso et al. 2017) or come in the
form of flat file formats (Couvares et al. 2007). Other systems offer workflow functionality as extensions
to a host programming language without having a proper syntax [TBA+17]. Workflow specifications
describe an abstract workflow; during execution, tasks defined abstract workflow often lead to multiple
physical instances.

• Workflow engine: The workflow specification (or workflow program) is executed by a workflow
engine, whose main purpose is the control of the dependencies between workflow tasks. As such, the
workflow engine, at every stage of a workflow execution, must be able to determine the set of currently
executable tasks, which requires some form of bidirectional communication with the scheduler to be
informed about finished tasks. At this stage, typically also the compilation of the abstract workflow
into a physical one is performed. In dynamic workflow systems, where the set and structure of tasks is
data dependent, the communication must include further aspects, such as number of files in a directory
(for scatter operations) or intermediate data files themselves (for conditionals) (Bux et al. 2017).

• Scheduler: The scheduler is informed by the workflow engine about the set of ready -to-run tasks
and determines their assignment to the set of available (virtual) compute nodes. To this end, it
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communicates with a resource manager to obtain free resources and to access the characteristics of free
nodes (e.g., main memory, accelerators etc.). Schedulers typically are not individual components, but
their functionality instead is included in that of another system (see below).

• Resource Managers and Runtime Environment. Resource managers have two different purposes
(RM). At the global level, the RM oversees the status of all registered nodes together with their
functional characteristics and offers controlled access to them for its clients, possibly with an associated
QoS. At the local level, each node runs an instance of the RM to control the node itself and to provide
a local runtime environment (RE) for workflow tasks (such as Docker or Singularity containers).

• Data exchange. Finally, the tasks of a workflow execution must exchange data along their data
dependencies. There are different ways how this can be achieved. In a streaming setting, all data
exchange is handled through the network (Filguiera et al. 2017). Batch-processing often assumes
availability of a shared data space, for instance provided by a parallel file system like Lustre (Lustre
2023) or CePH (CePH 2023).

However, concrete systems often deviate heavily from this architecture. For instance, scheduling usually is not
implemented as a separate component, but instead is performed inside the workflow engine or by the resource
manager - and sometimes by both (Lehmann et al. 2023). Systems with graphical user interfaces might not
have an explicit language or format to express a workflow specification but instead directly interpret the
workflow graph. Workflow engines are typically tightly coupled to a workflow specification language and not
capable of executing any other specifications; moving from one system to another therefore requires program
translation. Systems trying to co-optimize task placement and data locality need more expressive interfaces
to resource managers, schedulers and file systems and explicit ways of manipulating placement (Giampà
et al. 2021). Furthermore, there is no agreement on the interfaces between components, such as between
workflow engines, schedulers, and resource managers or between a graphical user interface and a workflow
engine. Even at interfaces where standards exists, such as POSIX for file access or DRMAA for resource
managers, these are not implemented by all systems. For instance, HFDS is not Posix compliant, and
Kubernetes does not support DRMAA.

2.3.2 Role of AI in workflows and HPC

The role of AI in scientific workflows and HPC is increasingly prominent and multifaceted. Here is a summary
of the role of AI in these both of domains:

1. Enhancing Scientific Workflows:

• Workflow Optimization: AI techniques, such as reinforcement learning (Leong et al. 2021; Zhang
et al. 2023), can optimize the execution of complex scientific workflows.

• Discovering Similar Workflows: Semantic code search powered by AI can assist researchers
in finding workflows that are functionally or structurally similar to their own. Semantic tech-
niques (Starlinger et al. 2014; Skvortsov and Stupnikov 2022) can be especially beneficial when
looking for existing solutions to similar scientific problems, thus promoting knowledge sharing
and collaboration.

• Identifying Workflow Components: Researchers can use AI and LLMs models to perform semantic
code searches (Zahra, Li, and Filgueira 2023) and identify specific components or tasks within
workflows that perform certain tasks.. This enables reusing and adapting existing components to
build new workflows more efficiently.

• Automated Documentation: AI and LLMs can generate automated documentation for scientific
workflows (Zahra, Li, and Filgueira 2023). This documentation enhances the understanding

11



of the workflow, and also fosters reproducibility, making it easier for researchers to share and
replicate their work.

2. Data-Driven HPC-workflows:

• Data Analysis: AI and machine learning enable sophisticated data analysis within scientific
workflows, extracting valuable insights from large datasets (Jha, Pascuzzi, and Turilli 2022; Nouri
et al. 2021).

• Pattern Recognition: AI (Wang et al. 2022) can identify patterns and correlations in scientific
data, aiding researchers in discovering hidden relationships and making data-driven decisions.

• Real-time Insights: In HPC simulations (Marazakis et al. 2022; Magnoni et al. 2019), AI (Peck-
ham 2018) can provide real-time insights, facilitating adaptive simulations based on changing
conditions. This is especially relevant in fields like seismology, climatology, etc, where quick
responses are critical.

3. HPC and AI Synergy:

• Resource Allocation: AI optimizes resource utilization in HPC clusters by dynamically (Chien,
Lai, and Chao 2019) allocating computing resources based on workload demands or previous
runs (Narantuya et al. 2022). This leads to cost savings and improved efficiency in resource
usage.

• Reducing Energy Consumption for Exascale: One of the critical challenges in exascale computing
is the immense energy consumption of supercomputers. AI contributes to energy-efficient (Scionti
et al. 2022) computing by optimizing cooling systems, and power usage. Machine learning models
can predict workload patterns and dynamically adjust power consumption to match computing
demands, significantly reducing energy waste.

• Enhancing Fault Tolerance: HPC systems are prone to hardware failures and errors due to their
sheer complexity. AI-driven (Marahatta et al. 2020) fault tolerance mechanisms can detect anoma-
lies in real-time and initiate corrective actions. Machine learning models can predict hardware
failures before they occur, allowing for proactive maintenance and minimizing downtime.

• Predictive Analytics: AI models can diagnose (Tuncer et al. 2017) and predict IO bottlenecks (Wy-
att et al. 2022), data transfer issues, or compute node failures [DA+18] in advance, allowing for
proactive mitigation and improved workflow efficiency.

• Deep Learning: HPC infrastructures are crucial for training deep learning models (Ferreira and
Contributors 2021; Lu et al. 2018) on vast datasets. The synergy allows scientists to use AI for
tasks like image recognition, natural language processing, and simulation optimization.

In summary, AI plays a vital role in scientific workflows and HPC by optimizing processes, extracting insights
from data, and fostering synergy between these domains, ultimately advancing research and innovation in
numerous fields.

2.3.3 AI within the Reference Architectures: Issues and Challenges

AI can play an important role for many components of a workflow system running on HPC. However,
integrating such functionality also faces a number of challenges for which no good solutions exist today.
These are:
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• Scheduling in many systems is not an operation performed once at a single component, but instead
often is accomplished in an iterative, hierarchical fashion. For instance, in a dynamic workflow at every
point in time when a scheduler needs to take a decision, only the immediate next steps are known, while
further downstream tasks are not. Decisions considering long-range implications, which are typical for
AI-based schedulers, are thus impossible (Gondhi and Gupta 2017). Another example for PilotJobs,
which are scheduled by the resource managers as single tasks, but which during execution actually are
expanded into multiple tasks which then need to be scheduled by the PilotJob itself (Turilli, Santcroos,
and Jha 2018). Such two level scheduling currently is neither supported by AI-based solutions nor
adequately reflected in the reference architectures.

• Resource predictions. Many advanced solutions for scheduling and resource management rely on
precise predictions for the resource the execution of a task will require, such as runtime, memory, band-
width, or energy. While many methods for performing such predictions are currently developed (Witt
et al. 2019; Ferreira da Silva et al. 2015), from an architectural point of view it is not clear where this
functionality should be placed. The methods often assume access to current or past log files, which
requires a positioning deep in the stack; on the other hand, their results are required by the workflow
engine, the scheduler, and the resource manager. In pure online prediction systems, which try to predict
resource requirements only based on the currently run workflow, there exists a dependency between
predictions and scheduling, as the scheduler must take into account for which tasks and at which
accuracy predictions are possible, for instance to prefer tasks for which this is not possible yet (Witt,
Wagner, and Leser 2019). A further dependency that is missing in the reference architectures exists
between resource predictions and resource managers, as a prediction regarding, for instance, main
memory, are an important input for right-sizing of containers and virtual machines.

• Metrics. Our discussion so far focused much on conventional features of workflow/workload execution,
such as runtime and resource requirements. However, AI-based workflows also bring entirely new
metrics that must be taken into account. Two particularly important ones are accuracy and transparency.
Accuracy describes the quality of the result produced by an AI-based workflow. From a user perspective,
optimizing accuracy actually might be more important than optimizing runtime, but requires entirely
different means of user support (Kreuzberger, Kühl, and Hirschl 2023). Transparency describes
the property of a workflow answer to be explainable from a user perspective, and is an important
cornerstone of trust in data analysis results. Again, optimizing for transparency calls for different
actions than optimizing resource demands.

• Cloud-based architectures. Our reference architecture does not consider the typical properties of cloud
infrastructures. For instance, elasticity, i.e., a growing and shrinking of the available compute nodes
during workflow execution, is not considered, but could be ideally combined with AI based workload
predictions. It would require that tasks during their execution can acquire more computational resources,
which breaks the hierarchical nature of the architecture sketch in Fig. 3. In cloud environments,
function-as-a-service has become popular recently (also in workflow systems (Risco et al. 2021)) as
a means to provide serverless and thus easier to maintain workflow executions. Such approaches
require an adaptation of the reference architectures, as not anymore discrete tasks are the basic unit
of operations, but instead asynchronous function calls, which requires a different understanding of
resource management and scheduling.

• Changing user groups. The recent “democratization of data science1” results in a drastic change in
the types of users that workflow and HPC systems must support. IN a nutshell, the user base grows
enormously, while at the same time the typical technical capabilities and resources associated to a

1. https://hbr.org/2018/07/the-democratization-of-data-science
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user or user project shrinks. This calls for new and easier to use interfaces (e.g., graphical metaphors,
integration with research data management, improved result visualization, interactive and human-in-the-
loop interfaces etc.) and expanded user support (e.g., other means of workflow design and adaptations,
workflow testing, and workflow debugging; personalized assistance; improved and context-dependent
documentation etc.). AI can play an important role here to make interfaces personalized and more
context-dependent.

2.3.4 The Role of Benchmarking for Workflows, AI and HPC

Given the broader role of AI, HPC and workflows on data analysis, it is almost difficult to ascertain the
suitability of a workflow engine, or workflow, or AI or HPC technique(s) for a given data analysis task.
This becomes further complicated if performance (either runtime or scientific task performance) becomes a
qualifying metric for the final decision around a particular AI technique or workflow or choice of a workflow
engine. This complexity entails a need for a mechanism that can aid scientists (or stakeholders) in making
such a decision. Benchmarking has been the cornerstone of solving such issues since the inception of software
systems. As such, it is conceivable that a mechanism akin to benchmarking would be ideal to understand the
interplay between these aspects.

Although one can resort to simply benchmark a workflow (or any aspect of interest), in the absence of a
well-defined or well-established basis, such efforts would become meaningless. One option is to establish a
common set of benchmarks that would capture a number of realistic mix of cases of different data analysis
problems. A set of applications (whether realistic or synthetic) make up a benchmark suite, and are very
specific to the case in hand, and in our case, workflows.

The notion of benchmarking for scientific workflows is not a novel concept, and in fact, can be widely found
in the literature (Coleman et al. 2022). However, a benchmark suite that captures the integration of AI and
HPC for data analysis workflows, especially in the context of recent developments in AI (such as LLMs),
adds additional complexities. This is further complicated with the recent developments around detector rates,
capability of modern facilities (such as AI at the edge), and modern AI-specific architectures. However, given
the diverse range of scientific applications, it would be a monumental effort if the suite were to provide a full
coverage of all application cases. Instead, one can envisage building a benchmark suite based on application
classes or beamline types.

Identifying such a class or themes of benchmarks is not only useful for quantifying the performance
capabilities of different workflow solutions, but also very instrumental in for understanding and assessing the
functional capabilities of different workflow engines.

2.3.5 Benchmarking Techniques

In this section, we delve into the intricacies of benchmarking within Research Agendas (RAs), particularly
focusing on workflow engines and their deployment across various infrastructures. The benchmarking process
in this context is multifaceted, encompassing every component of a RA. This includes conducting integration
tests, which are crucial for ensuring that different components of a workflow engine function cohesively.

One effective approach is to run multiple workflows within the same workflow engine on different infrastruc-
tures. This method is not only beneficial for testing the robustness and scalability of the system but also helps
in identifying potential bottlenecks and optimization points. Such tests are exemplified by initiatives like
nf-core (Ewels et al. 2020), which demonstrate the practical application of these benchmarking strategies.
However, the challenge arises when attempting to implement the same problem across multiple workflow
engines, each in their respective language, and on different or similar infrastructures. This approach is
invaluable for comparative analysis, providing insights into the relative strengths and weaknesses of various
systems.
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Despite its benefits, this methodology is not without its drawbacks. The primary challenge lies in the
significant effort and resources required to implement and manage these benchmarks. Setting up the same
problem across different workflow engines involves considerable time and expertise, particularly in adapting
the problem to the nuances of each engine’s language and infrastructure compatibility. Moreover, the need to
run these benchmarks on various infrastructures adds another layer of complexity, requiring careful planning
and coordination to ensure accurate and meaningful comparisons. Thus, while these benchmarking techniques
offer substantial benefits in evaluating and improving research agendas, they also demand a considerable
investment in terms of effort and resources.

2.3.6 Benchmarking Targets

In this section, we explore the diverse aspects and environments where workflow benchmarking is applied,
emphasizing the need for a comprehensive approach to adequately assess and improve these systems. The
benchmarking targets are multifaceted, ranging from the nature of the workflows (stream, batch, task-based)
to the underlying data handling mechanisms (main memory versus file-based). Each of these aspects presents
unique challenges and opportunities for optimization, making them critical targets for benchmarking efforts.

One of the key considerations in workflow benchmarking is the approach to data processing, with distinctions
between synchronous and asynchronous workflows. Synchronous workflows, where tasks are executed
in a predetermined order, and asynchronous workflows, which allow tasks to run independently and often
concurrently, each have their own performance characteristics and optimization needs. The benchmarking
process also needs to account for the diversity in programming languages used in workflow systems. Multi-
language support is essential to cater to the varied requirements and preferences of different user groups.
Additionally, the infrastructure on which these workflows are executed plays a crucial role. This includes
the type of resource manager, the availability and use of GPUs, and the size and configuration of clusters.
Benchmarking must therefore encompass a wide range of infrastructure setups to ensure comprehensive
evaluation and optimization.

Another important target for benchmarking is the expressiveness of the languages used to define workflows.
This includes evaluating how well a language or system supports complex constructs like conditionals and
recursion. The ability of a workflow system to handle these elements effectively can significantly impact
its usability and efficiency, making it a crucial aspect of benchmarking. By focusing on these varied targets,
workflow benchmarking can provide critical insights into the performance and capabilities of these systems,
guiding improvements and ensuring they meet the diverse needs of their users.

2.3.7 Issues with Benchmarking

In this section, we address the complexities and challenges that arise in accurately evaluating workflow
performance. A primary concern is identifying and scrutinizing the performance-critical parts of workflow
execution. This includes assessing the efficiency of various components such as the scheduler, the methods
used for dependency resolution, and the workflow interpreter, as well as the quality of the individual task
implementations. Each of these elements can significantly impact the overall performance of a workflow,
making their thorough assessment essential for a comprehensive understanding of the system’s capabilities.

Another pivotal issue in workflow benchmarking is the choice between real measurements and simulations.
Real measurements offer tangible data on system performance under actual conditions, but they may have
limitations in terms of scalability and broader applicability. In contrast, simulations, like those executed using
WorkflowSim on platforms such as CloudSim and NetSim, are invaluable for scalability tests and can provide
insights that are not feasible in real-world settings. However, simulations might not capture all the intricacies
of real-world performance. The challenge is to balance the insights gained from simulations with the
practicalities of real-world measurements, especially considering the risk of overfitting in benchmarks. This
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issue is evident in benchmarks like Linpack for high-performance computing systems, where optimization
often focuses more on the benchmark than on practical applications.

Furthermore, the diversity of applications complicates the process of workflow benchmarking. Workflows vary
greatly, from being heavily reliant on AI, to focusing on streaming data, to being based on complex simulations,
or even being hybrids of these types. Each category requires specific approaches to benchmarking to accurately
assess performance and efficiency. Therefore, there’s a growing need for a benchmarking standard that can
adapt to these diverse requirements, providing a balance between broad applicability and specific, actionable
insights. This standard differs from internal benchmarks used for tuning or procurement, which often focus
on optimizing specific aspects of a system’s performance. Developing effective benchmarking strategies that
can navigate these issues is critical for guiding the optimization and development of workflow systems in a
way that is both efficient and applicable to a wide range of real-world scenarios.

2.4 HUMAN INTERACTION AND ACCESSIBILITY

Rafael Ferreira da Silva (Oak Ridge National Laboratory, US)
Daniel Laney (Lawrence Livermore National Laboratory, US)
Paolo Missier (Newcastle University, GB)
Jedrzej Rybicki (Jülich Supercomputing Centre, DE)
Matthias Weidlich (Humboldt University of Berlin, DE)

In the rapidly evolving landscape of HPC, the integration of modern science applications necessitates
the reevaluation of traditional workflow paradigms, particularly in the context of real-time interacting
during workflow execution. Whether mediated by humans, AI, or specialized algorithms, these interactions
introduce a new layer of complexity and opportunity across the experiment lifecycle when deployed on HPC
environments. Such interactions serve critical roles, from real-time steering of ongoing computations to
runtime recalibration of parameters, enabling adaptive adjustments that can feed back into the experiment
itself for iterative improvement. Furthermore, these interactions enable data-driven decisions on cost/value
trade-offs, thereby optimizing both computational and financial resources.

Building on the notion of real-time interactions, an example is the iterative process of workflow creation
aimed at solving intricate problems based on initial specifications. In such cases, multiple workflow versions
often emerge and are refined through expert-mediated (or possibly AI- or algorithm-mediated) interactions.
The main goal is to perform an exploration of the solution space of a given problem rather than obtaining
a single solution. Two key scenarios emerge in this context: (1) the independent exploration of alternative
designs that can execute in parallel; and (2) a phased exploration where designs are sequentially refined based
on observed results. To understand these challenges, we examine them within a framework of stakeholder
interactions that occur throughout the standard lifecycle of modern HPC workflows.

Fig. 4 suggests a reference framework for placing three main stakeholders: Scientists, SysAdmins, and Data
Scientists, in the context of current HPC-based workflow practice, and how their interaction contributes to
extending the current batch-oriented model of workflow execution. Specifically, Scientists include a class
of users who “own” the scientific problems that the workflow aims to address, and are responsible for the
design of workflows that contribute to their solution. Examples of these are given below. A validation
step is then typically required to ensure that the workflow fits the system requirements of the underlying
HPC infrastructure. Optimizers and SysAdmin roles with expert knowledge of the HPC architecture and its
resource allocation policies mediate this step, as suggested in the Figure. In a standard HPC batch submission
model, the resulting validated workflow maps to jobs that are scheduled through a process of resource
allocation.

We suggest that data-centric workflow design may bring new and potentially disruptive elements into the
framework. Two main scenarios are common. Firstly, a familiar iterative exploration of the solution space

16



Figure 4. Simplified Framework of Stakeholder Roles in HPC Workflows, highlighting the collabora-
tion between Scientists, SysAdmins, and Data Scientists to advance beyond standard batch-oriented
workflow models.

by the scientists, which is required to converge on a stable workflow design for a new problem. This
involves a repeated interleaving of four steps: batch execution, analysis of results, workflow refinement, and
resubmission.

Workflow design naturally accounts for the type and structure of the underlying datasets (indicated as “inputs”
in the Figure), however a realistic iterative refinement process needs to account for the need to refine the data,
in addition to the workflow, at each iteration. To achieve this, we envision an additional Data Scientist role,
who is responsible for data engineering and pre-processing tasks as required to align the input datasets to the
workflow requirements. A notable class of problems where this additional step is needed is in the context of
so-called Data-Centric AI (Zha et al. 2023), where the workflow is designed to deliver a model (for example,
to predict some outcome), and the corresponding data tasks at each iteration include cleaning, correcting for
bias, generating synthetic data to complement a training set, experimenting with alternative data imputation
strategies, and more.

A second scenario occurs when each batch execution itself may be interrupted and broken down into separate
components, with a decision process in the middle. For instance, during a process of parameter sweeping
(exploration) that consists of an array of parallel tasks, it may be possible to identify promising regions of
the parameter space and thus to steer the exploration, by pruning some of the tasks and starting new ones.
In many cases this can be determined algorithmically, however we can also envision a human-in-the-loop
scenario where the roles identified in the Figure directly participate in the decision process.

2.4.1 An Overview of the Challenges

Since HPC systems are primarily batch oriented, users evolve a cadence of job submission, analysis, and new
submissions, sometimes over periods of days or weeks. With advances in ML/AI, we expect both human-in-
the-loop and AI-driven workflows will become more common. The challenge is that this new paradigm, of
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dynamic workflows, is at odds with existing HPC center policies and capabilities in many cases. Furthermore,
human interaction with large scale HPC resources means that the benefit of the interaction or dynamism must
be quite high to justify the costs associated with pausing, restarting, or spawning computations.

A key observation is that users often begin at a small scale where interaction is far less costly in terms of
‘wasted’ compute, in order to understand and begin to design their workflow. However, at these small scales
workflow execution tools are not needed, and can be an impediment due to their complexity, and are thus not
introduced into the process until it is time to scale up the problems and number of simulations. ML/AI provides
a way to introduce the ‘full’ workflow environment early in the process, replacing expensive simulation
with fast-running surrogates, and enabling interactive exploration with the entire software environment. We
believe that a holistic, co-design approach is needed, in which workflows can be introduced early and scaled
through the entire process of workflow creation, validation, and execution, from laptop scale to exascale.

In this section, we survey the challenges to human-in-the-loop and AI-driven workflows in current HPC
centers:

• Resource Allocation: The integration of dynamic, AI-driven workflows into HPC systems faces a
significant challenge due to the discrepancy between traditional HPC resource allocation policies and
the requirements of these modern workflows. Traditional HPC centers, primarily designed for batch-
oriented tasks, struggle to accommodate non-batch workflows like human-in-the-loop or AI-driven,
data-centric processes. The absence of elasticity in resource allocation further exacerbates this issue,
limiting the adaptability essential for dynamic workflows and leading to workload unpredictability.
Consequently, there is an urgent need to develop HPC policies that support on-demand, AI-directed
workflows, distinguishing between ’compute projects’ suited for batch processing and ’data projects’
that demand a more flexible, interactive approach. Adopting a holistic, co-design strategy is crucial,
allowing workflows to be introduced early and scaled efficiently from small-scale experiments to
extensive executions, integrating ML/AI to create fast-running surrogates for interactive exploration
and efficient resource utilization from the outset.

• Data Management Data management and workflows overlap in many ways. Data are triggers, inputs,
and outputs of scientific workflows; they also serve as an "integration layer" between workflow steps,
and thus can help debug their execution. Workflows are also helpful in understanding the provenance
of a particular dataset by describing what kind of processing led to its creation. For the intelligence
(human or artificial) in the loop, the data plays a critical role. Decisions about how to proceed with the
workflow are based on data, such as intermediate results. All this poses many challenges in terms of
data management and workflow execution. The availability and placement of data plays a role in the
execution plan of a workflow. The data created in the workflow must be made available to the external
entity (intelligence in the loop) in a timely manner to enable interaction with the workflow execution.
Finally, workflows and data have different lifetimes (the data remains important and valid even after
the workflow execution has ended), so the resource manager responsible for workflow execution must
be able to make both short-term and long-term decisions.

• Debugging and Provenance This challenge centers around the need for deep checkpointing and
meticulous action tracking. Essential to this challenge is the provision of provenance data in real-time,
which would significantly enhance decision-making during workflow execution. However, this raises
potential issues, such as the risk of real-time provenance tracking interfering with the execution of
workflows. Additionally, there are concerns regarding trust and the integrity of provenance data, which
are crucial for reliable and verifiable scientific computations. Addressing these challenges requires a
careful balance between providing detailed, real-time insights into workflow processes and ensuring
that these mechanisms do not disrupt the efficient execution of complex computational tasks.
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• AI Integration This challenge revolves around preparing for high levels of unforeseen automation
and the complexities it brings. To future-proof systems against this, a co-design approach is essential,
where both hardware and software stacks are developed with workflow applications and their unique
requirements in mind. Another critical aspect is ensuring that these AI-integrated workflows are
explainable, which can be achieved by leveraging provenance and execution traces to provide clarity
and understanding of the AI’s decision-making process. However, this integration is not without its
difficulties, as competing AIs within the same ecosystem may attempt to optimize at the application level
for their own benefit, leading to uncertainties and complexities in workflow management. Addressing
these challenges requires a sophisticated balance between advancing AI capabilities and maintaining
control and transparency over automated processes in computational workflows.

• Abstractions for Human Interaction This challenge involves facilitating human involvement at every
stage, including creation, deployment, resource allocation, and execution. This requires designing roles
and interfaces that cater to different stakeholders such as users, workflow experts, facility personnel,
and data scientists, ensuring their input is valuable and feasible at various stages of the workflow.
Additionally, AI can be integrated as a surrogate for “any human in the loop,” performing tasks
or making decisions in places where human intervention is typically required. Key types of user
interaction that need to be abstracted include changing parameters of the workflow, starting or killing
jobs based on real-time needs, and modifying the data, such as adjusting the samples used in the
computation. The design of these abstractions must be intuitive and flexible, allowing for efficient and
effective human-AI collaboration in managing complex computational processes.

In confronting the challenges of integrating advanced workflows into HPC systems, lessons from the history
of HPC and its applications are invaluable. History shows that as HPC evolved, its increasing complexity
often created barriers to automation and higher-order reasoning, a pattern now emerging in workflow systems
as they accrue complex notations and concepts. This parallel suggests the need for a careful approach to
developing workflow systems, ensuring they do not become so intricate that they hinder the very progress
they are designed to facilitate. As we design these systems, it is crucial to consider the cost/value trade-offs
in every decision, recognizing that ‘cost’ can be multifaceted, encompassing computational resources, ease of
use, and adaptability to future technologies. The key lies in learning from the past to build workflow systems
that are robust, efficient, and accessible, thereby enabling them to be powerful tools in the advancement of
scientific research and applications, rather than becoming cumbersome obstacles.
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3. FUTURE PERSPECTIVES

3.1 OPTIMIZATION AND EFFICIENCY

Ana Gainaru (Oak Ridge National Laboratory, US)
Shantenu Jha (Rutgers University, US & Brookhaven National Laboratory, US)
Christine Kirkpatrick (San Diego Supercomputer Center, US)
Daniel Laney (Lawrence Livermore National Lab, US)
Wolfgang E. Nagel (TU Dresden, DE)
Jedrzej Rybicki (Jülich Supercomputing Centre, DE)
Domenico Talia (University of Calabria, IT)

For many years, HPC has been driven by extremely skilled individuals who are able to capture the complete
execution of their scientific code, debug it, and optimize it to squeeze the last drops of performance out of the
underlying infrastructures. We argue that this model is no longer sustainable. Scientific endeavors require
multi-step workflows, the underlying infrastructures are becoming heterogeneous, and there are constant
advances in methods that require the integration of new codes. As a first step, we need a cultural change that
incentivizes the sharing of codes and workflows. In addition, the technical solutions should be designed so
that the replacement of individual computational steps in workflows to incorporate new implementations or
methods should be seamless. Workflow performance optimization will become a team effort, with scientists
supported by HPC experts who consider not only the maximum performance of individual steps, but also a
holistic view of the execution, including, for example, data movement. Future HPC centers will evolve in
much the same way that cloud providers have evolved from offering Infrastructure-as-a-Service to higher
abstractions such as Software-as-a-Service or Function-as-a-Service. Workflow descriptions can become the
vehicle that drives this movement to higher abstractions and performance optimization as a team effort.

3.1.1 Performance Models and Reasoning

• We still do not reason well about performance of workflows, and facilities and procurements still focus
primarily on individual application performance patterns.

• We often exclude data considerations, location, movement, etc.

• We need to build workflow benchmarks to help the community understand the more complex perfor-
mance characteristics of workflows.

– Throughput, makespan, responsiveness, time to solution

– Understanding how these relate to each other so you can reason about them.

• Collective performance measures are different than for individual user/app.

– We need to be able to see the entire workflow and reason.

– We need to take a closer look at data, which can become bottleneck point.

• Empiricism: observing workflow behavior, and incrementally improving via learning from the behavior
of the system.

– Develop best practices.

– Converge on principals.

• We thus need to have telemetry data on our workflows that allows this learning to occur; Post-mortem
& Digital Twins.
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3.1.2 Optimizing the Quality of Science

• We have to find definition on how to measure scientific quality for our workflows

• We need to define API’s and architectures that enable future workflows to optimize under these currently
unknown measures of quality

• We need to reason from examples:

– Protein folding: standard, simple approach, is the baseline, approaches exist for interrogating the
simulation and adjusting it to accelerate the folding.

* Result of optimization is the same structure.

* But time to solution can be 1000x shorter.

* Still users often default to the simple, easy approach.

* A Workflow system, perhaps augmented by AI.

• Preconditioners: many codes of iterative linear solvers in them (sometimes many such solvers).

– Experts research preconditioners to accelerate solution.

– Expert users choose among these for their problem, sometimes via experimentation.

– We envision that a workflow system with AI could detect or predict solver behavior and choose
preconconders to optimize execution.

• Coupled multi-application workflows under propagation of uncertainties.

– In these workflows, users often set up and optimize each application in the workflow indepen-
dently.

– AI + workflow could understand parameter sensitivities and uncertainties, and optimize for
scientific output, potential reducing cost of simulations.

3.1.3 A Vision for HPC & Data Centers

• We have to think beyond simple scheduling and move towards multi-dimensional + temporal
scheduling.

– It is not just about when to run but where you get the data from.

– It needs to be spatio-temporal, co-location.

– There is scheduling at the workflow level, workload level, and task level

– The challenge is that it is relatively easy to schedule at one level or in one dimension, but how do
enable usage of information across all levels to optimally schedule work.

– Open research question: should information flow only upwards from lower levels (separation of
concerns), or should it be globally available.
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3.2 LIFECYCLE MANAGEMENT IN FEDERATED WORKFLOWS

Rosa M. Badia (Barcelona Supercomputing Center, ES)
Kyle Chard (University of Chicago, US)
Timo Kehrer (Universität Bern, CH)
Dejan Milojicic (HP Labs - Milpitas, US)
Fred Suter (Oak Ridge National Laboratory, US)
Sean R. Wilkinson (Oak Ridge National Laboratory, US)

“Federated workflows,” a term also known as “cross-facility workflows” (Antypas et al. 2021), represent a
paradigm shift from traditional “grid computing.” Grid computing typically refers to a distributed computing
model where resources from various locations are pooled together to work on large-scale problems, often
with a focus on maximizing resource utilization and computational power across a network of machines. In
contrast, the concept of federated workflows extends beyond just resource sharing. It involves the integration
and orchestration of workflows across different computational facilities, each possibly with its own unique
environment, policies, and capabilities. This approach is not only about aggregating computational power but
also about seamlessly executing complex processes that span across these varied environments, maintaining
coherence and coordination throughout the workflow life cycle.

Understanding how federated workflows differ from traditional grid computing models, such as those
exemplified by the Worldwide LHC Computing Grid (WLCG), is crucial. While grid computing primarily
addresses the challenge of resource scarcity through distributed computing, federated workflows focus on the
integration and interoperability of distinct computational workflows across various facilities. This distinction
underscores a more nuanced approach to handling diverse computational tasks, data management practices,
and workflow optimizations in a unified manner.

While it is possible to manage simpler federated workflows manually, the development of a dedicated
federated engine could significantly enhance the efficiency and scalability of these systems. Such an engine
would automate the execution of federated tasks, eliminating the need for building ad-hoc workflows for
each new project. This would not only streamline the workflow execution across different facilities but also
reduce the time and effort required for coordination and integration, thereby enabling more complex and
dynamic federated workflows to be executed with greater ease and efficiency. The move towards federated
workflows marks a significant evolution in how we approach distributed computing, emphasizing the need for
sophisticated integration and orchestration tools to manage the complexities of modern computational tasks.

3.2.1 Use Cases for Federation

There are numerous use cases which demonstrate the value of federated workflows. We list a few here, but
the list is not exhaustive.

• Overflow / offload / cloud bursting. Our first use case involves temporarily providing more compute
and data resources upon demand by users, potentially in ways that are seamless and invisible to the user.
For example, a user of an on-premise HPC system might require more resources than are currently
available to run a workflow, and a potential solution might be to offload their workflow to execute on
cloud resources.

• Redundancy. Similarly, during outages at HPC facilities, which may be planned or unplanned, users
still need to execute their workflows. Federated workflows which execute across multiple facilities
need to be capable of retargeting sites for execution dynamically in cases where facilities may be
completely unavailable.

• Urgent computing. Sometimes, even offloading to the cloud may be insufficient to provide resources
because the situation demands all possible resources from HPC facilities, clouds, and the like. Truly
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Figure 5. Conceptual Diagram of Federated Workflow Architecture. This figure illustrates the flow of
data and tasks across a federated system, incorporating both private and public cloud resources.

urgent situations like wildfires (Altintas et al. 2015) and the recent COVID-19 pandemic (Lee et
al. 2021) need to minimize time-to-solution in order to save lives, so they need to execute at high
priority and the largest scales.

• Internet of Things. Federated resources also include very “small” compute and data resources like
Internet of Things (IoT) devices. This use case involves edge devices which may have slow processors,
power constraints, and reduced network connectivity as compared with HPC facilities. These devices
can still be sufficient for federated learning, however, and this use case is therefore important for certain
kinds of AI workflows (Rana et al. 2023).

• Coupling edge computing with HPC. There are also architectures in which edge devices can be
used to process data in near-real-time, while coupling with analyses executed on true HPC resources.
For example, a scientist at a light source might run parts of a workflow locally while collecting
observational data at the same time that HPC resources are crunching numbers to help steer the data
collection process (McClure et al. 2020).

• Exotic hardware like quantum computers. Federated workflows also take advantage of unique
capabilities available at different facilities, such as quantum computers or classical HPC resources
with exotic architectures. For example, OLCF has on-premises classical HPC resources, but the
quantum computing resources are provided to its users by the cloud; these can still be used in the
same workflow (Bieberich et al. 2023). Different HPC facilities’ flagship systems often have different
architectures which lend themselves well to different kinds of problems, such as CPU-intensive or
GPU-intensive tasks.

• Collaborative data analysis. In this use case, scientists use a shared dashboard to display analyses
and visualizations of data produced by an HPC simulation. New analyses and visualizations can be
dynamically added to that dashboard, potentially triggering/steering new computations (link). This use
case thus relies on federated computing resources – supercomputer, analysis/visualization cluster, and
cloud service for the dashboard.

• Multi-instrument federation. Another use case for federating facilities would allow not only for
federating compute resources, but also for federating the instruments themselves. For example, an
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event-driven workflow in multi-messenger astrophysics could react to a neutrino detection event by
DUNE by aiming telescopes at a region of interest.

3.2.2 Policies

In this section, we address the complex and essential role that policies play in the successful implementation
and management of federated workflows. While technical aspects often dominate the concerns of engineers,
policies are equally critical in making federated workflows viable and effective. These policies encompass a
wide range of considerations, including governmental regulations like the General Data Protection Regulation
(GDPR), which dictates who can access and execute workflows, as well as more technical aspects like the
duration and frequency of workflow connections and invocations. Another key policy area involves identity
verification, such as the requirements for Multi-Factor Authentication (MFA) and the timeframe within
which it must be validated. Additionally, policies regarding user accounts at various facilities, including the
necessity for signed agreements, play a crucial role in governing how federated workflows operate within and
across different organizational domains.

The management of policies in federated workflows builds upon existing policies for individual workflows.
However, when these workflows cross organizational boundaries, they begin to resemble aspects of past Grid
computing work, albeit with unique challenges and considerations. Policies in federated workflows are critical
not only for their deployment but also for their widespread adoption. Without well-defined and enforced
policies, it becomes challenging to manage key aspects such as security, quality of service (QoS), sustain-
ability, and availability in a manner that aligns with both organizational objectives and cross-organization
collaboration. These challenges make the policy landscape for federated workflows a fertile ground for
research, where the development of new policies and the adaptation of existing ones can significantly impact
the efficiency and effectiveness of these complex computational ecosystems.

3.2.3 Workflow Federation Patterns/Motifs

We identified a series of execution patterns for future federated workflows. These patterns are built incre-
mentally, starting from an existing and well defined scientific use case and then adding new features and/or
constraints to this initial scenario.

• One to many facilities. Our initial use case corresponds to the execution pattern underlying the
processing of data produced by the four High Energy Physics experiments deployed on the Large
Hadron Collider at CERN (i.e., ATLAS, CMS, ALICE, and LHCb). These experiments rely on the
worldwide LHC computing grid (WLCG) for about two decades. This computing grid comprises
multiple computing centers across the world that are federated to execute a single workload composed
of millions of independent jobs (MC simulations). Each center has a contractual commitment to
provide resources with a given availability from other sites to be able to run on their sites. There is also
an upstream control of the distribution of the jobs among the sites according to their current load and a
common authentication overlay based on proxy certs to enable the federated infrastructure. However,
the management of the federation is human-engaged.

• Federated facility. To automate the management of a “one to many facilities" federation and form
a truly federated facility, we consider collecting data to train an AI model that optimizes what jobs
to run and where to run them, in terms of performance. Additionally, we propose that all contractual
agreements across the different participants of the federated facility are verified at any point of time
during the execution of the workload.

• Sustainable federated facility. The next stage is then to add a sustainability dimension, in the
environmental and social meanings of the term, to the proposed federated facility. The objective there
is to complement the mapping and scheduling decisions based solely on performance by using AI to
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help decide not only where to execute the workload according to the environment sustainability profile
of the different sites but also whether it is better to not run some subset of the workload than wasting
precious resources.

• Federatable workflows. We then introduce the concept of federatable workflow, i.e., a workflow
published by one of the facilities belonging to the federation that can be composed with other federatable
workflows to form a more complex federated workload. A federatable workflow can be considered
as a end point of the end-to-end federation along with computing and experimental (e.g., telescopes,
microscopes, light sources, etc) facilities.

• Data-constrained federated workflows. Sometimes data cannot move due to governance/policy
constraints, such as data produced in the European research space or in the case of biomedical data). In
that case, it becomes necessary to “send compute to the data”. Such constraints on data movements
add geographical constraints that shape the workflow and further motivate a federation of workflows.

3.2.4 Contracts for Federated Workflow

Because federated workflows can cross organizational boundaries, some support for contracts is required
to formalize the bindings between invocations that can cross administrative, legal, financial, and other
boundaries. These contracts could be very simple, such as offline agreement that all dynamic bindings
between certain entities are either permissible or not, or they could be substantially more complex in terms of
financial, legal and other dynamic bindings that need to take place at any location.

The non-trivial aspect comes from the fact that QoS can have different meanings in different organizations. For
this reason this remapping can be built into the federation engine which will be able to translate requirements,
observe compliance and address disputes, violations, etc. We can express QoS and authorization as a part of
the federation at federation time, so that we know whether from responsiveness, throughput, resources, etc.
the federation point will work for the needs of the workflow.

Addressing privacy concerns of regional areas (Europe, US, Asia) or individual entities (e.g., farms (about
their crops), businesses (e.g., medical)) can also be done at the federation engine. Federation engines can
become a basis for federation of facilities, workflows, and anything in between (devices, workflow tasks).

Figure 6. Schematic Representation of a Federation Engine within a Federated Workflow System
enforcing contracts.

3.3 ADVANCED TECHNIQUES AND INNOVATIONS

Laure Berti-Equille (IRD - Montpellier, FR)
Rosa Filgueira (University of St Andrews, GB)
Ulf Leser (HU Berlin, DE)
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3.3.1 LLMs for workflows
Large Language Models (LLMs), such as UniXCoder, codeBERT, codex, GPT-4, GraphCodeBERT, CodeT5,
have already proven their utility in enhancing developers’ capabilities to manage and produce more efficient
code across a range of domains. These models have opened up exciting possibilities for automating and
optimizing software development processes. However, it is equally pertinent to recognize the immense
potential LLMs hold in the domain of scientific workflows. Here, we summarise the different ways LLMs
can be used to improve the management and efficiency of scientific workflows. Below, we present a list of
use cases in which LLMs can offer benefits to the scientific workflow community:

• Discovering Similar Workflows. Large language models can help researchers discover similar
workflows in their domain. By analyzing descriptions or code snippets of existing workflows, these
models can identify patterns and similarities, aiding researchers in finding relevant examples and
benchmarks for their own projects. This functionality can significantly reduce the time and effort
required to design new workflows.

• Identifying Similar Workflow Components. Within a given scientific workflow, there are often
recurring components such as data preprocessing, analysis modules, and visualization tools. Language
models can assist in identifying similar components across different workflows. This capability can
enhance code reusability and promote the sharing of standardized components within the scientific
community.

• Autocompleting Tasks and Workflows. Language models can serve as intelligent code completion
tools, making it easier for researchers to write and refine workflow scripts. As scientists input their
desired tasks or steps, these models can suggest code snippets, offer parameter recommendations, and
assist in handling dependencies, resulting in more efficient and error-free workflow development.

• Describing and Summarizing Workflows and Tasks. Scientific workflows often involve intricate
data manipulation and analysis procedures that can be challenging to document comprehensively.
Large language models can automatically generate human-readable descriptions and summaries of
workflows and individual tasks. This enhances the accessibility of the workflow for collaborators and
future reference.

• Interoperability Across Workflow Engines/Frameworks. Diverse workflow management systems
often feature distinct syntax and structures. Large language models can simplify the process of translat-
ing workflows from one platform to another. Researchers can input their workflow in one system’s
language, and the model can generate equivalent code in the target platform’s format, streamlining the
migration process and minimizing errors.

• Workflow Optimization and Tuning. Large language models could also assist in optimizing and
fine-tuning scientific workflows. By analyzing performance data and user-defined goals, these models
can suggest improvements in resource allocation, parallelization strategies, and parameter tuning to
achieve faster and more efficient execution.

3.4 COLLABORATION AND COMMUNITY BUILDING
Ilkay Altintas (San Diego Supercomputer Center, US)
Silvina Caino-Lores (INRIA - Rennes, FR)
Rafael Ferreira da Silva (Oak Ridge National Laboratory, US)
Christine Kirkpatrick (San Diego Supercomputer Center, US)
Matthias Weidlich (HU Berlin, DE)

26



3.4.1 Community Building Initiatives

In the burgeoning field of HPC+AI workflow integration, there is a notable absence of dedicated venues for
community engagement and knowledge exchange. To fill this void, initiatives can potentially evolve from
Workflow Community Initiatives (WCI) and interdisciplinary-oriented venues, creating spaces where best
practices for workflows, including pattern submissions linked to workflow module or pattern commons, can
be discussed and refined. These venues could operate on a model of continuous submission, allowing for
the real-time tracking of emerging or popular patterns. However, publishing these insights in a manner that
engages communities unfamiliar with workflow intricacies remains a question. Furthermore, identifying key
stakeholders within this ecosystem is essential to understand how systems should be architected to facilitate
the interactions between these parties.

Addressing cultural differences in workflow structures is another significant challenge. Scientists often
create monolithic workflows that are resistant to the modular, adaptable approaches emerging in modern
workflow composition. To encourage the adoption of new practices, there must be tangible incentives for end
users, and equitable methods to transfer development best practices from the computer science community to
practitioners. Advocating for these cultural shifts at higher levels, such as funding agencies, is also critical and
requires champions who can effectively communicate the value of these changes. Capturing the varied needs
of intersecting communities, such as domain science and AI, presents both a challenge and an opportunity to
distill knowledge from specialized groups.

Defining a specification for workflow assessment and evaluation tailored to specific use cases is an ongoing
challenge. Distinguishing "workflow challenges" from benchmarks could help, with metrics that measure
not only technical performance but also innovation, as exemplified by the DEBS community’s approach to
streaming datasets. Competitions, like those on Kaggle or potential student contests at focused venues, could
concentrate on workflow patterns and their applications. The suitability of existing repositories for static
workflows, such as WorkflowHub, Snakemake, BioBB, and MyExperiment, needs to be evaluated against the
requirements of modern, dynamic workflows. The Workflow Module Commons on top of WCI could serve
as an equitable service for building blocks, as suggested by Ilkay’s work, but this raises the policy challenge
of engaging institutions to host such services. AI could support automatic workflow generation, optimizing
performance, and composing workflows from existing building blocks based on descriptions. However, this
introduces the challenges of collecting training data, defining workflow requirements—particularly in terms
of data and system specifications—and ensuring the certification of generated workflows and predictions for
resource allocation.

Recommendation: build a community ecosystem for adding value to the collection, documentation and
sharing of workflows, use cases and building blocks, promoted by supporting publications to derive best
practises and dedicated venues hosting dedicated events (e.g., hackathons to apply best practises and patterns,
workflow challenges).

3.4.2 Technical Challenges for Adoption of Data-Centric AI+HPC Approaches

The shift towards data-centric AI+HPC approaches poses several technical challenges for adoption, particu-
larly in environments that have traditionally favored a task-centric perspective. A key question arises: how
can the HPC community, which typically prioritizes tasks, be incentivized to adopt a data-centric approach
that is essential for integrating AI components into workflows? This paradigm shift requires not only a
recognition of the efforts involved in creating data-centric building blocks and generating valuable datasets
but also strategies to democratize data within HPC, making it more accessible for use, sharing, and retrieval.
Currently, many computing facilities operate in silos, with distinct responsibilities for computing or data
management. Some institutions, like UCSD, have successfully developed institutional repositories, but this is
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not yet widespread. The challenge extends to the discovery of data and repositories linked to HPC, which
often falls prey to resource prioritization issues rather than technical feasibility. To address these hurdles,
there is a critical need to educate the next generation of HPC professionals and researchers in data-centric
workflow thinking, laying a foundational understanding that will drive the future of integrated AI+HPC
solutions.

Recommendation: Incensitivize integrating the role of data at the same level as tasks in HPC communities.
Promote this idea in workflow venues, promote BOFs integrating HPC/data gap, foster partnerships with
industry, incentivise publishing in data journals systematic description of datasets (e.g., DOIs for workflow
components). Respond to RFIs, disseminate this Dagstuhl report, try to influence solicitations to ask for data-
driven architectures, give incentives to be data forward, focusing on workflows as the interface/application
layer for users/researchers.

Recommendation: User-centric software (workflows) should have simplified ways of showing provenance
and habituating researchers to looking for verified/trustworthy data via provenance iconography that can be
expanded for full details.

Current workflow systems are generally unprepared to handle the intricacies of the substantial hurdles in
transitioning to workflows that are not just propelled by input or intermediate data, but also by metadata. This
raises the question of whether there is an opportunity to reshape the design of these systems to integrate a
data-focused perspective more thoroughly. A significant challenge lies in breaking away from established
practices in HPC workflow development and system design, which have traditionally undervalued the role of
data. Overcoming this will require a paradigm shift towards recognizing data not only as a passive element
but as a dynamic driver of workflow processes, necessitating a fundamental re-evaluation of how data is
integrated and leveraged within the HPC environment.

Recommendation: Machines will need to evolve in their architecture to accommodate hybrid workloads.
Workflow managers shall be enabled to incorporate enriched data with metadata capturing properties of
data to drive workflow management decisions in an ecosystem that encompasses system and task execution
information.
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