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ABSTRACT

Hyperspectral imagery is an emerging field of technology that has enormous potential for remote and 
proximal sensing in numerous areas of research. The plant phenotyping community is applying this 
technology to advance the throughput and accuracy of plant phenotypes based on airborne and lab-based 
hyperspectral imaging technology. Here we report an automated processing and analysis pipeline for four 
different hyperspectral imaging platforms, discuss the data issues involved, and present a strategy for 
computing and data architecture to handle hyperspectral data. 

Introduction

Hyperspectral imaging represents a relatively new modality by which scientists can observe various 
optical phenomena of interest. Instrument vendors such as Specim, Hyspex, Headwall, Surface Optics, 
and others offer a broad array of sensors which can be tuned to specific applications in forestry and 
agriculture. In 2018, Specim technologies debuted what it claimed was the world’s first mobile 
hyperspectral camera, the Specim IQ. The Specim IQ has the capability to collect imagery in the 400 to 
1000 nm range.1 Oak Ridge National Laboratory acquired two Specim IQ instruments in 2020, a 
Headwall instrument in 2021, and two instruments VNIR and SWIR 1700 series from Photon Systems 
Instruments (PSI) in 2022. These instruments were deployed in 2023 and we have generated an automated 
pipeline to manage the data streams, and integrate the analyses with other instrumentation at the 
Advanced Plant Phenotyping Laboratory (APPL) located at Oak Ridge National Laboratory. The APPL 
facility is an example of a dedicated plant phenotyping facility that utilizes multi modal imaging to 
determine structure, performance, and tolerance to limitations of an individual plant or group of plants in 
a greenhouse environment.2 The capabilities of APPL are combined with field and biochemical studies to 
provide a holistic picture of plant physiological traits under various conditions of interest. The primary 
contribution of this study is the design and implementation of a robust and efficient scientific software 
pipeline. This pipeline effectively captures hyperspectral data from APPL and aims to seamlessly manage 
the data stream to ensure smooth data flow. Furthermore, the pipeline incorporates generating data 
products and conducting data analysis using traditional as well as the latest deep learning-based 
approaches, thus validating the accuracy and integrity of the captured data.  

BACKGROUND

Multispectral imaging operates on the foundational principle that each substance possesses a distinctive 
spectral signature, which serves as a unique identifier and provides valuable insights into its constituent 
elements and surface properties.3 By analyzing the spectrum of a single pixel within a multispectral 
image, precise information about the material can be obtained. Over the past few decades, significant 
advancements in multispectral image sensing technologies have paved the way for capturing images that 
span an extensive spectral range. These cutting-edge techniques allow for the simultaneous acquisition of 
several hundred spectral bands, encompassing the entirety of the observational scene in a single scan. The 
utilization of hyperspectral imaging techniques further enhances the spectral resolution, enabling a 
comprehensive examination of land surfaces and the discrimination of different materials present within 
the observed scene.4 
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Hyperspectral images exhibit a unique combination of spatial and spectral resolutions, both of which are 
crucial in extracting detailed information.5 Spatial resolution quantifies the geometric arrangement and 
relationship of individual image pixels, whereas spectral resolution determines the level of variation 
within each pixel as a function of wavelength. The hyperspectral data is often represented in the form of a 
three-dimensional hyperspectral data cube, where each axis represents spatial coordinates and spectral 
information. The spectral resolution is typically characterized by the number of spectral bands captured 
by the sensor and the breadth of the spectrum measured. Hyperspectral sensors offer the ability to 
measure and capture a wide range of electromagnetic energy across the designated wavelength range, 
enabling precise observation and analysis of distinct surface features and changes exhibited by various 
materials. 

 

In the field of hyperspectral imaging, reflectance plays a crucial role as a metric for understanding the 
complex interaction between incident light and the surface of a material.6 Reflectance is precisely 
quantified as the ratio of reflected energy to incident energy, evaluated as a function of wavelength. 
Researchers can gain critical insights into the optical properties and compositional intricacies of a 
material by examining its reflectance behavior. Reflectance values within a designated electromagnetic 
spectrum range can be leveraged to infer valuable information about a material's spectral characteristics 
and optical behavior. When all light energy directed towards an object at a specific wavelength is 
reflected back to the imaging sensor, the reflectance value reaches its peak at 100%. Conversely, when 
the material absorbs all incident light at a specific wavelength, the reflectance value descends to its nadir 
at 0%. Comparative analysis can be performed by plotting the reflectance values of distinctive materials 
present on the surface of an object to generate spectral signatures or spectral response curves.4 By 
meticulously examining and comparing these spectral signatures, researchers can gain insights into the 
composition and optical behavior of the respective materials. The spectral resolution of the image sensor 
used in hyperspectral imaging is crucial for capturing the intricate details within the spectral signatures, 
facilitating comprehensive classification and discrimination of materials based on their spectral 
characteristics. 

Deep learning is a novel machine learning approach that has demonstrated impressive results in various 
image processing applications.7 Recently, this approach has been extended to the detection and 
classification of spectral and spatio-spectral signatures in hyperspectral images.8,9 The high 
dimensionality of hyperspectral data, coupled with limited labeled training data, makes deep learning an 
attractive method for comprehensive hyperspectral data analysis. Deep learning models, which rely on 
artificial neural networks, are capable of automatically learning complex feature representations from raw 
data, eliminating the need for manual feature engineering.10 With their layered architectures and 
interconnected neurons, deep learning models can effectively navigate the intricate interactions within 
hyperspectral images and accurately identify and classify spectral signatures.11 Furthermore, the scarcity 
of labeled training data in the hyperspectral domain enhances the appeal of deep learning by leveraging 
unlabeled data for unsupervised pre-training. By fine-tuning with limited annotated samples, deep 
learning models achieve exceptional generalization and classification performance. The integration of 
deep learning techniques unleashes the potential of hyperspectral imaging, enabling enhanced 
interpretation, detection, and classification of spectral and spatio-spectral signatures with unmatched 
accuracy and efficiency. 
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RESULTS

The automated pipeline can produce three primary data products from each instrument: 
1. A csv file that contains statistics for the pixels of interest across all hyperspectral bands. 
These files are located in the signatures directory for each project.  
2. A masked file that contains only pixels of interest from the instrument (e.g. Plant files). 
These files are stored in parquet format. They are stored in the parquet directory for each 
project 
3. A Portable Network Graphics (PNG) representation of the masked imagery. These files 
are stored in the “masked_png” directory.  

A post analysis tool is used to create graphical representations of the parquet files and comma-
separated values (CSV) files in the form of a reflectance plot. The output of this tools is represented in 
the figures below 
 

 
 
 

 
Figure 1: Reflectance plot of masked pixel statistics across all bands for the Specim IQ instrument. This is 
a one dimensional representation of the hyperspectral data from a single instrument 
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Figure 2: Reflectance plot of all masked pixels from the corresponding parquet file for Figure 1. This is a 
two dimensional representation of the hyperspectral data. 

 

 
Figure 3: A PNG reconstruction of the masked imagery in RGB color space. This is used for visual quality 
control.  
 
Data streams from multiple instrumentation can be combined to reveal the full spectra of variation 
between 400 and 2500 nm. This is done by merging data products from instruments with different 
native spectral ranges. In this case, the Specim IQ with a native range of 400 to 1000 nm was combined 
with a Headwall native range of 1000 to 2500 nm. A careful visual inspection of the data revealed that 
the useable data for this dataset range from ~452 to ~923 nm for the Specim IQ data and ~895 to ~2500 
nm for the Headwall instrument. An example combined data plot is shown in Figure 4. 
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Figure 4: One-dimensional combined plot of Specim IQ and Headwall data. The gap in the two plots 
represents the ends of the spectra for each instrument where data is trimmed for quality control. 

The different data products created above can be used for various analyses, based on the experimental 
design. We tested the process using an experiment in which cuttings of greenhouse grown Populus 
Trichocarpa were cultivated under different regiments of nitrogen application.  A DOI has been assigned 
to this code via the DOE CODE repository. It is available at: 

https://doi.org/10.11578/dc.20231101.1 
We devised different analysis pipelines to process the one-dimensional data products. In the simplest 
scenario, we regarded three treatments as categorical variables. We applied a classification analysis to 
the entirety of the data and assessed the performance of the algorithm to correctly classify the data 
based on its treatment. 

Given an input signature 𝑥 = 𝐻(𝑥) from a hyperspectral image 𝑥, where 𝐻( ∙ ) is a translation into a one-
dimensional hyperspectral signature, the classification can be expressed as

𝑦𝑘 = 𝑓𝑐(𝑥),
where 𝑓𝑐( ∙ ) is a classification function, 𝑘 = {0,⋯,𝐾} is the 𝑘-th output, and 𝐾 represents the number of 
classes in the problem. This particular case was a three-class problem, namely, no treatment, 0.5, and 1; 
hence, 𝐾 = 3. The implementation is written in Python and utilizes the scikit-learn package.12 The source 
code can be accessed at classification.py.

In the second scenario, we consider treatments as continuous variables and perform regression analysis 
to estimate their numerical values. The analysis can be expressed as

𝑦 = 𝑓𝑟(𝑥),
where 𝑓𝑟( ∙ ) is a regression function. The implementation with scikit-learn can be found at 
regression.py.

https://doi.org/10.11578/dc.20231101.1
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The aforementioned methods are classical statistical approaches that have been widely used in various 
scientific applications for many years.13

A second approach is to apply modern artificial intelligence (AI) and machine learning (ML) techniques 
to both classification and regression problems.14 It is achieved by using a one-dimensional convolutional 
neural network (CNN), which employs a convolutional layer that contains a set of one-dimensional 
convolution filters. These filters capture latent representations of the features present in the 
hyperspectral signatures. The extracted features are then transferred to the fully connected layer, 
where the final decision is made. Specifically, the output layer is activated using the softmax function for 
classification, while for regression the softmax function, while for regression, the sigmoid function is 
utilized as the activation function. We can then compare results of both classification and estimation 
routines from both the classical and machine learning approaches as indicated in Figure 5.

 

(a) (b)

Figure 5: Plots of estimating nitrogen treatment levels using hyperspectral signatures based on (a) 
partial least squares regression algorithms and (b) one-dimensional convolutional neural network 
algorithm. 
 
The above graph shows the comparison of traditional statistical methodology based on partial least 
square regression (PLSR) compared with the CNN. The R2 value for PLSR is 0.56, while the R2 value for 
CNN is 0.88, indicating that the CNN-based regression model significantly outperforms the PLSR model 
in terms of accuracy. The source code can be accessed at hyperspectral_CNN.py. 
When dealing with parquet files, we encounter multidimensional data instead of one-dimensional data. 
The second dimension corresponds to the spatial location of each pixel within the hypercube. In the 
field of hyperspectral image processing, the most widely used analytical approach for 2-dimensional 
data is spectral unmixing. This involves computing the fractional contribution of elementary spectra, 
also known as endmembers. These endmembers are the vertices of a convex polytope that covers the 
image data points in high-dimensional spaces. The image model is a linear combination of the 
endmembers, with positive coefficients that add up to one. 
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One intuitive method for extracting endmembers in hyperspectral image processing is to analyze the 
spectra as linear combinations of non-negative components. This approach utilizes a Principal 
Component Analysis (PCA) dimensional reduction based on the sample spectral correlation matrix of the 
image. The implementation of this method using Python and scikit-learn can be found in 
endmember.py.15 
 

DISCUSSION

Hyperspectral imaging is an emerging technology that shows great potential for rapid plant 
phenotyping. However, to realize this potential, a number serious of challenges need to be overcome. 
This includes capturing and managing the raw data streams, providing effective quality control, 
generating data products suitable for analysis, and applying appropriate statistical techniques to the 
data pipeline. In this work, we have developed and implemented a software pipeline to capture data, 
manage the data stream, perform quality control, and produce data products suitable for further 
analysis. Future work on the analytical methods will be able to leverage this software solution to create 
high throughput phenotyping workflows based on hyperspectral imagery. The system allows for 
numerous different analytical algorithms to be applied to simultaneously to the data products via the 
Kubernetes pods. This capability allows for a dramatic reduction in analysis time. Additionally, the data 
products created from this pipeline are more robust than those typically generated. For instance, the 
traditional hyperspectral signature as defined in database such as Aster, EcoStress, the Vegetation 
Spectral library, and others consists of a mean only. Our method not only includes the mean, but also 
other summary statistics so end users can see the full range of values that may be generated by the 
plant tissue of interest. Future work will be required to partition the variance found in these signatures 
to more specific tissue subtypes. For this task the end member data product may be interrogated to 
classify pixels according to leaf tissue subtypes, such as leaf, stem, veins, etc. The classification may also 
pick up plant tissue defects such as necrotic lesions or insect damage. The features can be counted, 
characterized, and added as a phenotype for downstream statistics. For example, the diameter and size 
of necrotic lesions could be informative in determining host resistance to a pathogen.  

METHODS

Architecture

We chose to use the Kubernetes platform as the underlying architecture for HyperKube. Kubernetes is a 
modern, cloud native infrastructure that facilitates modular code development in the form of 
microservices. Each component of HyperKube is discretized into a Kubernetes pod, defined by a yaml 
file. The Kubernetes infrastructure orchestrates each pod so microservices are called automatically in 
response to events. 
The Kubernetes cluster itself is comprised of several namespaces used for development and production. 
Each namespace contains its own hyperspectral imaging and database pods. The hyperspectral imaging 
pod consists of Python and its required packages including asyncio, cProfile, cv2, email.mime, 
matplotlib, numpy, os, pandas, PIL, pstats, psycopg2, pysptools, rasterio, shutil, and spectral.  
Pods are usually created with a Docker container build instruction, Dockerfile, Docker run command, 
and virtual operating system environment instruction files. These files are saved in web repository, and 
it uses an inherent pipeline to launch a deployment into a Kubernetes namespace. The pipeline is 
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triggered manually or when a change is applied to a repository file. Deployments are controlled by Argo 
CD, an automated continuous delivery tool for Kubernetes. 
The Python files within its pod queries a PostgreSQL database pod that is in turn connected to a MySQL 
database pod through a foreign data wrapper. The script iterates through a list of hyperspectral files, 
processes them, and outputs the data products indicated above.  
The initial hyperspectral image file and its file path metadata are generated at the APPL user facility at 
ORNL. The image is stored on a local hard drive and the file path metadata is recorded in a local MySQL 
database. Subsequently, the images are transferred to the Themis storage enclave, which is accessible at 
the Oak Ridge Leadership Computing Facility (OLCF), and undergo data integrity verification through 
checksums. A copy of the APPL greenhouse database is maintained within the MySQL pod. 
 

Workflow

The hyperspectral workflow consists of a series of discrete events: 
1. Data acquisition 
2. A data discovery event 
3. A data ingestion event 
4. Data masking and segmentation  
5. Data product generation 
6. Data analyses 

The workflow begins with a data acquisition event. Data is acquired by one or more hyperspectral 
imagers and the raw (level 0) data is deposited into an appropriate directory structure. Data discovery is 
implemented as an automated response to the deposition event. When a directory for a particular 
instrument receives a raw data file, it triggers an instrument specific data ingestion process. The header 
file for the hyperspectral data is read and quality controlled to ensure it is indeed from the instrument 
that is expected. Data is then read into an in-memory array where it can be called by the data masking 
process. Since our pipeline is specific to plant species with green leaves, we use a dual parameter 
strategy: First, a color-based segmentation analysis is utilized where background pixels that are non-
plant are masked. Subsequently, a shape-based segmentation analysis is performed for quality control 
purposes to ensure that anomalous plant pixels are not erroneously discarded. The pixels that are 
identified as “plant” pixels are then passed to the data product generation routines. There are four data 
products produced automatically: A masked pixels file, a masked PNG image of the data, a signatures 
file, and an endmembers file. The masked pixels file consists of a three-dimensional array of all the 
original pixels in the dataset that are classified as plant material. The mask is implemented as a color 
test where RGB pixel values are first translated into HSV color space. The green ranges, obtained 
observationally for each instrument, are used in the masking procedure. The procedure itself is 
implemented using the open-cv (cv2) python package. The algorithm starts with the full image, and 
systematically erodes away the non-plant of pixels via the native erode function in the open-cv software 
package. This is followed by a dilation routine where the image is magnified. Following magnification the 
erosion routine is called again. This cycle continues until the desired mask is achieved. Once the mask is 
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achieved, it is saved as a parquet file. A portable network graphics (png) representation of the masked 
image is also produced. The masked data is used as input to generate the remaining data products. 
The signature file contains summary statistics for the reflectance values for each band over all masked 
pixels in the image. The summary statistics include the mean, the standard deviation and boundaries for 
the 2.5th percentile, the 25th percentile, the 75th percentile and the 97.5th percentile. For cases where 
there are two hyperspectral instruments with different spectral ranges, the two signature files are 
merged. This creates a continuous signature representing the entire spectral range of the two 
instruments. A gap in the spectra represents areas of non-overlap between the two instruments.  
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