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ABSTRACT

Stackless traversal is a technique to speed up range queries by avoiding usage of a stack during the
tree traversal. One way to achieve that is to transform a given binary tree to store a left child and a
skip-connection (also called an escape index). In general, this operation requires an additional tree
traversal during the tree construction. For some tree structures, however, it is possible to achieve
the same result at a reduced cost. We propose one such algorithm for a GPU hierarchy construction
algorithm proposed by Karras in Karras . Furthermore, we show that our algorithm also works
with the improved algorithm proposed by Apetrei in Apetrei , despite a different ordering of
the internal nodes. We achieve that by modifying Apetrei’s algorithm to restore the original Karras’
ordering of the internal nodes. Using the modified algorithm, we show how to construct a hierarchy
suitable for a stackless traversal in a single bottom-up pass.

1. INTRODUCTION

Tree structures, such as bounding volume hierarchy (BVH), octrees and kd-trees, are used to
accelerate the search for close geometric objects. Such trees are used in many applications, including
computer graphics (ray tracing, collision detection), molecular dynamics, geographic information
systems, cosmology, and others.

The emergence of GPU accelerators spurred efforts to develop highly parallel versions of the tree
algorithms. Reducing thread execution divergence (executing different code) and data divergence
(reading or writing disparate locations in memory) is highly desirable in parallel implementations,
particularly for accelerators with thousands of threads (such as GPUs). The construction phase,
in particular, is especially challenging on GPUs. An idea of parallelization of BVH construction
by using a space-filling curve (called linear BVH, or LBVH) was first proposed in Lauterbach
et al. , with further improvements in Pantaleoni and Luebke ; Garanzha, Pantaleoni,
and McAllister . The first fully parallel algorithm allowing construction of all internal nodes
concurrently was introduced in Karras , and further improved in Apetrei . The latter
algorithm is considered to be the fastest BVH construction algorithm on GPUs. Both Karras’
and Apetrei’s algorithms are widely used Howard et al. ; Lebrun-Grandié et al. , and
may serve as an intermediate step for constructing a higher quality BVH Karras and Aila ;
Domingues and Pedrini

Search indexes have to support different types of search queries. The range search finds all objects
that intersect with a query object. Examples of the range search include finding all objects within
a certain distance and finding all triangles in the scene that a ray intersects with.

Range search is typically implemented using a stack to keep track of the nodes to traverse. However,
usage of stacks is undesirable on GPUs as it may lead to lower occupancy due to higher memory
demands per thread. To avoid it, researchers developed stackless traversal, a technique to avoid
explicitly managing a stack of node pointers for each thread during the traversal. The approach
in Torres, Martin, and Gavilanes introduced an idea of a skip connection (also called escape
indez), which is a node index where the traversal should proceed if the intersection test with the
current node is not satisfied, or if the node is a leaf node.

Stackless traversal requires a modification of a hierarchy, replacing right children with skip connec-
tions. Typically, this requires an extra tree traversal pass during the construction. In this work,
we show that Karras’ internal node numbering allows a short calculation of the skip-connections.
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Figure 1. An example of a hierarchy with skip-connections. The right children (dotted
lines) are replaced with skip-connections (blue curves). The skip-connections on the
right-most path point to the sentinel node S.

While Karras and Apetrei result in an identical hierarchy structure, they produce dif-
ferent ordering of the internal nodes. Compared to the Karras’ ordering, in which siblings have
subsequent indices, the siblings in the Apetrei ordering may have an arbitrary large gap between
them. The unfortunate side effect of this new ordering is that the skip-connections can no longer
be easily set.

In the paper, we propose an elegant modification to the Apetrei’s algorithm which restores the
original Karras node ordering. The proposed fix requires only a slight algorithm change. It retains
the performance gains in the hierarchy construction, and allows construction of a hierarchy with
the skip connections in a single bottom-up pass.

To summarize, our key contributions are:
o We demonstrate a straightforward way to determine skip-connections in Karras’ algorithm.
o We show how Apetrei’s algorithm can be modified to restore Karras’ internal node ordering.
e We provide a single bottom-up traversal algorithm to generate a hierarchy with skip-connections.

o We include pseudo-codes for both construction and traversal algorithms to allow readers to
easily implement them in their code.

The remainder of the paper is organized as follows. Section 2 provides an overview of the stack-
less traversal. In Section 3, we provide an overview of both Karras’ and Apetrei’s algorithms
and highlight their differences. We describe our modification to the Apetrei’s algorithm and pro-
vide the resulting single bottom-up construction method in Section 4. Finally, we mention our
implementation in Section 5.



2. STACKLESS TRAVERSAL

Stackless traversal is a technique to avoid explicitly managing a stack of node pointers for each
thread. The approach in Torres, Martin, and Gavilanes introduced skip-connections (also
called escape indez), an index of a node where the traversal should proceed if the intersection test
with the current node is not satisfied, or if the node is a leaf node. In Figure 1, the right children
of the internal nodes are removed (denoted by dotted lines), and skip-connections (blue curves)
are introduced. For the nodes on the right-most path, the skip-connections point to the artificial
terminal node called sentinel.

A critical observation is that each skip-connections points to the right child of the last internal
node that a given node is in the left subtree of. The only exceptions to this rule are the nodes on
the right-most path (including the root node), which all point to the sentinel.

Algorithm 1 demonstrates the stackless traversal for a range search. If an encountered node does
not satisfy the predicate, its subtree is avoided by immediately using skip-connection. Otherwise,
either the left child is explored next (for internal nodes), or a positive match is processed (leaf
node).



Algorithm 1 Stackless tree traversal algorithm using skip-connections for a predicate query. Each
node N stores a skip-connection Ng;,. In addition, each internal node stores a left child Ny 4
denotes the sentinel node.

1. N+ I > Start from the root node
2: repeat

3 if query is satisfied on N then

4 if N is a leaf node then

5 Store the result or perform an operation

6: N + Nskip

7 else

8 N + Nleft

9 else

10: N+ N, skip

11: until N = ¢




3. A TALE OF TWO ORDERINGS
3.1 KARRAS’ ALGORITHM
Given n primitives, the construction algorithm proposed in Karras is done in several steps:
1. calculate Morton indices for the primitives;
2. sort Morton indices;
3. generate hierarchy structure;
4. compute the bounding boxes of the internal nodes.

The first two steps produce sorted Morton indices M = {mi}?z_ol of the provided geometric objects.
In step 3, the algorithm constructs a binary radix tree as a hierarchical representation of the
common prefixes of a given set of keys (Morton indices in this case). The constructed hierarchy
has n leaf and n — 1 internal nodes.

Let 6(i, j) function be the longest common prefix between keys m; and m; for 0 <i < j < n, and
+oo for all other indices. We also define §*(i) = (i, + 1) for convenience.

The Karras’ idea is that each internal node covers a linear range of keys, and partitions its keys
according to the highest differing bit in its range. The split position « for an internal node covering
the range [i,j], 0 < i < j < n, must satisfy §(y,v + 1) = §(4,). The ranges of the children of this
internal node are then [i,v] and [y + 1, j].

To perform step 3 completely in parallel, the algorithm assigns internal node indices to correspond
to the split position in their parent. The children of an internal node with a split v are assigned
indices v and y+1 in either the internal node array Z = {1, k}z;g , or the leaf node array £ = {Lk}z;(l),
assuming they are stored separately. This way, an internal node information can be fully ascertained
by its range and its split. Karras’ algorithm determines these values using linear and binary search

through M using § function. The root node is assigned index 0. For more details, see Karras

In the Karras layout, the index of each internal node coincides with one of the bounds of its range.
Specifically, if an internal node with a range [7, j] is a left child of its parent, its index is j; otherwise,
if it is a right child, it is ¢. It can also be seen that it coincides with the range bound that has a
smaller out of two values 6*(i — 1) and §*(j) (the root node index is always that of its left range
bound). We will use this property to modify the Apetrei’s algorithm.

An example of a constructed hierarchy for a set of Morton indices is shown in Figure 2a (n = 8).
The internal nodes Z are shown in orange, leaf nodes £ are in green, and the split position for each
internal node in red. The ranges for the internal nodes are denoted by gray boxes. For instance,
internal node I3 covers the range [0, 3] and has the split position v = 1, thus having two children
I, and I (both internal nodes). Similarly, I covers the range [4, 7] with a split ¥ = 4 and children
L4 and I5 (one leaf and one internal node).

One can observe, that for the Karras’ node ordering, the index of the target node of a skip connection
is going to be the right range of the nodes spanned by its parent, incremented by one. Algorithm 2
shows the calculation of the skip-connection target for a given node N. If the right boundary range
corresponds to the rightmost leaf, this indicates that the node is on the right-most side, so that
its skip-connection should point to the sentinel node. For all other nodes, the skip-connection will
point to the node whose index the right range boundary incremented by one. While the index is
straightforward to determine, an additional calculation (line 5) is required to figure out whether it
belongs to a leaf or an internal node.



(a) Karras (b) Apetrei

Figure 2. The ordering of the internal nodes in Karras’ and Apetrei’s algorithms.

Algorithm 2 Skip-connections in Karras’ node ordering for a node N. 4 denotes the sentinel
node.

L. if range,; ,, =n — 1 then
2: Nsk’ip — ¢
else
T 4= range,; p; + 1
if 6*(r — 1) < 6*(r) then
Nskip — Ly
else
Nskip — Ir

3.2 APETREI'S ALGORITHM

The algorithm modification proposed in Apetrei merged steps 3 and 4 of the Karras’ algo-
rithm into a single bottom-up step. In contrast with Karras algorithm, where each internal node
constructs its range and determines a split independently, in Apetrei’s approach the ranges get
merged in the bottom-up traversal starting from the leaves, resulting in a faster algorithm, while
also being easier to implement and requiring fewer lines of code. The internal nodes are indexed
using the split positions v rather than one of the ends of the corresponding range. An interesting
side effect of such ordering is that the root node is no longer guaranteed to be Iy, and its index
now needs to be stored in the hierarchy.

An example of a resulting hierarchy and internal node ordering is shown on Figure 2b. As the
algorithm uses splits for internal node indices, the gap between indices of two siblings may become
large. For example, the children of Iy have a gap of 3.

The pseudocode for the Apetrei’s algorithm is shown in Algorithm 3. Compared to the original
paper, the presented version shows the complete procedure, except for the construction of the
bounding boxes. The ATOMICCAS function performs the atomic Compare-And-Swap operation. It
compares the contents of a memory location (first argument) with a given value (second argument).
If they are the same, it overwrites the contents of that location with a new given value (third
argument). This is done as a single atomic operation. It returns the value read from the memory
location (not the value written to it). By comparing the return value of ATOMICCAS with the
initialization value of the store array, it can be determined whether that location has already been
modified. If it was, it indicates that the current thread is the second thread up and may proceed



Algorithm 3 Apetrei’s algorithm. For simplicity, the construction of the bounding boxes is
omitted. ¢ denotes an invalid entry value (e.g., —1).

1:
2:
3:

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:

4
5
6:
7.
8
9

Initialize all entries in store to
for all leaf node with index i € [0,n — 1] in parallel do
rangey, r; ¢ 4 Sleft < 5*(rangeleft -1)
rangeright = i’ 6Ti9ht = 5*(rangeright)
repeat
if 0ignt < 01t then > Left child of its parent
P 4 Tange,; > Apetrei index p
if range;.;; = range,;qpn, then [, ;.1 < L; else I, . < I;
range,; n; < ATOMICCAS(storey, &, range;, r)
if range,; ;; = ¢ then return
Oright < 0" (Tange, ;o) > Recompute outdated value
else > Right child of its parent p
P < rangep — 1
if range;, r, = range,; then I, ,ignt < L; else I .ignt < I;
range, s, <~ ATOMICCAS(storey, ¢, range,; ;)
if range. ;; = ¢ then return
Oieft < 0 (range;.p — 1) > Recompute outdated value
14D
until r:ight = rﬁeft +n—-1

further. Otherwise, as the first thread up, the thread exits the procedure.

The Algorithm 3 includes several additional optimizations not present in Apetrei . First, the
algorithm keeps track of the results of 0* for the ranges, updating them only when necessary. This
results in fewer memory loads of the Morton indices array which exhibit a random access pattern!.
Second, the temporary storage serves dual purpose, both as a flag for allowing only one thread up,

as

well as for temporary storage of the opposite range, reducing memory allocation. We also note

that, as recommended in Apetrei , the 6* function is switched from computing the common
prefix (as in the Karras’ algorithm) to a simpler XOR evaluation. If the Morton codes are identical,
we follow the Karras idea of augmenting the key with a bit representation of its index.

1. We found that computing 6* values as part of the bottom-up procedure is faster than pre-computing and storing

them beforehand.



4. MODIFIED APETRETI’'S ALGORITHM WITH SKIP-CONNECTIONS

We modify the Apetrei’s algorithm to restore the Karras ordering of the internal nodes and instal-
lation of skip-connections. The modified version is presented in Algorithm 4. Let us highlight the
differences with Algorithm 3.

First, while the Apetrei index p of the parent node is still being calculated and used for referencing
the temporary storage, the Karras index ¢ is now used to reference the location of the parent node.
The index computation on line 20 of Algorithm 4 uses the property we mentioned in Section 3.1.
Specifically, that the Karras index coincides with its range boundary that has the smaller value
of 0*. Thus, by comparing the §* values of the parent range, we are able to figure out its Karras
index.

Second, a parent node is now updated by a single thread instead of two. Specifically, lines 8
and 14 in Algorithm 3 are replaced by lines 21-26 in Algorithm 4. This is due to the fact that the
determination of the parent index, ¢, now requires the knowledge of its full range, which is only
available to the second thread up. On the flip side, a parent node can now determine the indices
of its children, as knowing a split position  (which is exactly the Apetrei index p in this case), the
indices of the children are v and 7 + 1 in the internal or the leaf node array.

Third, given the knowledge of the Karras index ¢ and the full range of the parent as part of the
Apetrei’s algorithm, we can now easily calculate the target for each of the skip-connections as was
explained in Section 3.1. Lines 5-8 (lines 22-26) integrate Algorithm 2 into the procedure for leaf
(internal) nodes, respectively.

Finally, the index ¢ on line 27 is updated with the Karras’ index instead of Apetrei’s, and the loop
termination condition is simplified, as Iy is always the root in the Karras ordering.



Algorithm 4 Modified Apetrei’s algorithm with skip installation. For simplicity, the construction
of the bounding boxes is omitted. < denotes an invalid entry value (e.g., —1). 4 denotes the
sentinel node.

1: Initialize all entries in store to
2: for all leaf node with index i € [0,n — 1] in parallel do

3:

10:

12:
13:
14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:

27:
28:

range p <4, Olefr <= 0°(1 — 1)
range,; e < 4 Oright < 0*(7)
ifi=n—1 then

Li7skip — ‘

else

if 67“ight < o* (Z + 1) then Li,skip — Lip else Li,skip — Lt

repeat

if 6’/‘ight < 5left then

p ¢ range,;
range,; n; < ATOMICCAS(storey, ¢, range;, ;)

if range, ; 5, = ¢ then return
Oright <= 0% (range, ;o)
else

p < rangep — 1

range, s, <~ ATOMICCAS(storey, ¢, range,; ;)
if range;. ;, = ¢ then return

Sleft < 5*(rangeleft)

if 0rignt < Ojefe then g range,; n else q + range;, s
if range ;, = g then I ey < L; else Iyjep < I
if range,; ,, =n — 1 then
Iq,skip < ‘
else
7 ¢ range,; p, + 1
if 5right < §* (7“) then Iq,skip < L, else Iq,skip «— I

14 ¢

untili =0

> Left child of its parent
> Apetrei index p

> Recompute outdated value
> Right child of its parent

> Recompute outdated value

> Karras index q




5. IMPLEMENTATION

The described algorithm is implemented as part of the ArborX library Lebrun-Grandié et al.
The code is available at https://github.com/arborx/ArborX.
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