

POISONING AND PURIFICATION

K. Way and J. Ernest Wilkins, Jr.

This document consists of 18 pages and 2 figures. No. 2 of 20 copies. Series A.

CENTOR LABORATERIES

1/5/44 5

Discussion and Results

In any pile operating at a high flux, say five or ten times the W level, the growth of poisonous fission products will be very rapid. In an "enriched" pile with a high reproduction factor the poisoning may not be fatal to the chain reaction. However, if the neutrons in such a pile which are not needed for the continuance of the reaction are to be used for the production of new fissionable material, as in a converter or breeder, their loss to a poison may produce a serious lowering of the efficiency of the machine.

It may be possible to purify the reacting metal by taking out a fraction of the fissionable material from the reactor either continuously or in small batches and removing the poisons from this fraction by chemical means. However, in such a process a certain amount of the fissionable metal will also be removed unavoidably. The more rapid the cycle, the greater this latter loss will be, although at the same time the loss of neutrons to poison in the pile will be smaller. The question arises as to the most favorable purification rate for a given operating level.

In a converter or breeder, the absorption of a neutron by a poison is equivalent to the loss of a fissionable atom. The quantity

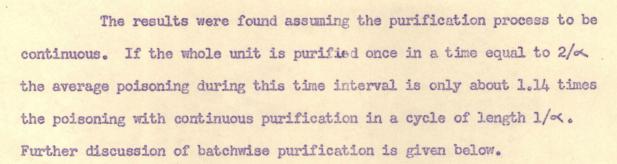
Declassified By: John Lockwood, CO, DD, ORNL One DD review per DOE O 475.2B, Att. 4, Par. 2.a.(6)

Derived From: CG-NMP-2, 09/11/2000, DOE OC

Declassified On: 08/17/2023

CLASSIFICATION CANCELLED

E OCT 1 1 1977 DECLASSIFICATION OFFICER
OAK RIDGE NATIONAL LABORATORY
AUTHORITY DELEGATED BY ERDA 8-15-77.


which it is desired to keep at a minimum is thus the following fraction which will be called the loss:

Loss = (Fissionable atoms lost in purifier) + (Neutrons absorbed by poisons in pile) Neutrons absorbed by metal in pile

The chief difficulty at present in evaluating this quantity is that very little is known about the slow neutron capture cross sections of radioactive fission products and these may produce a large poisoning effect. However, cross sections can be assigned to these isotopes on the basis of data on stable isotopes. The results from such a procedure may be considerably in error but give the best idea of what can be reasonably expected at the present time.

The loss is a function of the fraction C of fissionable atoms removed in the purifier and the fraction $\propto \overline{t}$ of the reacting material which is purified in the lifetime \overline{t} of a metal atom in the pile. For a given C, the loss will be a minimum for a certain value of $\propto \overline{t}$. The relation between C and $\propto \overline{t}$ necessary to give the minimum is shown in Fig. I. Here one sees for example that if C is 0.1%, $\propto \overline{t}$ should be about 14; that is, if the lifetime of the metal is 100 days the purification cycle should be about a week. If C is 1%, for the same metal lifetime, the optimum rate is about once every six weeks.

The actual minimum loss for any given C or any given $\propto \bar{t}$ is shown in Fig. II. For instance, for a C of 1% the loss as defined above is 5.9% while for a C of 1% the loss is 9.7%.

changed if the radioactive nuclei do not follow the statistics. The information available at present is that nuclei with an odd number of neutrons have in general higher cross sections than those with an even number. However, this apparent difference may be due to the fact that so few cross sections of odd neutron isotopes are known.* According to the present statistics (see Appendix I of CP-2468) one out of eighteen odd neutron nuclei will have a cross section between 10^5 and 10^6 barns, while three will have cross sections between 10^4 and 10^5 barns. This means that of the eight radioactive odd neutron fission products with high yields, two may be expected to have cross sections greater than 10^4 barns or of the same order of magnitude as Sm^{149} (40,000 barns). The contributions of such poisons to the loss, as shown below in Table I, amount to $\sim 50\%$ of the total for a purification cycle of 8 days, and to $\sim 37\%$ for an 65 day cycle. ($\overline{\mathbf{t}} = 100$ days.)

^{*}Only 4 cross sections of odd neutron isotopes have been measured. The upper limits of 14 more have been found by assigning that part of the absorption cross section of an element which cannot be accounted for by activation cross sections to the odd neutron isotope with least abundance.

If any radioactive nuclei actually have such large cross sections it seems that their effect might have been apparent at W. Analysis of reactivity changes at W (N-1771) show that at low power the data can be reasonably well accounted for by assuming a yield of Sm of only 0.35% and a total effect of all other fission products equal to one-third the Sm effect. However, it is not known at present whether any anti-poisons are created at W. If U²³⁶ or U²³⁷, for instance, have large cross sections for fission with slow neutrons their growth will help rather than hinder the chain reaction. These nuclei will not be present in converters using Pu²³⁹ or breeders using U²³³ as the fissionable metals. The anti-poisoning effect seems very unlikely in the case of U²³⁶ but quite possible for U²³⁷. Therefore, until further experiments are done, the most conservative policy is to assume that some radioactive isotopes have large cross sections.

In the next three sections the mathematical expressions for the loss and its derivatives are given, the method of taking into account the cross sections of the two hundred stable and radioactive fission products described, and the contributions to the loss of different classes of fission products tabulated for different values of $< \bar{t}$.

Mathematical Formulae

1. A Single Stable Poison.—The simple case of a single stable poison produced directly in fission is treated first.

Let n = the number of poison atoms present at any time,

or = slow neutron absorption cross section of the poison,

T = fission cross section of the metal,

σ_a = total (fission plus capture) cross section of the metal,

Te/Ta = P ,

0/0a = 8,

t = lifetime of metal atom = 1/flux x oa,

T = time/t,

y = yield or branching ratio of the poison in question,

≪t = fraction purified in lifetime of metal,

N = number of metal atoms present (it is assumed that this number is kept constant),

C = fraction of metal atoms removed in the purification process.

Then

and

$$n = \frac{N\beta y}{\alpha t + y} \left[1 - e^{-(\alpha t + y)T} \right]. \tag{1}$$

This quantity will approach its equilibrium value in a time equal to 1/

if Y is smaller than at and in a shorter time if it is larger. All

calculations are made assuming the equilibrium value has been reached;

that is, that n has the constant value

$$n = \frac{N\beta y}{\infty E + Y} \qquad (2)$$

The number of neutrons absorbed by the poison per unit time is $n\sigma/\sigma_a \bar{t}$. The fissionable atoms lost in the same time in the purification process is NC<. Thus the loss is

$$Loss = C \propto \overline{t} + \frac{y\beta \gamma}{\sqrt{t} + \gamma} . \tag{3}$$

The loss is a minimum when

$$C = \frac{y \beta y}{(\alpha t + \tau)^2}$$

Or

nog

$$\frac{\sqrt{t}}{8} = \left(\frac{\beta y}{C \theta}\right)^{2} - 1 . \tag{4}$$

The right hand side of (4) must be positive, which means

If this condition is not fulfilled, no minimum will exist and the loss will always increase with increasing <. In other words, an attempt at purification will only make things worse. For instance if Sm^{149} were the only fission product poison, C would have to be 2.68 x 10^{-4} to make purification worthwhile. (This results from $\sigma = 40,000$ barns, y = 0.015, $\sigma_{\tilde{g}} = 715b$, $\sigma_{\tilde{a}} = 1050b$.)

2. A Single Radioactive Poison with Long-Lived Parent.—A radioactive poison with a parent which partially shields it is now considered.

This is really the most general case. Let the subscripts O and 1 refer and to the parent/daughter respectively, let a be the decay constant times t, and the other symbols have the meanings already given. Then

$$n(\tilde{c}) = N \beta y a_0 \left\{ \frac{1 - e}{(\alpha \bar{t} + y_0 + a_0)(\alpha \bar{t} + y_1 + a_1)} \right\}$$

$$+ \frac{-(\alpha \bar{t} + y_1 + a_1)\hat{c} - (\alpha \bar{t} + y_0 + a_0)\hat{c}}{(\alpha \bar{t} + y_0 + a_0)(y_1 - y_0 + a_1 - a_0)} \right\}$$
(5)

and at equilibrium

$$n = \frac{N\beta ya_0}{(\alpha \bar{t} + \gamma_0 + a_0)(\alpha \bar{t} + \gamma_1 + a_1)} . (6)$$

The loss is then easily found to be

Loss =
$$C \propto \overline{t} + \frac{\beta \gamma_1 y a_0}{(\propto \overline{t} + \gamma_0 + a_0)(\propto \overline{t} + \gamma_1 + a_1)}$$
 (7)

and the condition that a minimum exist is now

$$C = \frac{\chi_{1} \chi_{3} a_{0}}{\left[\chi_{1} - \chi_{0} + a_{1} - a_{0}\right] \left((\chi_{\overline{t}} + \chi_{0} + a_{0})^{2} - (\chi_{\overline{t}} + \chi_{1} + a_{1})^{2}\right)} (8)$$

3. More Than One Poison.—When there are many different poisons present the loss can be found by adding poison terms for all the isotopes involved to (7) and (8).

fication is not done continuously but rather in batches; that is, if a fraction of the reacting metal < is removed at the end of each time interval T then the average amount of a poison present is

$$\frac{N\beta\gamma}{\gamma+a}\left\{1-\frac{e^{\frac{1}{\xi}}}{T(\gamma+a)}(1-e^{-(\gamma+a)T/\xi}\right\}.$$

For continuous purification the amount is $N\beta y/(\propto \bar{t} + y + a)$. The ratio R of the poisoning due to this particular isotope for batchwise to continuous purification is then

$$R = \frac{1+f}{f} \left\{ 1 - \frac{\alpha'}{\alpha T f} \left(1 - e^{-f \alpha T} \right) \right\}$$

where f has been substituted for $(\gamma + a)/\sqrt{t}$. If $\alpha' = 1$ and $T = 2/\sqrt{t}$

$$R = 1 + \left\{ \frac{1 + e^{-2f}}{2f} - \frac{1 - e^{-2f}}{2f^2} \right\}$$

The quantity in the brackets has a maximum value of ~.140.

Fission Product Data

If the effect of many poisons is to be evaluated exactly, there should be one term for each radioactive or stable fission product, or over two hundred terms altogether. In order to reduce the labor involved the fission products have been divided into various classes and each class

included as a whole. A primary subdivision into stable and radioactive isotopes was natural since, as already mentioned, the cross section of only one radioactive product has been measured so that it is impossible to include the radioactive nuclei in any way other than a statistical one.

These two main groups were then still further subdivided.

Stable Fission Products.—Sixty-three stable fission products are listed in Appendix I of CP-2468 as having appreciable fission yields or branching ratios. Of these, only 31 have known cross sections. However, in most* cases the total absorption cross section of the element is known. That part of the total cross section not accounted for by known activation cross sections was assigned to that isotope for which the ratio of yield to abundance is the largest and the other isotopes then assumed to have zero cross section. Thirteen additional stable isotopes are added in this way making a total of 44. Stable isotopes having radioactive parents with half lives of a year or more were not included in the original list. Their four radioactive parents have, however, been added to the stable class and cross sections assigned to them in a statistical way. Moreover, four of the stable isotopes have ancestors with half lives of a month or more. The stable isotopes were thus divided into two very unaqual classes.

Class Ia: 40 stable isotopes which are assumed to be formed directly in the fission process; i.e., to have parents with negligible half-lives.

^{*}For Rb, Ru, and Kr the total absorption plus scattering cross section was used for the absorption cross section.

Their cross sections, assigned as explained above, vary over a much wider range than their yields. For this reason they were divided into eight groups according to cross section and the yields in each group averaged. The first group includes all isotopes with cross section between 10^{-3} and 10^{-2} barns, the last those with cross sections between 10^{4} and 10^{5} barns. The average cross section in each group was taken to be the square root of the highest cross section in the group. For instance, for the first group, the cross section is taken as 3.16×10^{-3} barns. Appendix I lists all the elements in this class together with their yields and cross sections and shows how they were arranged into cross section groups.

Class Ib: The four stable isotopes in this class are listed in Appendix II together with their cross sections, yields, parents, etc. Since the members of this class are so few, their contributions to equations (7) and (8) were evaluated individually.

Radioactive Isotopes.—In Appendix II of CP-2468, there is a list of 33 radioactive isotopes with half lives greater than one day.

Of these, 14 have an odd number of neutrons and 19 an even number of neutrons. Of the 14 with an odd number of neutrons, only 6 have yields less than 0.5% while 8 have yields of about 5%. The same sort of thing is true for the even numbered neutron nuclei. Here 9 have yields around 5% while the others have yields of 0.5% or less. The low yield isotopes were neglected in both cases. Cross sections were assigned to the two high yield groups on the basis of the statistics given in CP-2468 and

NUC-KW-37. It was noticed that the spread in the half lives was not very great and that these could be divided into groups pretty well. The groups that resulted are given below. The specific nuclei put into these groups are given in Appendix III and the cross section statistics used will be found in CP-2468.

Class IIa. 4 isotopes with an odd number of neutrons and long halflives. The average half-life is taken as 45 days.

Class IIb. 4 isotopes with an odd number of neutrons and short half-lives. The average half-life = 2.8 days.

Class III. 5 isotopes with an even number of neutrons and an average half-life of 19 days. The other four nuclei with an even number of neutrons and high yields have half-lives of the order of a year or more. The statistics were applied to these nuclei and the contributions added to those from Class Ia.

Contributions of Different Classes to the Loss

The amount of loss due to the different classes is of considerable interest. Table I shows the losses from all the classes and from the cross section groups within the classes for three different values of \propto . It brings out clearly the fact that the radioactive nuclei with odd numbers of neutrons make a contribution in one case equal to half the poisoning loss. This table can be used to find the loss if experiments

should show that certain groups which have a big poisoning effect on the statistical picture can actually be neglected.

SECRET

TABLE I

CONTRIBUTIONS OF THE VARIOUS CLASSES TO THE POISONING LOSS*

	-					
d	+	940		3	R	7
-1	U		0	2	U	7

The second secon	Ia	Ib	IIa	IIb	III	Total	8
1 - 10 10 - 10 ² 10 ² - 10 ³ 10 ³ - 10 ⁴ 10 ⁴ - 10 ⁵ 10 - 10 ⁶ 4 x 10 ⁴ (Sm ¹⁴⁹)	6.05 57.9 168 17.9 1.28	6.15 23.7	.0391 2.79 17.1 15.0 68.4 24.0	.00245 .177 1.23 2.15 30.6 16.1	.155 .685 4.04 4.90	6.73 67.7 214 39.9 100 40.1	1.33 13.4 42.3 7.89 19.8 7.93 7.34
Total	288	30.3	127	50.2	9.78	505	
8	57.0	6.00	25.1	9.93	1.94		

≈ t = 1.52

1 - 10 10 - 10 ² 10 ² - 10 ³ 10 ³ - 10 ⁴ 10 ⁴ - 10 ⁵ 10 ⁵ - 10 ⁶ 4 x 10 ⁴ (Sm ¹⁴)	3.83 15.7 3.15 .309	.0182 .370 1.26	.00604 .433 2.78 3.03 16.5 5.97	.000582 .0421 .291 .513 7.48 4.00	.0300 .133 .793 1.05	.436 4.81 20.8 7.74 24.3 9.97	.566 6.24 27.0 10.0 31.5 12.9
Total	32.4	1.65	28.7.	12.3	2.01	77.1	
%	42.0	2.14	37.2	16.0	2.61		2.

$\propto \bar{t} = 12.2$

1 - 10 10 - 10 ² 10 ² - 10 ³ 10 ³ - 10 ⁴ 10 ⁴ - 10 ⁵ 10 ⁵ - 10 ⁶ 4 x 10 ⁴ (Sm ¹⁴⁹)	.00595 .0609 .286 .117 .0289	6.17x10-5 .00425 .00518	.000166 .0120 .0821 .136 1.56 .721	4.9 x 10 ⁻⁵ .00355 .0247 .0450 .777 .48b	.00120 .00534 .0330 .0565	.00643 .0860 .431 .354 2.37 1.21	.120 1.61 8.07 6.63 44.4 22.7
Total	1.39	.00949	2.51	1.33	.0960	5.34	
%	26.0	،178	47.0	24.9	1.80		

APPENDIX I

Class Ia. Unshielded Stable Isotopes

	Class	la. Unshleide	d Stable 1806	opes	
Cross secti	on: 10 ⁻³ - 10	o ⁻² barns .	Cross secti	on: 10 ⁻² - 1	.0 ⁻¹ barns
Element	0	Yield	Element	0	Yield
S.:88	.005	.040	Zr94	.053	.065
Cross secti	ion: 10 ⁻¹ - 1	00 barns	Cross secti	on: 10 ⁰ - 10	l barns
Rb85	.69	.015	Se80	1.1	。0009
Rb87	.128	.030	Br81	1.67	.0012
Zr92	.33	.059	Zr94	1.07	.066
Mio98	.37	.062	сь93	1.2	.062
Mo100	.23	.053	Ru102	1.2	.039
Ru104	.33	.018	I127	6.8	。0012
Tel26	.85	.001	Bal37	8.8	.065
Tel28	.148	.005	La139	8.4	.065
Te130	.250	.018		Total	.300

	20] 20	2 .		1.	102 7/	23.
Cross sect	ion: 10 ¹ - 10	barns	Cross se	ction:	10 10) barns
Br79	12.5	.0004	Se82	128.		.0025
Mo97	28.8	.065	Kr86	114.		.022
Rulol	27.2	.043	Ag108	108.		.0001
Pd105	16.3	.009	Xe136	279.		.062
Pdlo8	12.1	.0005	Nd145	760.		.050
Inl13	61.	.00002	Eu153	768.		.0012
(co)	tinued on nex	t page)			Total	_* 138

.066

.327

Ba138

. 56

Total

Cross sect	Cross section: $10^1 - 10^2$ barns (cont.)			ion: 10 ⁴ - 10	⁵ barns
Element	5	Yield .	Element	σ	Yield
Te125	48.	.00025	Cdlll	23000	00006
Cs133	25.6	.043	Sm149	40000	.015
Ce ¹⁴²	30.	.060	Gd155	33300	.0004
	Т	otal 221	Gd157	100000	.00006
	Secret Series			Tota	.0155

· ·	Cross sect	ion: 10 ³	3 - 104	barns
Complete Charles of Control	Eu151	1520		.004

Radioactive nuclei added to stable class and assigned cross sections on statistical basis

Element	Half Life	Yield
Sr90	30 у	.05
14399	long	.058
Cs137	25 y	.043
Cellili	300 d	.055

APPENDIX II
Class Ib. Partially Shielded Stable Isotopes

Stable Element			Parent	Assumed of of Parent	Half-Life of Parent
Y89	1.1	.046	Sr ⁸⁹	316	55 da.
Zr91	24.3	。058	Y91	316	57 da.
Rh103	1.63	047	Ru ¹⁰³	316	42 da.
Prol41	11.0	.053	Ce ¹⁴¹	316	28 da.

APPENDIX III

Radioactive Isotopes with High Yields

Class IIa. High Yield Radioactive Nuclei with Odd Neutrons and Long Half-Lives

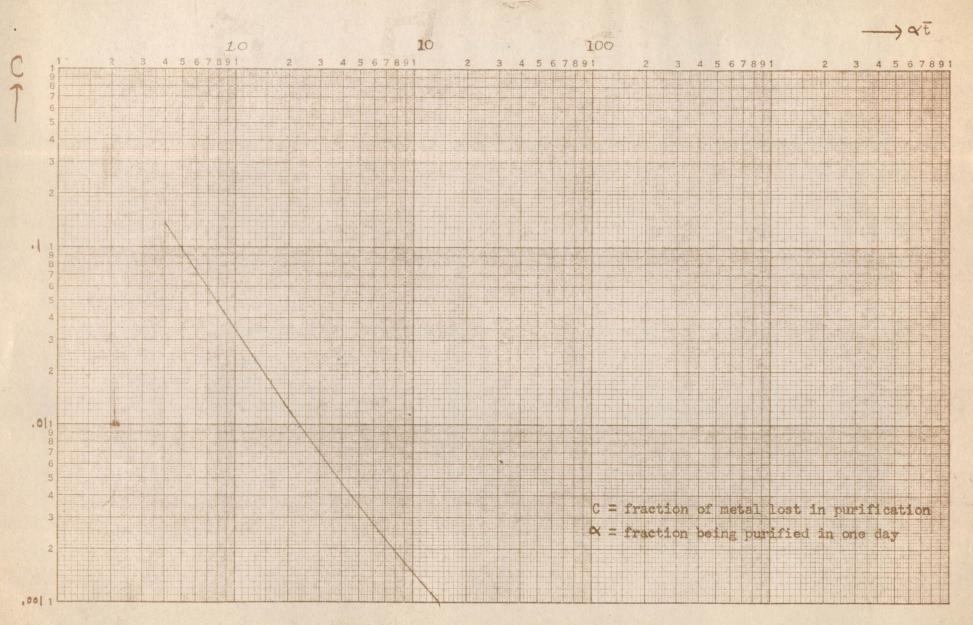
grown	AND THE PROPERTY OF THE PARTY BY AND THE PARTY AND THE PARTY OF THE PA	TO NOT THE REPORT OF THE PROPERTY OF THE PROPE	では、 では、 では、 では、 では、 では、 では、 では、
tan: 3	Element	Half-Life	Yield
	Sr ⁸⁹	95 	.046
	Zr93,95	65	.045
	Ru103	42	.047
	Ce ¹⁴¹	28	e 050

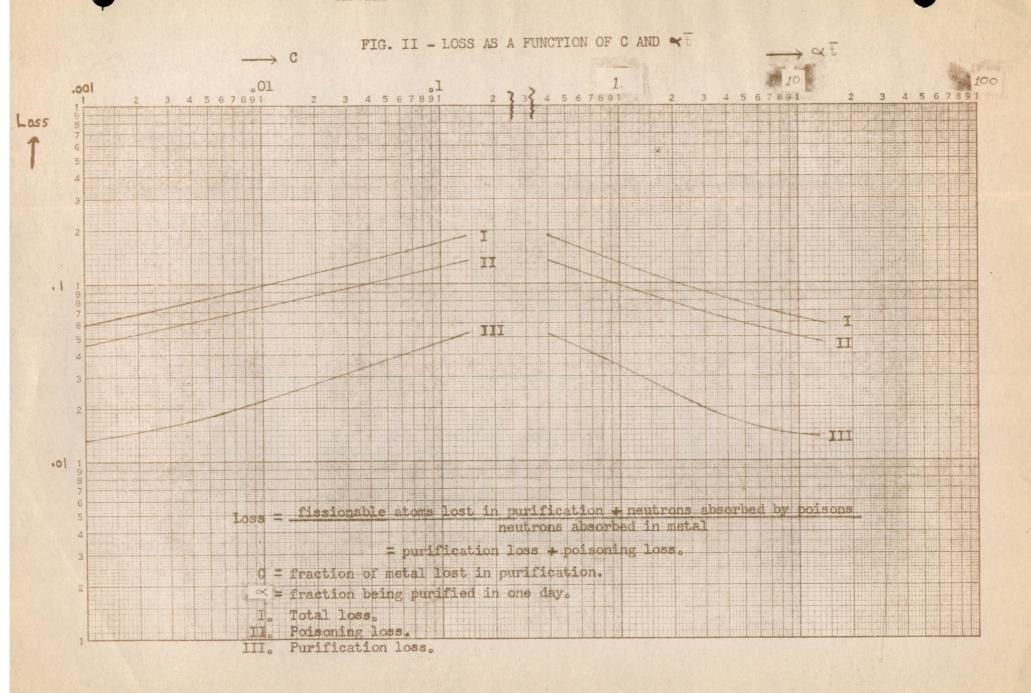
av. = 45 days

Class IIb. High Yield Radioactive Nuclei with Odd Neutrons and Short Half-Lives

	TOTAL CONTROL	A TOWN OF REPORTED HER PROPERTY OF A PROPERTY OF A PROPERTY OF THE PROPERTY OF	a Tribus picturum eigens granism eigens jannamers, in bestehn granism geranden von der stelle solle eigen eine Eine granism eigens granism eine seine gemannen eine gemannen der eine gemannen der deutstelle eine den eigen d
h. Meser account future of	Element	Half-Life	Yield
United and the Control of the Contro	Мо99	2.8	.058
Challenge Sample Strategy	Xe ¹³³	5.3	.038
Contract of the last	Ce ¹⁴³	1.4	.054
	La140	1.7	.061

av. = 2,8 days


account.


Class III. High Yield Radioactive Nuclei with Even Neutrons and Intermediate Half-Lives

AND THE PROPERTY OF THE PROPER	CANTANO, TO SERVING TO THE SPACE SOUTHWARE SEASON THE ANALYSIS AND SEASON THE SPACE OF THE SEASON OF	A NEW TOTAL STREET, ST
Element	Half-Life	Yield
r 91	57	.059
1131	8	.017
Te ¹³²	3.2	。036
Ba ¹ / ₄ O	12.5	.061
Pr.143	13.5	.054

av. = 18.8 days

FIG. I - C AS A FUNCTION OF ≪ t FOR MINIMUM LOSS

