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GLOSSARY OF TERMS

The following key terms used throughout this report are defined here for disambiguation. Where possible, 
the additive manufacturing (AM) terminology used herein complies with ISO/ASTM 52900:2021, 
Additive manufacturing - General principles - Fundamentals and vocabulary [1].

artificial intelligence (AI): An umbrella term referring to any computer algorithm that makes decisions 
intended to mimic those made by a human.

database: The collection of metadata that comprise the digital threads for all the components 
manufactured at the Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory 
(ORNL). Strictly, the heavier process data (e.g., in situ images) are not stored in the database; they are 
stored within the designated file systems, and the database only moderates and facilitates data upload and 
retrieval by using application programing interfaces.

deep learning: A class of machine learning algorithms in which features are learned instead of designed.

digital platform (DP): The cyber-physical infrastructure under development at the MDF that is enabling 
novel design and qualification paradigms for advanced manufacturing. 

digital thread: The totality of the design intent information, data, and metadata collected during the 
fabrication of a component. The digital thread enables the instantiation of a corresponding digital twin. 

Damara Tern: A web-based client developed at the MDF to facilitate metadata collection for the 
different operations with the goal of creating a digital thread for each manufactured component. This 
application is set to become the primary interface between most users and the DP database.

digital twin: A computer representation and model of a real object, assembly, or system. This model is 
updated based on data collected from its physical twin; this model contrasts with a computer model that 
relies solely on aggregated or representative data from many identical components. 

ex situ data: Data collected outside of some manufacturing operation. For example, post-build x-ray 
computed tomography data.

integrated computational materials engineering: A methodology for designing material and 
component design that links experiments and simulations across multiple length and time scales.

in situ data: Data collected during some manufacturing operation. For example, sensor data collected in 
the AM process. 

machine learning: a subset of AI algorithms that are trained on data to generate models capable of 
performing complex tasks

operation: Each manufacturing process is decomposed into a sequence of operations. A digital thread is 
merely a list of all operations that were performed to fabricate the component, along with links to the 
associated data and metadata.

Peregrine: An ORNL-developed software tool designed to provide a comprehensive suite of data 
collection, analysis, and visualization capabilities for powder bed AM systems.
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Simurgh: An ORNL-developed software tool for performing x-ray computed tomography 
reconstructions using deep learning. 

software tool: Any custom software used to facilitate a digital workflow or specific operation. 

trackable: A physical or digital component that can undergo an operation. The term applies to any 
component that can be catalogued along the digital thread, including AM materials, final or in-process 
components, and digital models.   
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ABSTRACT

This report details the various digital manufacturing activities ongoing at Oak Ridge National Laboratory 
(ORNL) as part of the Advanced Materials and Manufacturing Technologies (AMMT) Program. The 
AMMT Program is exploring a data-driven approach to demonstrate the use of additive manufacturing for 
the fabrication of components for nuclear applications, with the goal of providing a greater understanding 
of manufacturing quality outcomes that would pave the way toward the development of standards for 
certification and qualification. The objective of this work package is to establish a digital manufacturing 
discipline common to all participants of the AMMT Program to improve the performance, reliability, and 
lifetime of nuclear components. As part of this effort, a unified software architecture will be developed 
for AMMT data management and processing, the digital platform will be deployed across AMMT 
participants’ facilities, and pedigreed data sets will be generated in a common format across multiple labs 
and facilities. To this end, the multidimensional data correlation work package has focused on three 
activities during FY 2023. First, the Manufacturing Demonstration Facility Digital Tool was overhauled 
to better serve the needs of the AMMT Program. Next, multiple laser powder bed fusion systems at the 
Manufacturing Demonstration Facility were upgraded to a common sensor package for collecting 
comparable in situ data across machines. Finally, various improvements relevant to the AMMT Program 
were implemented in the ORNL-developed software tool, Peregrine. This report marks the completion 
of FY 2023 milestone M3CR-22OR0403051: Report Describing the Architecture of the Digital 
Platform to Support AMMT Activities.

1. INTRODUCTION

Additive manufacturing (AM) continues to promise opportunities for optimized component designs, 
localized microstructural control, and on-demand manufacturing. However, concern regarding the 
variability observed in AM material properties and machine-to-machine performance has, to date, 
prevented widespread adoption of the technology in nuclear and other risk-averse industries. Furthermore, 
the complex geometries often associated with AM complicate postbuild nondestructive inspection (NDI), 
presenting additional challenges for qualification. 

Despite these challenges, the layer-by-layer nature of AM also provides an unprecedented opportunity for 
in situ process monitoring that can bolster traditional NDI techniques. For example, in situ images 
collected on a layer-wise basis can provide detailed information related to part quality in a manner that is 
robust to material and component size, which are both historical limitations for traditional NDI. 
Multiscale, physics-based simulations of thermomechanical phenomena and microstructural development 
may also supplement these data streams, presenting a complete digital data package of the manufacturing 
process. In this sense, AM and other advanced manufacturing technologies can produce extensive data 
sets containing valuable information pertinent to component quality at every stage of the manufacturing 
workflow not afforded by traditional NDI. Through the collection, structuring, and analysis of these 
disparate data streams, this report argues that such data can be used to understand, optimize, and validate 
advanced manufacturing processes in a manner congruent with the requirements of qualification and 
certification. To date, no process- and material-agnostic methodologies exist to rapidly develop standards 
supporting the qualification of additively manufactured components, and there exists a need for pedigreed 
data sets for data-driven qualification of AM because existing data sets are dispersed and not recorded in 
standard formats. 

The Advanced Materials and Manufacturing Technologies (AMMT) Program is exploring a data-driven 
approach to demonstrate the use of AM for the fabrication of components for nuclear applications, with 
the goal of providing a greater understanding of manufacturing quality outcomes that would pave the way 
toward the development of standards for certification and qualification. To be successful, this approach 
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requires the creation of large pedigree data sets that would serve as references to validate data analytics 
solutions for component quality control, failure analysis, and material properties prediction. To build such 
a database across all activities within the program, the program must establish a digital discipline 
common to all participants of the AMMT Program that defines the protocol for data collection and 
processing at every step of the manufacturing process, during subsequent characterization and testing 
phases, and ultimately throughout a component’s life cycle. The collection of such streams for a given 
part is defined as its digital thread.

Leveraging preliminary work conducted as part of the Transformational Challenge Reactor (TCR) 
Program, the objective of this work package is to establish a digital manufacturing discipline common to 
all participants of the AMMT Program to improve the performance, reliability, and lifetime of nuclear 
components. This task will be accomplished by (1) reinforcing the existing Digital Tool architecture at the 
Manufacturing Demonstration Facility (MDF) to capture additional information pertaining to the 
manufacturing and testing processes considered by the AMMT Program; (2) providing a unified data 
architecture deployable at the AMMT members’ facilities for data management consistency; 
(3) generating guidance on how data and metadata generated by this program should be formatted to 
integrate the main database, with data coming from AMMT members or Nuclear Energy University 
Program participants; and (4) developing new modules for software tools that extend the current 
predictive capabilities. The collection and storage of manufacturing process data within this architecture 
will facilitate data tracking, processing, and exchange between US Department of Energy (DOE) labs; 
simplify the release of pedigreed datasets; and enable advanced data analytics to support AM component 
qualification. This new qualification approach, known as the multidimensional data correlation (MDDC) 
framework, will capitalize on the wealth of digital manufacturing data; integrated computational materials 
engineering tools; artificial intelligence (AI) tools; and accelerated, high-throughput testing and 
characterization techniques. 

To this end, the MDDC work package has focused on three activities during FY 2023. First, the MDF 
Digital Tool was overhauled to better serve the needs of the AMMT Program. The new framework, called 
Damara Tern, will succeed the previous MDF Digital Tool and related relational database initially 
deployed under the TCR Program, and its primary function is to structure and organize the metadata 
collected along the digital thread. It also serves as a library, allowing users to save, explore, and retrieve 
data associated with each operation and component involved in the manufacturing process. Next, multiple 
laser powder bed fusion (LPBF) systems at the MDF were upgraded to a common sensor package for 
collecting in situ data across machines, allowing for better comparisons of process stability and material 
quality across different builds, alloys, machines, and printing facilities. The Digital Handbooks, a set of 
guidelines for capturing digital threads for a given manufacturing operation, were also updated to reflect 
these hardware modifications. Finally, various improvements relevant to the AMMT Program were made 
to Peregrine, an Oak Ridge National Laboratory (ORNL)-developed software tool for advanced data 
analytics of powder bed AM processes. These improvements include updates to the real-time data 
acquisition methodology and the creation of the dynamic multilabel segmentation convolutional neural 
network (DMSCNN), which is the deep learning algorithm that forms the foundation of Peregrine.  

This report is organized as follows. First, an overview of the MDDC approach is presented in Section 2, 
followed by details of the design of the new digital tool, Damara Tern, in Section 3. Section 4 discusses 
the various sensing and instrumentation upgrades made, and Sections 5 and 6 detail relevant changes 
made to the Peregrine software tool. Finally, detailed tables related to the Damara Tern database and 
updated digital handbook entries for AMMT machines can be found in the appendices. 
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2. THE MULTIDIMENSIONAL DATA CORRELATION APPROACH

The MDDC framework under development at ORNL seeks to enable the qualification of critical 
components based on instance-specific data. This method contrasts with traditional qualification schemas, 
which rely on data aggregated from the characterization and historical performance of many identical 
components combined with a restrictive set of locked down manufacturing processes and material 
feedstocks. This paradigm shift is ultimately necessary for highly regulated industries to fully leverage the 
latest advanced and digital manufacturing processes, such as metal and ceramic AM. The MDDC 
framework supports these efforts at multiple levels along a continuum of capabilities. First defined for the 
TCR Program, Table 1 updates the descriptions of four capability levels [2] as they relate to the AMMT 
Program. The TCR Program began in 2019 with data-driven qualification capabilities for powder bed AM 
processes at Level I [3], [4], and the AMMT Program has been developing capabilities at Level III since 
2021 [5], [6]. 

Table 1. Descriptions of the capability levels at which the MDDC framework supports instance-specific 
qualification of additively manufactured components. The AMMT Program is currently developing capabilities 

at Level III for powder bed AM systems.

I. II. III. IV.
Record keeping Enhanced understanding Property prediction Accelerated design

 Data and metadata are 
recorded primarily for 
provenance purposes.

 Data are painstakingly 
reviewed manually, 
layer-by-layer, to 
identify problems.

 In situ sensor data are 
generally of low quality 
and minimal volume.

 Historical data sets are 
difficult to access and 
may be inconsistently 
formatted.

 Data and metadata are 
consistently recorded for 
every build and are used 
to better understand the 
process.

 AI is used to 
automatically analyze in 
situ data and identify 
anomalies and flaw 
indications.

 In situ sensor data are of 
high quality and require 
large storage volumes.

 Sensors and algorithms 
are sufficiently robust to 
determine if a given 
build was printed under 
nominal conditions.

 In situ data are spatially 
registered with ex situ 
characterization data at 
scale.

 Process simulations are 
performed at scale and 
linked to in situ data.

 The correlation between 
anomalies (indications) 
and flaws is understood 
with statistical methods.

 AI and physics-based 
modeling are used to 
predict local material 
properties.

 Physics-based models are 
used to predict part 
performance based on 
the in situ data (i.e., is a 
flaw truly a defect).

 Each part’s digital thread 
can be used to simulate 
its digital twin.

 In situ data, process 
simulations, and local 
property predictions are 
leveraged during the 
design process.

 AI is used to 
automatically iterate both 
the part design and the 
manufacturing process 
steps.

In addition to achieving these technical milestones, the AMMT Program must address the depth, breadth, 
and scale of the proposed qualification paradigm (see Figure 1). Each of these three dimensions increases 
the size of the problem space and are discussed in the following paragraphs. 
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Figure 1. Visualization of the dimensions of the MDDC problem space. Depth refers to the technical capabilities 
of a given digital manufacturing system, and breadth refers to the application of technical achievements from each 
focus area across multiple systems. Scale refers to the ability to implement MDDC concepts in production settings 

with the requisite depth and breadth. 

Achieving each subsequent level of data-driven component qualification requires research and 
development efforts to increase the technical depth across multiple aspects. Key data aspects include 
(1) AI algorithms [7]; (2) high-resolution, multimodal in situ sensing [8]; (3) process modeling and 
simulation; (4) nondestructive evaluation techniques [9]; and (5) cyber-physical infrastructure [10]. Note 
that transitioning between different capability levels requires different amounts of effort across each 
topical area. For example, although improving in situ sensing capabilities is extremely important to move 
from Level I to Level II, advances in spatial registration of nondestructive evaluation results are critical to 
move from Level II to Level III. Notably, creating a robust cyber-physical infrastructure is necessary to 
bind together all the other digital capabilities. Figure 2 summarizes the relative efforts required in each 
area along the MDDC capability continuum.

Figure 2. Representation of the order-of-magnitude levels of research effort anticipated in each technical 
area to move between MDDC capability levels. As an example, the research focus shifts from in situ sensor 

development at the early levels to AI and modeling at the later levels, and cyber-physical infrastructure remains a 
focus throughout the entire development process.
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The breadth of the problem relates to the application of technical achievements from each focus area 
across multiple systems. Because this dimension is extremely resource-intensive, ORNL has focused on 
developing generalizable software tools, such as Peregrine, which are printer-, sensor-, and material-
agnostic. This approach enables the rapid transfer of advancements between different printer–sensor–
material combinations but requires access to many diverse scenarios for development and testing of each 
new capability. To that end, Peregrine has been deployed on 19 powder bed printers at ORNL and is now 
being used across the US Government and multiple industry and academic partners. This platform allows 
technical capabilities developed at ORNL to be tested under unique conditions and used for a wide variety 
of use cases. As part of this effort, the DOE laboratories participating in the AMMT Program will share 
development of not only Peregrine but also the MDF Digital Platform. Figure 3 summarizes the 
deployment of Peregrine across the United States, as well as recent improvements to Peregrine and the 
MDF Digital Platform.

Figure 3. Peregrine licenses across the United States as of May 2023. Government facilities, industry partners, 
and academic institutions are represented as circles, squares, and triangles, respectively. Licenses that are still in 

progress but expected to be approved within FY 2023 are indicated with dotted lines.

Finally, implementation of the MDDC qualification paradigm at scale in industry-relevant production 
environments is considered the third dimension of this problem space. Under AMMT and other programs, 
ORNL is engaging with industry partners to transfer data-driven qualification technologies and best 
practices to the private sector. Beyond journal publications and conference presentations, engagement 
efforts have included (1) a digital handbook serving as a living document recording best practices learned 
during development of the MDDC, (2) research licenses of the Peregrine and Simurgh software tools, 
(3) Cooperative Research and Development Agreements and other technical collaborations focused on the 
role of data in powder bed qualification, (4) the release of open data sets [11], [12], (5) regularly 
providing the powder bed in situ sensing section of the annual Wohlers Report [13], (6) communication 
with standards organizations such as ASTM International, and (7) ongoing communication with the US 
Nuclear Regulatory Commission under TCR and now AMMT. 
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3. CONCEPT AND DESIGN OF THE NEW DIGITAL PLATFORM DATABASE AND 
INTERFACE FRAMEWORK

Damara Tern is the new framework developed to access the MDF Digital Platform data. Its primary 
function is to structure and organize the metadata collected along the digital thread and to serve as a 
library, allowing users to save, explore, and retrieve the data associated with each operation and 
component (i.e., trackable) involved in the manufacturing process. The framework succeeds the MDF 
Digital Tool and related relational database initially deployed under the TCR Program for accessing and 
exploring the data stored within the MDF Digital Platform. Although its predecessor successfully serves 
this function and enables component tracking during the manufacturing and testing processes, it relies on 
a printer-centric model that induces specificity and poses significant limitations in terms of extensibility 
and automation. To overcome these limitations, the Damara Tern framework relies on a generic and 
flexible operation-centric structure that accommodates a diverse range of machines, manufacturing and 
testing operations, and trackable components. Additionally, the framework aims to enhance search and 
view functionalities that reflect the digital thread for each manufacturing process. 

3.1 IMPLEMENTATION CONSIDERATIONS

The main objective of the MDDC framework is to provide a unified data management platform that is 
accessible to all members of the AMMT Program. This framework should enable (1) nationwide tracking 
of physical components and digital assets across multiple sites and (2) the creation of a database adhering 
to the findable, accessible, interoperable, and reusable best practices to support the research and 
development activities of the program. In contrast to the implementation for the TCR Program, the 
platform described here requires using a data management strategy that preserves the integrity of the 
digital thread of each component across multiple physical locations. This important requirement resulted 
in the following considerations.

 Database location: Data will not be hosted at a single location, nor will there be replicas of the 
complete database at each national laboratory. Instead, AMMT participants will host a database of the 
information they will produce, and those databases will be interconnected using a cross-referencing 
mechanism described in Section 3.2.

 Database access: Initially, users will access the database using credentials provided by the host 
national lab. As new data exchange and linkage functionalities of the platform are developed, web-
tools will be provided that allow direct access to data regardless of geographic location. 

 Information retrieval: Rarely, users will need access to the entire database to work on scientific 
problems. In this case, they will retrieve subsets of the data based on scoped queries, for which 
application programming interface (API) functionalities will be developed to make intelligent and 
focused queries to the database. 

 Knowledge extraction and data visualization: The selected Django framework provides access to 
numerous Python libraries for advanced data visualization and processing. Domain experts will be 
expected to create their own data processing pipelines to access the database and format the data for 
their specific applications. 

3.2 OPERATION-TRACKABLE DATA MODEL

The data model employed for the development of the framework revolves around the concepts of 
operations and trackables, which are defined as follows:
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 Operation: Any action performed via the use of a machine (such as print, cure, heat treatment, blue 
light scan, microscopy analysis, tensile test, etc.) or human interaction (procurement, annotation, 
registration, manipulation, etc.). Operations can be performed prior to, during, or after the 
manufacturing process itself to extend the data context. 

 Trackable: Any physical or digital component that can be subjected to an operation (such as parts, 
builds, materials, etc.) 

This model relies on the manufacturing process flow and provides the necessary framework for storing 
and organizing metadata collected along the digital thread. The database is implemented along this model, 
where each physical or digital component (trackable) undergoes a series of tests or actions (operations). 
Each operation supports the collection of metadata or substantial in situ data and can (but not necessarily) 
lead to the creation, alteration, combination, or transformation of the trackables. 

By collecting the data at each operation level and preserving the traceability of relationships between the 
trackables and applied operations, it becomes possible to recreate the digital thread for each trackable. 
This pathway reflects the entire manufacturing process, accompanied by the comprehensive context of 

collected data and metadata gathered throughout the entire process. 

Figure 4 gives an example of the operation/trackable-based model of the digital thread.  
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Figure 4. Representation of a multisite digital thread in the context of the operation-trackable data model. In this example, the trackable specimen 
“Tensile 2” history of operations and parent trackables are highlighted. The trackable entire creation context can be retrieved by retracing this history and 

gathering the data and metadata collected along each operation. EDM stands for electrical discharge machining.
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3.3 DAMARA TERN FRAMEWORK: SOFTWARE AND TECHNOLOGY

The Damara Tern framework combines a web interface for exploring, entering, and accessing data within 
the MDF Digital Platform and the underlying MDF metadata database. This section provides a summary 
of the software and technology selected for its implementation within the MDF.

3.3.1 Database Implementation

The initial version of the database MDF Digital Platform, launched in FY 2020, relies on a printer-centric 
implementation. Each build (or print) is recorded in a dedicated table within a machine-specific 
PostgreSQL schema. This structure allows for the inclusion of all the machine-specific characteristics of 
the builds as fields within the build table. Additionally, other machine-related information can be stored 
in custom tables within the machine schema. This design customizes the metadata collection to the 
equipment and facilitates efficient machine-oriented data exploration. However, a significant drawback of 
this original model is its lack of extensibility and automation. Specifically, it mandates the creation of a 
new schema with a hand-crafted set of fields and tables for every new machine addition.

To address this challenge and ensure the platform’s longevity and scalability, the development team 
initiated a comprehensive overhaul of the MDF Digital Platform in the last two quarters of FY 2023, 
building upon the operation-trackable data model detailed earlier. The new database architecture adheres 
to a semistructured approach by including only generic fields in the tables and storing the remaining fields 
within JavaScript object notation (JSON) field structures. As a result, this structure offers an abstraction 
of the specifics associated with distinct equipment types, materials, and operations, thereby broadening 
the scope of trackables and operations registered within the framework.

The database is implemented using the PostgreSQL relational database management system. This 
technology choice was driven by the development team’s existing knowledge and experience. 
Nevertheless, alternative relational database management systems such as MariaDB or MySQL could 
potentially be substituted for PostgreSQL.

Figure 5 presents an overview of the database structure divided into five logical blocks: Operation, 
Trackable, Machine, Related Data and People and Affiliation. Each block comprises the main tables 
responsible for providing information within its designated scope as follows:

 Operation: Represents performed operations, including their types and specificities that define the 
contexts in which they are carried out

 Trackable: Encompasses catalogued physical or digital components subject to operations, along with 
the types and specifications used for their categorization

 Machine: Enumerates printers and other pieces of equipment employed for operations, including 
contextual details such as calibration and dedicated features

 Related Data: Involves information pertaining to substantial process data (such as images, videos, 
documents, etc.) stored within file systems or accessible remotely via URLs. These data are essential 
for retrieval and access purposes.

 People and Affiliation: Encompasses all information regarding users, institutions, and projects 
required to manage access and affiliations



10

Figure 5. Overview of the database structure organized into five logical blocks: Operation, Trackable, Machine, People and Affiliation, and Related 
Data.
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The following is a list functions for the primary tables corresponding to each logical group. For further 
information on the specific fields associated with these tables, please refer to Appendix A.

 Operation: Stores operation records and related metadata

 Operation_Type: Names and describes the supported operation types and provides form templates 
for operation-specific metadata collection

 Trackable: Stores trackable records and related metadata

 Trackable_Type: Names and describes trackable types and provides form templates for trackable-
specific metadata collection

 User: Lists the MDF Digital Platform users

 Organization: Lists the institutional organizations for the users

 Location: Defines locations and addresses for organization and vendor sites

 Project: Lists the projects and sponsors supporting the purchases and manufacturing operations

 Machine: Identifies machines and equipment, along with their related metadata   

 Calibration: Records details of the machines and equipment calibration over time 

 Calibration_Type: Provisional table used to categorize calibrations and provide form templates for 
calibration-specific metadata collection

 Related_Data: Records the data paths, URLs, or references to the collected data stored remotely or 
on file system

 Data_Type: Defines the data type referenced by the Related_Data entries

 Data_Tag: Provides additional contextual tags to categorize the data referenced by the Related_Data 
entries

In addition to the main tables listed here, the database contains several association tables that store the 
many-to-many (M:M) relationships required by this data model design. Simple tables (highlighted in blue 
in Figure 5) operate on an implicit model with three fields for each entry: a primary key ID and a foreign 
key for each of the tables involved in the relation. Other association tables (Input, Output, Project_User, 
and Machine_Operation_Type) have been incorporated through explicit declarations to include additional 
information along with the M:M relationship. 

3.3.2 Damara Tern Web Interface 

With the redesign of the database, a new user interface was required to align with the underlying 
structure. The development of the Damara Tern web interface relies on the Django web framework, 
which adheres to a model view controller architecture. This choice was influenced by its out-of-the-box 
features, versatility, use of Python as the implementation language, and its proven success in prominent 
projects (e.g., Instagram, Mozilla, National Geographic).
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The Django project is built upon a file structure organized into apps. Each app is thoughtfully designed to 
partition the project by core functionalities. The current project structure, illustrated in Figure 6, consists 
of four custom Django apps: home, mdf_db, operation, and trackable. 

The mdf_data app handles the interfacing and connection with the metadata database described in Section 
3.3.1. It provides the Python declarations for the database tables and fields, along with database-level 
constraints and validation rules. This app also defines the list fields and forms accessible through the 
admin interface and supports the LDAP authentication backend.

The operation app encompasses all the functionalities and classes required to manage the operation entries 
of the database model. This app includes various forms for creation; views for listing and displaying; and 
search filters that allow navigation, viewing, and retrieval of the operations and their related stored data.

The trackable app provides similar functionalities, including creation forms, list and detail views, and 
filter-based search capabilities, which are tailored for the management of trackable entries.

The home app includes fundamental functionalities tied to the website, such as home and login/logout 
pages. Additionally, the remaining structural components, labeled as “dt” and “static,” house the essential 
settings, configurations, and static files required to bind the project.

Figure 6. Damara Tern web interface project structure. The files are structured around the concept of apps, 
organizing the project by core functionalities. 

For testing and development purposes, the prototype Damara Tern interface has been deployed on 
multiple ORNL internal servers accessible via the intranet. The current implementation provides 
operation and trackable lists and details views, fundamental navigation and search functionalities, and 
creation forms. Some of these features are illustrated in the interface screenshots presented in Figure 7.

The ongoing development efforts for this interface focus on replicating the functionality of the digital tool 
interface and implementing backend validation features to ensure the integrity of the database. Other 
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improvement efforts target enhancing the views, filtering, and display to facilitate the user experience 
when exploring the data through the interface.

(a) (b)

(c) (d)

Figure 7. Screenshots of the Damara Tern prototype interface illustrating several available functionalities to 
manage the model’s operations. The interface includes operation detail views featuring (a) related file lists, 

highlights upload/download options, and (b) basic visualization features. (c) Operation lists are accessible through 
the main menu and include filtering options to streamline searches, along with links toward the detail views. 

(d) New operations can be created using dedicated forms. Note that some data in these figures are derived from 
practice examples and do not represent real data sets (e.g., no Office Use Only data have been shown).
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4. SENSING AND INSTRUMENTATION UPGRADES OF LASER-BASED POWDER BED 
FUSION SYSTEMS

To support the activities of other work packages during FY 2023 and beyond, the sensors of multiple 
LPBF systems were upgraded. Efforts were made to install a common sensor package for in situ 
monitoring data across these machines, which will also be extended to facilities across the AMMT partner 
labs. This common sensor package, which includes a combination of high-resolution, visible-light images 
and temporally integrated near-infrared (TI-NIR) images, will better allow comparisons of process 
stability and material quality across different builds, materials, LPBF machines, and printing facilities. 
The data generated by these sensors have been integrated into the Peregrine software tool and will be 
made available to the other work packages to support ex situ characterization efforts. 

4.1 RENISHAW AM250

Three new sensors were installed on the Renishaw AM250: a 20 megapixel (MP) visible light camera 
(Basler acA5472-17um), a 4.2 MP near-infrared (NIR)-sensitive camera (Pixelink PL-D734MU-NIR-T), 
and a 0.33 MP long-wave infrared (LWIR) camera (Teledyne FLIR Boson 640). The visible-light camera 
is outfitted with an ultraviolet (UV)/NIR cutoff filter to protect the camera detector from the laser. 
Similarly, the NIR-sensitive camera has a narrow band-pass filter centered in the NIR range 
(808 ± 10 nm), as well as neutral density filters (outer diameter [OD] ≈ 1.8) to prevent image saturation. 
Each camera (a Peregrine “explicit channel”) can produce multiple images per layer (or Peregrine 
“frames”), which may be analyzed by a trained DMSCNN (Section 6). As shown in Figure 8, all three 
cameras were placed inside the build chamber given the physical constraints of the Renishaw AM250’s 
viewports. Cables for the cameras run through three cable passthroughs in the top of the build chamber, 
and cord grips ensure that the build chamber atmosphere is maintained.

Figure 8. CAD model representation of the Renishaw AM250’s build chamber showing the three cameras 
installed inside of the machine. Available data modalities include visible-light imaging, as well as TI-NIR and 

LWIR images.
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A total of seven frames are captured each print layer. The visible-light camera, which has an 
instantaneous field of view (IFOV) of approximately 55 µm, captures a post-melt and a post-recoat image 
for each layer. The NIR camera, which has an approximate IFOV of 125 µm, produces a video buffer that 
is dynamically analyzed at the end of a layer to produce a total of three images engineered to extract 
relevant process dynamics for the layer. These images include temporally integrated sum, max, and 
argmax images. Finally, the LWIR camera, which has an IFOV of approximately 140 µm, currently 
captures a post-melt and post-recoat image but may be used to explore other temporally integrated 
imaging modalities. The LWIR has a reduced field of view and therefore cannot image the entire build 
plate. Representative examples of each of these data modalities are shown in Figure 9. 

Figure 9. Representative examples of each of the seven data modalities captured on a given layer for the 
Renishaw AM250. The visible camera collects (a) post-melt and (b) post-recoat snapshots, and the NIR camera 

produced three temporally integrated images that summarize the process dynamics: (c) sum, (d) max, and 
(e) argmax. The LWIR camera also collects a (f) post-melt and (g) post-recoat snapshot.
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4.2 RENISHAW AM400

Whereas the Renishaw AM250 only received sensor upgrades, the Renishaw AM400 was a brand new 
connection to the MDF Digital Platform. Two sensors were installed on the Renishaw AM400: a 20 MP 
visible-light camera (Basler acA5472-17um) and a 4.2 MP NIR-sensitive camera (Pixelink PL-D734MU-
NIR-T). The Renishaw AM250 and AM400 share nearly identical build chamber and viewport designs, 
so a similar approach was taken to instrument the AM400. As shown in Figure 10, both cameras were 
mounted inside of the build chamber, and the camera cables were passed through the top of the build 
chamber and secured with cord grips. The visible-light camera is outfitted with a UV/NIR cutoff filter to 
protect the camera detector from the laser, and the NIR-sensitive camera has neutral density filters 
(OD ≈ 2.4) and a narrow band-pass filter centered in the NIR range (808 ± 10 nm). 

Figure 10. View of the Renishaw AM400 build chamber with the NIR and visible-light cameras installed. Both 
cameras are placed inside of the build chamber. 

For the Renishaw AM400, five Peregrine frames are captured each print layer. The visible-light camera, 
which has an IFOV of approximately 55 µm, captures a post-melt and a post-recoat image each layer. The 
NIR camera, which has an approximate IFOV of 125 µm, produces integrated sum, max, and argmax 
images. Representative examples of each of these data modalities are shown in Figure 11.
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Figure 11. Representative examples of each of the five data modalities captured on a given layer for the 
Renishaw AM400. The visible camera collects (a) post-melt and (b) post-recoat snapshots, and the NIR camera 

produced three temporally integrated images that summarize process dynamics: (c) sum, (d) max, and (e) argmax. 

4.3 CONCEPT LASER M2

4.3.1 Off-Axis Cameras

A 20 MP visible-light camera (Basler acA5472-17um) and a 4.2 MP NIR-sensitive camera (Pixelink 
PL-D734MU-NIR-T) have been installed in the Concept Laser M2. The visible-light camera is mounted 
to the back viewport of the machine, replacing the 5 MP visible-light camera that had been installed in 
that location previously. The new visible-light camera has an IFOV of approximately 60 µm. Conversely, 
the NIR camera, a new sensing modality for this machine, is installed inside of the build chamber to 
maximize the spatial resolution and improve the camera’s viewing angle; other mounting locations would 
have resulted in significant perspective distortions and nonuniform spatial resolutions. The NIR camera 
has an IFOV of approximately 140 µm. 

4.3.2 On-Axis Photodiodes

The Concept Laser M2 used by the AMMT Program at ORNL is equipped with an on-axis, photodiode-
based sensor suite originally installed by Concept Laser [14]. During the TCR Program, several 
limitations with this system were discovered; however, only a subset of these issues were addressed at the 
time [3]. In FY 2023, the remainder of the known issues were investigated and either corrected or 
sufficiently characterized such that the on-axis photodiodes can be used as a valid sensor signal in FY 
2024. First, the photodiodes on both laser modules were changed to the PDA100A2 model (initially tested 
in FY 2020) because it has a larger detector area. At the same time, the sensor gains were lowered to 
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60 dB to prevent saturation of the signal and decrease the sensor’s rise time. Next, the signal inversion 
observed on one of the two laser modules was corrected by independently identifying the background 
sensor signal and using it as a known baseline intensity. Because it is unknown if this issue (potentially 
caused by incorrect wiring at the analog-to-digital converter) is common among other Concept Laser M2 
printers, the code was written to automatically detect and correct for this issue on a laser-by-laser basis. 
Figure 12 shows an example of the photodiode data before and after the inversion corrections are applied.

Figure 12. Photodiode data from the first column were collected from laser module #1, and data in the second 
column were collected from laser module #2. Despite observing nominally identical melting conditions, note that 

the uncorrected data in the first row report significantly different signal magnitudes. Furthermore, the gradients 
between the two sensors are inverted, with the signal from laser #1 being highest when the laser is turned off and 
lowest when the laser is actively melting material. The corrected data in the second row report similar magnitudes 

and identical behaviors when observing similar laser behaviors.

The final outstanding issue is the presence of ring-shaped artifacts apparent in the reconstructed 
photodiode sensor data. By exposing the entire print area with both lasers, these artifacts were determined 
to be confined to regions located directly underneath each laser module and are most likely caused by 
reflections within the laser optics. At this time, no corrective actions are planned, and the AMMT 
Program will avoid printing test coupons in these regions for studies that rely upon the photodiode data. 
Figure 13 shows an example of fully corrected photodiode data.
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Figure 13. An example of fully corrected on-axis photodiode data collected from a Concept Laser M2 printer 
and overlaid on top of a visible-light image captured after the layer was melted. The applied corrections include 
(1) a lossless bit shift to correct for an incorrect upstream datatype conversion, (2) installation of a high-pass filter to 

block reflected laser light, (3) installation of a photodiode with a larger detector area and a modified sensor gain 
setting, (4) a temporal shift used to synchronize the sensor signals with the recorded scanner position, 

(5) algorithmic filtering to remove laser jump vectors, (6) using the background sensor signal to correct for an 
inverted electrical response, and (7) avoiding regions of the print area susceptible to reflections within the optics.

4.4 SUPPORT FOR SENSING AT OTHER NATIONAL LABS

In addition to instrumenting LPBF machines at ORNL, efforts have been made to install similar sensor 
packages at the other national labs partnered under the AMMT Program. Specifically, Argonne National 
Laboratory has a Renishaw AM250, which is being instrumented in the same way as ORNL’s Renishaw 
AM400. Specific hardware requirements and design files have been detailed and exchanged to ensure that 
the sensing configuration is as similar to ORNL’s as possible. Similarly, Los Alamos National Laboratory 
is planning to purchase the same visible-light camera to install on their EOS M290. Having analogous 
sensing systems installed both across machines inside of ORNL and between national labs will facilitate 
comparisons between in situ data collected from different machines at different sites and could possibly 
be used for round robin studies between labs. Such efforts could help explain machine-to-machine 
variability and inform data requirements for AM qualification. 

5. REAL-TIME DATA ACQUISITION 

The Peregrine software tool collects layer-wise imaging data for the LPBF printers used under the 
AMMT Program, including the Concept Laser M2, the Renishaw AM250, and the Renishaw AM400. 
The real-time data acquisition code was originally developed in FY19 and had seen only incremental 
improvements in the intervening years. Therefore, this portion of the Peregrine code base was overhauled 
in FY2023 to support the newly developed and installed sensor packages described in Sections 4.1, 4.2, 
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and 4.3.1. The primary objectives of the overhaul included (1) improved camera connectivity and cross-
camera synchronization and stitching, (2) support for sensor noise and view factor corrections, (3) support 
for video capture and long-exposure compositing, (4) reduced layer-wise computation time, and 
(5) improved modularity for ease of future modification.

First, all the camera hardware-specific code was moved into a Python class so that the camera connection, 
data transfer, and error checking methods could be properly abstracted. Hardware support is currently 
implemented for Basler, Pixelink, and OpenCV-compatible cameras, and the new software architecture 
enables the trivial addition of additional camera-specific software developer kits and application 
programming interfaces (APIs). This flexibility will be particularly important in the future as other 
AMMT partner labs explore cameras different from those used at ORNL.

A second Python class was created as a wrapper around the camera hardware layer. Each imaging 
modality is assigned a unique, threaded instance of this class which maintains the camera connection by 
automatically recovering from intermittent camera connectivity issues, synchronizing the clocks across 
multiple cameras, and stitching multiple cameras of the same type together to cover a larger field of view. 
The sensor noise suppression and view factor corrections required for TI-NIR imaging can also be applied 
from within this class. Figure 14 shows a summary of the operations performed by each threaded instance 
of this Python class.

Figure 14. A representation of the data capture thread, where each camera imaging modality is assigned a 
unique instance of this Python class. Yellow elements indicate hardware or user interfaces, green elements 

indicate classical computer vision calculations, and blue elements represent data storage buffers. Note that the pink 
mutex lock is triggered from a parallel thread and determines whether new data should be written to the A-Buffer or 
the B-Buffer. For simplicity, the video buffer triggered by the user is shown in this diagram; however, in its actual 

implementation, this operation is spawned as an independent thread.

The most significant change from previous iterations of the Peregrine data acquisition architecture is the 
introduction of an advanced data buffering system. These buffers allow over 100 GB of video data per 
camera to be stored in volatile computer memory. Using these buffers, arbitrary calculations can be 
performed on the entire video stream to create composite images encoding information about the entire 
print layer. For example, when performing TI-NIR imaging, the pixel intensities can be summed through 
the entire video stream, as discussed in Sections 4.1, 4.2, and 4.3.1. The time stamps marking the 
beginning and end of each print layer are determined by a state machine running in a parallel thread, as 
shown in Figure 15. The buffers themselves are processed in the same thread that processes the final 
layer-wise image stack using the DMSCNN segmentation model.
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Figure 15. A representation of the state machine thread. The video stream from a single user-selected camera is 
observed by a configurable state machine to determine the beginning and end of each print layer. These time stamps 
are shared between threads and are used to extract only the portions of each camera video buffer that are associated 

with the current print layer.

These major improvements, along with a number of additional modifications, slightly reduced the layer-
wise analysis time and substantially increased the flexibility of the code base. Figure 16 shows a 
screenshot of Peregrine’s user interface during a test of the real-time data acquisition. The software 
changes implemented in FY 2023 have enabled the collection of TI-NIR data across three new LPBF 
printers at ORNL and will facilitate the deployment of Peregrine at the other AMMT partner labs.

Figure 16. A representative screenshot of the Peregrine user interface during real-time data acquisition.

6. DYNAMIC MULTILABEL SEGMENTATION CONVOLUTIONAL NEURAL NETWORK

In FY 2023, Peregrine’s pixel-wise segmentation model was substantially upgraded to support multilabel 
classification. That is, the new DMSCNN is capable of predicting multiple anomaly classes at each 
individual pixel in an image stack. Although this effort was primarily supported through a technical 
collaboration between ORNL and RTX (also known as Raytheon Technologies), as well as the DOE 
Advanced Materials and Manufacturing Technologies Office Digital Factory annual operating plan, this 
upgrade has three significant implications for the AMMT Program. First, because the anomaly classes are 
no longer mutually exclusive, it is possible for the DMSCNN to better represent different laser processing 
conditions (Figure 17). This capability will be critical when the in situ imaging data are further leveraged 
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for developing optimized process parameter sets for stainless steel 316H in FY 2024. Second, because the 
DMSCNN effectively operates as a set of jointly-learned binary classifiers, pixels can be ignored during 
training for specific classes—a crucial requirement for using x-ray computed tomography data as training 
ground truths for detecting spatter-induced lack-of-fusion porosity with TI-NIR imaging [8]. Finally, the 
new architecture also allows the DMSCNN to report that a pixel is “unknown” (i.e., it cannot confidently 
predict its state given its current training). This is a first step toward uncertainty quantification and 
providing justifications and confidence levels alongside AI-based predictions.

Figure 17. A single layer of anomaly segmentation results from a TCR build printed on a Concept Laser M2 
LPBF system. The results on the left were produced by a trained deep stochastic convolutional neural network 

model, and the results on the right were produced by the new, multilabel DMSCNN model. Note that the DMSCNN 
can now correctly differentiate between lack-of-fusion process parameters (dark green in the upper left quadrant) 

and keyholing process parameters (orange in the lower left quadrant) instead of classifying both off-nominal melting 
conditions as debris (brown in the left-hand image). Also note that the DMSCNN no longer falsely predicts super-

elevation (red) for the melting parameters in the upper right quadrant.

CONCLUSIONS

The work package seeks to create a digital manufacturing discipline common to all participants of the 
AMMT Program to improve the performance of nuclear components. The MDDC work package has 
focused on three activities during FY 2023. First, the Damara Tern framework was created, combining a 
web interface for exploring, entering, and accessing data within the MDF Digital Platform and the 
underlying metadata database. Next, sensor upgrades and standardized sensor packages were 
implemented across three AM machines at the MDF, ensuring comparability between builds, machines, 
and sites, and avenues for installing similar sensors at the other AMMT labs were also explored. Finally, 
improvements were made to Peregrine’s real-time data acquisition and deep learning frameworks. Copies 
of the Peregrine software were also provided to the AMMT partner labs. This report marks the 
completion of FY 2023 milestone M3CR-22OR0403051: Report Describing the Architecture of the 
Digital Platform to Support AMMT Activities.
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APPENDIX A. DATABASE TABLE DETAILS

This appendix presents the primary tables of the operation-based database that store metadata for the 
MDF Digital Platform. Each table presented here is explicitly defined through a Django model, enabling 
Damara Tern to interface with the database. The following tables display the database tables listed in 
Section 3.3.1 and employ the same color code convention used to identify the logical block organization 
in the header. They list the fields, data types, and field descriptions. 

Operation
Description: Table of operation entries
Note: Operation entries are meant to be created by machine operators via webform.  
Field Data type Description 
id int 8 Unique ID to identify the operation record, primary key
timestamp_start timestamptz Time at which the operation started
timestamp_stop timestamptz Time at which the operation ended
meta_json jsonb JavaScript object notation (JSON) field holding the contextual 

metadata related to the machine in use and the type of 
operation performed, as well as any additional contextual data 
identified

results_json jsonb Provisional field to store and structure metadata related to the 
specific entry

notes text Any comments/notes by technicians or contributing users
sensitivity varchar(1) Data sensitivity: P, B, O, C, E, or I, indicating Publicly 

Released, Business Sensitive, Official Use Only, Cooperative 
Research and Development Agreement (CRADA) Protected, 
Export Controlled, or International Traffic in Arms 
Regulations (ITAR), respectively

db_timestamp timestamptz Time at which the record was added to the database 
(automatically entered)

status varchar(1) Operation status: P, S, A, or C, representing Planned, Setup, 
Active, and Complete, respectively

db_updater_id int 8 ID of the user who created the record; foreign key referencing 
the Users table

machine_id int 8 ID of the equipment used for printing; foreign key referencing 
the Machine table

operation_type_id int 8 Type of operation performed (digitally or by the equipment); 
foreign key referencing the Operation Type table

operator_id int 8 ID of the technician who performed the operation; foreign key 
referencing the User table

id int 8 Unique ID to identify the record, primary key
name varchar(50) Name of the operation type
description text Description of the operation type
operation_schema_json text Field schema as JSON string: used by the interface to generate 

a form entry with structured metadata fields tailored to the 
specific operation type. The JSON is stored as text to maintain 
the defined dictionary order.
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Trackable
Description: Entries for trackables
Field Data type Description 
id int 8 Unique ID to identify the record, primary key
id_type varchar(1) Type of identification used for human-led inventory (e.g., 

serial number, name)
tid varchar(255) ID used for human-led inventory 
nickname varchar(50) Human-readable name given to a trackable
trackable_type_id int 8 Type of trackable; foreign key referencing the Trackable Type 

table
sensitivity varchar(1) Data sensitivity for the trackable: P, B, O, C, E, or I, indicating 

Publicly Released, Business Sensitive, Official Use Only, 
CRADA Protected, Export Controlled, or ITAR, respectively

status varchar(1) Trackable status: P, T, E, C, or V, representing Planned, 
Transition, Exists, Consumed, and Virtual, respectively

meta_json jsonb Provisional field to store and structure metadata related to the 
specific entry

created timestamptz Creation date of the trackable referenced by the record
tracked timestamptz Time for which the trackable was last tracked as entry or result 

of an operation. Set to the starting time of the last operation 
referencing the trackable as input or output.   

qr text Unique QR code within the database used to identify the 
trackable

init_operation_id int 8 First operation referencing the trackable

Trackable type
Description: List of trackable types 
Field Data type Description 
id int 8 Unique ID to identify the record, primary key
name varchar(50) Name of the trackable type
description text Description of the trackable type
trackable_schema_json text Field schema as JSON String: used by the interface to generate 

a form entry with structured metadata fields tailored to the 
specific trackable type and displayed in the trackable creation 
form. The JSON is stored as text to maintain the defined 
dictionary order.
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Machine
Description: Entries for machines and equipment
Field Data type Description 
id int 8 Unique ID to identify the record, primary key
serial_number varchar(50) Serial number or string used to identify the machine
name text Human-readable name given to the machine
manufacturer varchar(50) Manufacturer name
model varchar(50) Model name
procured date Date the machine was procured or delivered
location_id int 8 Location site hosting the machine; foreign key referencing the 

Location table.
owner_institution_id int 8 Institution that owns or hosts the machine; foreign key 

referencing the Organization table.

Machine_Operation_Type
Description: Association table for the operation types provided for each machine; explicit 

declaration of many-to-many relation field.
Field Data type Description 
id int 8 Unique ID to identify the record, primary key
machine_id int 8 Machine record ID; foreign key referencing the Machine table.
operation_type_id int 8 Operation type record ID; foreign key referencing the 

Operation_Type table.
meta_json text Field schema as JSON string: used by the interface to generate a form 

entry containing structured metadata fields customized to the specific 
operation type conducted by a particular machine. It overwrites the 
schema outlined in the operation_schema_json and 
machine_schema_json fields to adapt the metadata form structure 
according to the specific association of the operation type on the 
designated machine. The JSON is stored as text to maintain the 
defined dictionary order. 

Machine_Calibration
Description: Entries for the machines/equipment calibration over time
Field Data type Description 
id int 8 Unique ID to identify the record, primary key
calibration_timestamp timestamptz Time at which the new calibration was applied to the machine
calibration_data jsonb Measurements and calibration fields stored as JSON  
calibration_type_id int 8 calibration_type record ID; foreign key referencing the 

Machine table.
machine_id int 8 Machine record ID; foreign key referencing the Machine table.
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Machine_Calibration_Type
Description: List of calibration types
Field Data type Description 
id int 8 Unique ID to identify the record, primary key
calibration_type_name varchar(50) Name for the calibration type
calibration_data_templa
te

text Field schema as JSON string: used by the interface to generate 
a form entry containing structured metadata fields customized 
to the specific calibration_types. The JSON is stored as text to 
maintain the dictionary order. 

Operation_Data
Description: Entries for the data files stored, URLs, and references access for each operation
Field Data type Description 
id int 8 Unique ID to identify the record, primary key
operation_id int 8 Operation record ID; foreign key referencing the Operation table
data_path varchar(255) Measurements and calibration fields stored as JSON  
data_type_id int 8 Data type record ID; foreign key referencing the Data_type table
tag_id int 8 Data tag record ID; foreign key referencing the Data_Tag table
highlight bool Boolean to label the referenced data as a highlight for the operation

Data_Tag
Description: List of tags to classify operation data by categories  
Field Data type Description 
id int 8 Unique ID to identify the record, primary key
tag varchar(25) Tag name 

Data_Type
Description: List of data types and extension
Field Data type Description 
id int 8 Unique ID to identify the record, primary key
name varchar(25) Data type name (e.g., PDF, Image)
extension varchar(25) File extension, if relevant 

User
Description: Users entries
Field Data type Description 
id int 8 Unique ID to identify the record, primary key
username varchar(25) User’s username 
first_name varchar(50) User’s first name
last_name varchar(50) User’s last name
organization_id int 8 Record ID of the user’s main institution; foreign key referencing the 

Organization table
Organization
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Description: Entries for the user’s institutions
Field Data type Description 
id int 8 Unique ID to identify the record, primary key
name varchar(50) Institution’s name
parent_organization int 8 Parent institution record ID if the institution pertains to a division, 

department, or other component of an institution. Reference a 
primary key of the table.

Location
Description: Entries for the users
Field Data type Description 
id int 8 Unique ID to identify the record, primary key
tag varchar(25) Tag name 

Project
Description: List of the projects sponsoring the operations
Field Data type Description 
id int 8 Unique ID to identify the record, primary key
name varchar(255) Project’s name 
sponsor text Name of the project’s sponsor
charge_code varchar(225) Charge code for the project

Project_User
Description: Users/projects association table to identify the user’s involvement in projects and 

define access permission; explicit declaration of many-to-many relation field
Field Data type Description 
id int 8 Unique ID to identify the record, primary key
project_id int 8 Project record ID; foreign key referencing the Project table
user_id int 8 User record ID; foreign key referencing the User table
is_pi int 4 Boolean defining if the user is one of the principal investigators for 

the project
permission_level int 8 Provisional permission level to grant to the user view, edit, or 

management privileges for the project and related 
operations/trackables
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APPENDIX B. RENISHAW AM250 DIGITAL HANDBOOK ENTRY

Renishaw AM250

The Renishaw AM250 is a single-laser laser powder bed fusion printer with a build volume of 
250 × 250 × 365 mm. This additive manufacturing operation acts on powdered metal feedstock and 
instantiates new parts within the MDF Digital Platform. Oak Ridge National Laboratory (ORNL) 
typically prints a wide range of metal alloys on this system.

Category Value
Digital Platform Tag(s) RenishawAM250-008W73
Digital Point of Contact Zackary Snow
Approximate Data Volume 
per Operation (GB)

250 GB

Approximate Number of 
Operations per Year

25

Associated Software Tools Peregrine, Magics

Data Collection and Transfer

Peregrine is installed at the edge on a local compute node with a user display (i.e., a desktop computer on 
a rolling cart). The Peregrine computer is able to communicate with the printer control computer through 
WinSCP, an open-source SSH File Transfer Protocol, allowing the Peregrine computer to directly access 
folders on the printer control computer to distribute build files and retrieve log files. The Peregrine 
computer is also connected via USB to three cameras (a 20 megapixel [MP] Basler acA5472-17um, a 
4.2 MP Pixelink PL-D734MU-NIR-T, and a 0.33 MP FLIR Boson 640), which observe the powder bed. 
Automated analysis of the live video stream from the Basler camera is used to trigger layer-wise image 
capture for all three cameras. Each layer-wise image is then stored on the Savitar file storage system, and 
the edge instance of Peregrine locally analyzes the data using the neural networks and collates the data for 
the entire build. After the build is complete, the operator loads the log file onto Savitar via the edge 
Peregrine instance. Metadata are entered into either Peregrine or the Digital Tool before, during, and after 
each build.
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Powder Bed Imaging

A 20 MP grayscale camera (Basler acA5472-17um), sensitive to light in the visible spectrum, captures an 
image of the entire print area immediately after powder fusion and after powder spreading for each layer. 
The Basler is outfitted with an ultraviolet/near-infrared (NIR) cutoff filter to protect the camera detector 
from the laser. A 4.2 MP camera (Pixelink PL-D734MU-NIR-T) captures temporally integrated thermal 
NIR images of the entire build area, resulting in three images: integrated sum, integrated max, and 
integrated time-of-max. The Pixelink has a narrow bandpass filter centered in the NIR range 
(808 ± 10 nm), as well as neutral density filters (outer diameter ≈ 1.8) to prevent image saturation. 
Finally, a 0.33 MP FLIR Boson 640 captures post-melt and post-recoat images with a reduced field of 
view. All three imaging systems were designed and installed by ORNL. Anomalies observable with this 
system include damage to the recoating mechanism, improper spreading of the powder, swelling or 
distortion of the part geometry, damage to the as-printed components, abnormal generation of spatter and 
other melt pool ejecta, and improper fusion of the powder.

Machine Health Data

At the end of each build, a log file is produced, which reports various machine error states, as well as 
temporal sensor streams including build chamber gas (argon) flow rates, build chamber oxygen 
concentrations, powder roller loading conditions, and the temperatures of selected components in the laser 
optic trains. This system is installed and maintained by Renishaw, and the resulting log files are loaded 
into Peregrine at the end of each build.

Data Visualization and Analysis

In situ data analyses are currently performed by the Peregrine software tool, as well as embedded versions 
of the Pterodactyl package.
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APPENDIX C. RENISHAW AM400 DIGITAL HANDBOOK ENTRY

Renishaw AM400

The Renishaw AM400 is a single-laser laser powder bed fusion printer with a build volume of 
250 × 250 × 365 mm. This additive manufacturing operation acts on powdered metal feedstock and 
instantiates new parts within the MDF Digital Platform. Oak Ridge National Laboratory (ORNL) 
typically prints a wide range of metal alloys on this system.

Category Value
Digital Platform Tag(s) RenishawAM400-1CVT28
Digital Point of Contact Zackary Snow
Approximate Data Volume 
per Operation (GB)

250 GB

Approximate Number of 
Operations per Year

75

Associated Software Tools Peregrine, Magics

Data Collection and Transfer

Peregrine is installed at the edge on a local compute node with a user display (i.e., a desktop computer on 
a rolling cart). The Peregrine computer is able to communicate with the printer control computer through 
a file transfer protocol, allowing the Peregrine computer to directly access folders on the printer control 
computer to distribute build files and retrieve log files. The Peregrine computer is also connected via USB 
to two cameras (a 20 megapixel [MP] Basler acA5472-17um and a 4.2 MP Pixelink PL-D734MU-NIR-
T), which observe the powder bed. Automated analysis of the live video stream from the Basler camera is 
used to trigger layer-wise image capture for both cameras. Each layer-wise image is then stored on the 
Savitar file storage system, and the edge instance of Peregrine locally analyzes the data using the neural 
networks and collates the data for the entire build. After the build is complete, the operator loads the log 
file onto Savitar via the edge Peregrine instance. Metadata are entered into either Peregrine or the Digital 
Tool before, during, and after each build.

Powder Bed Imaging

A 20 MP grayscale camera (Basler acA5472-17um), sensitive to light in the visible spectrum, captures an 
image of the entire print area immediately after powder fusion and after powder spreading for each layer. 
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The Basler is outfitted with an ultraviolet/near-infrared (NIR) cutoff filter to protect the camera detector 
from the laser. A 4.2 MP camera (Pixelink PL-D734MU-NIR-T) captures temporally integrated thermal 
images of the entire build area, resulting in three images: integrated sum, integrated max, and integrated 
time-of-max. The Pixelink has a narrow band-pass filter centered in the NIR range (808 ± 10 nm), as well 
as neutral density filters (outer diameter ≈ 2.4) to prevent image saturation. Both imaging systems were 
designed and installed by ORNL. Anomalies observable with this system include damage to the recoating 
mechanism, improper spreading of the powder, swelling or distortion of the part geometry, damage to the 
as-printed components, abnormal generation of spatter and other melt pool ejecta, and improper fusion of 
the powder.

Machine Health Data

At the end of each build, a log file is produced, which reports various machine error states, as well as 
temporal sensor streams including build chamber gas (argon) flow rates, build chamber oxygen 
concentrations, powder roller loading conditions, and the temperatures of selected components in the laser 
optic trains. This system is installed and maintained by Renishaw, and the resulting log files are loaded 
into Peregrine at the end of each build.

Data Visualization and Analysis

In situ data analyses are currently performed by the Peregrine software tool, as well as embedded versions 
of the Pterodactyl package.
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APPENDIX D. CONCEPT LASER M2 DIGITAL HANDBOOK ENTRY

Concept Laser M2

The Concept Laser M2 is a dual-laser laser powder bed fusion printer with a build volume of 
245 × 245 × 350 mm. This additive manufacturing operation acts on powdered metal feedstock and 
typically instantiates new parts within the MDF Digital Platform. Oak Ridge National Laboratory 
(ORNL) typically prints materials such as stainless steel 316L or 316H on this system.

Category Value
Digital Platform Tag(s) ConceptLaserM2-ORNL1
Digital Point of Contact Luke Scime, Zackary Snow
Approximate Data Volume 
per Operation (GB) 250

Approximate Number of 
Operations per Year 50

Associated Software Tools Peregrine, SWAN, Magics, WRX Control

Data Collection and Transfer

Peregrine is installed at the edge on a local compute node with a user display (i.e., a desktop computer on 
a rolling cart). Both the Peregrine computer and the printer control computer are connected to the same 
subnetwork, allowing the Peregrine computer to directly access any folders on the printer control 
computer. The Peregrine computer is also connected via USB to two cameras (a 20 megapixel [MP] 
Basler acA5472-17um and a 4.2 MP Pixelink PL-D734MU-NIR-T), which observe the powder bed. 
Automated analysis of the live video stream from the Basler camera is used to trigger layer-wise image 
capture for both cameras. Each layer-wise image is then stored on the Savitar file storage system, and the 
edge instance of Peregrine locally analyzes the data using the neural networks and collates the data for the 
entire build. After the build is complete, the operator loads the log file and the on-axis melt pool data onto 
Savitar via the edge Peregrine instance. Metadata are entered into either Peregrine or the Digital Tool 
before, during, and after each build.

Powder Bed Imaging

A 20 MP grayscale camera (Basler acA5472-17um), sensitive to light in the visible spectrum, captures an 
image of the entire print area immediately after powder fusion and after powder spreading for each layer. 
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The Basler is outfitted with a blue light band-pass filter to protect the camera detector from the laser. A 
4.2 MP camera (Pixelink PL-D734MU-NIR-T) captures temporally integrated thermal images of the 
entire build area, resulting in three images: integrated sum, integrated max, and integrated time-of-max. 
The Pixelink has a narrow band-pass filter centered in the near-infrared range (808 ± 10 nm), as well as 
neutral density filters (outer diameter ≈ 1.8) to prevent image saturation. Both imaging systems were 
designed and installed by ORNL. Anomalies observable with this system include damage to the recoating 
mechanism, improper spreading of the powder, swelling or distortion of the part geometry, damage to the 
as-printed components, abnormal generation of spatter and other melt pool ejecta, and improper fusion of 
the powder.

QM Meltpool

This system consists of a photodiode and a high-speed camera, which are coaxially aligned with each 
laser module such that they continually observe the molten pool throughout the build. This system also 
indirectly provides information concerning the laser scan path. This system is installed and maintained by 
Concept Laser and is duplicated for each of the machine’s two laser modules. As installed by the OEM, 
the on-axis photodiode captures light intensity data in the region around the melt pool at a rate of 10–
100 kHz and is sensitive in the 350–1,100 nm range. Extensive testing revealed that the overwhelming 
majority of the sensor signal can be attributed to reflected laser light at 1,060 nm. This signal is not ideal 
because the thermal emissions from the molten pool and the just-solidified material are more likely to be 
correlated with subsurface porosity and other salient printing defects than reflected laser light. Therefore, 
a high-pass optical filter was installed to block out the 1,060 nm laser light.

ORNL has made several additional modifications to this system. In FY 2023, the photodiodes on both 
laser modules were changed to the PDA100A2 model (initially tested in FY 2020) because it has a larger 
detector area. At the same time, the sensor gains were lowered to 60 dB to prevent saturation of the signal 
and decrease the sensor rise time. Next, the signal inversion observed on one of the two laser modules 
was corrected by independently identifying the background sensor signal and using it as a known baseline 
intensity. Because it is unknown if this issue (potentially caused by incorrect wiring at the analog-to-
digital converter) is common among other Concept Laser M2 printers, the code was written to 
automatically detect and correct for this issue on a laser-by-laser basis. Other ORNL implemented 
corrections include (1) a lossless bit shift to correct for an incorrect upstream datatype conversion, (2) a 
temporal shift used to synchronize the sensor signals with the recorded scanner position, (3) algorithmic 
filtering to remove laser jump vectors, and (4) avoiding regions of the print area that are susceptible to 
reflections within the optics.

Machine Health Data

At the end of each build, a log file is produced that reports various machine error states, as well as 
temporal sensor streams, including build chamber gas (argon) flow rates, build chamber oxygen 
concentrations, build plate temperature, and the temperatures of selected components in the laser optic 
trains. This system is installed and maintained by Concept Laser.

Data Visualization and Analysis

All in situ data analyses are currently performed by the Peregrine software tool and the embedded SWAN 
and Pterodactyl packages. Various visualizations and analytics tools are available for the layer-wise 
imaging, QM Meltpool, and machine health monitoring data.




