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ABSTRACT

We propose an ensemble score filter (EnSF) for solving high-dimensional nonlinear filtering problems
with superior accuracy. A major drawback of existing filtering methods, e.g., particle filters or ensemble
Kalman filters, is the low accuracy in handling high-dimensional and highly nonlinear problems. EnSF
attacks this challenge by exploiting the score-based diffusion model, defined in a pseudo-temporal domain, to
characterizing the evolution of the filtering density. EnSF stores the information of the recursively updated
filtering density function in the score function, in stead of storing the information in a set of finite Monte
Carlo samples (used in particle filters and ensemble Kalman filters). Unlike existing diffusion models that
train neural networks to approximate the score function, we develop a training-free score estimation that uses
mini-batch-based Monte Carlo estimator to directly approximate the score function at any pseudo-spatial-
temporal location, which provides sufficient accuracy in solving high-dimensional nonlinear problems as well
as saves tremendous amount of time spent on training neural networks. Another essential aspect of EnSF is
its analytical update step, gradually incorporating data information into the score function, which is crucial in
mitigating the degeneracy issue faced when dealing with very high-dimensional nonlinear filtering problems.
High-dimensional Lorenz systems are used to demonstrate the performance of our method. EnSF provides
surprisingly impressive performance in reliably tracking extremely high-dimensional Lorenz systems (up
to 1,000,000 dimension) with highly nonlinear observation processes, which is a well-known challenging
problem for existing filtering methods.

1. Introduction

Tracking high-dimensional nonlinear dynamical systems, also known as nonlinear filtering, represents a
significant avenue of research in data assimilation, with applications in weather forecasting, material sciences,
biology, and finance [4,6,10,18,33]. The goal of addressing a filtering problem is to exploit noisy observational
data streams to estimate the unobservable state of a stochastic dynamical system of interest. In linear filtering
in which both the state and observation dynamics are linear, the Kalman filter provides an optimal estimate
for the unobservable state, attainable analytically under the Gaussian assumption. Nevertheless, maintaining
the covariance matrix of a Kalman filter is not computationally feasible for high-dimensional systems. For
this reason, ensemble Kalman filters (EnKF) were developed in [16,17,24] to represent the distribution of the
system state using a collection of state samples, called an ensemble, and replace the covariance matrix in
Kalman filter by the sample covariance computed from the ensemble. As a Kalman type filter, the ensemble
Kalman filter still approximates the probability density function (PDF) of the target state, referred to as the
filtering density, by a Gaussian distribution. When the state and/or the observation processes are highly
nonlinear, EnKF is not ideal because the filtering density is usually non-Gaussian.

In addition to the EnKF, several effective methods have been developed to tackle nonlinearity in data
assimilation. These methods include the particle filter [2, 12–14, 19, 25, 32, 37, 39, 42], the Zakai filter [5, 46],
and so on. For example, the particle filter employs a set of random samples, referred to as particles, to
construct an empirical distribution to approximate the filtering density of the target state. Upon receiving
observational data, the particle filter uses Bayesian inference to assign likelihood weights to the particles.
A resampling process is iteratively performed, generating duplicates of particles with large weights and
discarding particles with small weights. The particle filter is good at characterizing more complex non-
Gaussian filtering densities caused by nonlinearity, while its main drawback is the low accuracy in handling
high-dimensional problems. New filtering methods that can effectively and efficiently handle both nonlinearity
and high-dimensionality are highly desired in the data assimilation community.

In this work, we introduce a novel ensemble score filter (EnSF) that exploits the score-based diffusion model
defined in a pseudo-temporal domain to charactering the evolution of the filtering density. The score-based
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diffusion model is popular generative machine learning model for generating samples from a target PDF.
Diffusion models are widely used in image processing, such as image synthesis [11, 15, 21, 22, 31, 40, 41],
image denoising [21, 26, 30, 38], image enhancement [27, 28, 34, 44], image segmentation [1, 8, 9, 20], and
natural language processing [3,23,29,35,45]. The key idea of EnSF is to store the information of the filtering
density in the score function, as opposed to storing the information in a set of finite random samples used
in particle filters and ensemble Kalman filters. Specifically, we propagate Monte Carlo samples through
the state dynamics to generate “data samples” that follow the filtering density, and use those data samples
to construct a score function. Unlike existing diffusion models that train a neural network to approximate
the score function [7, 36, 41], we develop a training-free score estimation that uses mini-batch-based Monte
Carlo estimators to directly approximate the score function at any pseudo-spatial-temporal location in the
process of solving the reverse-time diffusion sampler. Numerical examples in Section 4. demonstrate that the
training-free score estimation approach can provide sufficient accuracy in solving high-dimensional nonlinear
problems as well as save tremendous amount of time spent on training neural networks. Another essential
aspect of EnSF is its analytical update step, gradually incorporating data information into the score function.
This step is crucial in mitigating the degeneracy issue faced when dealing with very high-dimensional
nonlinear filtering problems.

The rest of this paper is organized as follows. In Section 2., we briefly introduce the nonlinear filtering
problem. In Section 3., we provide a comprehensive discussion to develop our EnSF method. In Section 4.,
we demonstrate the performance of our method using the benchmark stochastic Lorenz system in 100-, 200-,
and 1,000,000-dimensional spaces with highly nonlinear observation processes.

2. Problem setting

Nonlinear filters are important tools for dynamical data assimilation with a variety of scientific and engineering
applications. The definition of a nonlinear filtering problem can be viewed as an extension of Bayesian
inference to the estimation and prediction of a nonlinear stochastic dynamical system. In this effort, we
consider the following state-space nonlinear filtering model:

State: Xt+1 = f (Xt, ωt),

Observation: Yt+1 = g(Xt+1) + εt+1,
(1)

where t ∈ Z+ represents the discrete time, Xt ∈ Rd is a d-dimensional unobservable dynamical state governed
by the nonlinear function f : Rd×Rk 7→ Rd, ωt ∈ Rk is a random variable that follows a given probability law
representing the uncertainty in f , and the random variable Yt+1 ∈ Rr provides nonlinear partial observations
on Xt+1, i.e., g(Xt+1), which is perturbed by a Gaussian noise εt+1 ∼ N(0,Σ).

The overarching goal is to find the best estimate, denoted by X̂t+1, of the unobservable state Xt+1, given the
observation data Yt+1 := σ(Y1:t+1) that is the σ-algebra generated by all the observations up to the time
instant t + 1. Mathematically, such optimal estimate for Xt+1 is usually defined by a conditional expectation,
i.e.,

X̂t+1 := E[Xt+1|Yt+1], (2)

where the expectation is taken with respect to the random variables ω0:t and ε1:t+1 in Eq. (1). In practice,
the expectation in Eq. (2) is not approximated directly. Instead, we aim at approximating the conditional
probability density function (PDF) of the state, denoted by P(Xt+1|Yt+1), which is referred to as the filtering
density. The Bayesian filter framework is to recursively incorporate observation data to describe the evolution
of the filtering density. There are two steps from time t to t + 1, i.e., the prediction step and the update step:
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• The prediction step is to use the Chapman-Kolmogorov formula to propagate the state equation in Eq. (1)
from t to t + 1 and obtain the prior filtering density

Prior filtering density: P(Xt+1
∣∣∣Yt) =

∫
P(Xt+1

∣∣∣Xt)P(Xt
∣∣∣Yt)dXt, (3)

where P(Xt
∣∣∣Yt) is the posterior filtering density obtained at the time instant t, P(Xt+1

∣∣∣Xt) is the transition
probability derived from the state dynamics in Eq. (1), and P(Xt+1

∣∣∣Yt) is the prior filtering density for the
time instant t + 1.

• The update step is to combine the likelihood function, defined by the new observation data Yt+1, with the
prior filtering density to obtain the posterior filtering density, i.e.,

Posterior filtering density: P(Xt+1
∣∣∣Yt+1) ∝ P(Xt+1

∣∣∣Yt) P(Yt+1
∣∣∣Xt+1), (4)

where the likelihood function P(Yt+1
∣∣∣Xt+1) is defined by

P(Yt+1
∣∣∣Xt+1) ∝ exp

[
−

1
2
(
g(Xt+1) − Yn+1

)⊤
Σ−1(g(Xt+1) − Yt+1

)]
, (5)

with Σ being the covariance matrix of the random noise ε in Eq. (1).

In this way, the filtering density is predicted and updated through formulas Eq. (3) to Eq. (4) recursively in
time. Note that both the prior and the posterior filtering densities in Eq. (3) and Eq. (4) are defined as the
continuum level, which is not practical. Thus, one important research direction in nonlinear filtering is to
study how to accurately approximate the prior and the posterior filtering densities.

In the next section, we introduce how to utilize score-based diffusion models to solve the nonlinear filtering
problem. The diffusion model was introduced into nonlinear filtering in our previous work [7] in which
the score function is approximated by training a deep neural network. Although the use of score functions
provides accurate results, there are several drawbacks resulting from training neural networks. First, the
neural network needs to be re-trained/updated at each filtering time step, which makes it computationally
expensive. For example, it takes several minutes to train and update the neural-network-based score function
at each filtering time step for solving a 100-D Lorenz-96 model [7]. Second, since neural network models are
usually over-parameterized, a large number of samples are needed to form the training set to avoid over-fitting.
Third, hyper-parameter tuning and validation of the trained neural network introduces extra computational
overhead. These challenges motivated us to develop the EnSF method that completely avoids neural network
training in score estimation, in order to greatly expand the powerfulness of the score-based diffusion model in
nonlinear filtering.

3. The ensemble score filter (EnSF) method

This section contains the major components of the proposed method. One key aspect of EnSF, discussed
in Section 3.1, is to define two invertible operators between the prior and posterior filtering densities in
Eq. (3) and Eq. (4) and the standard normal distribution N(0, Id) using the score-based diffusion model [41],
such that the information of the filtering densities is completely stored in and represented by the score
functions. Another key aspect of EnSF discussed in Section 3.2 is to develop a training-free score estimation
to approximate the exact score functions of the diffusion models such that discretized EnSF can efficiently
evolve the filtering densities by updating the corresponding score functions.

3



F. Bao, Z. Zhang, G. Zhang

3.1 The continuum EnSF model

We introduce EnSF model at the continuum level, focusing on discussing the definitions of the score functions
used to represent the filtering densities in the context of score-based diffusion models. The key idea of EnSF
is to construct two score functions, denoted by S t|t(·, ·) and S t+1|t(·, ·), for P(Xt|Yt) in Eq. (4) and P(Xt+1|Yt)
in Eq. (3), respectively, such that the two diffusion models driven by S t|t(·, ·) and S t+1|t(·, ·) implicitly define
two invertible operators between P(Xt|Yt) and P(Xt+1|Yt) and the standard normal distribution N(0, Id), i.e.,

ΠS t|t

(
N(0, Id)

)
= P(Xt|Yt) and Π−1

S t|t

(
P(Xt|Yt)

)
= N(0, Id),

ΠS t+1|t

(
N(0, Id)

)
= P(Xt+1|Yt) and Π−1

S t+1|t

(
P(Xt+1|Yt)

)
= N(0, Id),

(6)

where ΠS t|t(·) is determined by S t|t(·, ·) and Πt+1|t(·) is determined by S t+1|t(·, ·). To proceed, we briefly recall
the diffusion model used in EnSF in the next subsection.

3.1.1 The score-based diffusion model

A score-based diffusion model consists of a forward SDE and a reverse-time SDE defined in a pseudo-
temporal domain τ ∈ T = [0, 1]†, i.e.,

Forward SDE: Zτ = b(τ)Zτdτ + σ(τ)dWτ, (7)

Reverse-time SDE: dZτ =
[
b(τ)Zτ − σ2(τ)S (Zτ, τ)

]
dτ + σ(τ)d ⃗Wτ, (8)

where Wτ is a standard d-dimensional Brownian motion, ⃗Wτ is the backward Brownian motion, b(τ) is the
drift coefficient, σ(τ) is the diffusion coefficient, and S (Zτ, τ) is the score function

The forward SDE in Eq. (7) is defined to transform any given initial distribution Q0(Z0) to the standard
normal distribution N(0, Id). It is shown in [21, 41, 43] that such task can be done by a linear SDE with
properly chosen drift and diffusion coefficients. In this work, b(τ) and σ(τ) in Eq. (7) are defined by

b(τ) =
d logατ

dτ
and σ2(τ) =

dβ2
τ

dτ
− 2

d logατ
dτ

β2
τ, (9)

where the two processes ατ and βτ are defined by

ατ = 1 − τ, βτ = τ for τ ∈ [0, 1]. (10)

The definitions in Eq. (9) and Eq. (10) can ensure that the conditional density function Qτ(Zτ|Z0) for any
fixed Z0 is the following Gaussian distribution:

Qτ(Zτ|Z0) = N(ατZ0, β
2
τId), (11)

which immediately leads to Q1(Z1|Z0) = Q1(Z1) = N(0, Id). Thus, the reverse-time SDE in Eq. (8) transforms
the terminal distribution Q1(Z1) = N(0, Id) to the initial distribution Q0(Z0).

3.1.2 The exact score functions for the filtering densities

Now we discuss how to define the desired score functions S t|t(·, ·) and S t+1|t(·, ·) and the corresponding
invertible operators Πt|t(·) and Πt+1|t(·). The score function in Eq. (8) is defined by

Score function: S (Zτ, τ) := ∇z log Qτ(Zτ), (12)

†Since τ is pseudo time, we can always define it within the domain [0,1].
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which is uniquely determined by the initial distribution Q0(Z0) and the coefficients b(τ), σ(τ) of the forward
SDE in Eq. (7). Substituting Qτ(Zτ) = Qτ(Zτ,Z0) = Qτ(Zτ|Z0)Qτ(Z0) into Eq. (12) and exploiting the fact in
Eq. (11), we can rewrite the score function as

S (Zτ, τ) = ∇z log
(∫

Rd
Qτ(Zτ|Z0)Qτ(Z0)dZ0

)
=

1∫
Rd Qτ(Zτ|Z′0)Qτ(Z′0)dZ′0

∫
Rd
−

Zτ − ατZ0

β2
τ

Qτ(Zτ|Z0)Qτ(Z0)dZ0

=

∫
Rd
−

Zτ − ατZ0

β2
τ

wτ(Zτ,Z0)Q0(Z0)dZ0,

(13)

where the weight function wτ(Zτ,Z0) is defined by

wτ(Zτ,Z0) :=
Qτ(Zτ|Z0)∫

Rd Qτ(Zτ|Z′0)Qτ(Z′0)dZ′0
, (14)

satisfying that
∫
Rd wτ(Zτ,Z0)dZ0 = 1.

We observe that when b(τ) and σ(τ) are fixed, the score function S (Zτ, τ) is uniquely determined by the initial
distribution Q0(Z0). We can use this fact to define the desired score functions, i.e.,

S t|t: set Z0 = Xt|Yt and Q0(Z0) = P(Xt|Yt) in Eqs. (7) and (8),

S t+1|t: set Z0 = Xt+1|Yt and Q0(Z0) = P(Xt+1|Yt) in Eqs. (7) and (8),
(15)

such that the diffusion models driven by S t|t and S t+1|t implicitly define the desired operators Πt|t(·) and
Πt+1|t(·), respectively.

3.1.3 The conceptual workflow of EnSF

The score functions S t|t and S t+1|t can be viewed as the containers of all the distributional information in
the density functions. Thus, the prediction step and the update step of EnSF can be done by iteratively
approximating/estimating the score functions. The conceptual workflow of EnSF is provided in Algorithm 1.

Algorithm 1: the conceptual workflow of EnSF

1: Input: the state equation f , the observation function g, and the prior density P(X0);

2: Approximate the score function S 0|0;
3: for t = 1, . . . ,
4: Predict S t+1|t using S t|t and the state equation f (Xt, ωt);
5: Update S t+1|t to S t+1|t+1 by incorporating the likelihood P(Yt+1

∣∣∣Xt+1);
6: end

At any stage of the workflow, we can draw unlimited amount of samples of the filtering state Xt to compute
statistics of the filtering state by solving the reverse-time SDE driven by S t|t. Therefore, the problem in
approximating high-dimensional filtering densities is converted to the problem of how to approximate the
score functions.

5
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3.2 Discretization of EnSF

We focus on how to discretize the EnSF and approximate the score functions S t|t, S t+1|t in order to establish a
practical implementation for EnSF. The classic diffusion model methods [21, 41, 43] train neural networks to
learn the score functions. This approach works well for static problems that does not require fast evolution of
the score function. However, this strategy becomes inefficient in solving the nonlinear filtering problem [7],
especially for extremely high-dimensional problems. To address this challenge, we propose a training-free
score estimation approach that uses Monte Carlo method to directly approximate expression of the score
function in Eq. (13), which enables extremely efficient implementation of EnSF.

3.2.1 Training-free score estimation for the prior score function

We derive our score estimation scheme for approximating the score function S t+1|t for the prior filtering
density P(Xt+1|Yt), i.e., Line 4 in Algorithm 1. We assume that we are given a set of samples {xt, j}

J
j=1

drawn from the posterior filtering density function P(Xt|Yt) from previous filtering time step t. For any fixed
pseudo-time instant τ ∈ [0, 1] and Zτ = z ∈ Rd, the integral in Eq. (13) can be estimated by

S t+1|t(z, τ) ≈ S̄ t+1|t(z, τ) :=
N∑

n=1

−
z − ατ f (xt, jn , ωt, jn)

β2
τ

w̄τ(z, f (xt, jn , ωt, jn)), (16)

using a mini-batch with batch size N ≤ J, denoted by {xt, jn}
N
n=1, where f (·, ·) is the state equation in Eq. (1)

and the weight wτ(z, f (xt, jn , ωt, jn)) is calculated by

wτ(z, f (xt, jn , ωt, jn)) ≈ w̄τ(z, f (xt, jn , ωt, jn)) :=
Qτ(z| f (xt, jn , ωt, jn))∑N

m=1 Qτ(z| f (xt, jm , ωt, jm))
, (17)

This means the weights wτ(z, f (xt, jn , ωt, jn)) can be estimated by the normalized probability density values
{Q(z| f (xt, jn , ωt, jn))}Nn=1. In practice, the mini-batch {xt, jn}

N
n=1 could be a very small subset of {xt, j}

J
j=1 to ensure

sufficient accuracy in solving the filtering problems. In fact, we use batch size one for our mini-batch in all
the numerical experiments in Section 4., which provides satisfactory performance.

3.2.2 Approximation of the posterior score function

We intend to update the score function S̄ t+1|t obtained in Section 3.2.1 to the approximate score S̄ t+1|t+1
for the posterior filtering density P(Xt+1|Yt+1), i.e., Line 5 in Algorithm 1. Since we do not have access to
samples from the posterior filtering density, we propose to analytically add the likelihood information to the
current score S̄ t+1|t to define the score S̄ t+1|t+1 for the posterior filtering density P(Xt+1|Yt+1).

Specifically, we take the gradient of the log likelihood of the posterior filtering density defined in Eq. (4) and
obtain,

∇x log P(Xt+1|Yt+1) = ∇x log P(Xt+1|Yt) + ∇x log P(Yt+1|Xt+1), (18)

where the gradient is taken with respect to the state variable at Xt+1. According to the discussion in Section
3.1.2, the exact score functions S t+1|t+1 and S t+1|t satisfy the following constraints:

(C1): S t+1|t(Z0, 0) = ∇x log P(Xt+1|Yt) and S t+1|t+1(Z0, 0) = ∇x log P(Xt+1|Yt+1),

(C2): Π−1
S t+1|t

(
P(Xt+1|Yt)

)
= N(0, Id) and Π−1

S t+1|t+1

(
P(Xt+1|Yt+1)

)
= N(0, Id),

6
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when setting Z0 = Xt+1|Yt. For any fixed pseudo-time instant τ ∈ [0, 1] and Zτ = z ∈ Rd, we combine the
Eq. (18) and the constraints (C1), (C2) to propose an approximation of S t+1|t+1 of the form

S̄ t+1|t+1(z, τ) := S̄ t+1|t(z, τ) + h(τ)∇z log P(Yt+1|z), (19)

where S̄ t+1|t(z, τ) is obtained by the proposed training-free estimation scheme in Eq. (16), ∇z log P(Yt+1|Z0) =
∇x log P(Yt+1|Xt+1) (if Z0 = Xt+1|Yt) is analytically defined in Eq. (5), and h(τ) is a damping function
satisfying

h(τ) is monotonically decreasing in [0, 1] with h(0) = 1 and h(1) = 0. (20)

We use h(τ) = 1 − τ for τ ∈ [0, 1] in the numerical examples in Section 4.. We remark that there are multiple
choices of the damping function h(τ) that satisfying Eq. (20). How to define the optimal h(τ) is still an open
question that will be considered in our future work.

We can see that the definition of S̄ t+1|t+1(z, τ) is compatible with the constraints (C1), (C2). Intuitively,
the information of new observation data in the likelihood function is gradually injected into the diffusion
model (or the score function) at the early dynamics (i.e., τ is small) of the forward SDE during which the
deterministic drift (determined by b(τ)) dominates the dynamics. When the pseudo-time τ approaches 1,
the diffusion term (determined by σ(τ)) becomes dominating, the information in the likelihood is already
absorbed into the diffusion model so that h(1) = 0 can ensure the final state Z1 still follows the standard
normal distribution.

Remark 1 (Avoiding the curse of dimensionality). Incorporating the analytical form of the likelihood
information, i.e., ∇z log P(Yt+1|z), into the score function plays a critical role in avoiding performing high-
dimensional approximation, i.e., the curse of dimensionality, in the update step. In other words, when
∇z log P(Yt+1|z) is given, either in the analytical form or via automatic differentiation, we do not need to
perform any approximation in Rd. In comparison, EnKF requires approximating the covariance matrix and
the particle filter requires construction of empirical distributions, both of which involve approximation of the
posterior distribution in Rd.

3.2.3 The prediction and update steps of EnSF

Now we combine the approximation schemes proposed in Section 3.2.1 and 3.2.2 to develop a detailed
algorithm to evolve the filtering density from P(Xt|Yt) to P(Xt+1|Yt+1). We assume we are given a set of
samples {xt, j}

J
j=1 drawn from the posterior filtering density function P(Xt|Yt) and the goal is to generate a set

of samples {xt+1, j}
J
j=1 from P(Xt+1|Yt+1). This evolution involves the simulation of the reverse-time SDE of

the diffusion model driven by the approximate score S t+1|t+1
‡.

We use the Euler-Maruyama scheme to discretize the reverse-time SDE. Specifically, we introduce a partition
of the pseudo-temporal domain T = [0, 1], i.e.,

DK := {τk | 0 = τ0 < τ1 < · · · < τk < τk+1 < · · · < τK = 1}

with uniform step-size ∆τ = 1/K. We first draw a set of samples {z1, j}
J
j=1 from the standard normal distribution.

For each sample z1, j, we obtain the approximate solution z0, j by recursively evaluating the following scheme

zτk , j = zτk+1, j −
[
b(τk+1)zτk+1, j − σ

2(τk+1)S̄ t+1|t+1(zτk+1, j, τk+1)
]
∆τ + σ(τk+1)∆Wτk+1, j, (21)

for k = K − 1,K − 2, · · · , 1, 0, where ∆Wτk+1, j is a realization of the Brownian increment. Since the reverse-
time SDE is driven by S̄ t+1|t+1, we treat {z0, j}

J
j=1 as the desired sample set {xt+1, j}

J
j=1 from P(Xt+1|Yt+1). The

implementation details of EnSF is summarized as a pseudo-algorithm in Algorithm 2.
‡Even though the forward SDE is included in the diffusion model, the training-free score estimation approach allows us to skip

the simulation of the forward SDE.
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Algorithm 2: the pseudo-algorithm for EnSF

1: Input: the state equation f (Xt, ωt), the prior density P(X0);
2: Generate J samples {x0, j}

J
j=1 from the prior P(X0);

3: for t = 0, . . . ,
4: Run the state equation in Eq. (1) to get predictions { f (xt, j, ωt, j)}Jj=1;
5: for k = K − 1, . . . , 0
6: Compute the weight w̄τk+1(zτk+1, j, f (xt, j, ωt, j)) using Eq. (17);
7: Compute {S̄ t+1|t(zτk+1, j, τk+1)}Jj=1 using Eq. (16);

8: Compute {S̄ t+1|t+1(zτk+1, j, τk+1)}Jj=1 using Eq. (19);

9: Compute {zτk , j}
J
j=1 using Eq. (21);

11: end
10: Let {xt+1, j}

J
j=1 = {z0, j}

J
j=1;

11: end

3.2.4 Discussion on the computational complexity of EnSF

Since the cost of running the state equation f (Xt, ωt) in Eq. (1) is problem-dependent, we only discuss the
cost of the matrix operations for Line 6 – 9 in Algorithm 2. In terms of the storage cost, the major storage of
EnSF is used to store the two sample sets, i.e., {xt, j}

J
j=1 from the posterior filtering density of the previous time

step and {zτ, j}Jj=1 for the states of the diffusion model. Each set is stored as a matrix of size J × d where J is
the number of samples and d is the dimension of the filtering problem. The storage requirement is suitable for
conducting all the computation on modern GPUs. In terms of the number of floating point operations, Line 6
– 9 in Algorithm 2 for fixed t and τ involves O(J × N × d) operations including element-wise operations and
matrix summations, where N < J is the size of the mini-batch used to estimate the weights in Eq. (17). So the
total number of floating point operations is on the order of O(J × N × d × K) to update the filtering density
from t to t + 1, where K is the number of time steps for discretizing the reverse-time SDE. The numerical
experiments in Section 4. shows that the number of samples J can grow very slowly with the dimension d
while maintaining a satisfactory performance for tracking the Lorenz-96 model, which indicates the superior
efficiency of EnSF in handling extremely high-dimensional filtering problems.

4. Numerical examples: tracking the Lorenz-96 model

We demonstrate the EnSF’s capability in handling high-dimensional Lorenz-96 model. Specifically, we track
the state of the Lorenz-96 model described as follows:

dxi

dt
= (xi+1 − xi−2)xi−1 + F, i = 1, 2, · · · , d, d ≥ 4, (22)

where Xt = [x1(t), x2(t), · · · , xd(t)]⊤ is a d-dimensional target state, and it is assumed that x−1 = xd−1, x0 = xd,
and xd+1 = x1. The term F is a forcing constant. When F = 8, the Lorenz-96 dynamics (22) becomes a
chaotic system, which makes tracking the state Xt a challenging task for all the existing filtering techniques,
especially in dimensional spaces. We discretize Eq. (22) through the Euler scheme with temporal step size
∆t. To test EnSF’s performance in more realistic scenarios, we add a d-dimensional white noise with the
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standard deviation 0.1 to perturb the Lorenz-96 model, which intertwines with the chaotic property making
the filtering problem more challenging. As a result, the ODE format of the Lorenz-96 model (22) becomes
its SDE counterpart. To make the filtering problem even more challenging, we let the initial state X0 be
randomly chosen as X0 ∼ N(0, 102Id), and we add an artificial random perturbation with standard deviation
0.5 to the initial state as our initial guess.

Remark 2 (Reproducibility). The EnSF method for the high-dimensional Lorenz-96 problem is implemented
in Pytorch with GPU acceleration enabled. The source code is publicly available at https://github.
com/zezhongzhang/EnSF. The numerical results in this section can be exactly reproduced using the code
on Github.

4.1 Comparison between EnSF and EnKF in low dimensions

We track the Lorenz-96 system in the 100- and 200- dimensional space and compare the performance between
EnSF and EnKF, which is the most well-known method for solving high-dimensional optimal filtering
problems. The ensemble size is set to 100 for both EnSF and EnKF; the mini-batch size N in Eq. (17) is set
to 1 for EnSF; the number of time steps, i.e., K in Algorithm 2, in solving the reverse-time SDE is set to 100
for EnSF. We track the Lorenz system for 100 steps with temporal step size ∆t = 0.01. The observational
process in Eq. (1) is defined by a linear function of the state, i.e.,

Yt+1 = Xt+1 + εt+1, (23)

where the observation noise εt+1 follows the Gaussian distribution N(0, 0.12Id). This setup is ideal for the
setting of EnKF. In this experiment, we compare both the accuracy and efficiency of EnKF and EnSF.

(a) EnKF (b) EnSF

Figure 1. Comparison between EnKF and EnSF in state estimation for tracking the 100-dimensional Lorenz-96 model, where the
3D trajectories consisting of (X30, X60, X90) are plotted. We observe that both EnKF and EnSF can successfully track the chaotic
Lorenz trajectories.

Figure 1 shows the estimated trajectories of the EnKF and EnSF of the 100-dimensional Lorenz-96 model in
the directions X30, X60, X90, respectively; Figure 2 shows the estimated trajectories of the EnKF and EnSF of
the 200-dimensional Lorenz-96 model in the directions X50, X100, X150, respectively. We observe that both
EnKF and EnSF can successfully track the chaotic Lorenz trajectories, while EnSF provides more accurate
estimations of the selected states. To show that the EnSF constantly provides higher accuracy, we repeated
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(a) EnKF (b) EnSF

Figure 2. Comparison between EnKF and EnSF in state estimation for tracking the 200-dimensional Lorenz-96 model, where the
3D trajectories consisting of (X50, X100, X150) are plotted. We observe that both EnKF and EnSF can successfully track the chaotic
Lorenz trajectories.
the above experiment 20 times. Figure 3 shows more comprehensive accuracy comparison using the root
mean square errors (RMSEs), where the errors are averaged over the state space and over 20 repeated tests.
We observe that EnSF provides improvement of accuracy over EnKF when using the same ensemble size.
On the other hand, we compare the efficiency of EnKF and EnSF by the wall-clock time for tracking the
100D- and 200D- Lorenz-96 systems for 100 filtering steps. This experiment is implemented in Matlab and
carried out on an Macbook Pro with Apple M1 CPU. The result is shown in Table 1. We observe that EnSF
outperformed EnKF with lower computational cost, and the computing time of EnKF grows faster than that
of EnSF. In summary, even though the setup of this experiment is ideal for EnKF, the proposed EnSF method
still shows some advantages in both accuracy and efficiency.

Figure 3. Comparison between EnKF and EnSF in state estimation for tracking the 100-dimensional and the 200-dimensional
Lorenz-96 models. We observe that EnSF provides improvement of accuracy over EnKF when using the same ensemble size.

4.2 Test on EnSF for tracking high-dimensional nonlinear problems

Since EnSF is designed as a nonlinear filter for high-dimensional problems, we carry out experiments on
using EnSF to track 1,000,000-dimensional Lorenz-96 system, where the observational process in Eq. (1) is a
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100-D Lorenz-96 200-D Lorenz-96

EnKF 11.57 seconds 85.22 seconds

EnSF 8.34 seconds 19.11 seconds

Table 1. Comparison of wall-clock time of EnKF and EnSF for tracking the 100-D and 200-D Lorenz-96 systems for 100 filtering
time steps. This experiment is implemented in Matlab and carried out on an Macbook Pro with Apple M1 CPU. EnSF outperforms
EnKF with lower computational cost, and the cost grows slower for EnSF with respect to the dimension.

arctangent function of the state, i.e.,

Yt+1 = arctan(Xt+1) + εt+1, (24)

where the observation noise εt+1 follows the Gaussian distribution N(0, 0.052Id). The chaotic state dynamics
(22) along with the high linear observation (24) would make the tracking of Lorenz-96 system extremely
challenging, especially in such high-dimensional space.

There are sufficient evidence in the literature, e.g., [2,13,14,19,25,32,37], showing that EnKF will likely fail
on this test due to the high nonlinearity in the observation, and particle filter will also likely fail due to the
degeneracy issue caused by the curse of dimensionality. Hence, we focus on demonstrate the performance of
EnSF in this experiment. The ensemble size J is set to 250 for the EnSF; the mini-batch size N in Eq. (17) is
set to 1 for EnSF; the number of time steps, i.e., K in Algorithm 2, in solving the reverse-time SDE is set to
100 for EnSF. We track the Lorenz system for 800 steps with temporal step size ∆t = 0.005.

Figure 4 illustrates the nonlinearity of target system by comparing the true state Xt and the observation Yt

along four randomly selected directions. Due to the nonlinearity of arctan(), the observation Yt does not
provide sufficient information of the state when Xt is outside the domain [−π/2, π/2]. When it happens, the
partial derivative of Yt is very close to zero such that there is very little update of the score function in Eq. (19)
along the directions with states outside [−π/2, π/2]. In other words, there may be only a small subset of
informative observations at each filtering time step.

Figure 5 shows the comparison between the true state trajectories and the estimated trajectories, each sub-
figure shows the trajectories along randomly selected three directions in the 1,000,000-dimensional state
space. The EnSF’s initial estimation is randomly sampled from N(0, Id) that is far from the true initial state.
After several filtering steps, EnSF gradually captures the true state by assimilating the observational data.
Even though there are some discrepancy between the true and the estimated states, the accuracy of EnSF is
sufficient for capturing such high-dimensional chaotic system.

Figure 6 shows RMSE of the EnSF’s state estimation using 20 repeated trials with different initializations.
The RMSE is averaged over the state space and 90% confidence band is computed using the 20 trials. The
initial error is relatively big due to the discrepancy between EnSF’s initial guess and the true state and the
error gradually reduces as observation data are assimilated, which is consistent with the trajectories plotted in
Figure 5. The 90% confidence band is too narrow to be visible because the average is taken over the entire
state space. To better illustrate the discrepancy among different trials, Figure 7 shows the mean absolute error
and its 90% confidence band of four randomly selected directions out of the 1,000,000 states, where the 90%
confidence band is computed using the 20 trials of EnSF experiments with differential initial conditions. We
observe some uncertainty in the error decay caused by differential inital conditions, but the uncertainty is
totally acceptable.

Figure 8 shows the growth of the wall-clock time with respect to the state dimension and the ensemble size
for EnSF to perform one filtering time step. The experiment is implemented in Pytorch and tested on a
workstation with Nvidia a5000 GPU with 24G memory. The ensemble size is set to 100 in Figure 8(left) and
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Figure 4. Illustration of the nonlinearity of target system by comparing the true state Xt and the observation Yt along four randomly
selected directions. Due to the nonlinearity of arctan(), the observation Yt does not provide sufficient information of the state when
Xt is outside the domain [−π/2, π/2].

the dimension is set to 10,000 in Figure 8(right). We can see that EnSF is extremely efficient in the sense that
it only takes less than one second to perform one filtering time step in solving the 1,000,000-dimensional
problem. On the other hand, the computing time grows linearly with respect to the dimension and the
ensemble size, which is consistent with the discussion in Section 3.2.4.

5. Conclusion

We propose the EnSF method to solve very high-dimensional nonlinear filtering problems. The avoidance of
training neural networks to approximate the score function makes it computationally feasible for EnSF to
efficiently solve the 1,000,000-dimensional Lorenz-96 problem. We observe in the numerical experiments that
one million dimension is definitely not the upper limit of EnSF’s capability, especially with the help of modern
high-performance computing. Beside trying high-dimensional cases, our future research from the following
perspectives. First, we will investigate how fast the number of samples, i.e., J in Algorithm 2, needs to grow
with the dimensionality to ensure robust performance. Second, we will expand the capability of the current
EnSF to handle partial observations, i.e., only a subset of the state variables are involved in the observation
process, which is critical to real-world data assimilation problems. In fact, Figure 4 shows that the arctan()
observation function can be reviewed as a partial observation in the sensing that there is no observational
information when the state is outside [−π/2, π/2]. Third, the current definition of the weight function h(τ) in
Eq. (19) for incorporating the likelihood into the score function is empirical. We will investigate whether
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Figure 5. Comparison between the true state trajectories and the estimated trajectories obtained by EnSF, each sub-figure shows the
trajectories along randomly selected three directions in the 1,000,000-dimensional state space.

Figure 6. RMSE of the EnSF’s state estimation using 20 repeated trials with different initializations.The RMSE is averaged over the
state space and 90% confidence band is computed using the 20 trials.
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Figure 7. The mean absolute error of four randomly selected directions out of the 1,000,000 states, where the 90% confidence band
is computed using the 20 trials of EnSF experiments with differential initial conditions. We observe some uncertainty in the error
decay caused by differential inital conditions, but the uncertainty is totally acceptable.

Figure 8. The growth of the wall-clock time (in seconds) for EnSF (using Algorithm 2) to perform one filtering time step, i.e., update
from P(Xt |Yt) to P(Xt+1|Yt+1). EnSF is extremely efficient in the sense that it only takes less that one second to perform one filtering
time step in tracking the 1,000,000-dimensional Lorenz-96 system. The computing time grows linearly with respect to the dimension
(the left sub-figure) and the ensemble size (the left sub-figure), which is consistent with the discussion in Section 3.2.4.

there is an optimal weight function to gradually incorporate the likelihood information into the reverse-time
SDEs. Fourth, the efficiency of reverse-time sampling can also be improved by incorporating advanced stable
time stepping schemes, e.g., the exponential integrator, to significantly reduce the number of time steps in the
discretization of the reverse-time process in the diffusion model.
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