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ABSTRACT 

Direct Air Capture (DAC) systems offer a promising solution for mitigating global carbon emissions by 

directly removing ambient carbon dioxide (CO2) from the atmosphere. While future DAC facilities are 

typically envisioned as being large and centralized, small-scale systems present an alternative approach 

with advantages such as adaptability and lower uptake costs. By harnessing waste heat from the built 

environment, such small-scale systems become distributed DAC at the urban scale (UrbanDAC) that benefit 

from existing urban infrastructure, while presenting challenges such as identifying eligible buildings and 

sustainable transportation and storage of captured CO2. Collaborating with engineering experts and 

developers of a DAC unit that can be co-located with cooling towers of existing commercial buildings, this 

study explores the systems-level implications of UrbanDAC using a geographically explicit multi-decision 

criteria analysis (MCDA) framework. By considering various infrastructure and environmental factors, 

network analysis and geospatial techniques are applied to identify optimal building candidates for 

distributed DAC units within Knoxville, Tennessee, USA, as a representative mid-size city. The selected 

outputs of the MCDA are used to explore a scenario that assumes a CO2 collection and transport route for 

20 high-ranking candidate buildings; total carbon emissions, EV energy consumption, and net carbon 

dioxide removal (CDR) are then calculated. Results suggest that the spatial variation of optimal candidates 

between thriving commercial areas is an important planning consideration. Examining the feasibility of 

UrbanDAC at an urban planning level provides valuable insights into the barriers and enabling conditions 

for CDR in cities, where the vast majority of CO2 emissions are produced, and supports decision-making 

processes for the implementation of decarbonization initiatives. Through this initial assessment, this 

research acts as a pilot study for an emerging technology that highlights the importance of distributed DAC 

technologies in addressing climate change and emphasizes the need for further research and exploration in 

this domain.  
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1. INTRODUCTION 

1.1 BACKGROUND & MOTIVATION 

Driven mainly by escalating carbon dioxide (CO2) emissions, climate change necessitates urgent actions to 

mitigate the oncoming impacts to communities and economies such as those driven by increased extreme 

weather, excessive heat, and drought [1], [2]. While efforts to reduce emissions at their source are crucial, 

additional approaches like carbon dioxide removal (CDR) are gaining prominence. Among these 

approaches, Direct Air Capture (DAC) systems directly extract CO2 from ambient air, irrespective of 

emission sources, thereby aiding in climate change mitigation efforts [3]–[5].  The current paradigm for 

DAC technology predominantly focuses on large-scale centralized facilities with heating and air 

conveyance to capture carbon that is either stored indefinitely (e.g., subterranean pumping) or repurposed 

by the manufacturing industry [3] [6]. Therefore, DAC implementation faces challenges such as high 

energy requirements, cost-effectiveness, and the development of sustainable and scalable deployment 

strategies, which necessitate further research and technological advancements [7], [8].  

New technologies are emerging at the cutting edge of DAC that offer a viable alternative to large facilities 

by harnessing small-scale systems that adapt to existing structures in commercial buildings [9]–[11]. In this 

report, we focus on one patent-pending example that capitalizes on waste heat produced by external cooling 

towers already present throughout the building stock of urban areas [12]. These systems offer the potential 

to achieve CDR at a local level while efficiently utilizing existing resources, resulting in energy, material, 

and cost savings. The integration of DAC systems with commercial building infrastructure transforms these 

structures into carbon capture nodes distributed within the urban fabric. We term this a form of distributed 

direct air capture at the urban 

scale, or ‘UrbanDAC’. See Box 1 

for a brief explanation of the 

UrbanDAC concept and use-case 

technology. This decentralized 

approach not only provides 

flexibility and adaptability but also 

reduces the need for significant 

energy consumption and siting 

barriers associated with large-

scale DAC facilities. 

With advantages such as 

modularity, lower energy 

demands, and cost-effectiveness, 

this distributed approach offers a 

unique opportunity for cities to 

tailor plans for DAC system 

deployment to achieve net-zero 

and GHG reduction goals [13]–

[16]. However, to ensure the 

success of UrbanDAC, important 

factors must be considered, such 

as identification and optimal 

selection of eligible buildings, 

resilience to service disruptions 

due to natural disasters and other 

Box 1. Co-locating small-scale DAC units with existing cooling 

systems in the building stock. 

Waste heat 
as energy 
Source 

Low 𝐶𝑂2 concentration gas 
stream outflow 

Ambient 
air 

High 𝐶𝑂2 
concentration 

medium (stored) 

External cooling units 
common to commercial 
buildings contain air 
conveyance mechanisms 
(e.g., pipes, compressors). 
Using the heat from this 
process, a contactor layer is 
loaded inside these units to 
absorb 𝐶𝑂2 as air flows 
through the system. High 
𝐶𝑂2 concentration products 
accumulate and need to be 
transported for storage or 
reuse (i.e., carbon dioxide 
gas). 

Cooling fluid to 
building 
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risks, and overall sustainability at the systems-level. Moreover, it is necessary to consider interconnectivity, 

since the implementation of UrbanDAC is feasible due to the inherent capabilities of urban systems (the 

collective systems, organizations, and physical infrastructure that manage the energy and material flows 

within an urban area), as exemplified by the transportation-dependent network of waste treatment facilities, 

landfills, and numerous refuse-generating buildings throughout a city in the case of waste removal systems. 

Therefore, strategies and assessments are necessary to identify eligible buildings and select optimal 

candidates for UrbanDAC such that service disruption and energy consumption associated with continuous 

CO2 transport and storage are minimized.  

 

1.2 OBJECTIVES 

This assessment aimed to explore one of the potential ways UrbanDAC technologies can evolve as 

interconnected and interdependent infrastructure systems, and to produce coarse quantifications of distance 

and energy-based metrics to serve toward comparative analyses against traditional, centralized DAC 

scenarios. To support decision making, a sustainability assessment was developed that includes mapping 

relevant factors in urban areas for identifying candidate buildings, selecting the most suitable for 

UrbanDAC implementation, determining optimal CO2 transport routes based on optimal spatial distribution 

of UrbanDAC, and estimating potential distance and energy-related metrics for selected urban scenarios 

(i.e., site selection and routing results). Specifically, this study was bounded by the following primary and 

sub-objectives: 

i. Maximize CDR at the system-level by optimizing UrbanDAC distribution and network structure 

for minimal service disruption and maximum efficiency. 

a. Identify city-scale spatial constraints for UrbanDAC performance. 

b. Optimize candidate buildings based on characteristics of the integrated infrastructure 

network and natural-built environment characteristics. 

ii. Pilot an integrated assessment strategy for exploring the implications of UrbanDAC siting, systems-

level design, and implementation. 

The proposed approach leverages a systems perspective (i.e., cities as complex systems) and an actionable 

unit of analysis (i.e., the city as an administrative unit) for decision-making and implementation by framing 

DAC as a networked part of a broader urban system. While it is possible to generate aggregate outcomes 

from deterministic metrics based on the performance of a single engineered unit (e.g., scaling the CO2 

capture rate of a DAC unit at average performance), this does not account for energy demands and possible 

emissions through the respective carbon lifecycle (i.e., net CDR), nor the DAC-relevant natural and built 

environment dynamics that change from place to place across urban spaces (i.e., spatially dependent factors 

and outcomes). Toward a decision-making framework that includes urban-scale pathways and systems-

level implications, this study considered environmental, infrastructural, and network-oriented factors in a 

multi-method multi-criteria decision analysis framework. This offers a critical starting point for UrbanDAC 

research throughout the community. 
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1.3 PROPOSED FRAMEWORK FOR URBANDAC R&D 

To properly assess the potential impact of distributed DAC as a mitigation strategy, it is crucial to consider 

the multi-dimensional urban dynamics and infrastructure that affect net CDR performance for UrbanDAC 

at the systems-level. In this study, these considerations included the eligibility of existing buildings (i.e., 

structures with cooling towers), possible storage hubs, place-based siting criteria (e.g., proximity to other 

candidates, humidity), infrastructure network criteria (e.g., traffic, road centrality), and risk-based 

considerations (e.g., flooding-induced road impairments, traffic delays, and rerouting). By considering both 

the suitability of candidate buildings for DAC deployment and the efficiency and resilience of the network 

connecting these units, the location and performance of UrbanDAC systems could be optimized. Therefore, 

a two-part data-driven framework composed of geospatial and network analyses was proposed. 

The geospatial analysis aimed to identify and rank optimal locations for DAC systems in an urban 

environment using publicly available data, such as building characteristics, flood risk, and zoning 

regulations, and integrated these spatial attributes to generate suitability maps highlighting areas with high 

potential for effective UrbanDAC deployment. The network analysis focuses on UrbanDAC as an 

infrastructure system with units interconnected by roads that transport captured carbon to key hubs. Like 

the suitability analysis, weights were assigned to network links (i.e., roads as graph edges) signifying 

vulnerabilities (e.g., flood risk) and friction (e.g., inefficiencies like traffic) to assess the efficiency and 

likelihood of disruption among candidate buildings. Some buildings can be located within advantageous 

points in the network that are highly accessible with many alternative routes that can be taken to an endpoint 

in the case of a disruption [17]. In this way, resilience was linked to sustainability, where disruptions cause 

unequally distributed delays, costs, and impacts to CO2 capture rates and cumulative CDR [18].  

Publicly available geographic information, such as GIS data (e.g., shapefile, geodatabase) or datasets that 

can be georeferenced (i.e., via attributes such as addresses, zipcodes), enables the simultaneous evaluation 

of the multiple criteria for suitability and network analysis through spatial relationships between datasets. 

Therefore, the two-part methodology (i.e., suitability and network analyses) was framed within a multi-

criteria decision analysis (MCDA) framework. MCDA is useful for exploratory assessments because it 

enables choosing multiple alternative sets of criteria and weights in a scenario-based fashion oriented to 

specific goals (e.g., maximizing total annual carbon capture) - a necessary exercise for complex, multi-

dimensional, and uncertain problem domains such as sustainable development of novel technologies where 

authoritative considerations are not yet established [19]. 

The geospatial MCDA framework was applied to Knoxville, TN, to demonstrate applicability to mid-size 

US city. Knoxville has a diverse urban landscape that has experienced steady population growth and the 

evolving demands associated with a growing cityscape, and thus, serves as an ideal testbed for evaluating 

the effectiveness and feasibility of distributed DAC systems in an urban context. The selection of Knoxville 

was also driven by the availability of relevant geospatial data and infrastructure information. In addition to 

assuming implementation in a mid-size US city, for the final urban scenario (see 2.6 and 3.3), we also 

assume immediate deployment using traditional transporter vehicles with compression ignition engines 

(i.e., gasoline or diesel) that collect CO2 from UrbanDAC buildings and imply carbon emissions, as well as 

a brief scenario assuming EV transporter vehicles. This case study enables valuable insights into the 

challenges, opportunities, and implications of implementing DAC technologies in a real-world urban 

environment, contributing to the knowledge, and understanding of sustainable urban development and 

carbon dioxide mitigation strategies. 
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2. METHODOLOGY 

2.1 OVERVIEW 

Figure 1 summarizes the methodology consisting of identifying commercial buildings (see 2.2) and a two-

part combination of suitability and network analyses enabled by Multi-Criteria Decision Analysis (MCDA) 

and geospatial data (see 2.3). The suitability analysis followed a geospatial approach to develop a series of 

composite indices using a layered reclassification method (see 2.4). The network analysis approach focused 

on ensuring the resilience of the UrbanDAC system as an integral part of the urban system by measuring 

how accessible a node (e.g., building) is through multiple alternate routes from key locations (e.g., carbon 

hubs, storage; see 2.5). The two approaches were then integrated where the candidate buildings' location 

and the edge weights as ‘friction’ are used to rank the candidates such that a building with a higher ranking 

is accessible through more routes with minimum friction.  

Using the results, scenarios were selected to illustrate a bundle of decision considerations in choosing an 

optimal UrbanDAC distribution, where risks at each location and risks on the road network that connects 

those locations are minimized. The scenarios were based on a subset of top candidates selected for the 

generation of an optimized route for the pick-up and transport of CO2 captured at the buildings (see 2.5.2). 

The generated route was then used for rudimentary calculations of carbon emissions and energy 

consumption from CO2 transporter vehicles, and in turn, gross estimates of net CDR per this idealized 

scenario (see 2.6). 

 
 

Figure 1. Graphical abstract of the methodology and preliminary results of MCDA framework for 

distributed UrbanDAC systems. 
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2.2 IDENTIFICATION OF CANDIDATE BUILDINGS 

Due to data limitations, the first challenge to address is identifying existing building stock likely to have 

cooling systems amenable to UrbanDAC adaptation based on our technology use-case (i.e., individual 

cooling tower-adaptable DAC units). While datasets with attributes specific to UrbanDAC are currently 

unavailable for our use-case (e.g., has a cooling tower), several options exist for building footprints datasets 

from which it is possible to estimate proxy attributes, including Open Street Map (OSM). To this end, 

ORNL’s USA Structures [20] dataset is preferred due to its completeness, reliability, and documentation.  

 

Given that the target buildings would have certain attributes pertaining to the need for a mounted cooling 

tower beyond the HVAC systems typical of other building classes (e.g., residential), we assume that 

buildings that are designated as commercial and are relatively large in terms of floorspace can be potential 

candidates. To determine selection criteria, EIA’s Commercial Buildings Energy Consumption Survey 

(CBECS) [21] offers guidelines for designation of commercial buildings. Based on these guidelines, the 

first step is to select USA Structures footprints within City of Knoxville boundaries using Geographic 

Information Systems (GIS) that have a height greater than 1 story (3m) and more than 93m2 (1000ft2) in 

floorspace. USA Structures includes height and footprint area attributes for each record that can be easily 

used to calculate the floorspace for each structure. The selected buildings are then further selected according 

to planning zones amenable to commercial building uses. Geographically explicit planning zones are 

available from the City of Knoxville GIS portal (KGIS) [22], [23] as a shapefile, which was used to 

subsequently select structures that spatially overlay specific zones that allow the target building types (see 

Table 1 below).  

 
Table 1. City planning zones used as selection criteria for candidate buildings [23]. 

 

Zoning Code Description 

C-G General Commercial 

C-H Highway Commercial 

C-R Regional Commercial 

OP Office Park 

I-RD Large-scale Office & R&D 

I-G General Industrial 

I-H Heavy Industrial 

INST Institutional 

TO-1 Technology Park Overlay 
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2.3 DECISION VARIABLES & DATA 

Parameters for optimal UrbanDAC performance were framed around (1) resilience in terms of route 

redundancy and minimizing UrbanDAC service disruptions, and (2) sustainability in terms of the energy 

efficiency of the overall system of distributed carbon capture and transport. Subsequently, parameters were 

selected based on factors that would either decrease the performance or cause a disruption of a small-scale 

DAC unit (e.g., failure of a building’s cooling tower system), or add friction to the network by decreasing 

the efficiency of the transportation network or having few alternate routes.  

A variety of applicable datasets to inform these factors are publicly available in geospatial datahubs from 

governmental and non-governmental sources. The variables selected for this study, the respective 

reasoning, and associated data sources are listed in Table 2. These variables were meant to inform a working 

concept, so this list is not exhaustive, and several studies are needed to determine an optimal set of variables. 

Additionally, several hazards were not considered, such as earthquakes and interdependent infrastructure 

like electrical power networks. We chose flooding due to its prevalence across many urban geographies 

and applicability as a test-case for further development. 

 

Table 2. Parameters (variables) selected for initial UrbanDAC assessment and network analysis. 

Parameter Description/Reasoning 
Data Source & 

Vintage 

Building Density 

Degree to which areas represent concentrations of larger 

buildings. Greater densities can reduce system consumption 

(e.g., excessive collection site disparities; cumulative distance 

traveled). Building density can be derived from USA 

Structures footprints and attributes. 

USA Structures 

2022 [20] 

Distance to Nearest 

Rail Station 

Assuming rail stations and carbon transportation hubs, closer 

buildings are optimal for system efficiency. The distance to 

these stations can be computed as a Euclidean surface. 

OSM 2022 [24] 

Flood Risk 

Flood risk zones indicate the probability of flood-induced 

impacts such as power outages, road delays, and out of 

service buildings. These zones can be quantitatively classified 

according to risk level. 

FEMA 2018 [25] 

Precipitation 

Precipitation reduces the airborne concentration of CO2 and 

increases road wear. PRISM offers downscaled modeled 

datasets at 800m spatial resolutions for 30-yr precipitation 

normals (1991-2020). 

PRISM 2020 

[26] 

Traffic 

Annual traffic station counts can be used to develop spatial 

density surfaces along roadways that indicate areas of 

increased lag, energy use, and emissions. 

TDOT 2020 [27] 

 

 

 

 



 

8 

2.4 GEOSPATIAL SUITABILITY ANALYSIS 

Geographic optimization can reduce cumulative costs and resource 

consumption relative to carbon capture performance across urban 

systems and streamline the process of implementing a distributed 

DAC system. The objective of the geospatial suitability analysis was 

to locate optimal candidate buildings such that their cumulative 

distribution for UrbanDAC systems maximize cumulative 

performance, particularly carbon capture efficiency, by leveraging 

spatially explicit data outlined in section 2.3. The methodology for the 

suitability analysis process is summarized in Figure 2. 

The development of suitability scenarios involves integrating spatial 

data on carbon capture potential (e.g., atmospheric conditions, DAC 

performance) and building attributes (e.g., building footprints, 

zoning). We develop decision analytics based on (1) performance 

factors, including building density, precipitation, and distance to rail 

stations, and (2) risk factors, which were represented by flood risk 

level. To do this, we use a common form of geospatial MCDA 

technique [28], [29] where the data distributions of each variable (Cj) 

is classified into a common rank ordered score according to desirability, weighted (Wj), then spatially 

summed to produce a composite map highlighting high return to low return areas:  

 

The aggregate score Ai represents the scenario composed of a given selection of decision variables and their 

weight. As a pilot study, we assume that all Wj = 1 for this report. As explained below, variables were 

aggregated via raster calculations for geographically heterogeneous digital surfaces representing each of 

the decision variables for Knoxville. To develop commensurate digital surfaces from point-based data, 

Kernel Density Estimates (KDE) were performed at 100m grid-cell resolution for each variable and with 

kernel sizes used to generate estimates optimized according to Simpson’s rule [30]. The KDE process 

transforms discrete vector data into continuous rasterized surfaces (i.e., pixels). In the case of building 

density, the KDE algorithm uses floorspace as a weight for each data point in the kernels to capture the 

spatial variation in the scale and clustering of commercial buildings eligible for UrbanDAC. Datasets 

already in raster format were resampled to 100m resolution, if necessary, using a cubic convolutional 

method of interpolation [31], [32]. 

The last step before applying the MCDA equation for aggregation is to reclassify each dataset into 

categorized scores in integer increments from 1 to 5, where a score of 1 represents the least suitable areas 

and a score of 5 the most suitable areas. To segment the data into these scores, a natural breaks algorithm 

was applied since it subsets records into groups with more distant means, and thus better contrasting the 

suitability of different areas for greater facilitation in decision-making. Once reclassified, the datasets are 

aggregated using an arithmetic sum and assuming equal weights in the scenarios in Table 3. 

  

 

𝐴𝑖 = ∑(𝐶
𝑗
)(𝑊𝑗)

𝑛

𝑗

 

Figure 2. Geospatial workflow for 

suitability analysis. 

 

(1) 
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Table 3. Suitability scenarios and criteria for geospatial suitability analysis with corresponding network 

criteria for urban scenarios. 

Suitability 

Scenario ID 

(SS) 

Criteria 

Corresponding 

Network Scenarios 

(Table 4) 

1 
Building Density 1-5 

2 Building Density, rail 1-5 

3 Building Density, rail, flood zone 2, 3, 5 

4 
Building Density, rail, food zone, 

precipitation 
2 
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2.5 NETWORK ANALYSIS 

2.5.1 Quantification of Accessibility to Identify Key Building Nodes 

Access to multiple alternate routes increases the resilience of any point of interest (POI) that is reachable 

through a network (e.g., a road network). We developed a method based on the accessibility of buildings 

to rank the candidate buildings, maximize the resilience of the UrbanDAC system and optimize the 

collection process. From an interdisciplinary engineering perspective, resilience generally speaks to the 

ability of a system to adapt to changes expediently to decrease total recovery costs and the length of service 

disruptions [33], [34]. Network topologies play a key role in urban resilience [17], [35]. For example, nodes 

with a higher centrality are more flexible and agile during any unexpected events as such nodes are more 

accessible through several alternate routes. Therefore, vulnerability of any critical POI (e.g., an UrbanDAC 

unit) can be reduced significantly if they are connected to more central nodes in the road network. Following 

a network science approach enabled metrics that inform compromised transportation performance 

scenarios, such as removing a road segment or a set of road segments due to events like natural hazards.  

The primary objective of the network analysis was to evaluate candidate buildings as nodes integrated into 

the road network while considering factors such as distance, edge weights, and the minimization of 

disruptions and costs associated with carbon transportation. First, we downloaded the drivable road network 

from OpenStreetMap as a graph and simplified the graph by removing all the nodes except for the junctions 

using the Python OSMnx package [36], where junctions are the intersections of roads. We then connected 

the candidate buildings to the nearest road junction to integrate the buildings into the road network. Finally, 

the accessibility of those candidate buildings in the road network were estimated using node betweenness 

centrality. We chose betweenness centrality as it is a crucial network metric that measures how many 

shortest paths in a road network pass through a node; therefore, it best captures the accessibility of each 

building through the road network. Betweenness centrality of a node v is the sum of the fraction of all pairs 

of shortest paths that pass-through v. Thus, betweenness centrality (cB) of a node v is, 

𝑐𝐵(𝑣) =∑
𝜎(𝑠, 𝑡|𝑣)

𝜎(𝑠, 𝑡)𝑠,𝑡∈𝑣
 

where, v is the set of nodes, σ(s,t) is the shortest paths between all source-target pairs, and σ(s,t|v) is the 

number of those paths passing through edge [37], [38]. We used the Python Networkx package [39] to 

estimate the betweenness centrality of the road junctions in Knoxville. This metric has been applied in 

various domains, such as social network analysis, infrastructure protection, and network resilience 

assessments [40]–[42]. Nodes with high betweenness centrality control information flow and resource 

distribution within networks [37]. As buildings are sink points in the network where a path ends, thus, they 

do not have any betweenness centrality as no paths pass through them. Therefore, in this study, we estimated 

the accessibility of a building as the average betweenness centrality of all the junctions within a kilometer 

of driving distance from each building. Buildings with high accessibility act as pivotal points in the 

transportation network, being resilient and facilitating the flow of CO2 from the capturing units to storage 

or processing facilities. 

We included various factors as edge weights to estimate the accessibility of UrbanDAC units under different 

scenarios of unequally distributed network friction (see Table 4). For example, the traffic layer is used to 

assign traffic information as edge weights to the road network and modulate betweenness centrality metrics. 

For this study we used three friction factors: traffic, on-road precipitation, and flood risk level to develop 

three scenarios of ranking for each UrbanDAC unit. Each one of these individual friction factors resembles 

one network scenario for selecting critical buildings. However, two additional combinatorial scenarios were 

simulated: one scenario considering both flooding and excessive precipitation, and one considering all three 

(2) 
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(traffic, precipitation, flood risk). To combine factors, we followed the geospatial MCDA approach 

described in equation 1 in section 2.4 (Table 4). 

 

Table 4. Network friction scenarios and criteria with corresponding building-level suitability for urban 

scenarios. 

Network Scenario 

ID (NS) 
Criteria 

Corresponding 

Suitability Inputs 

(Table 3) 

1 Flood 1-2 

2 Traffic 1-4 

3 Precipitation 1-3 

4 Flood, precipitation 1-2 

5 Flood, Traffic, precipitation 1-3 
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2.5.2 Urban Routing Scenario for CO2 Transport in UrbanDAC Systems 

To make calculations for the total distance traveled and estimate emissions and energy use for CO2 

transport, potential routes from the storage hub to each building housing UrbanDAC units needed to be 

generated. These generated routes act as synthetic data for estimating system-level metrics for a typical 

fleet of CO2-Transporting Vehicles (CTV; such as “AirGas” trucks carrying pressurized tanks), and in-turn, 

operational impacts to net CDR according to the idealized scenarios described in this report (see 2.6 and 

3.3). We applied a network optimization function while taking on a few assumptions for simplification and 

reduction of compute time:  

 

i. The decision variable refers to the alternative with minimal total distance such that each node 

(i.e., building) is passed at least once. 

ii. All links in the transportation system represent bidirectional rights of way. 

iii. CTVs begin and end at the rail station nearest to a candidate building.  

iv. The CTVs travel in a circular route with a single pickup from building to building (i.e., they do 

not intentionally return to a building).  

v. The simulation was limited to a subset (see 2.6) of the candidates identified in section 2.2.  

 

The subset of candidate buildings was selected by rank ordering candidates according to a combination of 

USI and UNFI scenarios focused on building density and travel time as primary decision factors, 

respectively. From this scenario we selected the 20 highest scoring buildings (i.e., those inhabiting and 

surrounding areas that have relatively high floorspaces and incur low traffic delays in respect to 

intermediate and endpoints). Ultimately, determining an idealized route for this set serves as a baseline for 

an urban scenario where carbon is captured at the building-level (i.e., UrbanDAC), picked up via motorized 

vehicles and transported to the nearest rail hub.  
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2.6 HIGH-LEVEL URBAN SCENARIO ASSESSMENT 

The urban scenario in this report represents a system-level assessment for envisioned UrbanDAC 

deployment strategies using combinations of selected parameters and outputs from the methods described 

in previous sections. The geospatial analysis results mapped candidate locations distributed among the 

buildings in Knoxville. The analysis also indexed these candidates according to alternative decision criteria 

and composite suitability score based on scenarios reflecting flood risk, precipitation, building density, and 

distance to nearest rail station as parameters. Using these results, an illustrative USI-UNFI combinatorial 

scenario was used to identify optimal building candidates and observe how these candidates change based 

on different index combinations. The twenty highest scoring candidates for building density were selected 

from the suitability analysis (i.e., SS1 in Table 3). In turn, this subset was used to select the five highest 

ranking candidates according to betweenness centrality under a series of network friction parameters (Table 

4). This combinatorial scenario was used to assess the spatial variation in optimal building selection 

strategies for UrbanDAC. 

The “top 20” subset was also used to generate a pick-up route (see 2.5.2) for an idealized carbon transporting 

vehicle (CTV) and calculate total travel, emissions, and energy outcomes. To determine an appropriate 

vehicle type, we focused on commercial vehicles with the minimal capacity to transport at least 1300 kg, 

assuming a weight of 62 kg per empty 50-liter pressurized tank [43] plus the weight of captured carbon (1 

kg) from each site (62 kg tanks x 20 buildings + 20 kg CO2 = 1300 kg). These are rudimentary assumptions 

since several factors may affect outcomes, such as the kg-CO2 capacity of a tank depending pressure, here 

assumed to be 1 bar based on the Ideal Gas Law and ratings of commercial products, and therefore, there 

would be 1 tank per pick-up. 

To make baseline estimations, we used the length of the route to calculate course estimations of the 

emissions and energy consumption for this UrbanDAC scenario. For emissions data, we leveraged a study 

by Weiss et al. [44] estimating the average per-kilometer CO2 emissions for small commercial transporter 

vehicles with two axles (e.g., “AirGas” trucks transporting typical pressurized gas tanks up to 50 liters each; 

N1/Class II Euro 3). For energy consumption metrics, we estimate the total watt-hours consumed using 

data from ERM International group’s study on environmental impacts of medium and heavy-duty vehicles 

[45]. The report cites 0.74 kWh/km (1.19 kWh/mi) on average for medium duty commercial vehicles such 

as service vans and stake trucks within a weight Class 3-5.  

The aim of this methodology was to capture and assess broad-level impacts of an interconnected urban 

system composed of DAC-enabled buildings and urban thoroughfares. These impacts were assessed using 

the above urban deployment scenario to make rudimentary distance, CO2 emissions, and energy 

consumption estimations for an UrbanDAC system. However, the combination of parameters and selection 

criteria used here represent just one series of possible deployment scenarios, though several alternative 

strategies can be assessed in future studies based on this data and framework. Furthermore, many of the 

outputs of this initial assessment, such as the optimized subset of candidates and respectively generated 

transport route, cue further study and modeling of the datasets of both alternative scenarios and multiple 

scales of deployment. 
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3. RESULTS 

Results in this report include the identification of candidate buildings in Knoxville, multi-criteria suitability 

mapping, and a network analysis that assigns a score to buildings according to their betweenness centrality, 

as well as scenario-driven route generation. These three components yielded three major products: (1) a 

working UrbanDAC Suitability Index (USI) for the City of Knoxville, (2) an UrbanDAC Network Friction 

Index (UNFI) for the City of Knoxville, and (3) commercial building rankings by selected deployment 

scenarios (4) rudimentary summary statistics for transportation impacts. Of the 68,306 buildings from the 

original USA Structures dataset, the identification process outlined in section 2.2 selected a total of 4,562 

buildings (~7%) to be designated as commercial buildings viable for UrbanDAC system adaptations (Fig. 

3). Individual building floorspace varied from 92 m2 to 262,814m2, with a total of 12,472,863m2 estimated 

in floorspace for the UrbanDAC-identified buildings. Major building clusters by floorspace-weighted 

density surfaces are generally intuitive to areas of larger-scale development, such as the University of 

Tennessee campus and primary technology and shopping districts. A 43.1 km route was generated for a 

“top 20” buildings scenario that implies a transportation impact of 8 kg in CO2 emissions or 31.9 kWh of 

EV energy per round. Below we summarize results in greater detail according to the three components of 

the study: the geospatial suitability analysis, the network analysis, and the final MCDA for integrated urban 

scenarios. 

 

 

Figure 3. The top figure (a) shows USA Structures building footprints for Knoxville, TN. The bottom (b) 

figure shows the USA Structures building footprints after selection for UrbanDAC commercial building 

criteria. In both cases, the building footprints are shown in black. 

(a) 

(b) 
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3.1 GEOSPATIAL SUITABILITY FOR URBANDAC DEPLOYMENT 

The main products from the geospatial analysis are the suitability maps and geographic visualizations that 

mark urban areas for UrbanDAC system implementation and modeling scenarios for further research. Final 

outputs include scenario-based indices and ranked candidate buildings that were developed to illustrate how 

UrbanDAC may be distributed in a mid-sized city like Knoxville. For example, Figure 4 represents the 

most comprehensive scenario (SS4, see Table 3). In this scenario, to demonstrate optimal areas for 

UrbanDAC siting based on flooding, distance to rail stations, precipitation and road density, areas 

throughout the city ranged from a composite score of 5 to 19. 

 

 

Figure 4. Preliminary suitability index for distributed UrbanDAC units in Knoxville, TN. Higher scores 

trend toward yellow while lower scores toward dark purple.  

Because there are essentially four scenarios where an increasing number of variables are reclassified as 

integers from 1-5 to be aggregated as a composite, the ranges vary respectively, though not always to the 

full minimum and maximums of each range. For instance, the suitability scores that include only building 

density and the radial distance to rail range from a score of 3 to a score of 10 (Fig. 5). Generally, the yellow 

and bright orange areas in the map represent clusters of university buildings and general industrial districts. 

It is also noticeable between Figures 4 and 5 that additional variables attenuate such highly contrasting 

regions in the West and Center of town, making results more nuanced once 3 or more siting parameters are 

considered. Once precipitation and flooding are considered, for example, the Western industrial cluster is 

now differentiated and favored in respect to the university district, despite the latter having high building 

density and being closer to the transportation hub (i.e., rail station). 
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Figure 5. Preliminary USI scenario considering only building density and distance to rail stations. Higher 

scores trend toward yellow while lower scores toward dark purple.  

 

Nearly half (47.9%) of the identified candidates were within a half kilometer of a floodplain, with 126 

buildings inside floodplain areas designated by FEMA. Buildings located directly or nearby such high 

flood-risk areas, as well as within a half kilometer range of currently 100-year flood risk areas (N = 399) 

suggest further research is needed, especially considering potential changes in climate, land-use, and at 

finer resolutions to properly identify buildings at risk. Implications due to resolution also resulted from the 

PRISM dataset being downscaled from climate model outputs. The precipitation data is stratified in thick 

bands with higher values in the West with a lowering gradient toward the East, which is especially 

observable in the reclassified layer and sometimes evident in the scenario composites (see Appendix A). 

Therefore, despite PRISM’s finer resolution in respect to global-scale data (800m), it is possible that there 

may be greater spatial variation in precipitation within the extent bounding Knoxville, TN, that can be 

captured at smaller scales (e.g., 500m or finer).  
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3.2 NETWORK ANALYSIS & CO2 TRANSPORT ROUTING 

3.2.1 UrbanDAC Network Friction Index (UNFI) 

A series of UrbanDAC Network friction indices (UNFI) were developed to represent transportation 

conditions where a reduction in efficiency or risk of disruptions result in greater systems-level energy and 

operational costs. Using the geospatial methodology from section 2.4, a set of composites were created 

using variables specific to network scenarios (traffic counts, precipitation, and flooding). These composites 

were then used to spatially assign friction metrics to individual edges of the network (i.e., road segments). 

Figure 6 shows the resulting transportation network friction results based on traffic count density. It is 

observable from the figure that there is greater friction surrounding the center of town (downtown, 

University of Tennessee, Old City leisure district) and a major shopping district (Turkey Creek) to the West.  

Further results from the UNFI are discussed in terms of centrality metrics in 3.2.2. and candidate building 

selection and routing in section 3.3. 

 

Figure 6. UrbanDAC Network Friction Index (UNFI) for Knoxville, TN. The more purple colors display 

higher friction areas of the road network, while more yellowish colors define the lower friction edges. 

 

3.2.2 Betweenness Centrality by UNFI Scenario 

Betweenness centrality metrics were calculated for each building by UNFI scenario. Figure7 shows the 

node betweenness centrality of an illustrative set of UrbanDAC units for a UNFI under floodplain and 

traffic conditions in Knoxville, TN. Higher values indicate higher accessibility weighted by either flooding 

or traffic, which can be used to rank and prioritize the potential locations of UrbanDAC units. Our initial 

analysis suggests commercial buildings in Northeast Knoxville should have a higher priority as locations 

for resilient UrbanDAC units, considering both flood and traffic congestion simultaneously. However, 

while the Northeast tends to suffer less traffic and flood risk, the top-ranking units result from the West and 

South of Knoxville due to higher accessibility.  
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Figure 7. Node betweenness centrality for distributed UrbanDAC scenarios in Knoxville, TN, assuming 

(a) flood risk and (b) traffic as network friction parameters. Each point represents the location and weighted 

centrality of commercial buildings where from yellow to purple suggests lower to higher efficiency and 

resilience, respectively. 

 

  

(a) 

(b) 
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3.3 HIGH-LEVEL INTEGRATED URBAN SCENARIO ASSESSMENT 

At the macro-level, the urban scenario was defined by a set of proposed infrastructure systems that could 

hypothetically be implemented (e.g., to achieve decarbonization goals by 2030), the selected characteristics 

of these systems, and environmental conditions. The proposed infrastructure system is composed of high-

density commercial areas (i.e., built environment with buildings as decarbonization infrastructure), vehicle-

oriented transportation of carbon products, and rail stations as regional hubs. Together with connectors and 

highways, the rail stations form a hierarchical transportation network for centralized storage and processing 

at greater scales. However, within the scope of this study, we treated the rail stations as the city-level 

endpoints. A total of two rail stations were identified within the Knoxville boundaries, which were located 

near the center of the city and South Knoxville. The main characteristics of the infrastructure systems 

include building density, traffic counts, and betweenness of building locations in the road network. For the 

environmental conditions, we consider precipitation and flooding.  

Among these variables, there are a variety of combinatorial scenarios for USI and UNFI and levels of 

comprehensiveness for integrated analysis, from which we highlight a selection. Depending on the criteria 

used for the USI and UNFI, the locations of the top-scoring buildings change, as demonstrated in Figure 8. 

However, these locations tend to be fixed consistently within neighborhood-level clusters and change 

mainly in terms of ranking. There are a few exceptions where locations shift between the primary clusters, 

however, particularly between candidates that switch between the West Knoxville and University of 

Tennessee clusters, two areas with relatively very high building densities and generally higher ranking 

UNFIs. This observation suggests that planning decisions for UrbanDAC may involve important 

considerations in terms of spatial variation for optimal candidates within thriving commercial areas of the 

City.  

To assess the distribution of building candidates as an integrated urban scenario, outputs from the suitability 

analysis were used as inputs and constraints for the network analysis, following the same methods covered 

in section 2. First, the twenty highest ranked candidate buildings were selected according to the suitability 

analysis for the simplest scenario (SS1; building density only) and their betweenness centrality metrics. 

Using this combination of land suitability and network criteria, a data-driven selection of candidates was 

identified as key buildings that play a critical role in the efficient transportation of captured CO2, 

minimizing both energy consumption and disruptions of decarbonization infrastructure.  

An optimized route was generated from these top 20 candidates using building density and traffic as the 

USI and UNFI criteria, respectively. While this may exclude relatively high-suitability buildings along or 

near this route, we considered this an illustrative scenario based on selecting the simplest set of criteria 

while retaining two salient factors in terms of floorspace as a proxy for UrbanDAC unit capacity and travel 

time as a key transportation concern. A single loop was assumed where the rail station nearest to the first 

building were the begin and endpoints for a single vehicle to travel through the network stopping at each 

of the selected buildings. The resulting route was calculated to have a total of 43.1 km in distance traveled 

for a single round (Fig. 9).  
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Figure 8. Top 5 highest ranked candidate building locations based on building density-oriented suitability 

and different network friction criteria including flood risk, precipitation, flooding and precipitation, and 

traffic. 

 

 

Figure 9. Optimized pick-up route for top 20 ranked candidate buildings according to building density 

and traffic USI-UNFI Combination. 
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Using 182 g CO2/km as the average carbon dioxide emissions for the CTV scenario in section 2.6 [44], we 

estimated a total of 8 kg CO2 in transport emissions per pick-up cycle. Given we assume an emerging DAC 

technology with an expected CDR rate of 1 kg CO2/day and that each identified building candidate can 

house one unit, we assume a system-level DAC-unit CDR rate of 20 kg CO2/day.  The net CDR rate, 

however, is highly dependent on pick-up rate in terms of the emissions cost of CO2 transport (Fig. 10). 

Depending on whether a unit renewal and CO2 transfer is needed on a daily, weekly, or other frequency, the 

impact of transportation to the net CDR efficiency of this system varies, starting from a 40% of reduction 

of gross CDR capture assuming daily pickups (12 kg net CO2 for per day) to near 0% for annual. Given 

that the efficiency of our transportation scenario increases in a logarithmic fashion, schedules with weekly 

pickups or less frequently approach very low transportation impacts under these assumptions. 

 

 

Figure 10. The efficiency of carbon dioxide removal (Gross CDR – Transport CO2) for the urban scenario 

involving a 20-stop route at different rates of pick-up schedules. 

 

In terms of energy consumption for an EV scenario, we assumed a vehicle efficiency of 0.74 kWh/km based 

on the average of the vehicles determined in section 2.6 [45]. This energy consumption rate translated to a 

total of about 31.9 kWh for a single round. Generally, the energy storage required for a single round is well 

within the typical travel range and battery capacity for small transporter EVs [46], [47]. We considered 

energy consumption in the EV scenario as a measured outcome of the scenarios we explored in this report, 

and due to scope, did not further explore interrelationships, outcomes, and dynamics in respect to other 

system components (e.g., grid distribution, charging stations, etc.). Therefore, in terms of multiple rounds 

in the case of scheduling, energy demand for captured CO2 transport will also vary greatly in respect to the 

pick-up schedule required, but in a more straightforward linear fashion (i.e., multiplicative increases with 

higher frequencies). 
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4. CONCLUSION & DISCUSSION 

4.1 SUMMARY 

In conclusion, a data-driven framework was piloted as an approach to assess and optimize the siting of 

adaptable UrbanDAC units, minimize service disruptions, and enhance the overall sustainability and 

resilience of UrbanDAC for carbon dioxide removal. Through the application of geospatial and network 

analyses, eligible buildings for DAC adaptation were identified, subsequent candidates were ranked in 

terms of optimal spatial and network locations, and preliminary routes were generated for selected urban 

scenarios for UrbanDAC implementation. The identification process selected a total of 4,562 buildings 

(~7% of the 68,306 buildings from the original dataset) as viable candidates for UrbanDAC system 

adaptations. Major building clusters with top ranking candidates were found to align intuitively with areas 

of higher building density and larger-scale development, such as the University of Tennessee campus near 

the city center and primary industrial and shopping districts, largely on the West side. However, there is 

spatial variation in terms of suitability and network characteristics within and between these major clusters, 

and the respective locations of some top rankings (e.g., top 5 in urban scenario) are sensitive to weighting 

and selection criteria (i.e., may switch locations within or between major clusters). These insights represent 

useful considerations for identifying strategic areas for UrbanDAC planning and deployment and achieving 

the greatest carbon capture potential at the systems-level.   

As an integrated scenario, a representative subset of high-ranking UrbanDAC candidates were used to 

generate a 43.1 km route that loops between the nearest rail station and each building in the subset (N = 

20). In terms of energy impacts for this scenario, results suggest that transportation of UrbanDAC products 

(i.e., captured CO2) may incur about 8 kg in fuel-related CO2 emissions and 31.9 kWh of EV-energy impacts 

per pick-up cycle. For a subset of twenty high-ranking candidate buildings, this study suggests a net CDR 

rate of 12 kg for daily pick-ups to near 20 kg per day for annual pick-ups, depending on pickup schedules. 

However, these results represent rudimentary calculations for CDR efficiency. It is possible, for example, 

that there are several favorable buildings along the same route generated for the subset (N = 20) presented 

here, and therefore, economies of scale need to be assessed and modeled. Results also suggest scale-based 

implications for further analysis of microclimatic factors in terms of local precipitation and more granular 

flood risk data. Furthermore, there are several other CO2 and energy-related costs that need to be considered 

for improved net CDR quantification, such as the life cycle of the DAC units, variable performance, and 

operational dynamics.  

Results from this study, including the identification of a significant number of buildings suitable for 

UrbanDAC, provide valuable insights for decision-making processes and serve as a foundation for future 

urban-scale studies of DAC systems, aiding in the transformational decarbonization of cities. The proposed 

concept and methodology can be expanded to other cities and regions, both domestically and 

internationally, enabling the assessment and comparison of different configurations and distributions of 

DAC units within urban environments. The first challenge is identifying candidate buildings and 

characterizing their distribution (e.g., scale and extent of clusters) in terms of captured CO2 transportation 

and storage. The next step is leveraging the network of identified buildings to assess economies of scale 

and alternative system configurations using system-level metrics (e.g., cumulative energy demand for EV 

vehicles or pumps along a pipeline; net lifecycle CDR) and quantitative decision metrics (e.g., maximize 

cumulative CO2 performance, lower energy impacts, etc.). For this, reliable data on building attributes, 

transportation and other urban networks, and other local attributes are fundamental. Further research can 

aim to create a database of metrics grounded in an UrbanDAC framework to address current gaps in 

literature that can draw from this framework replicated in other cities. Interdisciplinary research can 

significantly enable stakeholder-driven tool-building for UrbanDAC implementation and management, and 

deployment of monitored pilot projects as living experiments of UrbanDAC best practices. 
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4.2 LIMITATIONS & FUTURE WORK 

Building on preliminary results and collaboration with the broader Transformational Decarbonization 

Initiative (TDI) at ORNL, this study has laid a foundation for future studies of urban-scale DAC systems, 

here termed UrbanDAC. One overarching aim of this work was to initiate essential first-order calculations 

that shed light on the potential city-level impacts of distributed DAC and the relative efficiency of such a 

system given the necessary systematic costs, energy demands, and environmental impacts. Central to this 

work is the creation of idealized scenarios based on living cities and neighborhoods to enable practical 

estimations, "real world" illustrations, and local applicability for urban climate change mitigation goals. 

Considering a set of preliminary natural and built environment factors enables the computation of aggregate 

UrbanDAC impacts and assessment of the feasibility of different configurations in an urban space.  

It is worth noting that several attributes beyond location, such as building occupancy, building capacity for 

multiple UrbanDAC units, and variance in DAC unit carbon capture rates, can be integrated into the 

analysis, providing a more detailed understanding of the system. This is also true for additional transport-

related impacts such as NOx and particulate matter emissions. Furthermore, future modeling and simulation 

studies can better capture the complexity of an integrated UrbanDAC system by including city-level 

interactions such as building use, mobility, and other relevant urban dynamics. 

While this report focused on one potential strategy among several alternatives, the goal was to pilot a 

comprehensive decision-making framework that incorporates various planning-relevant criteria. At a high 

level, future work can build on this approach to explore alternative scenarios for UrbanDAC infrastructure. 

Whereas this study posited UrbanDAC transport and storage via road vehicle transport with railways as a 

local hub, alternative high-level infrastructure configurations and logistics can be envisioned, including 

those based on district pipeline networks, industrial systems (e.g., manufacturing), or carbon storage 

facilities with varying degrees of centralization [14]. Analyzing the feasibility, cost-effectiveness, and 

environmental implications of these alternative scenarios can enable insights into optimized carbon 

transportation and storage strategies within an urban context, enhancing the overall CDR impact and 

sustainability of UrbanDAC systems.  

In addition to alternative urban scenarios, there are several pathways to explore future research and 

development of the UrbanDAC concept and the methodology in this report: 

1. Enhancing risk analysis and spatial calculations: This includes incorporating additional variables 

like topography, meteorology, road conditions, and other relevant factors to improve the suitability 

and network layers, and advanced geo-computations such as network distance optimization to hubs 

and spatially weighted metrics. Baseline models can also be developed to calculate relative CDR 

and estimate system-level energy demands based on the number of carbon transport vehicles, 

different network characteristics, and travel times to explore different infrastructure configurations. 

2. Incorporating detailed building information: With more detailed buildings data, the process for 

identification of eligible buildings to serve as UrbanDAC candidates can be refined. Attributes 

including use-type, energy estimates, and other variables can help locate and determine building-

types suitable for UrbanDAC implementation. Integrating HVAC and cooling tower data can 

further improve candidate buildings identification, optimization, and enable more accurate CDR 

and cost estimations. 

3. Techno-economic analysis and building-level modeling: Detailed cost estimates (e.g., $/t CO2) 

based on the number and distribution of UrbanDAC units were beyond the scope of this study. 

However, economies of scale are possible and market uptake for UrbanDAC need to be understood, 
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along with carbon-driven Life Cycle Assessments (LCA) of the mechanical units into the 

quantification of net CDR. Since UrbanDAC units depend on the performance of cooling towers 

and/or HVAC systems, building occupancy and usage can vary hourly, daily, and beyond, leaving 

a gap in understanding how CDR rates may fluctuate temporally and by building type.  

Multi-sector dynamics and integrated assessment models: It is important to understand the infrastructure 

interdependencies that will be built-in as UrbanDAC systems are integrated with other infrastructure 

networks, particularly roads and building energy systems, to evaluate coupled-system dynamics. While 

interdependencies are inevitable, they can be proactively designed and managed [35], [48], [49] and have 

salient implications for sustainable urban development (e.g., changes in energy demands; mobility and 

access). The outcomes of this study can contribute to larger-scale models by offering aggregated metrics 

for distributed CDR feasibility. At regional and global scales, integrated assessment models can use 

UrbanDAC metrics as inputs to provide insights into CDR feasibility and impact, as well as model novel 

global scenarios where city-level mitigation efforts are considered. 

By addressing these areas, UrbanDAC research can advance decision-making processes, guide systems-

level design, and support the transformational decarbonization of cities (i.e., net-zero initiatives). While 

understanding the mechanical performance of novel DAC technologies at the unit-level is important, 

interdisciplinary research is needed to go beyond ad hoc building-level siting by framing UrbanDAC as 

interconnected, networked infrastructure subject to natural and built environment conditions. By 

synthesizing systems thinking and urban planning, this report aims to initiate a comprehensive decision-

making framework that includes a wide range of factors that can be refined and weighted based on 

stakeholder needs. 
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7. APPENDIX A 

 

 
Figure X. Reclassified KDE surfaces for suitability criteria variables.



 

 

 


