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1. Abstract 

In third generation advanced high strength steels (AHSS) there is considerable potential to alter the 

transformation characteristics through variation of process parameters and through changes in chemical 

composition. This proposal aims to utilize this known phenomenon to develop microstructure-based 

transformation models to predict austenite stability as a function of chemical composition, strain level, 

deformation mode.  The ultimate intent is to predict microstructure and performance during room 

temperature forming to produce automotive structural components with superior strength and failure 

resistance, …    

2. Statement of Objectives 

High formability (HF) steels are part of the 3rd-generation of Advanced High Strength Steels (3rd Gen 

AHSS) with a unique combination of high strength-high ductility which is being developed by 

ArcelorMittal USA Research LLC (Participant). Detailed understanding of the forming behavior of these 

evolving HF steels and the resulting changes in microstructure will significantly enhance the successful 

implementation of these products in the automotive industry. Lowering the weight of vehicles helps in 

increasing fuel efficiency and provide environmental benefits by reducing the Carbon footprint. HF steels 

also have a significant cost advantage over the previous generation of AHSS such as stainless and TWIP 

steels, especially during part manufacturing and vehicle assembly, where because of the chemical 

composition in these steels, they are easier to be welded using the current automotive infrastructure.  These 

steels therefore have a higher potential to be used in vehicles without new investment. Furthermore, the 

material that is planned for use in this study are industrially produced, building on the attainment of the past 

DOE ICME project.  

The current High-Performance Computing for Energy Innovation (HPC4EI) proposal seeks to develop 

predictive models to enhance the development of industrial 3rd Gen. steels for automotive components by 

controlling the deformation-induced martensite formation to achieve high strength and vehicle weight 

reduction. HPC4EI support to develop microstructural mechanism-based modeling methodology to predict 

austenite stability will be essential for advancing the state of the art and shorten the time to develop 

optimized steel grades. This proposal fits well with the stated aims of the HPC4EI to improve energy 

efficiency and accelerate innovative new processes through the use of high-performance computing (HPC). 

Participant is well recognized as an Industry leader in production of 3rd gen. AHSS. 

HPC4EI computational modeling will be able to predict quantitatively the amount of austenite transformed 

in the HF steels in different deformation modes. The primary use of this information at Participant will be 

to predict microstructure and performance during room temperature forming process to produce automotive 

structural components with superior strength by controlling deformation and failure resistance.  A 

secondary use of the HPC4EI austenite stability computations based on using thermodynamic 

considerations is the possibility of developing relationships between chemical composition and austenite 

stability that could be very useful for developing new HF grades at Participant.   

 

3. Benefits to the Funding DOE Office’s Mission 

This project will benefit the U.S. Department of Energy Advanced Materials & Manufacturing 

Technology office mission of developing light-weight materials for in-service energy saving of high way 

vehicles. 
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4. Technical Discussion of the Work Performed by All Parties 

In order to most effectively and efficiently meet the project objectives outlined above, the team 

established a project plan with five tasks 

1) Alloy selection, data collection, transformation energy and austenite stacking fault energy (SFE) 

calculations.  

2) Crystal plasticity (CP) material model development of multi-phase material with consideration of 

martensitic transformation.  

3) Constitutive parameters determination by integrated in-situ neutron diffraction and crystal 

plasticity modeling. 

4) Conduct large sets of crystal plasticity modeling using HPC and validation to predict austenite 

transformation kinetics in different deformation modes for the two selected grades. 

5) Build RO-SVM for component level simulation and process parameter optimization. 

4.1 Alloy selection, data collection, transformation energy and austenite stacking fault energy (SFE) 

calculations 

The investigated material is ArcelorMittal’s GI Fortiform® grade high formability quenching and 

partitioning steels QP980. The microstructure primarily comprises of retained austenite (𝛾), ferrite (𝛼), 

bainite, and martensite (𝛼 
′) phases.  The scanning electron microscopy (SEM) and electron backscatter 

diffraction (EBSD) characterization were conducted on the as-received samples in rolling (RD), transverse 

(ND) and normal direction (ND) and shown in Figure 1 and 2, respectively. The EBSD scans, performed 

with a resolution of 0.1μm stepping size, identified approximately 9.8 vol% isolated RA island, referred to 

as bulk RA (𝛾𝐵) and are illustrated in Figure 3a. Conversely, the film RA (𝛾𝐹), with a thickness of less than 

100nm, resides amongst the fine martensite laths and is not discernible with EBSD due to its small size. 

The x-ray diffraction of the same batch samples showed an average RA volume fraction of ~16.2 vol%, 

indicating there are ~6.4 vol% film austenite and small bulk austenite not detected by EBSD in the sample.  

The pole figures of BCC ferrite and BCT martensite phases, as well as the pole figures of the FCC retained 

austenite phase are calculated from the EBSD and shown in Figure 3b. 

 

 

The ferrite and martensite can be differentiated based on the quality of their diffraction patterns [1,2] due 

to the fact that martensite has a more distorted body-centered tetragonal (BCT) structure that has a unit cell 

with anisotropic carbon distribution and differs from the body-centered-cubic (BCC) 𝛼-ferrite phase . 

Moreover, during the “partitioning” step, a reduction in the carbon content within the martensite matrix 

occurs, leading to a modification of the lattice parameter and aligning the BCT structure of the martensite 

closer to the cubic structure of the ferrite phase. This process, in turn, results in the formation of a softer 

tempered martensite compared to the as-transformed fresh martensite. In the as-received material, the fresh 

martensite comprises only a small volume fraction. Figure 4b marks the ferrite (~39.7 vol%), tempered 
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martensite (~42.6 vol%) and fresh martensite (~7.9vol%) phases in the EBSD image, identified based on 

the relative diffraction pattern quality index.  

 

 

For each phase, the grain dimensions are measured and listed in table 1. The ferrite grains are mostly in a 

“pancake” shape, while the (individual) martensite and austenite grains are relatively equiaxed and about 

4-5 times smaller than ferrite grains.   

 

Fig. 1. The SEM scan images of the as-received GI Fortiform® QP 980 steel sample. 

 

 

Fig. 2. The EBSD scan images of the as-received GI Fortiform® QP 980 steel sample. 
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Fig. 3.  (a) The bulk retained austenite (𝛾𝐵) phases identified from EBSD scans, and (b) the respective 

pole figures of bulk retained austenite phase and rest ferrite & martensite phases. 

 

 

phase RD TD ND 

 Horiz.  Vert. Horiz.  Vert. Horiz.  Vert. 

Ferrite 2.357 1.754 2.322 1.919 2.731 2.875 

Martensite 0.548 0.458 0.444 0.456 0.479 0.467 

Austenite 0.323 0.357 0.433 0.365 0.409 0.371 

 

It is crucial to account for the film austenite that is not detected by EBSD, which makes up approximately 

6.4 vol% of the sample.  In this work, the film austenite phase is presumed to be uniformly distributed 

within the tempered martensite phase, meaning each tempered martensite element is assumed to contain a 

sub-portion of film austenite. An iso-strain homogenization approach (e.g., [3]) is utilized to model the 

mechanical response of the combined 𝛼𝑇
′ + 𝛾𝐹 structure, as detailed in section 3.4. The crystal orientation 

of the film austenite grains cannot be obtained from EBSD. Instead, it is acquired through the utilization of 

the MTEX martensite parent grain reconstruction toolbox ([4,5]) applied to the EBSD data, a process 

demonstrated in Figure 5.  

Table 1: Measured grain size (via intercept length) (unit: 𝜇𝑚) 
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Fig. 4.  (a) The bulk retained austenite (𝛾𝐵) phases identified from EBSD scans, and (b) the respective 

pole figures of bulk retained austenite phase and rest ferrite & martensite phases. 

 

 

 

Fig. 5.  Reconstruction of parent austenite grain for determining the orientation of film austenite in the  

martensite matrix.  

 

4.2 Crystal plasticity (CP) material model development of multi-phase material with consideration of 

martensitic transformation 

In this crystal plasticity FE model, the following phases are considered: ferrite (𝛼), tempered martensite 

(𝛼𝑇
′ ), fresh martensite (𝛼𝑁

′ ), bulk retained austenite (𝛾𝐵) and film retained austenite (𝛾𝑓), while the bainite 

phase is also treated as tempered martensite phase for simplicity. The FE model is obtained by conversion 

of the EBSD image in Figure 4 into a 2D FE mesh, where the phase and crystallographic orientation of 

each element is directly assigned from the EBSD map. Note that because the film retained austenite is 

thinner than EBSD scanning resolution, it is assumed distributed in the tempered martensite and modeled 
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with an iso-strain assumption based homogenized method. The constitutive formulation for each phase is 

described as follows.  

 

4.2.1 general crystal plasticity equations for BCC or BCT crystal   

The constitutive behavior of 𝛼 -ferrite (BCC) or martensite (BCT) crystals, including both tempered 

martensite and pre-existing fresh martensite,  is modeled using a power-law rate-dependent crystal plasticity 

model (see [6] for details) but different material parameters, which is summarized as the following: 

Kinematic equation:                              𝑳 = 𝑭̇𝑭−1;  𝑳 = 𝑭̇𝑭−1 =  𝑳𝑒 + 𝑳𝑠𝑙𝑖𝑝;                        (1) 

Elastic − plastic decomposition:  𝑭 = 𝑭𝑒𝑭𝑠𝑙𝑖𝑝;  𝑳𝑒 = 𝑭̇𝑒𝑭𝑒
−1
;  𝑳𝑠𝑙𝑖𝑝 = 𝑭𝑒𝑭̇𝑝𝑭𝑝

−1
𝑭𝑒

−1
 (2) 

Crystal plasticity Flow rule:              𝑳𝑠𝑙𝑖𝑝 = 𝑭̇𝑠𝑙𝑖𝑝𝑭𝑠𝑙𝑖𝑝
−1
= ∑ 𝛾̇ 

𝑖𝒎 
𝑖

𝑁𝑠𝑙𝑖𝑝𝐵𝐶𝐶

𝑖

⊗𝒏 
𝑖                 (3) 

Slip rate equation:                                                   𝛾̇α
𝑖 = 𝛾̇0 |

𝜏𝑖

𝑔 
𝑖
|

1
𝑚

𝑠𝑖𝑔𝑛(𝜏𝑖)                                (4) 

Voce − type hardening law:            𝑔 
𝑖 = 𝑔0

𝑖 + (𝑔𝑠
𝑖 + 𝜃1

𝑖𝛾) [1 − 𝑒𝑥𝑝 (−
𝜃0
𝑖𝛾

𝑔𝑠
𝑖
)]                  (5) 

Stress − strain relation:                  𝝈 =
1

det(𝑭)
𝑭𝑺𝑭𝑇 and  𝑺 = ℂ𝑒:

1

2
(𝑭𝑒𝑭𝑒

𝑇
− 𝑰)             (6) 

Here, 𝑭 , 𝑭𝑒  and 𝑭𝑠𝑙𝑖𝑝  are the total, elastic and slip-induced plastic deformation gradient tensors, 

respectively, which have a multiplicative relation: 𝑭 = 𝑭𝑒𝑭𝑠𝑙𝑖𝑝. 𝑳𝑠𝑙𝑖𝑝𝑝is the plastic velocity gradient tensor 

due to slip. 𝝈 and S are the Cauchy and 2nd Piola-Kirchhoff stress tensors, respectively, and ℂ𝑒 is the elastic 

stiffness tensor.  𝛾̇ 
𝑖,  𝒎 

𝑖  and 𝒏 
𝑖 are the slip rate, slip direction vector and slip plane normal vector, 

respectively. 𝛾̇0 is the reference slip rate, 𝑚 is the strain rate sensitivity, and 𝛾 is the accumulated slip on 

all slip systems, i.e. 𝛾 = ∑ ∫ |𝛾̇ 
𝑖|𝑑𝑡

𝑡

0

𝑁𝑠𝑙𝑖𝑝
𝑖

 . 𝑔 
𝑖 , 𝑔0

𝑖 , 𝑔𝑠
𝑖  are the total, initial and saturation slip system 

resistances, respectively. 𝜒𝛼 is the back stress on the 𝛼-th slip system. 𝜃1
𝑖 , 𝜃0

𝑖 . The variables 𝑔 
𝑖, 𝑔0

𝑖 , 𝑔𝑠
𝑖  are 

the total, initial and saturation slip system resistances, respectively. 𝜒𝛼 is the back stress on the 𝛼-th slip 

system. 𝜃1
𝑖 , 𝜃0

𝑖 . In this work, 24 slip systems (12 {110} <111> systems and 12 {112} <111> systems) are 

assumed for BCC and BCT crystals. For ease of modeling, the BCT martensite phase is approximated to 

have the same slip systems as BCC crystal. The ferrite, tempered martensite and fresh martensite phases 

have different values of material yield and hardening parameters in equation (1-6), which are calibrated by 

fitting the HEXRD-measured lattice strain and are depicted in section 4.1.  
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4.2.2 Transformation model for bulk retained austenite 

The transformation model for the transition from austenite to fresh martensite is comprehensive and can be 

delineated by four key components: (1) a transformation initiation criterion, (2) the transformation-induced 

deformation, (3) the variant selection criterion, and (4) the transition from FCC to BCT crystal structure. 

Each of these components will be elaborated in detail within this section.    

 

4.2.2.1 martensitic transformation criterion  

A stress-assisted martensitic transformation [7–9] model is adopted for determining the critical moment of 

transformation initiation. The transformation theory assumes martensitic transformation is triggered when 

the total Gibbs free energy change, including a chemical energy term (∆𝐺𝑐ℎ𝑒𝑚)and mechanical work 

(∆𝐺𝑚𝑒𝑐ℎ) for transformation, equals to or exceed a critical energy value, which is expressed as[7,9]:    

∆𝐺𝑐ℎ𝑒𝑚 + ∆𝐺𝑚𝑒𝑐ℎ = ∆𝐺𝑐𝑟𝑖𝑡   ⟺ 𝛾 → 𝛼′ (7) 

here, the chemical “driving force” ∆𝐺𝑐ℎ𝑒𝑚 is the free energy change accompanying the transformation from 

austenite (γ) to the ferrite of the same chemical composition:  

∆𝐺𝑐ℎ𝑒𝑚(𝑋𝑖, 𝑇) = 𝐺𝛼 − 𝐺𝛾 + ∆𝑓
∗ (8) 

where 𝐺𝛼 and 𝐺𝛾 are the free energies of the RA phase and supersaturated ferrite phase, respectively at a 

given temperature T and chemical composite 𝑋𝑖 , which can be calculated by using ThermoCalc® database 

[7,10]. ∆𝑓∗ is the Zener ordering term for BCC-ferrite into BCT-martensite. The mechanical driving force 

is the external mechanical work due to the interaction of the applied stress field 𝝈 and the transformation 

volume change. The Olson-Tsuzaki-Cohen model [11] proposed an empirical expression of ∆𝐺𝑚𝑒𝑐ℎ with 

dependence on stress state, which is written as  [9]:   

  ∆𝐺𝑚𝑒𝑐ℎ(𝝈) = 𝜎 (
𝜕∆𝐺𝑀𝑒𝑐ℎ
𝜕𝜎

) = −c1𝜎𝑣𝑚 
− c2 (

∆𝑉

𝑉
)𝜎𝐻 + 𝑐3(1 − exp(𝑐4 ∗ 𝜎𝑣𝑚)) (9) 

where 𝜎𝑣𝑚  is the von-Mises stress, 𝜎𝐻  is the hydrostatic stress for tension or compression stress-state 

dependence, 
∆𝑉

𝑉
= 0.04   is the fractional volume change upon transformation, and 𝑐1…4  are fitting 

parameters.   

 

 The term ∆𝐺𝑐𝑟𝑖𝑡  term in equation (7) is the critical energy barrier for transformation, which can be 

physically interpolated as the sum of the transformation-associated elastic strain energy, the 

austenite/martensite interfacial energy, the frictional work of interfacial motion due to solid solution and 

the frictional work due to forest dislocation[7]. As this work focuses on the deformation of QP980 at room 

temperature, we treat  ∆𝐺𝑐ℎ𝑒𝑚 as constant and further define an effective critical transformation energy 

∆𝐺𝑐𝑟𝑖𝑡
𝑒𝑓𝑓

= ∆𝐺𝑐𝑟𝑖𝑡 − ∆𝐺𝑐ℎ𝑒𝑚  , which is calibrated from the transformation rate measured in HEXRD 
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experiment. The bulk RA and film RA have different carbon content and transformation stability[12], 

therefore should use separate values of effective critical transformation energy ∆𝐺𝑐𝑟𝑖𝑡
𝑒𝑓𝑓

 in the model.   

 

4.2.2.2 transformation-induced deformation  

The martensitic transformation causes a displacive lattice deformation and results in changing of the lattice 

from austenite FCC structure to martensite BCT structure with a new crystallographic orientation.  There 

are several theories to formulate the mechanical deformation induced by austenite-to-martensite 

transformation, such as Wechsler–Lieberman–Read (WLR) theory [13,14],  elastic-strain-energy 

minimization theory [14], and etc. In this work, a phenomenological transformation theory, proposed by 

Ball and James[15], Hane and Shield[16], and implemented in CPFE model in [17–20], is adopted and 

verified with the HEXRD experiment.  This theory assumes the transformation forms a plate-shape 

martensite region inside the parent austenite grain and locally induces a jump in strain between the 

transformed fresh martensite region and the austenite matrix.  In the finite deformation framework, the 

kinematic behavior of austenite incorporating transformation-induced deformation can be described by a 

three-terms multiplicative deformation gradient tensor, expressed as: 

𝑭 = 𝑭𝑒𝑭𝑠𝑙𝑖𝑝𝑭𝑡𝑟                (10) 

where 𝑭𝑡𝑟  is the local deformation inside the martensite induced by the transformation and is expressed 

as:  

𝑭𝒕𝒓 = 𝑰 +  ⟦𝑭𝒕𝒓⟧;          ⟦𝑭𝑡𝑟⟧  = 𝑭𝛼𝑁
′
− 𝑭𝛾 = 𝑹𝑡𝑟𝑼𝑡𝑟 − 𝐈 (11) 

here ⟦𝑭𝑡𝑟⟧ denotes the strain jump between the transformed martensite region (𝑭𝛼𝑁
′

) and parent austenite 

matrix (𝑭𝛾), assuming no further slip or elastic stretch. 𝑼𝑡𝑟 is the Bain deformation tensor (transformation 

stretch tensor) as a function of the lattice parameters of austenite and martensite lattices, and 𝑹𝑡𝑟 is the 

rotation tensor to account for the orientation relationship for the parent austenite and transformed martensite 

lattices so that their respect close-packing plane and directions are roughly parallel[18].  In general, for the 

transformation from austenite to a single martensite variant, 𝑼𝑡𝑟 can be expressed in the RA cubic material 

reference basis1 as [17,21]:   

 
1Note that there are four orthogonal coordinate systems (basis) used in this model, namely the sample basis (𝒆𝑖

 ), 

single grain basis (𝒆𝑖
𝑠), RA material reference basis (𝒆𝑖

𝛾
), and martensite material reference basis (𝒆𝑖

𝛼′). The sample 

basis refers to the global coordinates with respect to the test sample setup, e.g., 𝒆1-𝒆2-𝒆3  axes aligned with loading 

direction (LD), transverse direction (TD), sample thickness direction (STD). The RA cubic material reference basis 

refers to the coordinates defined with austenite FCC lattice axes, e.g., 𝒆1-𝒆2-𝒆3 axes aligned with [100]𝛾, [010]𝛾 

and [001]𝛾.  The single grain basis is identical to austenite cubic material reference but is more generally used to 

define the coordinates after the austenite-to-martensite transformation. The martensite cubic material reference basis 

refers to the coordinates defined with respect to the martensite BCT lattice axes, e.g., 𝒆1-𝒆2-𝒆3 axes aligned with 
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𝑼𝑡𝑟 =
√2𝑎𝑀

𝑎𝐴
𝑰 + (

𝑐𝑀

𝑎𝐴
−
√2𝑎𝑀

𝑎𝐴
)𝒆𝑖

𝛾
⊗𝒆𝑖

𝛾
 (12) 

where  𝑎𝑀  and 𝑐𝑀  are the BCT lattice parameter of the martensite phase, and 𝑎𝐴  is the FCC lattice 

parameter of the austenite phase. The vector 𝒆𝑖
𝛾
 refers to the austenite lattice axis that the Bain contraction 

from 𝑎𝐴 and 𝑐𝑀 (while the other two axes elongate from 𝑎𝐴 to √2𝑎𝑀) occurred on. The lattice parameters, 

𝑐𝑀, 𝑎𝑀  and 𝑎𝐴 are dependent on carbon content, according to the empirical equations [19]:  

𝑐𝑀 = 2.861 + 0.116(𝑝𝑐) = 2.99092Å

𝑎𝑀 = 2.861 − 0.013(𝑝𝑐) = 2.84644Å

𝑎𝐴 = 3.548 + 0.044(𝑝𝑐) = 3.59728Å

 (13) 

where 𝑝𝑐 = 1.12wt% is the carbon concentration in RA for QP980 [18].  Although the carbon concentration 

should be different for bulk RA and film RA, it does not cause significant differences in the lattice 

parameters, and only the set of lattice parameters in equation (13) is used in this work.  

 

Several experimental investigations of QP980 using transmission electron microcopy (TEM) [12,22] have 

revealed the RA transforms into twinned martensite thin-plates, as illustrated in Figure 6.  The constitutive 

modeling of laminated twinned sub-structure transformation has been proposed in the content of crystal 

plasticity [20,23] and adopted in recent works [17,18]. In this model, we adopt the twinned sub-structure 

transformation theory and introduce two martensite variants in the transformation-induced 𝑭𝑡𝑟 formulation. 

The equation (10) is modified correspondingly into:  

⟦𝑭𝑡𝑟⟧  = 𝑹𝑡𝑟(𝜆1𝑹̅𝑼
𝑡𝑟,𝛾1 + 𝜆2𝑼

𝑡𝑟,𝛾2) − 𝑰  (14) 

where 𝛾1 and 𝛾2  denote the two martensite variants in twin orientation relation, 𝑹̅ represents the relative 

orientation relation between the two martensite variants, i.e., 𝒆𝑖
𝛾1 = 𝑹̅𝒆𝑖

𝛾2 . 𝑼𝑡𝑟,𝛾1 and 𝑼𝑡𝑟,𝛾2are the Bain 

deformation tensor for transformation into the two variants (which have different contraction axis, see 

appendix).  𝜆1 and 𝜆2 are the volume fractions of the two twin-variants, subjected to constraint 𝜆1 + 𝜆2 =

1. Hanes and Shield's analytical model [16] revealed that for each of the 24 transformation orientation 

variants, there exists precisely one unique variant to form a twin-pair. The volume fraction of two variants 

in each twin-pair is also deterministic, resulting in a total of 24 unique twin-sub-structured transformation 

systems.   

 

 
[100]𝛼′, [010]𝛼′ and [001]𝛼′. The single grain basis is related to sample basis through the grain orientation matrix 

(grain Euler angles), i.e.,  𝒆𝑖
 = 𝑹𝑠𝒆𝑖

𝑠. The martensite material reference basis is related to the RA material reference 

basis through the equation 𝑹̅ (see equation (13)).  
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Fig. 6.  The TEM observation of deformation-induced martensitic transformation in QP980 showing a 

twin sub-structure. (a) TEM image of partially-transformed RA during tensile loading (b) untransformed 

region , and (c,d) twin martensitic structure in the transformed region.  The figure is from Xiong et al 

[12]. 

 

It is advantageous to further derive ⟦𝑭𝑡𝑟⟧ in a Schmid tensor-like format for implementation in CPFE code.  

This provides an alternative form to equation (14), as follows:[18]:  

⟦𝑭𝒕𝒓⟧ = 𝑹𝒕𝒓(𝜆1𝑹̅𝑼
𝒕𝒓,𝜸𝟏 + 𝜆2𝑼

𝒕𝒓,𝜸𝟐) − 𝑰  = 𝜁𝑡𝑟𝒃
𝛽⊗𝒅𝛽 (15) 

where 𝛽 is the selected one of the 24 candidate transformation systems, 𝜁𝑡𝑟 = 0.1886 is the magnitude of 

deformation during transformation for QP980, 𝒃𝛽and 𝒅𝛽 are the transformation habit plane normal and the 

direction vector for transformation-induced deformation, both defined in the single grain basis. Note that 

𝒃𝛽and 𝒅𝛽 are not orthogonal as the transformation-induced deformation involves volumetric change. The 

24 orientations of the twinned-transformed martensite systems, and their transformation deformation 

vectors 𝒃𝛽and 𝒅𝛽 , as well as the rotation tensors 𝑹𝑡𝑟and 𝑹̅ for QP980 are provided in [18] and also 

tabulated in the appendix for the completeness of the paper.    

 

When numerically implementing the transformation-induced deformation, it isn’t feasible  to apply 

⟦𝑭𝒕𝒓⟧ entirely in a single time increment due to two primary reasons. First, on a physical level, even with 

our fine model mesh, each element possesses a finite volume or area, making it impossible for the entire 

element to transform simultaneously. Second, on a numerical level, it would cause convergence issues when 

refining time steps. As such, we assume that an element, which satisfies the transformation initiation 

criterion (equation (7)), will complete the transformation over a designated strain increment. Thus, the 

increment of transformation-induced deformation in each time step after the initiation of transformation is 

given by: 

∆⟦𝑭𝑡𝑟⟧ =
∆𝜀

∆𝜀𝑀𝑇
𝜁𝑡𝑟𝒃

𝜷⊗𝒅𝜷 (16) 

where ∆𝜀  is the increment of applied strain, ∆𝜀𝑀𝑇  is a calibratable material parameter, physically 

representing the total strain increment necessary to achieve full transformation.  The effect of modifying 

∆𝜀𝑀𝑇  is explored in Section 4.1, which shows ∆𝜀𝑀𝑇  influence the local stress relaxation in elements 
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undergoing transformation, thereby playing a crucial role in linking transformation rate to stress-strain 

behavior. 

 

 

4.2.2.3 variant selection criterion 

The variant selection is governed by maximizing the work which the applied stress has done to assist the 

transformation and is expressed as:  

𝑊𝑖 = 𝑺:𝑬𝑖
𝑡𝑟    𝑤ℎ𝑒𝑟𝑒  𝑬𝑖

𝑡𝑟 =
1

2
(⟦𝑭𝑡𝑟⟧𝑇 + ⟦𝑭𝑡𝑟⟧ + ⟦𝑭𝑡𝑟⟧𝑇⟦𝑭𝑡𝑟⟧) (17) 

where i is one of the 24 martensite variants and 𝑬𝑖
𝑡𝑟is the Green-Lagrangian type transformation-induced 

inelastic strain.  

 

4.2.2.4 transition from FCC to BCT crystal structure   

The flow rule equation for an austenite element undergoes martensitic transformation can be expressed as:   

𝑭̇𝑠𝑙𝑖𝑝𝑭𝑠𝑙𝑖𝑝
−1
=

{
 
 
 
 
 

 
 
 
 
 

∑ 𝛾̇𝛾
𝑖𝒎𝛾

𝑖⨂𝒏𝛾
𝑖

𝑁𝐹𝐶𝐶
𝑠𝑙𝑖𝑝

𝑖

before MT

𝑓𝛾 ∑ 𝛾̇𝛾
𝑖𝒎𝛾

𝑖⨂𝒏𝛾
𝑖 +

𝑁𝐹𝐶𝐶
𝑠𝑙𝑖𝑝

𝑖

𝑓𝛼′(∑ 𝜆1𝛾̇𝛼𝑁1
′
𝑖 𝒎̂

𝛼𝑁1
′

𝑖 ⨂𝒏̂
𝛼𝑁1
′

𝑖 +

𝑁𝐵𝐶𝑇
𝑠𝑙𝑖𝑝

𝑖

∑ 𝜆2𝛾̇𝛼𝑁2
′
𝑗
𝒎̂
𝛼𝑁2
′
𝑗

⨂𝒏̂
𝛼𝑁2
′
𝑗

𝑁𝐵𝐶𝑇
𝑠𝑙𝑖𝑝

𝑗

) during MT

∑ 𝜆1𝛾̇𝛼𝑁1
′
𝑖 𝒎̂

𝛼𝑁1
′

𝑖 ⨂𝒏̂
𝛼𝑁1
′

𝑖 +

𝑁𝐵𝐶𝑇
𝑠𝑙𝑖𝑝

𝑖

∑ 𝜆2𝛾̇𝛼𝑁2
′
𝑗
𝒎̂
𝛼𝑁2
′
𝑗

⨂𝒏̂
𝛼𝑁2
′
𝑗

𝑁𝐵𝐶𝑇
𝑠𝑙𝑖𝑝

𝑗

 after MT

 (18) 

here, the slip occurs on the 12 {111} <110> FCC slip systems in austenite before the martensitic 

transformation and occurred in the reorientated BCT martensitic slip systems after transformation. Note 

that there are two sets of twin-symmetry BCT slip systems after transformation due to the laminated twin 

martensitic sub-structure. During the martensitic transformation, the element region is partially FCC and 

partially BCT, thus a volume-fraction-based rule of mixture is used for calculating the plastic flow. The 

volume fraction of FCC and BCT phases are obtained as:  

𝑓𝛼′ =
∑∆𝜀

∆𝜀𝑀𝑇
 ,       𝑓𝛾 = 1 − 𝑓𝛼′ , 0,≤ 𝑓𝛼′ ≤ 1, 0,≤  𝑓𝛾 ≤ 1   (19) 

where ∑∆𝜀 is the total applied strain since triggering the martensitic transformation. The variables  𝛾̇𝛾
𝑖 ,  𝒎𝛾

𝑖  

and 𝒏𝛾
𝑖  in equation (18) are the slip rate, slip direction vector, and slip plane normal vector of the 12 FCC 

austenite slip systems. The variables {𝛾̇𝛼𝑁1′
𝑖 , 𝒎̂

𝛼𝑁1
′

𝑖 , 𝒏̂
𝛼𝑁1
′

𝑖 }  and {𝛾̇𝛼𝑁2′
𝑖 , 𝒎̂

𝛼𝑁2
′

𝑖 , 𝒏̂
𝛼𝑁2
′

𝑖 } are the slip rate, slip 

direction vector, and slip plane normal vector of the 24 BCT martensite slip systems in the two twin variants, 

leading to a total of 48 slip systems. The orientation of the new BCT slip system is defined by: 
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𝒎̂𝛼′
𝑖=1…24 = 𝑸1

𝑡𝑟𝒎𝛼′,0
𝑖=1…24    𝒏̂𝛼′

𝑖=1…24 = 𝒏𝛼′,0
𝑖=1…24𝑸1

𝑡𝑟−1

𝒎̂𝛼′
𝑖=25…48 = 𝑸2

𝑡𝑟𝒎𝛼′,0
𝑖=1…24    𝒏̂𝛼′

𝑖=25…48 = 𝒏𝛼′,0
𝑖=1…24𝑸2

𝑡𝑟−1  
(20) 

where 𝒎𝛼′,0
𝑖  and 𝒏𝛼′,0

𝑖  are reference slip direction vector and slip plane normal vector of the 24 BCT 

martensite slip systems in the single grain basis;  𝑸1
𝑡𝑟 and 𝑸2

𝑡𝑟 are the rotation tensor between the austenite 

material reference basis and the transformed martensite material reference basis. Their values depends on 

the specific martensite variant choosen for transformation, and is expressed as:   

𝑸𝟏
𝒕𝒓 = 𝑹𝒕𝒓𝑹̅𝑹∗;  𝑸𝟐

𝒕𝒓 = 𝑹𝒕𝒓𝑹∗ (21) 

where 𝑹𝑡𝑟(the rotation tensor to account for the orientation relationship between the austenite matrix and 

the martensite twin variant 1) and 𝑹̅ (rotation tensor between twin variant 1 and variant 2) have been 

previously introduced.  𝑹∗ is the rotation tensor due to the Bain deformation[18], which depends on the 

specfic axes of austenite FCC lattice that undergoes Bain contraction (consistent with equation (12)), and 

is expressed as:  

𝑹(1)
∗ =

[
 
 
 
 
1 0 0

0
√2

2
−
√2

2

0
√2

2

√2

2 ]
 
 
 
 

,     𝑹(2)
∗ =

[
 
 
 
 √2

2
0

√2

2
0 1 0

−
√2

2
0

√2

2 ]
 
 
 
 

,     𝑹(3)
∗ =

[
 
 
 
 √2

2
−
√2

2
0

√2

2

√2

2
0

0 0 1]
 
 
 
 

   (22)       

Here, the subscript refers to the FCC lattice axis of Bain contraction. The lattice rotation also affects the 

elastic stiffness tensor, which is expressed as:  

ℂ̂
𝛼𝑁
′

𝑒 = 𝜆1𝑸1
𝑡𝑟𝑸1

𝑡𝑟ℂ
𝛼𝑁
′

𝑒  𝑸1
𝑡𝑟𝑇𝑸1

𝑡𝑟𝑇 + 𝜆2𝑸2
𝑡𝑟𝑸2

𝑡𝑟ℂ
𝛼𝑁
′

𝑒  𝑸2
𝑡𝑟𝑇𝑸2

𝑡𝑟𝑇 (23) 

where ℂ̂
𝛼𝑁
′

𝑒 is the effect fourth-order elastic stiffness tensor of the twin-sub-structure martensite lattice, and 

ℂ
𝛼𝑁
′

𝑒  is the reference fresh martensite elastic stiffness matrix in martensite material reference basis.  

 

Finally, the power-law equation (4) and generalized Voce hardening equation (5) are used to model the slip 

rate and hardening behavior in addition to the transformation, with different sets of yield and hardening 

parameters for the austenite lattice and after it transformed to the fresh martensite lattice. Considering the 

fresh martensite after the mechanical-induced transformation often encompasses a high dislocation density, 

the primary hardening variable-the accumulated plastic strain-inherits hardening from the austenite lattice, 

as expressed by the following:  

𝛾 = ∑ ∫ |𝛾̇𝑖|𝑑𝑡
𝑡𝑀𝑇,0

0

𝑁𝑠𝑙𝑖𝑝𝐹𝐶𝐶

𝑖

     +    ∑ ∫ (𝜆1𝛾̇𝛼𝑁1′
𝑖 + 𝜆2𝛾̇𝛼𝑁2

′
𝑖 )𝑑𝑡

𝑡

𝑡𝑀𝑇,0

𝑁𝑠𝑙𝑖𝑝𝐵𝐶𝑇

𝑖

(23) 
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where  𝑡𝑀𝑇,0 is the moment of martensitic transformation initiation. The first term of the right-hand-side of 

equation (23) corresponds to the accumulated slip inherited from the plastic deformation in austenite, and 

the second term corresponds to accumulated slip in fresh martensite.  

 

4.2.3 Crystal plasticity model for combined tempered martensite and film austenite phases  

Owing to the exceedingly fine thickness of the film RA, it is impractical to explicitly model the morphology 

of the tempered martensite-film austenite laths. Instead, an iso-strain (affine transformation) assumption is 

employed to model the homogenized tempered martensite and film austenite laths. Mustafa et al [60] 

demonstrated that for a finely laminated two-phase structure, the iso-strain assumption yields less than a 

10% error compared to the more sophisticated, yet computationally complex homogenization approaches 

such as the asymptotic expansion-based homogenization method. Consequently, the iso-strain method is 

chosen for this work. The deformation gradient of tempered martensite 𝑭𝛼𝑇
′
 and film austenite phases 

𝑭𝛾𝐹  therefore follow:  

𝑭𝛼𝑇
′
= 𝑭𝛾𝐹  = 𝑭  (24) 

Here, 𝑭 is the deformation gradient of an integration point. The stress at the integration point is computed 

as:    

𝝈𝑎𝑣𝑒 = 𝑓𝛾𝐹𝝈𝛾𝐹 + 𝑓𝛼𝑇
′
𝝈𝛼𝑇

′
 (25)           

where 𝝈𝛾𝐹  and 𝝈𝛼𝑇
′
 are Cauchy stress of tempered martensite and film austenite, respectively; 𝑓𝛾𝐹and 𝑓𝛼𝑇

′
 

are the corresponding volume fraction of the two phases, adhering to the condition that 𝑓𝛾𝐹 + 𝑓𝛼𝑇
′
= 1. 

Similar to pre-existing fresh martensite phase, the Cauchy stress of the tempered martensite phase is 

computed using equation (1-6).  The film-austenite phase is assumed to obey the same transformation laws 

and constitutive laws as the bulk austenite phase, but with a different transformation initiation energy 

criterion ∆𝐺𝑐𝑟𝑖𝑡
𝑒𝑓𝑓

 due to the difference in chemical composition (7).  

   

4.2.4 Finite element pseudo-3D model and boundary conditions   

A 50𝜇𝑚 ×50 𝜇𝑚 EBSD image of QP980 is converted to a two-dimensional FE model. In literature [24–

27], three-dimensional synthetic microstructures are frequently employed to simulate the polycrystalline 

materials. However, creating a complex, multi-phase synthetic microstructure akin to QP980 poses a 

significant challenge, especially when trying to ensure that the synthetic microstructure accurately 

represents the spatial distribution and correlation of each phase. For instance, the stability of 𝛾𝐵  phase 

fluctuates depending on its location within the ferrite or martensite matrix, a crucial consideration for this 

study.   Therefore, we have chosen to model the exact microstructure as derived from EBSD under a 

generalized plane strain condition. The generalized plane strain condition, an extension of the plane strain, 
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allows for a uniform but not necessarily zero strain in the thickness direction. This condition offers an 

intermediate level of constraint, falling between plane stress and plane strain conditions.  The FE mesh 

consists of 250 × 250 four-node-quadrilateral elements, and each element has a initial length of 200nm, as 

shown in Figure 7.  The crystallographic orientation of each element was assigned directly from the EBSD 

image, and the film austenite portion in the combined 𝛼𝑇
′ + 𝛾𝑓 element is from the reconstructed parent 

austenite grain map (see Figure 5).  Under the isothermal room temperature condition, the model were 

subjected to tensile and compressive loads with a constant strain rate 𝜀̇ = 1 × 10−3, applied by specifying 

displacement on edge nodes in X-direction (RD). The Y-direction (TD) edges were set to traction-free, as 

shown in Figure 7.  

 

Fig. 7.   FE mesh for QP980 model in CPFE simulation. 

 

 

4.3 Constitutive parameters determination by integrated in-situ neutron diffraction and crystal plasticity 

modeling. 

The model is calibrated and validated against the experimental stress-strain data sourced from uniaxial 

tension and compression tests, along with the measurements of in-situ HEXRD from a synchrotron source. 

In this section, we first present a sensitivity study of the calibratable model parameters, shedding light on 

the impact of each parameter on transformation kinetics and stress-strain behavior. Then, we compare the 

calibrated model to experimental results by scrutinizing the stress-strain curves, lattice strain on different 

lattice planes for each individual phase, and the evolution of retained austenite volution fraction. Lastly, we 

delve into a discussion on a few key mechanisms affecting the martensitic transformation, as indicated by 

the model results.   

 

4.3.1 Model parameters sensitive study 
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The calibratable parameters within the model can be summarized as follows:  

• Effective critical transformation energy for bulk and film austenite { ∆𝐺𝑐𝑟𝑖𝑡,𝐵𝑒𝑓𝑓
, ∆𝐺𝑐𝑟𝑖𝑡,𝐹

𝑒𝑓𝑓
} 

• The fitting parameters for mechanical energy in transformation criterion {𝑐1, 𝑐2, 𝑐3, 𝑐4 } 

• Transformation rate-related parameter ∆𝜀𝑀𝑇 

• Slip system yield stress and hardening parameters {𝑔0
𝑖 ,   𝑔𝑠

𝑖 , 𝜃0
𝑖 , 𝜃1

𝑖  } for ferrite, austenite, 

tempered martensite and fresh martensite phases.    

To understand the effect of each parameter on the local and holistic behavior of QP980, especially with 

respect to the transformation kinetics and stress-strain response, each parameter is perturbated individually 

and the change to the simulation results is examined. The “reference” model parameter values are 

enumerated in Table 2. It should be noted that, with the target of best illustrating the impact of each 

parameter, these “reference” values should ideally be as precise as possible. Therefore, the final calibrated 

results are employed as the "reference" in this context, despite it being contrary to the chronological 

sequence of the actual work. Hence, the sensitivity study figures depicted here are retrospective. 

 

We start by presenting the local stress-strain curve in an austenite element during the martensitic 

transformation process, as shown in  Figure 8. With the inelastic Bain deformation induced by 

transformation, the austenite element experiences a local stress relaxation during the transformation, as 

marked in Figure 8a. Subsequently, the element transits to a fresh martensite phase and experience a much 

higher hardening stress. The parameter ∆𝜀𝑀𝑇dominates the magnitude of stress relaxation, as shown in 

Figure 8b.   

 

The initiation of the martensitic transformation is governed by a combination of two primary factors: (a) 

the amount of load conveyed to the austenite element from its surrounding matrix, and (b) the parameters 

associated with transformation stability, which includes{ ∆𝐺𝑐𝑟𝑖𝑡,𝐵
𝑒𝑓𝑓

, ∆𝐺𝑐𝑟𝑖𝑡,𝐹
𝑒𝑓𝑓

, 𝑐1 , 𝑐2 , 𝑐3 , 𝑐4}. Figure 9a 

displays the evolution of RA volume fraction under uniaxial tensile load with different values of { 

∆𝐺𝑐𝑟𝑖𝑡,𝐵
𝑒𝑓𝑓

, ∆𝐺𝑐𝑟𝑖𝑡,𝐹
𝑒𝑓𝑓

}. The lower values of {∆𝐺𝑐𝑟𝑖𝑡,𝐵
𝑒𝑓𝑓

, ∆𝐺𝑐𝑟𝑖𝑡,𝐹
𝑒𝑓𝑓

} result in an accelerated transformation rate. The 

rapid martensitic transformation, which leads to stress relaxation across multiple austenite elements, results 

in a decreased hardening rate in global stress throughout the transformation period, as shown in Figure 9b. 

Another notable effect of lower {∆𝐺𝑐𝑟𝑖𝑡,𝐵
𝑒𝑓𝑓

, ∆𝐺𝑐𝑟𝑖𝑡,𝐹
𝑒𝑓𝑓

}  values is that the accelerated transformation rate 

induces a higher proportion of fresh martensite within the microstructure, which, in turn, leads to an 

increased hardening stress in the subsequent stage of stress-strain curves, a phenomenon also observed in 

Figure 9b.  Additionally, the bulk RA and film RA can have different stability by setting the 
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∆𝐺𝑐𝑟𝑖𝑡,𝐹
𝑒𝑓𝑓

: ∆𝐺𝑐𝑟𝑖𝑡,𝐵
𝑒𝑓𝑓

 ratio, which influences the fraction of remaining austenite and changes the slope of the 

total austenite volume fraction evolution curve, as demonstrated in Figures 9c and 9d.        

 

Fig. 8.  (a) Local stress evolution in a bulk RA element (marked in microstructure); (b) influence of 

calibratable parameter  ∆𝜀𝑀𝑇 to transformation-induced local stress relaxation.  
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Fig. 9.  Sensitivity of parameters {∆𝐺𝑐𝑟𝑖𝑡,𝐵
𝑒𝑓𝑓

, ∆𝐺𝑐𝑟𝑖𝑡,𝐹
𝑒𝑓𝑓

} on (a,c,d) RA volume fraction evolution and (b) tensile 

stress-strain curve.  The reference value is ∆𝐺𝑐𝑟𝑖𝑡,𝐵
𝑒𝑓𝑓

= 800J/mol, ∆𝐺𝑐𝑟𝑖𝑡,𝐹
𝑒𝑓𝑓

= ∆𝐺𝑐𝑟𝑖𝑡,𝐵
𝑒𝑓𝑓

× 1.5. 

 

 

The parameters {𝑐1 , 𝑐2 , 𝑐3 , 𝑐4}determines the influence of the stress state on transformation kinetics. 

Specifically, 𝑐1 governs the effect of von Mises stress on the transformation process, while 𝑐2 determines 

the impact of hydrostatic stress on the transformation. It is important to note that the latter results in a 

tension-compression asymmetric behavior of the material. The stress-strain curves under uniaxial tensile 

and compressive load, as shown in Figures 10a and 10b, demonstrate that by increasing 𝑐1: 𝑐2 ratio the 

tension-compression asymmetry is reduced. The parameters {𝑐3, 𝑐4} correspond to the higher-order effect 

of von Mises stress on transformation, however, the calibration of {𝑐3 , 𝑐4} requires more extensive 

experiment data and are not considered in this work. Instead the reference values of {𝑐3, 𝑐4} in Behera et 

al [7] are adopted.  
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Fig. 10.   Sensitivity of tension-compression asymmetric stress-strain curves to 𝑐1: 𝑐2 ratio.   

 

Finally, the parameters {𝑔0
𝑖 ,   𝑔𝑠

𝑖 , 𝜃0
𝑖 , 𝜃1

𝑖  } for slip system yield and hardening stress in each phase are 

calibrated by matching the lattice strain to the measurement from in-situ HEXRD, following the approach 

as described in literature [27–29].  

 

Table 2: Calibrated model parameters  

Martensitic transformation 

model parameters: 

∆𝐺𝑐𝑟𝑖𝑡,𝐵
𝑒𝑓𝑓

 ∆𝐺𝑐𝑟𝑖𝑡,𝐹
𝑒𝑓𝑓

 𝑐1 𝑐2 𝑐3 𝑐4 ∆𝜀𝑀𝑇 

800J/mol 1200J/mol 0.467 28.77 -185.3 -0.00152 0.5% 

Ferrite yield and hardening 

parameters: 

𝑔0
𝑖  𝑔𝑠

𝑖  𝜃0
𝑖  𝜃1

𝑖     

168MPa 70MPa 1200MPa 10MPa    

Tempered martensite yield 

and hardening parameters: 

𝑔0
𝑖  𝑔𝑠

𝑖  𝜃0
𝑖  𝜃1

𝑖     

326MPa 80MPa 1000MPa 10MPa    

Fresh martensite yield and 

hardening parameters: 

𝑔0
𝑖  𝑔𝑠

𝑖  𝜃0
𝑖  𝜃1

𝑖     

400MPa 500MPa 3500MPa 500MPa    

Austenite yield and 

hardening parameters: 

𝑔0
𝑖  𝑔𝑠

𝑖  𝜃0
𝑖  𝜃1

𝑖     

241MPa 80MPa 1600MPa 450MPa    

 

 

4.3.2 Comparison between experiment and model results 

The experiment data available for model calirabtion consists of stress-strain curves obtained from uniaxial 

tension and compression tests, as well as the lattice strain data and the RA volume fraction evolution data 

obtained from in situ HEXRD measurement during uniaxial tension test. 
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It is worthy to briefly compare the method of calculating lattice strain and RA volume fraction from 

HEXRD versus CPFE models. The HEXRD enables a volumetric diffraction measurement via penetration 

of the test sample  [28]. The diffraction pattern is obtained from the integration of the Debye rings associated 

with different phase and their different orientated lattice planes. During the loading of the test sample, the 

shifting of the diffraction pattern due to elastic straining of the lattice (change of spacing) are continuously 

recorded, and the lattice strain 𝜀{ℎ𝑘𝑙}
  of a {hkl} plane can be calculated from either the change of lattice 

spacing 𝑑ℎ𝑘𝑙
  or diffraction angle 𝜃ℎ𝑘𝑙

 . The lattice strain is usually calculated along a fixed direction e.g., 

loading direction (LD), in which case only an arc of Debye ring confined to ±𝜂𝑜 angle along loading 

direction is integrated for computing the lattice strain.   The evolution of the volume fraction of the austenite 

phase can be obtained from the change of its diffraction peak intensity, which enables the tracking of 

transformation rate.  

 

In CPFE simulation, the computed lattice strains are calculated by averaging the elastic strain of the 

elements that have their {hkl} lattice plane normal aligned within a tolerance of ±η angle along LD.  The 

calculation can be expressed as:  

                        𝜀{ℎ𝑘𝑙}
 = ∑

𝑉𝑖
𝑉ℕ
𝒏𝐿𝐷: 𝑬𝑖

𝑒: 𝒏𝐿𝐷

# 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑖=1

   ∀ 𝑖 ∈ ℕ𝜂                         (27)  

where 𝑬𝑒is the elastic Green-Lagrangian strain,  ℕ𝜂 = {𝜃𝑖
{hkl}//𝐿𝐷

≤ η} is the assembly of the elements 

satisfying the orientation requirement, and 𝜃𝑖
{hkil}//𝐿𝐷

 is the angle between the {hkl} lattice plane normal 

of element 𝑖 and LD.  𝑉𝑖 is the volume of an element 𝑖,  𝑉ℕ is the total volume of all elements in ℕ𝜂, and 

𝒏𝐿𝐷 is the unit vector along the LD.  Note that, the tolerance η for HEXRD experiment is set to ±2𝑜; 

however, the simulation model size is smaller and doesn’t contain a sufficient number of grains satisfying 

the same criterion, thereby η is increased to ±10𝑜. The evolution of RA volume fraction is straightforward 

and by tracking the total number of RA elements, as in the simulation once an RA element is transformed 

it is counted as fresh martensite elements from the time step of completing transformation. 
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Fig. 11.   Lattice strain comparison. 

 

The comparison between the lattice strain measured from HEXRD and the simulated results is presented in 

Figure 11a and 11b for 𝜀{200} and 𝜀{211} of BCC and BCT phases, respectively; and the lattice strain for the 

austenite phase is compared in Figure 11c. It is worth noting that the 𝜀{200} lattice strain for the fresh 

martensite phase is of low quality and thus not included in the figure. Satisfactory matching is obtained for 

all phases, except the simulated 𝜀{200} of tempered martensite, as well as  𝜀{221} of austenite phase are 

slighter higher than HEXRD measurement.  The simulated ‘true’ stress-strain for each individual phase, 

which is computed by averaging the loading direction stress and strain component using only elements in 

the corresponding phase, is shown in Figure 11d. The stress and strain partition between different phases is 

quite obvious in ‘true’ stress-strain curves of individual phases. The ferrite phase is the softest phase and 

has the lowest yield and hardening stress; the ‘true’ strain of the ferrite phase is the highest, which means 

more deformation participated in the ferrite phase than other phases. The austenite phase (which is volume-

averaged using both bulk and film RA elements) has a slightly lower yield and hardening stress than the 
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tempered martensite phase. The austenite phase also has the lowest ‘true’ strain, but it is because most 

austenite phases are transformed into fresh martensite before they could undertake a large deformation. The 

transformed fresh martensite exhibits the highest hardening stress, which is attributed to the significant 

hardening resulting from the high dislocation density attained after transformation [28].  

 

The global stress-strain curves for uniaxial tension and compression simulations are compared to 

experimental measurement in Figure 12a, and the corresponding RA volume fraction is shown in Figure 

12b. The model effectively captures the stress-strain asymmetry observed in tension and compression tests, 

which is attributed to the different transformation kinetics under the two strain paths. Under compressive 

loading, the martensitic transformation is inhibited due to the obstructive role of the compressive stress 

state to the Bain deformation, and the material exhibits a stress-strain curve that is less influenced by the 

transformation. On the other hand, during tension, the initial hardening rate is remarkably reduced, 

attributed to a substantial fraction of austenite undergoing martensite transformation.  The stress is locally 

relaxed near the austenite regions of transformation, while other regions experience strain-hardening. After 

~5% strain, many austenites have already transformed into fresh martensites and exhibit a high hardening 

stress, resulting in a higher global stress that exceeded the compression stress-strain curve.  

 

It should be noted that although there is no direct data available for the austenite volume fraction evolution 

in the compression loading test, the simulated difference in the tension-compression austenite evolution 

trend is close to the trend in experiment data in Feng et al [30] despite of different setup. Therefore, the 

simulated austenite volume fraction evolution for compression is expected to be trustworthy for further 

analysis. This expectation is also based on the good agreement between the simulated lattice strain, the 

evolution of austenite volume fraction in tension, and the stress-strain tension-compression asymmetry in 

stress-strain behavior.  
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Fig. 12.   (a)Stress-strain curves, and (b) the corresponding RA volume fraction evolution.  

 

4.3.3 Local stress and strain state investigation  

In addition to the average lattice strain for each phase, the CPFE simulation provides insights into the local 

stress distribution within the microstructure.  Figures 13 and 14 plots the distribution of von Mises stress, 

hydrostatic stress and effective strain in undeformed configuration (for ease of comparison) at 2% applied 

strain for tension and compression simulations, respectively. Here the effective strain is defined as 𝜀𝑒𝑓𝑓 =

√∑
2

3
(𝐸𝑖𝑗

 )
2

𝑖,𝑗 . The 2% strain is chosen for vitalization because it is the moment the tension-compression 

asymmetry is obvious.  Furthermore, the statistics of these stress and strain invariants at 1%, 2% and 5% 

strain for each phase are plotted using histograms in Figures 15 and 16.  A few observations are made from 

the results:  

 

1. The stress and strain distribution in QP980 microstructure is quite heterogeneous. 

2. The von Mises stress distribution exhibited a very clear stress-partitioning among different 

phases, while the hydrostatic stress is not so obvious. This is likely because the shear stress-

state is dominated by the resistance to slip in each phase, while hydrostatic stress is due to 

the interaction between neighboring phases. 

3. From the histogram, the strain distribution has a clear trend that more deformation is 

partitioned to ferrite phase with increasing load. Relate that to the strain distribution in 

Figure 13 and 14, it is noticed the strain like to form concentration ‘bands’ in ferrite regions 

especially in narrow channels surrounded by martensite.  
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4. Comparing the strain distribution in compression and tension (Figure 13 vs 14), there are 

many local spots with high strain concentration in tension case, which correspond to the 

austenite grains going through the transformation and induced local Bain deformation.      

5. Under both tension and compression, the distribution of von Mises stress is similar, except 

that the von Mises stress is more heterogeneous due to a high fraction of fresh martensite 

and its high hardening rate.  

6. In hydrostatic stress distribution, the austenite phase in tension at 5% strain has a decreased 

average hydrostatic stress than 2% strain. This is because many austenite regions with high 

hydrostatic stress has already transformed, leaving most low hydrostatics stress austenite 

regions remained.   

7. In hydrostatic stress distribution for tension case (Figure 13d), while most regions have 

tensile (positive) hydrostatic stress state, some local regions are in compressive (negative) 

hydrostatic stress state. Those compressive stress state could raise due to two mechanisms: 

I) during an uniaxial tensile loading, the irregular shape of soft/hard phases will try to 

locally rotate in addition to stretching, and the rotation can cause a local compressing onto 

the neighboring phase. This is a mechanism similar to the soft-hard constitutions 

interaction in metal-metal composites [31]. II) the austinite transformation induces 

inelastic Bain deformation and cause local stress-relaxation and in some local regions even 

local compressive stress-state. These two types of mechanisms can be differentiated in the 

hydrostatic stress map: the local compressive stress induced by transformation will vanish 

with increased load, while the type I compressive stress state will remain (and increase) 

with increased load. Furthermore, under compression, there are also local regions that are 

in tensile stress-state as shown in Figure 13d, and those regions also correspond to the type 

I mechanism in an opposite way.   

 

The above model observations highlight the importance of interaction between neighboring phases on the 

local stress-state. Especially, the interaction of the austenite phase with its surrounding matrix can influent 

the transformation kinetics, which is critical for strain-path dependence behavior of QP980, and is 

investigated in next section.   



 

 24 

 

 

Fig. 13. 
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Fig. 14.    
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Fig. 15.    
 

 

Fig. 16.    
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4.3.4 Effect of surrounding matrix on stability of RA  

We focus on analyzing the bulk RA as their surrounding matrix is explicitly modeled in CPFE framework. 

The bulk RA, surrounded by ferrite matrix (type I) and martensite (including both tempered and fresh) 

matrix (type II), are separately identified and highlighted in Figure 17. The rest of the bulk RA are located 

in a mixed matrix and categorized as type III.  Figure 18a and 18b shows the separate volume fraction 

evolution for the three types of RA under tensile and compressive loading, respectively.  In tension, the RA 

in ferrite matrix has the highest stability, at 20% applied strain there is still a significant amount of 

untransformed RA in ferrite matrix remained. The RA in martensite matrix has the lowest stability and are 

mostly transformed at 20% applied strain. This trend is quite consistent with the trend observed in tension-

test EBSD-based measurement in Kang et al [32], despite the number has some mismatch which is likely 

because both the model and EBSD only covers a small area and statistically insufficient. However, under 

compressive loading, the simulation predicted trend of RA stability is opposite to tension case: the RA in 

ferrite matrix transformed more than the RA in martensite matrix, despite both didn’t transform as much as 

under tensile loading.  

 

 

Fig. 17.    
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Fig. 18.    
 

The stress state of the bulk RA surrounded by ferrite and martensite matrix are compared in Figure 19 for 

tensile loading case, and in Figure 20 for compressive loading case. The following observation is made:  

 

1. The von Mises stress distribution for the type I (in ferrite matrix) and type II (in martensite 

matrix) RA are not very different, which is true for both compression and tension cases.  

2. The hydrostatic stress has a clear difference between the type I and type II RA. The type I 

RA has clearly a lower hydrostatic stress (magnitude, or absolute value) than type II RA 

under tension and compression. In addition, more type I RA has an opposite hydrostatic 

stress state (under tensile load, more type I RA are in compressive stress state, and vice 

versa).  

3. In tension, the lower tensile hydrostatic stress inhibited the type I RA from transformation 

and resulting to a higher stability in Figure 18a. In contrast, under compressive load, the 

lower compressive hydrostatic stress from ferrite matrix played an opposite effect and 

resulted in a higher transformation rate, as shown in Figure 18b.  

4. As the applied strain increases from 2% to 5% in tensile loading case, the separation of 

hydrostatic stress between type I and type II RA becomes smaller, which is likely due to a 

large fraction of type II RA under high hydrostatic stress in martensite matrix already 

transformed as strain increased to 5%.  
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Fig. 19.    

 

We also note that the von Mises stress and hydrostatic stress of bulk RA in all types matrix do not show a 

clear correlation, as shown in Figure 21, where each point corresponds to a bulk RA element at a location 

based on its stress state. The RA element under a high hydrostatic stress does not necessarily undertake a 

high or low von Mises stress.  
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Fig. 20. 

 

 

Fig. 21. 

 

Connecting the observations in section 4.3 and 4.4, we make the following informed speculations:  
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1. The QP980 exhibits quite some tension-compression asymmetry in the stress-strain behavior, which is 

due to the different martensitic transformation rate of RA. The transformation rate is highly influenced by 

the local RA’s stress-state. Using von Mises and hydrostatic stress invariants are simple yet effective 

metrics to characterize the stress-state relation to transformation of RA. 

2. The local hydrostatic stress, which is quite heterogeneous in the QP980 microstructure,  plays a critical 

role in martensitic transformation. Tensile hydrostatic stress promotes the martensitic transformation as it 

increases the mechanical energy for the transformation, and vice versa, the compressive hydrostatic stress 

inhibits the transformation.   

3. The local hydrostatic stress state of RA depends significantly on the surrounding matrix. The ferrite 

matrix tends to transmit lower magnitude hydrostatic stress to the RA, while the martensite matrix leads to 

a higher magnitude of hydrostatic stress.  This ‘shielding’ effect of ferrite matrix reduces the difference in 

the transformation rate under tension versus under compression loading, and thus reduces the tension-

compression asymmetry of QP980. That is, if a microstructure is fabricated with lower volume fraction of 

ferrite phase, it is expected to show a higher level of martensitic transformation rate and tension-

compression asymmetry.   

4.4. Conduct large sets of crystal plasticity modeling using HPC and validation to predict austenite 

transformation kinetics in different deformation modes for the two selected grades. 

4.4.1 Model descriptions 

To construct a reduce order model for martensitic transformations, a large number of simulations are 

performed of a large number of strain paths. Since during stamping of steel sheet, a plane stress can 

reasonably be assumed, therefore we only consider strains on the steel sheet plane parallel to the surface, 

i.e the plane of rolling direction (RD) × transverse direction (TD). Fig. 22 is a explanatory sketch of 

strains paths: a general strain path has a length of  and angle  with RD (the red vector in the figure). 

With the assumption of non-compressibility during plastic deformation and the fact that the elastic 

deformation is considerably lower than that of the plastic strain, the equivalent strain of such a strain path 

can be expressed in the equation (28), 

 

 

When =0o, 45o or 135o, it is plane strain (PS) tension along RD, biaxial stretching and shear deformation 

(Fig. 28). The uniaxial tension and compression has =333.5 and 153.5 repsectively (Fig. 28). 

In this project, utilizing the developed CPFE UMAT, we peformed 26 simulations including strain paths 

of =0 to 345o with an interval of 15o and uniaxial tension and compression by the use of microstructure 

and unit-cell model as described in the previous sections.  

𝜀̅ = (
2

3
(2 + 𝑠𝑖𝑛2𝛼))

1

2

∙ 𝜀 (28) 



 

 32 

 

Fig. 22. Sketch of planar (RD×TD) strain paths (deformation modes) in the RD×TD plane of an steel 

sheet. The red vector represent a strain path with a value of e and an angle a with respect to rolling 

direction (RD). TD is the transverse direction. Several typical strain pahts are along illustrated here: RD 

PS T, RD Tension and RD Compresion repsents plane strain tension, tension and compression along RD, 

respectively. 

4.4.2 Results 

The simulation results of the model of different strain paths are as shown in Figure 23 in terms of retained 

austenite volume fraction in percentage as a function of strain (). The figure is then changed into a 

relative new martensite (f’/f
0) volume fraction as a function of equivalent strain (vM) as in Figure 24. 

With f’= f
0-f. As can be seen from the figure, the transformation is fastest when the strain path lies in 

the 1st quadrant of figure 22, i.e. =0-90o, since it is in biaxial stretching region. The transformation is in 

the 3rd quadrant (=180-270o) is in biaxial compression. The transformation is intermediate in quadrant 2 

and 4 (green and blue curves in Fig. 24) where RD and TD has the opposite signs. 

 

Fig. 23. The volume fraction in percentage as a function of strain vector () for different strain paths in 

terms of angle  in Fig. 22. 
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Fig. 24. The relative volume fraction of new martensite as a function of equivalent von Mises strain (vm) 

for different strain paths in terms of angle  in Fig. 22, with the black curves representing the strain path 

of the 1st quadrant (=0-90o), green curves in 2nd quadrant, red curve in the 3rd and the bule curve in the 

4th. 

A one element model (see Fig. 25) has been performed to obtain the relationship between strain path and 

triaxiality and the results are plotted in Fig. 26. 

 

Fig. 25. The one element model 
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Fig. 26. The triaxiality as a function of strain paths angles () 

 

 

Fig. 27. The relative volume fraction of new martensite as a function of triaxiality for different equivalent 

strains 

Using this information from Fig. 26 and the results from Fig. 24, the relative volume fraction of new 

martensite is obtained for different equivalent strain levels as shown in Fig. 27 and it is apparent that the 

transformed martensite is higher with increasing stress triaxility. 

4.5 Build RO-SVM for component level simulation and process parameter optimization 

4.5.1 The RO-SVM model 

As studied in many literatures, the martensitic transformation from austenite depends on the deformation 

mode or strain paths. It is well documented that there will have more transformation when the material is 

subject to tension than compression, due to effect that there is a volume expansion because of the 

transformation.  The Olson-Cohen model is most well-known for calculating the normalized new 

transformed martensite,  

𝑓̅𝛼
′
= 1 − 𝑒−𝛽(1−𝑒

−𝛼𝜀)𝑛 (29) 
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Using this equation, it is found that the transformation kinetics can well fitted by using n=1.6 for the 

positive triaxiality cases (Fig. 28(a)), while n=4 with negative triaxiality cases (Fig. 28(b)). The fitted 

parameters are as shown in Table 1 

 

 (a) (b) 

Fig. 28 The curve fitting with (a) n=1.6 for cases of positive h and (b) n=4 for cases of negative h 

 

Table 1 The fitted parameters with the Olsen-Cohen model 

Angle  h   n 

0 0.5767 10.71213 5.91555 1.6 

15 0.6323 12.98717 6.30035 1.6 

30 0.6588 16.01301 5.71799 1.6 

45 0.6667 17.74801 5.4224 1.6 

60 0.6588 15.79547 5.72137 1.6 

75 0.6323 12.36474 6.19613 1.6 

90 0.5767 10.89101 5.22476 1.6 

105 0.4711 10.56613 3.54664 1.6 

120 0.2845 10.11499 2.10277 1.6 

135 0.01086 10.06571 0.63176 1.6 

315 0.01086 11.63979 0.8534 1.6 

330 0.2845 10.92203 2.43038 1.6 

345 0.4711 10.21052 4.30858 1.6 

150 -0.2718 6.22626 0.42576 4 

165 -0.4683 3.13839 1.24758 4 

180 -0.5759 1.52355 9.33575 4 

195 -0.6327 0.79697 108.98207 4 

210 -0.6589 1.81916 9.38539 4 

225 -0.6667 2.41042 4.52809 4 

240 -0.6589 2.59221 3.49094 4 

255 -0.6327 2.74739 2.47867 4 

270 -0.5769 3.22086 1.61529 4 

285 -0.4683 4.5707 0.92462 4 

300 -0.2718 8.63815 0.41197 4 
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The fitted parameters are also plotted as a function of stress triaxility in Fig. 26 (a) and (b) for positive 

triaxiality and negative triaxility. For positive h,  parameter almost kept constant around 10.6 when 

h while it increases rapidly afterwards.  parameter increases quadratically, and after curve fitting, 

the following equation is obtained, 

𝛽 = 0.64311 + 4.5252𝜂 + 5.57354𝜂2, 𝜂 ≥ 0 (30) 

For negative h,  and  parameters changes with h can be fitted as, 

𝛼 = 10.4434 + 12.4528𝜂 (31) 

𝛽 = 0.65181 − 9.777 ∙ 10−5 ∙ (1.4575 ∙ 10−7)𝜂 (32) 

or 

𝛽 = 0.32416 ∙ (𝜂 + 0.69351)−0.72222 (33) 

 

 

     (a) (b) 

Fig. 29. The curve fitting parameters with (a) n=1.6 for cases of positive h and (b) n=4 for cases of 

negative h 

 

The equations of Olson-Cohen (OC) model (see equation (29)) and the relationship between OC model 

parameters and stress triaxiality through equations (30)-(33) can be used as reduced order model (ROM) 

and implemented in Abaqus/Explicit user material subroutine (VUMAT) for component level 

calculations. 

4.5.2 Component level simulations 

Three-point V-bending is selected for component level simulations and geometrical sketch is shown in 

Fig. 30(a). A 2D plane strain finite element model has been construct (Fig. 30(b)) with the use of the 

after-mentioned SV-ROM VUMAT will be used to represent the materials to be bent,   
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 (a) (b) 

Fig. 30 The 3-Point V-bending geometry (a) and finite element model (b) 

 

Fig. 31 The simulated new martensite volume fraction at the end of the bend deformation. 

The simulation is performed on the FF980 steel which has 0.162 initial retained austenite volume fraction. 

The calculated results of new martensite volume fraction (NMVF) at the bend angle of 90o are as shown 

in Fig. 31. The evolutions with punch displacement (d) of the NMVF at the centerline elements of the 

bend are as shown the Fig. 32.  

The retained austenite volume fraction (RAVF) can also be calculated by subtracting the NMVF from the 

initial austenite volume fraction and the distribution along the centerline can be shown in Fig. 33. Point 1 

is at the top of tension side of the bend and point 70 is at the bottom of compression side bend. It can be 

seen that the volume fraction is reduced faster on the tension side than the compression side.   
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Fig. 32. The evolution of the calculated volume fraction of new martensite volume fraction with punch 

displacement at the center line of the bend. 

 

Fig. 33. The retained austenite volume fraction along the centerline of the bend. 

5.0 Subject Inventions 

No subject inventions were created as part of this CRADA. 

6.0 Commercialization Possibilities 

ArcelorMittal company appreciate the support from Department of Energy, advanced manufacturing office 

for supporting this project. This project fostered a new connection between the ArcelorMittal Company and 

Oak Ridge National Laboratory Energy & Manufacturing Science Division. The Oak Ridge National 

Laboratory team provided outstanding technical expertise and value to ArcelorMittal during this program. 
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ArcelorMittal and Oak Ridge teams will continue work on commercialization of the developed crystal 

plasticity model and state variable reduced order model software package.  

7.0 Plans for Future Collaboration 

In the near term, ArcelorMittal and Oak Ridge would like to submit a phase 2 proposal which will utilize 

the developed model to understand the fracture and damage mechanism and the formability of the studied 

3rd gen advanced high strength steels. 

8.0 Conclusions 

A high-fidelity state of the art crystal plasticity finite element software has been developed at Oak Ridge 

National Laboratory for the prediction of transformation induced plasticity (TRIP) which is applicable to 

(third generation) advanced high strength steel which relies on the deformation induced retained austenite 

to martensitic transformation to provide both superior strength and ductility in the material, so that we can 

make thinner gauge material to suffice vehicle light-weighting. For the first time, the developed model 

considers the volume change during phase transformation and directly treat the transformation from bulky 

austenite to martensite, including volume, phase, and orientation changes. In the meantime, the phase 

transformation of the much finer film austenite is using a pseudo-slip approach. In-situ High energy X-ray 

diffraction (HEXRD) test has been used to calibrate the constitutive behaviors of the different phases in 

two of the third-generation advanced high strength steels (3GAHSS) in terms of slip system parameters and 

transformation model parameters.  

Utilizing the developed & parameter calibrated crystal plasticity finite element model, a large number of 

unit-cell simulations were performed to cover different strain paths and stress-triaxiality states. The 

simulated results of martensitic transformation are then used to generate a state variable reduced order 

model (SV-ROM) and embedded in an user material subroutine for Abaqus. The SV-ROM has been applied 

to model 3-point V-bending of the 3GAHSS and austenite volume fraction has been successfully predicted 

from their comparison with high energy X-ray measurements. 
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