Measurement of Plutonium Ratios for CRM 137A Recertification

Cole R. Hexel Kayron Rogers Shalina Metzger Carson Evans Melissa Adkisson Daniel Dunlap Wade Ivey

February 2023

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via OSTI.GOV.

Website www.osti.gov

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 *Telephone* 703-605-6000 (1-800-553-6847) *TDD* 703-487-4639 *Fax* 703-605-6900 *E-mail* info@ntis.gov

Website http://classic.ntis.gov/

Reports are available to US Department of Energy (DOE) employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source:

Office of Scientific and Technical Information PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website https://www.osti.gov/

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Chemical Sciences Division

MEASUREMENT OF PLUTONIUM RATIOS FOR CRM 137A RECERTIFICATION

Cole R. Hexel, Kayron Rogers, Shalina Metzger, Carson Evans, Melissa Adkisson, Daniel Dunlap

February 2023

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, TN 37831
managed by
UT-BATTELLE LLC
for the
US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

LIST	ΓOF 7	ΓABLES	<u></u>	iv
ABE	BREVI	IATION	S	v
1.			TION	
2.	SAM	PLE PR	EPARATION	2
	2.1	RECEI	VED UNITS	2
	2.2	DISSO	LUTION	3
		2.2.1	Sampling	3
3.	SEPA		N	
	3.1	REAGI	ENTS AND MATERIALS	4
	3.2	METH(OD	4
4.	ANA			
	4.1	PLUTC	NIUM ISOTOPIC COMPOSITION BY TIMS	5
		4.1.1	Filament Preparation	5
		4.1.2	Filament Loading Method	
		4.1.3	Filament Position on Sample Turret	
		4.1.4	Detector Configuration, Amplifiers, and Calibration	7
		4.1.5	Sample Analysis Method	
	4.2	PU AN	ALYSIS USING MC-ICP-MS	
		4.2.1	MC-ICP-MS Analysis Sequence	
		4.2.2	Detector Configuration, Amplifiers, and Calibration	
		4.2.3	Sample Analysis Method	
	4.3	PLUTC	NIUM ANALYSIS USING ALPHA SPECTROMETRY	
		4.3.1	Sample Analysis Method	11
		4.3.2	Quality Assurance	12
5.	RESU			
	5.1		PIC DATA	
			A DATA	
			MS LOADING SHEETS	
			AL 004 GUM WORKBENCH	
			AL 052 GUM WORKBENCH	
			AL 113 GUM WORKBENCH	
APP	ENDI	X E. VI.	AL 4, 52, 113 COMBINED GUM WORKBENCH	.E-1

LIST OF FIGURES

Figure 1. Three units of C137A in Mylar bags. ORNL received units 004, 052, and 113	2
Figure 2. C137A (Unit 113) in 30 mL Teflon bottle with light brown plutonium nitrate residue in	
the bottom of the vial.	2
Figure 3. Separation scheme for the purification of plutonium.	
Figure 4. The total evaporation method used for the isotopic analysis by TIMS.	
Figure 5. MC-ICP-MS sequence template for plutonium analysis	
Figure 6. Mass calibration Neptune Plus.	
Figure 7. Replicate values of ²³⁸ Pu/ ²³⁹ Pu in vial 004 using TIMS, plotted against CRM 137 decay-	
corrected values.	14
Figure 8. Replicate values of ²⁴⁰ Pu/ ²³⁹ Pu in vial 004 using TIMS and MC-ICP-MS, plotted against	
CRM 137 decay-corrected values.	14
Figure 9. Replicate values of ²⁴¹ Pu/ ²³⁹ Pu in vial 004 using TIMS and MC-ICP-MS, plotted against	
CRM 137 decay-corrected values.	15
Figure 10. Replicate values of ²⁴² Pu/ ²³⁹ Pu in vial 004 using TIMS and MC-ICP-MS, plotted	
against CRM 137 decay-corrected values.	15
Figure 11. Replicate values of ²³⁸ Pu/ ²³⁹ Pu in vial 052 plotted against CRM 137 decay-corrected	
	17
Figure 12. Replicate values of ²⁴⁰ Pu/ ²³⁹ Pu in vial 052 plotted against CRM 137 decay-corrected	
	17
Figure 13. Replicate values of ²⁴¹ Pu/ ²³⁹ Pu in vial 052 plotted against CRM 137 decay-corrected	
values.	18
Figure 14. Replicate values of ²⁴² Pu/ ²³⁹ Pu in vial 052 plotted against CRM 137 decay-corrected	
values.	18
Figure 15. Replicate values of ²³⁸ Pu/ ²³⁹ Pu in vial 113 plotted against CRM 137 decay-corrected	
values.	20
Figure 16. Replicate values of ²⁴⁰ Pu/ ²³⁹ Pu in vial 113 plotted against CRM 137 decay-corrected	
values.	20
Figure 17. Replicate values of ²⁴¹ Pu/ ²³⁹ Pu in vial 113 plotted against CRM 137 decay-corrected	
values.	21
Figure 18. Replicate values of ²⁴² Pu/ ²³⁹ Pu in vial 113 plotted against CRM 137 decay-corrected	
values.	21

LIST OF TABLES

Table 1. Summary of isotopic data	1
Table 2. Filament degassing program	5
Table 3. TIMS plutonium isotopic composition turret analysis scheme	
Table 4. Historical gain from the instrument's history log	7
Table 5. The isotopic values for vial 004 from all TIMS analyses	13
Table 6. The isotopic values for vial 004 from all MC-ICP-MS analyses	
Table 7. The isotopic values for vial 052 from all TIMS analyses	
Table 8. The isotopic values for vial 052 from all MC-ICP-MS analyses	
Table 9. The isotopic values for vial 113 from all TIMS analyses	
Table 10. The isotopic values for vial 113 from all MC-ICP-MS analyses	
Table 11. The isotopic values for vials 004, 052, and 113 from all analyses	

ABBREVIATIONS

CRM certified reference material

GUM guide to the expression of uncertainty in measurement

LLNL Lawrence Livermore National Laboratory

MB Mass Bias standard

MC-ICP-MS multiple collector inductively coupled plasma—mass spectrometry

MTE modified total evaporation

NBL-PO New Brunswick Laboratory Program Office

NIST National Institute of Standards and Technology

ORNL Oak Ridge National Laboratory

QC quality control

RSD relative standard deviation

RSE relative standard error

TE total evaporation

TIMS thermal ionization mass spectrometry

WRM working reference material

1. INTRODUCTION

This report documents the analytical methodologies used by the Chemical and Isotopics Mass Spectrometry (CIMS) Group at the US Department of Energy's Oak Ridge National Laboratory (ORNL) for plutonium isotopic ratio characterizations on purified ~1 mg units prepared by Lawrence Livermore National Laboratory (LLNL) from a mother solution created from an existing 250 mg unit of certified reference material (CRM) 137. The analytical processes described are designed to maintain traceability of the final certified attributes and to eliminate sources of systematic bias for the measurements described. The measurands for certification are the plutonium isotope ratios: ²³⁸Pu/²³⁹Pu, ²⁴⁰Pu/²³⁹Pu, ²⁴¹Pu/²³⁹Pu, and ²⁴²Pu/²³⁹Pu. The preparation and analytical process included the following activities:

- Preparation of reference materials to be used as calibrants to establish traceability to the SI unit of
 mass for the isotopic analyses and quality controls. For the plutonium isotopic analyses, CRM 128 (a
 CRM comprising equal atoms of ²³⁹Pu and ²⁴²Pu) was used as the primary calibrant.
- Each CRM 137A unit was reconstituted using dilute high-purity HNO₃. From each, seven replicates were distributed for the isotopic characterizations by thermal ionization mass spectrometry (TIMS) using the total evaporation (TE) method for isotope ratio measurements and MC-ICP-MS using a dynamic peak hooping method for secondary isotope ratio measurements.
- Due to time delay in the analyses from the last purification of the original CRM 137 mother solution by LLNL, an aliquot of the three provided plutonium units was purified using Eichrom TEVA separation methods to remove americium in-growth and uranium impurities.
- Minimally corrected data were reported from each analysis using reporting templates provided by the New Brunswick Laboratory Program Office (NBL PO) for the specific methods used for isotopic measurements. In addition, a copy of the instrument exports, Excel templates for isotopic data corrections, and the uncertainty budgets completed with the GUM Workbench software package were submitted to NBL PO.

Table 1. Summary of isotopic data

		²³⁸ Pı	u/ ²³⁹ Pu	²⁴⁰ P	²⁴⁰ Pu/ ²³⁹ Pu		²⁴¹ Pu/ ²³⁹ Pu		²⁴² Pu/ ²³⁹ Pu	
Instrument	Vial	Value	Uncertainty (2σ)	Value	Uncertainty (2σ)	Value	Uncertainty (2σ)	Value	Uncertainty (2σ)	
TIMS/TE	004	0.0026370	0.0000053	0.240626	0.000077	0.005099	0.000034	0.0155775	0.0000067	
MC-ICP-MS	004			0.240631	0.000072	0.005105	0.000037	0.015573	0.000042	
TIMS/TE	052	0.0026440	0.0000095	0.240627	0.000078	0.005111	0.000014	0.0155771	0.0000068	
MC-ICP-MS	052	_	_	0.240623	0.000072	0.005105	0.000036	0.015571	0.000043	
TIMS/TE	113	0.0026482	0.000019	0.240626	0.000076	0.005121	0.000031	0.015578	0.000067	
MC-ICP-MS	113	_	_	0.240635	0.000072	0.005086	0.000040	0.015585	0.000044	

2. SAMPLE PREPARATION

2.1 RECEIVED UNITS

ORNL received three units of C137A from LLNL into Lab R139 in Building 4500S (Figure 1). Units received had identifiers of 004, 052, and 113. Each unit contained 1 mg of a plutonium dry nitrate that appeared as a solid light brown residue from the evaporation process that occurred at LLNL (Figure 2). ORNL also received CRM 128 from NBL PO at the Y-12 National Security Complex; the unit identifier was #313.

Figure 1. Three units of C137A in Mylar bags. ORNL received units 004, 052, and 113.

Figure 2. C137A (Unit 113) in 30 mL Teflon bottle with light brown plutonium nitrate residue in the bottom of the vial.

2.2 DISSOLUTION

To dissolve the plutonium nitrate, a 10 mL portion of 4 M HNO $_3$ + 0.05 M HF was added to each C137A unit, one unit of CRM 128, and a process blank. The acid was prepared from Optima HNO $_3$ (Lot: 1221120) and Optima HF (Lot: 5217040) purchased from Fisher Scientific, diluted with ASTM Type I water. C137A dissolved after 1 hour on a hot plate set to 60 °C, whereas CRM 128 required 2 hours to dissolve.

2.2.1 Sampling

Each time sampling occurred, a $100~\mu\text{L}$ aliquot (to provide $10~\mu\text{g}$ Pu) of each C137A solution and the CRM 128 solution was pipetted into a perfluoroalkoxy vial and transferred to Building 1060 Lab 104 for separation. Triplicate aliquots were pulled from the process blank.

3. SEPARATION

3.1 REAGENTS AND MATERIALS

All acids (HNO₃, HCl, and HF) and H_2O_2 (30%) were Optima grade, purchased from Fisher Scientific and used without further purification. Dilutions of acids were made using ASTM Type I water (>18.0 M Ω ·cm) generated using a Thermo Scientific Barnstead GenPure xCAD Plus water purification system. Iron(II) sulfate heptahydrate (Puratronic, 99.999%, metal basis) and sodium nitrite (99.999%, metal basis) were purchased from Alfa Aesar and used without further purification. TEVA cartridges (1 mL, 50–100 µm) were purchased from Eichrom Technologies.

3.2 METHOD

Plutonium was chemically purified from uranium and americium before isotopic analysis to ensure separation from isobaric interference at mass 239 (uranium hydride ²³⁸UH⁺) and mass 241 (²⁴¹Pu decays to ²⁴¹Am). This purification was accomplished via extraction chromatography with Eichrom TEVA 1 mL cartridges following an established analytical method (CSD-AM-CIMS-IN15¹) using a vacuum box system inside a radiological hood, as shown in Figure 3. Before separation, samples were dried to remove trace HF and dissolved in 2 mL of 3 M HNO₃. The oxidation state of plutonium in the sample was adjusted to Pu(IV) with ferrous sulfate and sodium nitrite before loading on a preconditioned TEVA cartridge. After loading, the cartridge was rinsed with 38 mL of 3 M HNO₃, converted to the chloride form with 3 mL of 9 M HCl, and plutonium was eluted from the resin with 10 mL of 0.1 M HCl–0.06 M HF. The samples were dried and treated twice with a 1:1 v/v mixture of 8 M HNO₃ and H₂O₂ (30%) to remove any residual column organics. Before the solution were ready for TIMS loading, 20–50 µL 8 M HNO₃ were added to the samples.

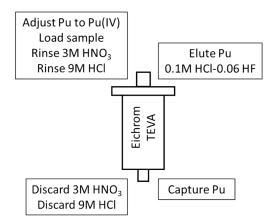


Figure 3. Separation scheme for the purification of plutonium.

4. ANALYSIS

4.1 PLUTONIUM ISOTOPIC COMPOSITION BY TIMS

The isotopic characterizations were performed utilizing the TE method. For this method, approximately 50 ng of plutonium solution was loaded onto a zone-refined double filament. This method is outlined in the following subsections, as described in ASTM 1672². Any method deviation was recorded. Dr. Cole Hexel was previously qualified on the TE method by Dr. K. J. Mathew at the NBL labs on the Argonne National Laboratory campus when the facility was still in operation.

4.1.1 Filament Preparation

High-purity zone-refined rhenium filaments were used for all analyses. The filaments were made by MasCom (Breman, Germany), and purchased from Thermo Fisher Scientific, part number 4062350. The filaments were welded in a double-filament geometry. Before sample loading, the filaments were degassed to condition the filament surface and remove contamination. Table 2 outlines the filament degassing program. No filament background signal was observed from the degassed filament.

Table 2. Filament degassing program

ParameterC	Program	
Limit 1	1.0×10^{-5}	
Limit 2	9.0×10^{-6}	
C1 (Ioni)	Wait 1	1 min
	Slope	+1 A/min
	I1	4.7 A
	Wait 2	30 min
	Slope 2	-10 A/min
C2 (Evap)	Wait 1	40 min
	Slope	+1 A/min
	I1	4.7 A
	Wait 2	30 min
	Slope 2	-10 A/min
C1 + C2	Wait 1	40 min
	Slope	+50 A/min
	I1	5.0 A
	Wait 2	15 s
	Slope 2	-50 A/min

4.1.2 Filament Loading Method

Conditioned filaments were aged for a minimum of 25 days before use. No filaments were aged longer than 30 days. Initially, a filament was heated to 1.6 A, and the edge of a parafilm strip created a hydrophobic dam. This hydrophobic barrier did not perturb the plutonium isotopic analysis but did prevent the sample from skating across the filament surface. After applying the barrier, the filament was cooled to 0 A for loading. Approximately 50 ng of plutonium solution was loaded in 1-0.5 µL application. The droplet was

then dried at 0.6 A to evaporate the liquid without causing sample splattering. Once the sample was dry, the amperage was increased to 1 A for 60 s then to 1.5 A for 5 s, and finally to 2 A for 5 s. Next, the filaments were returned to 0 A and loaded onto the turret. Sample filaments and the corresponding ionization filaments were immediately installed on the sample turret along with the extraction plate. All extraction plates were new and placed in the same orientation on the sample turret. Appendix A includes the original filament loading sheets.

4.1.3 Filament Position on Sample Turret

Three turrets were analyzed during a 1 week period. Samples were randomly distributed on each turret. Each sample vial was analyzed using seven replicates. Any sample filament that did not run was added to the third turret to maintain a total of seven replicates. The sample filament distribution can be found in Table 3.

Table 3. TIMS plutonium isotopic composition turret analysis scheme

Turret Position	Turret 1	Turret 2	Turret 3
Position 1	NBL C128 (MB)	NBL C128 (MB)	NBL C128 (MB)
Position 2	NBL 137 (QC)	NBL 137 (QC)	NBL 137 (QC)
Position 3	NBL 136 (QC)	NBL 136 (QC)	NBL 136 (QC)
Position 4	NBL PO 137A-1a	NBL PO 137A-2a	NBL PO 137A-2a
Position 5	NBL PO 137A-2a	NBL PO 137A-3a	NBL PO 137A-2a
Position 6	NBL C128 (MB)	NBL C128 (MB)	NBL C128 (MB)
Position 7	NBL PO 137A-3a	NBL PO 137A-1a	NBL PO 137A-3a
Position 8	NBL C128 (MB)	NBL C128 (MB)	NBL C128 (MB)
Position 9	NBL 137 (QC)	NBL 137 (QC)	NBL 137 (QC)
Position 10	NBL PO 137A-1b	NBL PO 137A-2b	NBL PO 137A-3a
Position 11	NBL PO 137A-2b	NBL PO 137A-1b	ORNL WRM 003
Position 12	NBL C128 (MB)	NBL C128 (MB)	NBL C128 (MB)
Position 13	NBL 136 (QC)	NBL 136 (QC)	NBL 136 (QC)
Position 14	NBL PO 137A-3b	NBL PO 137A-3c	NBL PO 137A-1a
Position 15	NBL PO 137A-1c	NBL PO 137A-1c	ORNL WRM 003
Position 16	NBL PO 137A-2c	NBL PO 137A-1c	ORNL WRM 003
Position 17	NBL C128 (MB)	NBL C128 (MB)	NBL C128 (MB)
Position 18	NBL PO 137A-3c	NBL PO 137A-2c	ORNL WRM 003
Position 19	NBL 137 (QC)	NBL 137 (QC)	NBL 137 (QC)
Position 20	NBL 136 (QC)	NBL 136 (QC)	NBL 136 (QC)
Position 21	NBL C128 (MB)	NBL C128 (MB)	NBL C128 (MB)

Note: QC = quality control; MB = mass bias; WRM = working reference material

4.1.4 Detector Configuration, Amplifiers, and Calibration

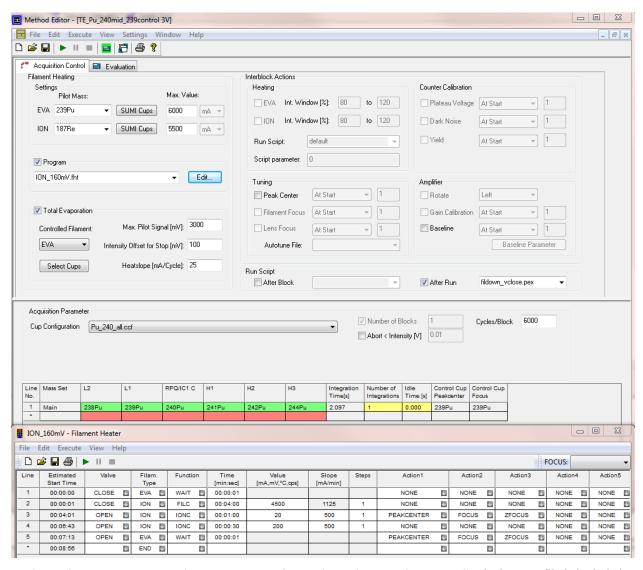

The gain history was used to select the instrument amplifiers that had the lowest standard deviation. The lowest deviation amplifiers were used on mass, m/z, and the 241 faraday cup. Subsequently the 242, 244, 238, 240, and 239 faraday cup amplifiers were populated in that order (Table 4). The most stable amplifier was used for the least abundant isotope. Only the 10^{11} amplifiers were selected for the TE method. The ORNL WRM 003 sample was used to verify that the detectors were coincident. No amplifier rotation was applied. The faraday detector gain was electronically determined for 3 h using a 0.3333334 gain calibration card. This calibration was performed before the three turrets were analyzed. The results were consistent with the gain history, and the values were within the historical deviation. After the gain calibration, a baseline was conducted for 1,800 s. A baseline was performed before each turret was analyzed. A beam of 187 Re was placed on the center faraday cup to verify the faraday mass calibration. A mass calibration filament was loaded, and a full mass calibration was performed at the beginning of the project analysis. The instrument was calibrated at lithium, sodium, strontium, neodymium, rhenium, uranium, plutonium, and UO masses. Before each filament analysis, rhenium and plutonium were recalibrated. No instrument drift was observed.

Table 4. Historical gain from the instrument's history log

Timestamp	Amp 1	Amp 2	Amp 3	Amp 4	Amp 5	Amp 6	Amp 7	Amp 8
10/4/2018 16:40	0.33222	0.33755	0.32926	0.32844	0.32988	0.33407	0.32777	0.33011
3/27/2020 12:55	0.33219	0.33757	0.32926	0.32845	0.32988	0.33408	0.32778	0.33012
8/25/2020 16:44	0.33212	0.33753	0.32921	0.32842	0.32983	0.33403	0.32773	0.33008
11/3/2020 11:28	0.33207	0.33749	0.32916	0.32836	0.32979	0.33399	0.32768	0.33003
1/14/2021 16:32	0.33207	0.33749	0.32915	0.32836	0.32978	0.33398	0.32767	0.33002
1/31/2021 14:57	0.33206	0.33749	0.32915	0.32836	0.32978	0.33397	0.32766	0.33002
2/5/2021 19:08	0.33205	0.33749	0.32915	0.32836	0.32978	0.33398	0.32765	0.33002
2/23/2021 12:04	0.33205	0.33749	0.32914	0.32834	0.32976	0.33397	0.32764	0.33
3/9/2021 16:13	0.33207	0.33751	0.32916	0.32837	0.32978	0.33398	0.32766	0.33003
3/10/2021 17:01	0.33217	0.33744	0.32895	0.3285	0.32978	0.33397	0.32777	0.32968
5/10/2021 22:39	0.33203	0.33746	0.32911	0.32833	0.32974	0.33394	0.32762	0.32998
6/17/2021 23:33	0.33198	0.33743	0.32908	0.3283	0.32972	0.33391	0.32759	0.32996
7/21/2021 22:29	0.332	0.33745	0.32909	0.32831	0.32972	0.33392	0.32759	0.32997
8/1/2021 23:07	0.33207	0.33754	0.32912	0.32837	0.32974	0.33397	0.32759	0.33
10/19/2021 4:43	0.33208	0.33755	0.32912	0.32836	0.32975	0.33396	0.3276	0.32999
11/23/2021 0:13	0.33206	0.33752	0.32912	0.32835	0.32975	0.33395	0.3276	0.32999
12/7/2021 6:00	0.33205	0.33751	0.32911	0.32833	0.32975	0.33395	0.3276	0.32998
1/28/2022 2:55	0.33203	0.33748	0.3291	0.32832	0.32973	0.33394	0.32759	0.32997
6/16/2022 14:22	0.33196	0.33741	0.32905	0.32825	0.32967	0.33388	0.32755	0.32991
8/11/2022 19:11	0.33192	0.33738	0.32902	0.32823	0.32966	0.33385	0.32754	0.3299
10/20/2022 16:48	0.3319	0.33736	0.32901	0.32821	0.32964	0.33384	0.32753	0.32988
10/24/2022 11:16	0.3319	0.33736	0.32901	0.32821	0.32964	0.33384	0.32752	0.32988
Avg	0.33205	0.33748	0.32911	0.32834	0.32975	0.33395	0.32763	0.32998
Std dev	8.4×10^{-5}	6×10^{-5}	7.7×10^{-5}	7.3×10^{-5}	6.5×10^{-5}	6.4×10^{-5}	7.7×10^{-5}	9.3×10^{-5}
% RSD	0.0252%	0.0178%	0.0235%	0.0224%	0.0198%	0.0191%	0.0235%	0.0282%
Mass		241	244	239	240	242	238	

4.1.5 Sample Analysis Method

TIMS startup, tuning, and initial setup was conducted according to the standard operating procedure for the plutonium isotope ratios (²³⁸Pu/²³⁹Pu, ²⁴⁰Pu/²³⁹Pu, ²⁴¹Pu/²³⁹Pu, ²⁴²Pu/²³⁹Pu, ²⁴⁴Pu/²³⁹Pu). A sample isotopic survey was performed before the sample turret was analyzed, and no ²⁴⁴Pu was observed via the faraday cup. The instrument optimized the ionization filament to yield a rhenium signal of 160 mA or to a filament current of about 5,100 mA. A filament tune and a mass calibration on ¹⁸⁷Re was completed at this heating step. The evaporator current was increased, and the TE analysis started. The filament current was increased to yield a summed total ion current of 3 V and run to exhaustion. The sample mass bias was corrected using an exponential correction model based on the average ²⁴²Pu/²³⁹Pu ratio in the CRM 128 comparator sample filaments. The method and heat profile are shown in Figure 4.

Figure 4. The total evaporation method used for the isotopic analysis by TIMS. The heat profile is included with the method.

4.2 PU ANALYSIS USING MC-ICP-MS

4.2.1 MC-ICP-MS Analysis Sequence

The plutonium isotopic characterizations were performed via multiple collector inductively coupled plasma—mass spectrometry (MC-ICP-MS). The samples were analyzed in a single sequence spanning about 20 h. Within the sample sequence, each vial was analyzed non-sequentially seven times. The sequence was constructed using a standard bracketing method with quality control (QC) samples bracketing the unknown C137A samples (Figure 5). A hydride sample ("H") was analyzed at the beginning and the end of the sequence, and the hydride ratio was averaged across the run. The control samples have the "C" designation, and "M" signifies mass bias or comparator. A wash time of 200 s was used to eliminate washout effects. The washout solutions were 5% HNO₃ + 0.01M HF, and the blank correction 2% HNO₃. The washout and blanks both had an uptake time of 100 s to minimize memory effect before the sample. The samples, QC, and comparator samples had an uptake time of 100 s. This time considers a signal stability time of about 45 s, which is common for standard ICP-MS introduction systems. The method and acquisition parameters can be found in Figure 5.

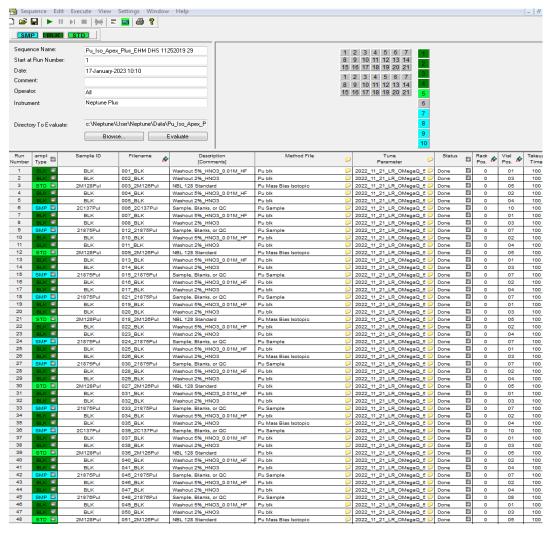


Figure 5. MC-ICP-MS sequence template for plutonium analysis.

4.2.2 Detector Configuration, Amplifiers, and Calibration

The baseline history was used to select the instrument amplifiers with the lowest standard deviation. The lowest deviation amplifier was used on the 241 faraday cup, and then 242, 244, 238, 240, and 239 faraday cup amplifiers were populated in that order. A mix of 10¹¹ and 10¹³ amplifiers was selected for the MC-ICP-MS method. No amplifier rotation was applied. The faraday detector gain was electronically determined for 2.5 h using a 0.3333334 gain calibration card. This calibration was performed before the project sequences. The results were compared to the gain history to determine whether the values were within the history deviation. After the gain calibration, a baseline was conducted for 1,800 s. The baseline measurements were completed before each sequence. A mass calibration solution was run to complete a full mass calibration at the beginning of the project analyses (Figure 6). The instrument was calibrated using masses for lithium, sodium, iron, strontium, neodymium, hafnium, lead, uranium, UO, and UO₂. During each sample analysis, plutonium was recalibrated.

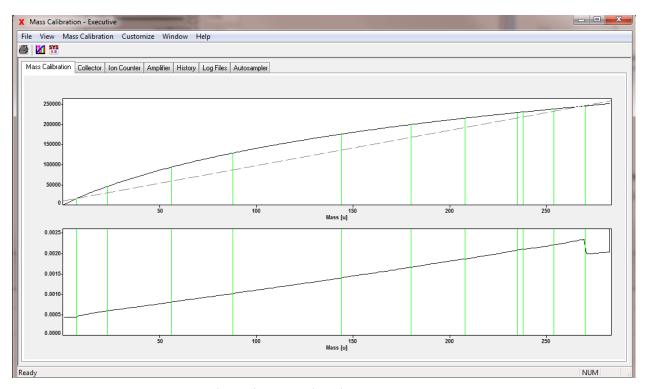


Figure 6. Mass calibration Neptune Plus.

4.2.3 Sample Analysis Method

Plutonium isotope ratios (²³⁸Pu/²³⁹Pu, ²⁴⁰Pu/²³⁹Pu, ²⁴¹Pu/²³⁹Pu, ²⁴²Pu/²³⁹Pu, ²⁴⁴Pu/²³⁹Pu) were measured via MC-ICP-MS. An aliquot from the purified stock solution was used to create a 4 ng solution with a volume of 2 mL. Using CRM 137 decay-corrected ratios as an example, total ion current of 4 V should yield 7 mV of mass 238, 1 V of mass 240, 16 mV of mass 241, and 46 mV of mass 242. These signal intensities should all be large enough to be placed on the faraday detector without needing a secondary electron multiplier. A 4 V 239 signal should yield a count rate of 5 × 10⁻⁶ V. This correction will be made with the secondary electron multiplier and by measuring ²⁴¹Pu in two lines using the IC1 B and the center Faraday cup. The analyses were set up in two lines with five integrations on the first line and one integration on the second line. The integration time was set to 16.777 s. Each line was run in an alternating pattern making up one cycle and 10 cycles were run. Outliers were rejected based on two standard deviations of the individual

cycles. The sample mass bias was corrected using an exponential correction model based on the average ²⁴²Pu/²³⁹Pu ratio in the CRM 128 comparator sample filaments.

4.3 PLUTONIUM ANALYSIS USING ALPHA SPECTROMETRY

4.3.1 Sample Analysis Method

The activities of ²³⁸Pu and ²³⁹⁺²⁴⁰Pu were determined in the three units of C137A by means of direct coprecipitation of the plutonium with CeF₃. Because samples were pure plutonium (²⁴¹Am had recently been separated from ²⁴¹Pu, as described in Section 3), an additional separation was not required. The CeF₃ precipitation was prepared by spiking 10 mL of a 0.1 M HCl + 0.05 M HF + 0.05 M TiCl₃ solution with 100 μL of sample and 0.02 mL of ²⁴²Pu standard NIST 4334J-E (used as a tracer to monitor chemical recovery). To this solution, 50 μL of Ce carrier (1000 mg/L) and 2 mL of concentrated HF was added, mixed, and allowed to sit for about 15 min. The precipitate was quantitively transferred and filtered onto an Eichrom Resolve filter (preconditioned with EtOH). The filter was dried under vacuum and transferred to a stainless steel planchette for further drying under a heat lamp for about 15 min. Samples were taken to a count room for counting via alpha spectrometry.

The main purpose of the alpha spectrometry was to provide supporting data for the mass spectrometry measurements. The activity ratio of ²³⁸Pu isotope with respect to ²³⁹Pu was calculated and used to support the mass spectrometry measurements.

In addition to determining the plutonium isotope activities, the CeF₃ direct precipitation method used precipitated all actinide elements. Thus, any potential actinide impurities present could have been determined. No actinides, other than plutonium, were present in the samples. This information can be used to help assign impurity values in the C137A standard.

4.3.2 Quality Assurance

The alpha spectrometer detectors were calibrated using a mixed-energy alpha source from NIST-certified sources. The energy range was calibrated from 3 to 8 MeV. Efficiency calibrations for the detectors used the same NIST mixed-energy source. The detectors were passivated implanted planar silicon detectors. The counting efficiency of these detectors ranged from approximately 12% to 15%. The detectors are housed in an ORTEC DUO chamber within the ORTEC Ensemble, which is an integrated alpha spectrometer. ORTEC's AlphaVision software performed the data acquisition and analysis. The alpha detectors were checked using a pulsar to ensure proper working conditions, and the backgrounds were performed weekly.

5. RESULTS

5.1 ISOTOPIC DATA

Four turrets were analyzed on four separate days. The first three turrets were analyzed in November. At that time a bias in the ²⁴¹Pu/²³⁹Pu ratio was observed between vial 113 and the other two vials. A second sample fraction was pulled and purified to verify the ratio. The second sample solution did not display the same isotopic value. This observation was verified via MC-ICP-MS. The fourth turret was loaded with four additional vial 04 filaments, and eight additional vial 113 filaments along with CRM 128 and CRM 137 served as mass comparator and quality assurance samples. This analysis provided better results for the ²⁴¹Pu/²³⁹Pu ratio. No other ratios were perturbed, and all analysis results have been included.

Table 5 displays the 11 replicates TIMS measured for all ratios in vial 004. Table 6 displays the seven replicates MC-ICP-MS measured for all ratios in vial 004. The average ²⁴⁰Pu/²³⁹Pu TIMS value was

 0.240626 ± 0.000077 (2 σ), and the average 240 Pu/ 239 Pu MC-ICP-MS value was 0.240631 ± 0.000072 (2 σ). The ratio plots of all replicates for each isotopes system are shown in Figure 7 through Figure 10. The analyzed values are plotted against the decay-corrected values for CRM 137. The guide to the expression of uncertainty in measurement (GUM) models and budgets are given in Appendix B. No 238 Pu/ 239 Pu ratio was collected with MC-ICP-MS, due to the background of 238 U in the system. Replicates 1-7, which corresponds to analysis dates October 25th - October 28th , were separated on October 12th , 2022 , and replicates 8 -11 were separated on January 11th , 2023 , and subsequently analyzed January 24th , 2023 .

Table 5. The isotopic values for vial 004 from all TIMS analyses

	TIMS isotopic data										
Replicate	Sample ID	²³⁸ Pu/ ²³⁹ Pu	²⁴⁰ Pu/ ²³⁹ Pu	²⁴¹ Pu/ ²³⁹ Pu	²⁴² Pu/ ²³⁹ Pu	²⁴⁴ Pu/ ²³⁹ Pu	Analysis date				
1	202201875	0.0026347	0.240611	0.005108	0.015573	0.0000003	10/25/2022				
2	202201875	0.0026353	0.240631	0.005106	0.015578	0.0000047	10/25/2022				
3	202201875	0.0026362	0.240662	0.005107	0.015585	0.0000011	10/25/2022				
4	202201875	0.0026398	0.240614	0.005180	0.015573	0.0000017	10/26/2022				
5	202201875	0.0026369	0.240641	0.005105	0.015577	0.0000011	10/26/2022				
6	202201875	0.0026350	0.240576	0.005110	0.015565	0.0000019	10/28/2022				
7	202201875	0.0026529	0.240595	0.005194	0.015578	0.0000028	10/28/2022				
8	202201875	0.0026342	0.240633	0.005047	0.015579	-0.0000009	1/24/2023				
9	202201875	0.0026331	0.240636	0.005054	0.015579	-0.0000044	1/24/2023				
10	202201875	0.0026345	0.240640	0.005040	0.015581	-0.0000063	1/24/2023				
11	202201875	0.0026346	0.240649	0.005042	0.015586	-0.0000032	1/24/2023				
	Average	0.0026370	0.240626	0.005099	0.0155776	-0.0000001	_				
U	ncertainty (2σ)	0.0000053	0.000077	0.000034	0.0000067	0.0000033	_				

Table 6. The isotopic values for vial 004 from all MC-ICP-MS analyses

MC-ICP-MS isotopic data									
Replicate	Sample ID	²³⁸ Pu/ ²³⁹ Pu	²⁴⁰ Pu/ ²³⁹ Pu	²⁴¹ Pu/ ²³⁹ Pu	²⁴² Pu/ ²³⁹ Pu	²⁴⁴ Pu/ ²³⁹ Pu	Analysis date		
12	009_21875PuI	_	0.2406307	0.005071437	0.015596134	-6.6207×10^{-6}	11/22/2022		
13	015_21875PuI	_	0.240608131	0.005110372	0.015576855	1.07696×10^{-5}	11/22/2022		
14	018_21875PuI	_	0.240640078	0.005089841	0.015556068	-2.3424×10^{-5}	11/22/2022		
15	024_21875PuI	_	0.240637052	0.005115536	0.015576865	6.43469×10^{-7}	11/22/2022		
16	027_21875PuI	_	0.240630755	0.005117414	0.015552021	1.25449×10^{-8}	11/22/2022		
17	033_21875PuI	_	0.240620868	0.005114397	0.015577411	9.1276×10^{-6}	11/22/2022		
18	042_21875PuI		0.240649037	0.005114528	0.015572375	-3.4938×10^{-7}	11/22/2022		
	Average	_	0.240631	0.005105	0.015573	-0.0000014	_		
Ū	ncertainty (2σ)	_	0.000072	0.000037	0.000042	0.0000114	_		

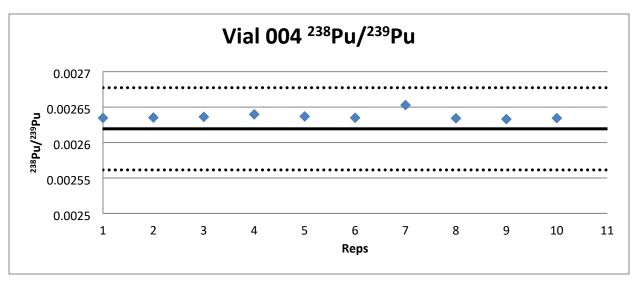


Figure 7. Replicate values of ²³⁸Pu/²³⁹Pu in vial 004 using TIMS, plotted against CRM 137 decay-corrected values. The dashed line represents the expanded uncertainty (k=2) from the original certificate of analysis for CRM 137.

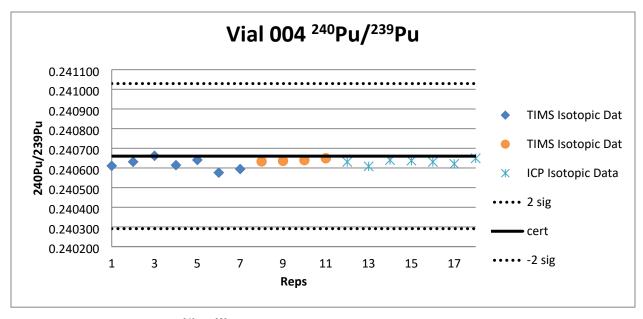


Figure 8. Replicate values of ²⁴⁰Pu/²³⁹Pu in vial 004 using TIMS and MC-ICP-MS, plotted against CRM 137 decay-corrected values. The dashed line represents the expanded uncertainty (k=2) from the original certificate of analysis for CRM 137.

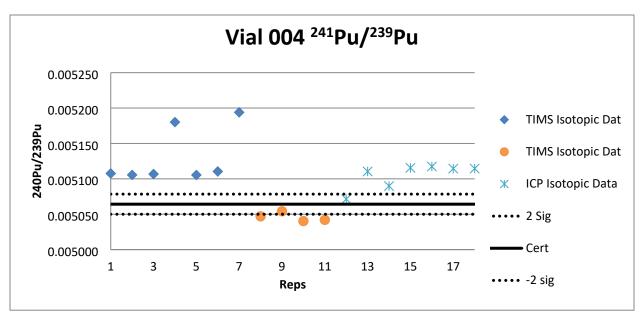


Figure 9. Replicate values of ²⁴¹Pu/²³⁹Pu in vial 004 using TIMS and MC-ICP-MS, plotted against CRM 137 decay-corrected values. The dashed line represents the expanded uncertainty (k=2) from the original certificate of analysis for CRM 137.

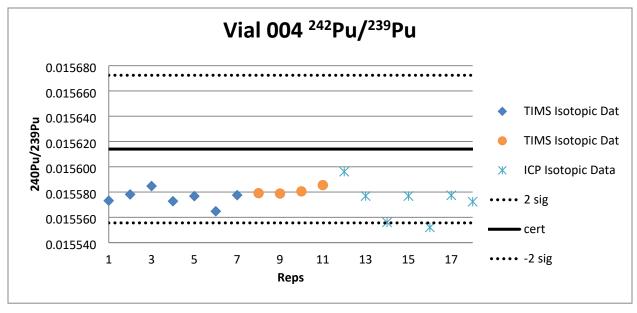


Figure 10. Replicate values of ²⁴²Pu/²³⁹Pu in vial 004 using TIMS and MC-ICP-MS, plotted against CRM 137 decay-corrected values. The dashed line represents the expanded uncertainty (k=2) from the original certificate of analysis for CRM 137.

Table 7 displays the seven replicates TIMS measured for all ratios in vial 052. Table 8 displays the seven replicates MC-ICP-MS measured for all ratios in vial 052. The average 240 Pu/ 239 Pu TIMS value was 0.240627 ± 0.000078 (2 σ), and the average 240 Pu/ 239 Pu MC-ICP-MS value was 0.240623 ± 0.000072 (2 σ). The ratio plots of all replicates for each isotopes system are shown in Figure 11 through Figure 14. The analyzed values are plotted against the decay-corrected values for CRM 137. The GUM models and budgets are given in Appendix C. Replicates 1-7, which corresponds to analysis dates October 25th - October 28th, were separated on October 12th, 2022

Table 7. The isotopic values for vial 052 from all TIMS analyses

	TIMS isotopic data											
Replicate	Sample ID	²³⁸ Pu/ ²³⁹ Pu	²⁴⁰ Pu/ ²³⁹ Pu	²⁴¹ Pu/ ²³⁹ Pu	²⁴² Pu/ ²³⁹ Pu	²⁴⁴ Pu/ ²³⁹ Pu	Analysis date					
1	202201876	0.0026458	0.240627	0.005113	0.0155755	4.7111×10^{-7}	10/25/2022					
2	202201876	0.0026572	0.240621	0.005112	0.0155782	2.17145×10^{-7}	10/25/2022					
3	202201876	0.0026337	0.240620	0.005108	0.0155758	4.14565×10^{-7}	10/25/2022					
4	202201876	0.0026346	0.240592	0.005110	0.0155684	5.03829×10^{-7}	10/26/2022					
5	202201876	0.0026342	0.240677	0.005108	0.0155850	-1.03829×10^{-7}	10/26/2022					
6	202201876	0.0026414	0.240631	0.005114	0.0155781	2.00646×10^{-6}	10/28/2022					
7	202201876	0.0026611	0.240623	0.005111	0.0155789	1.32822×10^{-6}	10/28/2022					
	Average	0.0026440	0.240627	0.005111	0.0155771	0.00000069	_					
Unce	ertainty (2σ)	0.0000095	0.000078	0.000014	0.0000068	0.00000072	_					

Table 8. The isotopic values for vial 052 from all MC-ICP-MS analyses

ICP Isotopic Data										
Replicate	Sample ID	²³⁸ Pu/ ²³⁹ Pu	²⁴⁰ Pu/ ²³⁹ Pu	²⁴¹ Pu/ ²³⁹ Pu	²⁴² Pu/ ²³⁹ Pu	²⁴⁴ Pu/ ²³⁹ Pu	Analysis Date			
8	045_21876PuI	_	0.240640	0.005106	0.015564	9.43223×10^{-6}	11/22/2022			
9	051_21876PuI		0.240596	0.005103	0.015551	-2.27107×10^{-5}	11/22/2022			
10	054_21876PuI		0.240609	0.005099	0.015570	-6.43841×10^{-8}	11/22/2022			
11	060_21876PuI		0.240628	0.005118	0.015597	1.40812×10^{-5}	11/22/2022			
12	063_21876PuI		0.240639	0.005125	0.015585	-2.25803×10^{-5}	11/22/2022			
13	072_21876PuI		0.240631	0.005091	0.015586	8.79275×10^{-6}	11/22/2022			
14	078_21876PuI	<u>—</u>	0.240619	0.005097	0.015546	7.86452×10^{-6}	11/22/2022			
	Average	_	0.240623	0.005105	0.015571	-0.000001	_			
L U	Incertainty (2σ)	_	0.000072	0.000036	0.000043	0.000016				

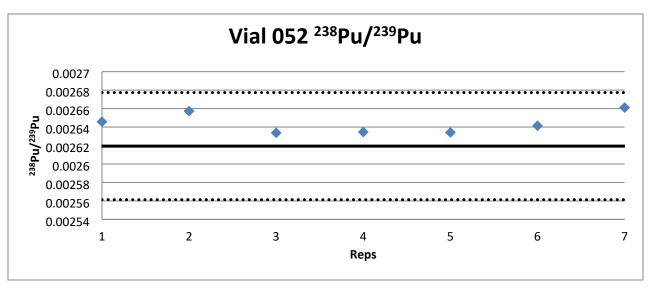


Figure 11. Replicate values of ²³⁸Pu/²³⁹Pu in vial 052 plotted against CRM 137 decay-corrected values. The dashed line represents the expanded uncertainty (k=2) from the original certificate of analysis for CRM 137.

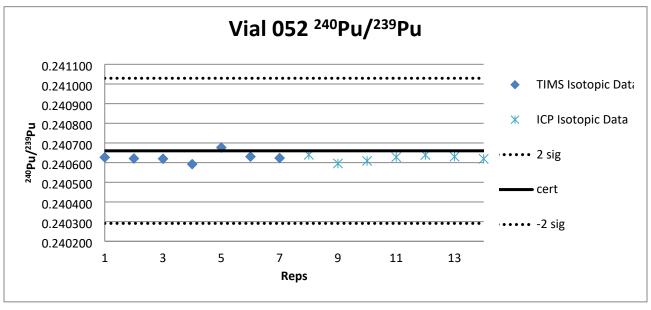


Figure 12. Replicate values of ²⁴⁰Pu/²³⁹Pu in vial 052 plotted against CRM 137 decay-corrected values. The dashed line represents the expanded uncertainty (k=2) from the original certificate of analysis for CRM 137.

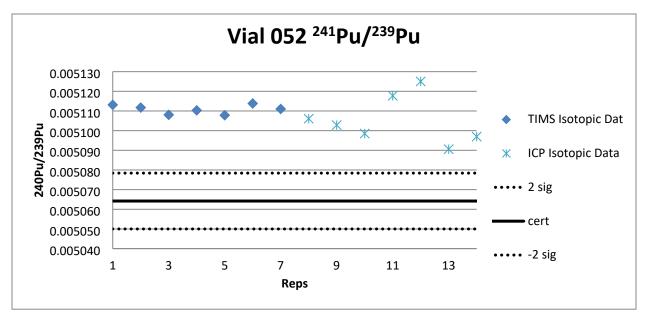


Figure 13. Replicate values of ²⁴¹Pu/²³⁹Pu in vial 052 plotted against CRM 137 decay-corrected values. The dashed line represents the expanded uncertainty (k=2) from the original certificate of analysis for CRM 137.

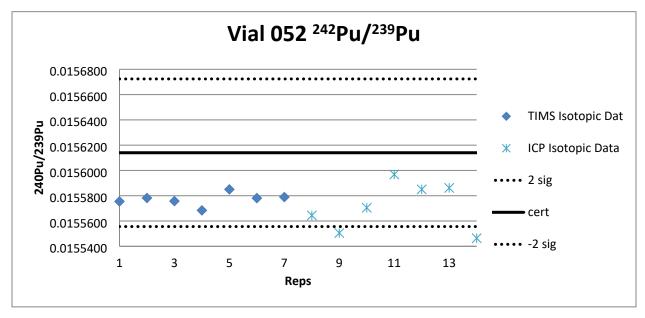


Figure 14. Replicate values of ²⁴²Pu/²³⁹Pu in vial 052 plotted against CRM 137 decay-corrected values. The dashed line represents the expanded uncertainty (k=2) from the original certificate of analysis for CRM 137.

Table 9 displays the 15 replicates TIMS measured for all ratios in vial 113. Table 10 displays the seven replicates MC-ICP-MS measured for all ratios in vial 113. The average 240 Pu/ 239 Pu TIMS value was 0.240626 ± 0.000076 (2σ), and the average 240 Pu/ 239 Pu MC-ICP-MS value was 0.240635 ± 0.000072 (2σ). The ratio plots of all replicates for each isotopes system are shown in Figure 15 through Figure 18. The analyzed values are plotted against the decay-corrected values for CRM 137. The GUM models and budgets are given in Appendix D. Replicates 1-7, which corresponds to analysis dates October 25^{th} - October 28^{th} , were separated on October 12^{th} , 2022. While the other replicates were separated on January 11^{th} , 2023, and subsequently analyzed January 24^{th} , 2023.

Table 9. The isotopic values for vial 113 from all TIMS analyses

	TIMS isotopic data						
Replicate	Sample ID	²³⁸ Pu/ ²³⁹ Pu	²⁴⁰ Pu/ ²³⁹ Pu	²⁴¹ Pu/ ²³⁹ Pu	²⁴² Pu/ ²³⁹ Pu	²⁴⁴ Pu/ ²³⁹ Pu	Analysis date
1	202201877	0.002640	0.240615	0.005180	0.015573	1.65257×10^{-6}	10/25/2022
2	202201877	0.002637	0.240618	0.005170	0.015570	-8.60144×10^{-7}	10/25/2022
3	202201877	0.002634	0.240617	0.005167	0.015573	-8.88115E-07	10/25/2022
4	202201877	0.002644	0.240614	0.005180	0.015573	1.65256×10^{-6}	10/26/2022
5	202201877	0.002660	0.240641	0.005162	0.015578	-8.04512×10^{-7}	10/26/2022
6	202201877	0.002643	0.240620	0.005182	0.015576	5.03829×10^{-7}	10/26/2022
7	202201877	0.002777	0.240612	0.005193	0.015576	2.64673×10^{-6}	10/28/2022
8	202201877	0.002632	0.240589	0.005075	0.015569	1.37884×10^{-6}	1/24/2023
9	202201877	0.002638	0.240639	0.005076	0.015576	-8.59367×10^{-6}	1/24/2023
10	202201877	0.002634	0.240626	0.005075	0.015581	-4.07069×10^{-6}	1/24/2023
11	202201877	0.002634	0.240641	0.005074	0.015580	-1.38997×10^{-5}	1/24/2023
12	202201877	0.002643	0.240632	0.005074	0.015577	-2.24508×10^{-5}	1/24/2023
13	202201877	0.002632	0.240615	0.005070	0.015577	-1.09625×10^{-6}	1/24/2023
14	202201877	0.002641	0.240644	0.005069	0.015595	-4.47132×10^{-6}	1/24/2023
15	202201877	0.002634	0.240660	0.005075	0.015589	-7.03564×10^{-6}	1/24/2023
	Average	0.002648	0.240626	0.005121	0.015578	-0.0000038	_
Unce	ertainty (2σ)	0.000019	0.000076	0.000031	0.000067	0.0000069	_

Table 10. The isotopic values for vial 113 from all MC-ICP-MS analyses

	ICP isotopic data						
Replicate	Sample ID	²³⁸ Pu/ ²³⁹ Pu	²⁴⁰ Pu/ ²³⁹ Pu	241 Pu/ 239 Pu	242 Pu/ 239 Pu	²⁴⁴ Pu/ ²³⁹ Pu	Analysis date
16	081_21877PuI	_	0.240655	0.005036	0.015617	2.43393×10^{-5}	11/22/2022
17	087_21877PuI	_	0.240638	0.005101	0.015537	2.0161×10^{-5}	11/22/2022
18	090_21877PuI	_	0.240638	0.005106	0.015587	3.63947×10^{-6}	11/22/2022
19	096_21877PuI	_	0.240643	0.005101	0.015600	-1.33184×10^{-5}	11/22/2022
20	099_21877PuI	_	0.240644	0.005069	0.015595	3.80158×10^{-6}	11/22/2022
21	105_21877PuI	_	0.240611	0.005085	0.015571	1.60763×10^{-6}	11/22/2022
22	108_21877PuI		0.240617	0.005102	0.015589	-2.21113×10^{-5}	11/22/2022
	Average	_	0.240635	0.005086	0.015585	0.0000026	_
J	Incertainty (2σ)	_	0.000072	0.000040	0.000044	0.0000166	

Figure 15. Replicate values of ²³⁸Pu/²³⁹Pu in vial 113 plotted against CRM 137 decay-corrected values. The dashed line represents the expanded uncertainty (k=2) from the original certificate of analysis for CRM 137.

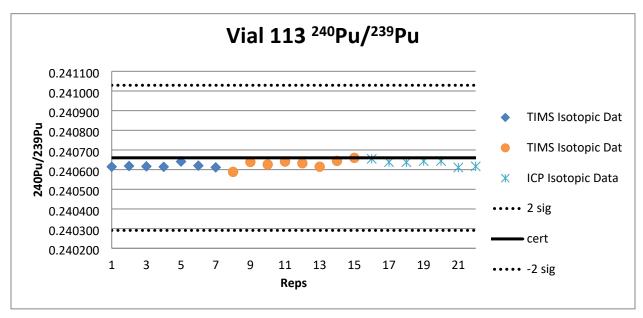


Figure 16. Replicate values of ²⁴⁰Pu/²³⁹Pu in vial 113 plotted against CRM 137 decay-corrected values. The dashed line represents the expanded uncertainty (k=2) from the original certificate of analysis for CRM 137.

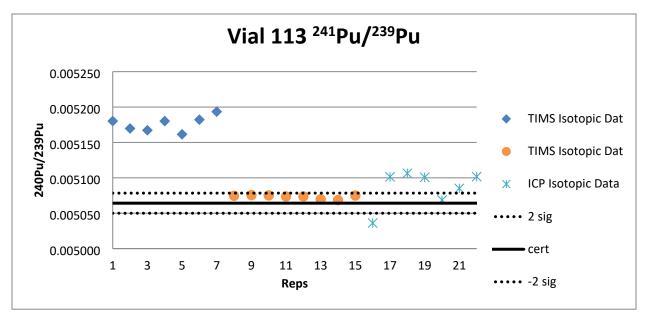


Figure 17. Replicate values of ²⁴¹Pu/²³⁹Pu in vial 113 plotted against CRM 137 decay-corrected values. The dashed line represents the expanded uncertainty (k=2) from the original certificate of analysis for CRM 137.

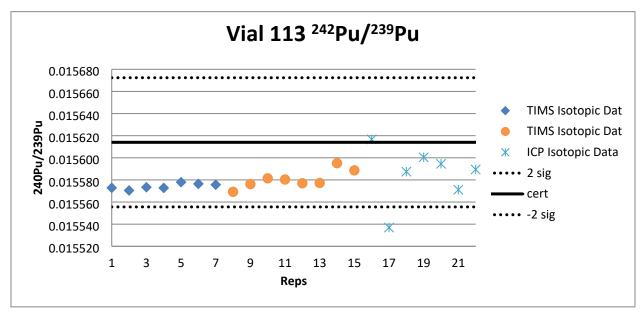


Figure 18. Replicate values of ²⁴²Pu/²³⁹Pu in vial 113 plotted against CRM 137 decay-corrected values. The dashed line represents the expanded uncertainty (k=2) from the original certificate of analysis for CRM 137.

Table 11 displays the all replicates measured by TIMS and MC-ICP-MS. The average 240 Pu/ 239 Pu value was 0.240628 ± 0.000075 (2 σ). The number of replicate measurements was 54. The GUM models and budgets are given in Appendix E.

Table 11. The isotopic values for vials 004, 052, and 113 from all analyses

		Replica	te analysis for	vials 004, 052,	, and 113		
Replicate	Sample ID	²³⁸ Pu/ ²³⁹ Pu	240 Pu/ 239 Pu	$^{241}Pu/^{239}Pu$	²⁴² Pu/ ²³⁹ Pu	²⁴⁴ Pu/ ²³⁹ Pu	Analysis date
1	TIMS vial 04	0.002635	0.240611	0.005108	0.015573	0.000000	10/25/2022
2	TIMS vial 04	0.002635	0.240631	0.005106	0.015578	0.000005	10/25/2022
3	TIMS vial 04	0.002636	0.240662	0.005107	0.015585	0.000001	10/25/2022
4	TIMS vial 04	0.002640	0.240614	0.005180	0.015573	0.000002	10/26/2022
5	TIMS vial 04	0.002637	0.240641	0.005105	0.015577	0.000001	10/26/2022
6	TIMS vial 04	0.002635	0.240576	0.005110	0.015565	0.000002	10/28/2022
7	TIMS vial 04	0.002653	0.240595	0.005194	0.015578	0.000003	10/28/2022
8	TIMS vial 04	0.002634	0.240633	0.005047	0.015579	-0.000001	1/24/2023
9	TIMS vial 04	0.002633	0.240636	0.005054	0.015579	-0.000004	1/24/2023
10	TIMS vial 04	0.002634	0.240640	0.005040	0.015581	-0.000006	1/24/2023
11	TIMS vial 04	0.002635	0.240649	0.005042	0.015586	-0.000003	1/24/2023
12	TIMS vial 52	0.002646	0.240627	0.005113	0.015575	0.000000	10/25/2022
13	TIMS vial 52	0.002657	0.240621	0.005112	0.015578	0.000000	10/25/2022
14	TIMS vial 52	0.002634	0.240620	0.005108	0.015576	0.000000	10/25/2022
15	TIMS vial 52	0.002635	0.240592	0.005110	0.015568	0.000001	10/26/2022
16	TIMS vial 52	0.002634	0.240677	0.005108	0.015585	0.000000	10/26/2022
17	TIMS vial 52	0.002641	0.240631	0.005114	0.015578	0.000002	10/28/2022
18	TIMS vial 52	0.002661	0.240623	0.005111	0.015579	0.000001	10/28/2022
19	TIMS vial 113	0.002640	0.240615	0.005180	0.015573	0.000002	10/25/2022
20	TIMS vial 113	0.002637	0.240618	0.005170	0.015570	-0.000001	10/25/2022
21	TIMS vial 113	0.002634	0.240617	0.005167	0.015573	-0.000001	10/25/2022
22	TIMS vial 113	0.002644	0.240614	0.005180	0.015573	0.000002	10/26/2022
23	TIMS vial 113	0.002660	0.240641	0.005162	0.015578	-0.000001	10/26/2022
24	TIMS vial 113	0.002643	0.240620	0.005182	0.015576	0.000001	10/26/2022
25	TIMS vial 113	0.002777	0.240612	0.005193	0.015576	0.000003	10/28/2022
26	TIMS vial 113	0.002632	0.240589	0.005075	0.015569	0.000001	1/24/2023
27	TIMS vial 113	0.002638	0.240639	0.005076	0.015576	-0.000009	1/24/2023
28	TIMS vial 113	0.002634	0.240626	0.005075	0.015581	-0.000004	1/24/2023
29	TIMS vial 113	0.002634	0.240641	0.005074	0.015580	-0.000014	1/24/2023
30	TIMS vial 113	0.002643	0.240632	0.005074	0.015577	-0.000022	1/24/2023
31	TIMS vial 113	0.002632	0.240615	0.005070	0.015577	-0.000001	1/24/2023
32	TIMS vial 113	0.002641	0.240644	0.005069	0.015595	-0.000004	1/24/2023
33	TIMS vial 113	0.002634	0.240660	0.005075	0.015589	-0.000007	1/24/2023
34	ICP vial 04		0.240631	0.005071	0.015596	-0.000007	11/22/2022

	Uncertainty (2σ)	0.000010	0.000075	0.000017	0.0000067	0.000010	
	Average	0.002644	0.240628	0.005107	0.0155771	-0.000001	
54	ICP vial 113		0.240617	0.005102	0.015589	-0.000022	11/22/2022
53	ICP vial 113		0.240611	0.005085	0.015571	0.000002	11/22/2022
52	ICP vial 113		0.240644	0.005069	0.015595	0.000004	11/22/2022
51	ICP vial 113		0.240643	0.005101	0.015600	-0.000013	11/22/2022
50	ICP vial 113		0.240638	0.005106	0.015587	0.000004	11/22/2022
49	ICP vial 113		0.240638	0.005101	0.015537	0.000020	11/22/2022
48	ICP vial 113		0.240655	0.005036	0.015617	0.000024	11/22/2022
47	ICP vial 52		0.240619	0.005097	0.015546	0.000008	11/22/2022
46	ICP vial 52		0.240631	0.005091	0.015586	0.000009	11/22/2022
45	ICP vial 52		0.240639	0.005125	0.015585	-0.000023	11/22/2022
44	ICP vial 52		0.240628	0.005118	0.015597	0.000014	11/22/2022
43	ICP vial 52		0.240609	0.005099	0.015570	0.000000	11/22/2022
42	ICP vial 52		0.240596	0.005103	0.015551	-0.000023	11/22/2022
41	ICP vial 52		0.240640	0.005106	0.015564	0.000009	11/22/2022
40	ICP vial 04		0.240649	0.005115	0.015572	0.000000	11/22/2022
39	ICP vial 04		0.240621	0.005114	0.015577	0.000009	11/22/2022
38	ICP vial 04		0.240631	0.005117	0.015552	0.000000	11/22/2022
37	ICP vial 04		0.240637	0.005116	0.015577	0.000001	11/22/2022
36	ICP vial 04		0.240640	0.005090	0.015556	-0.000023	11/22/2022
35	ICP vial 04		0.240608	0.005110	0.015577	0.000011	11/22/2022

5.2 ALPHA DATA

Alpha Counting was used a secondary verification for the 238 Pu/ 239 Pu. The separation and plate produce a clean 238 Pu spectrum, measured against a combined 239 +240 signal. The ratio data is corrected using the average 240 Pu/ 239 Pu for each vial to calculate the 238 Pu/ 239 Pu ratio. Table 9 displays the 7 replicates for each vial of the 238 239 ratio. The average 238 Pu/ 239 Pu ratio by alpha counting was $^{0.0260}$ ± $^{0.00037}$ for vial 004, $^{0.0266}$ ± $^{0.00034}$ for vial 052, and $^{0.0261}$ ± $^{0.00038}$ for vial 113. The total averaged value for 238 Pu/ 239 Pu 0.00262 ± 0.00034. This average was derived with the removal of replicate 7 in vial 113. The ratio plots of all replicates for 238 Pu/ 239 Pu are shown in Figure 18. The analyzed values are plotted against the decay-corrected values for CRM 137. The GUM models and budgets are given in Appendix F. While the other replicates were separated on January 11 th, 2023,

Alpha Counting Data 238Pu/239Pu Value					
Vial	Sample ID	²³⁸ Pu/ ²³⁹ Pu	Uncertainty (2σ)	Analysis date	
Vial004	221278-001A	0.00257	0.00037	2/8/2023	
Vial004	221278-001B	0.00259	0.00036	2/8/2023	
Vial004	221278-001C	0.00280	0.00041	2/8/2023	
Vial004	221278-001D	0.00245	0.00034	2/8/2023	
Vial004	221278-001E	0.00248	0.00036	2/8/2023	
Vial004	221278-001F	0.00267	0.00038	2/8/2023	

Vial004	221278-001G	0.00265	0.00037	2/8/2023
1				
Vial052	221278-002A	0.00250	0.00031	2/8/2023
Vial052	221278-002B	0.00265	0.00034	2/8/2023
Vial052	221278-002C	0.00276	0.00034	2/8/2023
Vial052	221278-002D	0.00268	0.00034	2/8/2023
Vial052	221278-002E	0.00264	0.00035	2/8/2023
Vial052	221278-002F	0.00269	0.00034	2/8/2023
Vial052	221278-002G	0.00271	0.00038	2/8/2023
Vial113	221278-003A	0.00265	0.00039	2/8/2023
Vial113	221278-003B	0.00249	0.00035	2/8/2023
Vial113	221278-003C	0.00261	0.00038	2/8/2023
Vial113	221278-003D	0.00248	0.00036	2/8/2023
Vial113	221278-003E	0.00275	0.00040	2/8/2023
Vial113	221278-003F	0.00270	0.00038	2/8/2023
Vial113	221278-003G	0.00357	0.00038	2/8/2023

Table 12. Displays all replicates measured by alpha counting. The average $^{238}Pu/^{239}Pu$ value was 0.00262 \pm 0.00034 (2s). The number of replicate measurements was 21.

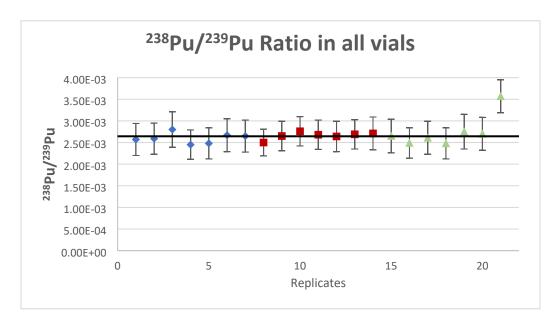
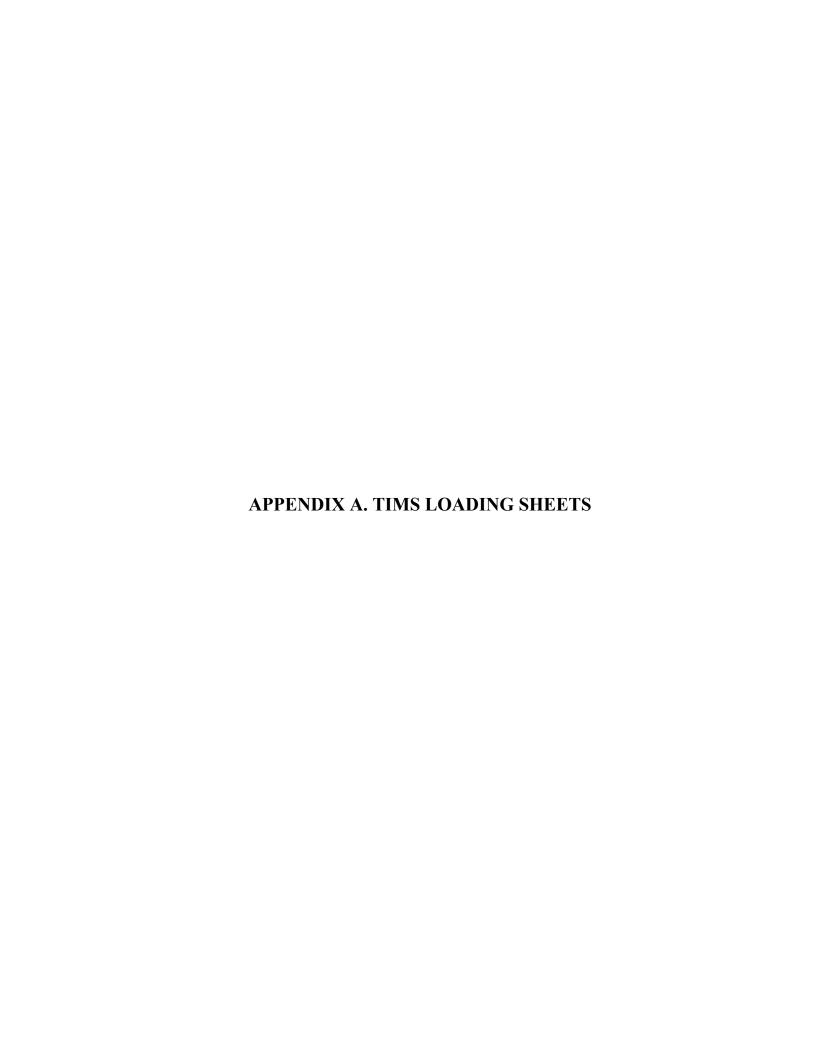



Figure 19. Replicate values of ²³⁸Pu/²³⁹Pu by alpha counts for all the analyzed vials plotted against the average TIMS measured value.

6. REFERENCES

- 1. CSD-AM-CIMS-IN15, Purification of U and/or Pu on 1-mL Eichrom UTEVA and/or TEVA Resin for Analysis by Mass Spectrometry, Oak Ridge National Laboratory, Revision 1.
- 2. ASTM C1672-17, Standard Test Method for Determination of Uranium or Plutonium Isotopic Composition or Concentration by the Total Evaporation Method Using a Thermal Ionization Mass Spectrometer, 2017.

APPENDIX A. TIMS LOADING SHEETS

Triton Loading Sheet			
Date:	19/20/2022		
Turret #:	Ø77		
Instrument	5N630		
Operator:	Hexe		

Turret Position	Sample ID	Element	Filament type (Re,W,Ta) (dbl single)	Loading Volume (uL)	Dry@ 0.6 A Filament treatment
(1)	2M128PuI	Pu	Re, dbl	· 9ml	1460s, 1.5, 5 sec 2.0 500
1	CRM 137	1			
3	CRM 136			4	
. 4	18 75	<i>v</i>	V		*
(5)	202201876				
(6)	128				
. ₹	202201877				
(8)	128				
. 9	CRM 137				
10	202201845				
12	202201876				skate/sus
12	128				/
13	CRM 136				
14	202201877				
15	20120 1875				
. (16)	202201876				
(17)	128				
(380)	20220 1877				
, /19	CRM 137				
20	CRM 136				
, 21	128				

 $\sqrt{128}$, $6 \rightarrow 1$, 6, 8, 12, 17, $\sqrt{137}$, $3 \rightarrow 2$, 9, $\sqrt{136}$, $3 \rightarrow 3$, 13, $\sqrt{202201875}$, $3 \rightarrow 5$, 11, $\sqrt{202201877}$, $3 \rightarrow 7$, 14,

CRM 1374 V113 = 30 = 20 2201877 CRM 1374 V 052 = 20 = 202261878 CRM 1374 V 004 = 10 = 202201875

Triton Loading Sheet				
Date:	10/25/20 22			
Turret #:	Ø77			
Instrument	630			
Operator:	Hexel			

			etter on the second	Loading	
			Filament type	Loading Volume	
Turret	Samula ID	Element	(Re,W,Ta) (dbl single)	(uL)	Filament treatment
Position	Sample ID			-	
1	2M128PuI	Pu	Resabl	IML	600 TA, 501,54,502F
(2)	2C137 PuI		\	Ø.8 Ø	\
.3	2C 136 PuI	V	*	Ø.9.	
4	202201876			0.78L	CX.
×	202201877			0.70mL	
(6)	2M128 PuI			126	
70	202201875			6.71L	
(8)	2M128PuI			ILL	
9	2C137 Put			Q. 882L	
10	202201876			0.7	
617	202201875			0.7	
12	21128 Put			1.0	
. 13	2C136 PuI			Ø. 9	
14	202201877			Ø.7	
. 15	262201879			0.7	
16	202201875			Ø.7	
. (17)	2M128 RuI			1.0	
1.00	2C 137-1876			Ø17	
19	20137 PuI			1,00	.80 LL
20	20136 PuI			独的0	9
21	2M128 Put			1.0	

	Triton Loading Sheet
Date:	10 /27/2022
Turret #:	077 Day 3
Instrument	Hexet 630
Operator:	Hexe

			Filament type	Loading	
Turret			(Re,W,Ta) (dbl	Volume	
Position	Sample ID	Element	single)	(uL)	Filament treatment
(D)	2M128RI	Pu	Re Dall	1.026	6.6 A 6050 14, 550 1.5A, BSR 2A
/2	2C 137 PuI	1	(0.6ml	1
3	2C 136 PLI			0.9 L	
4	202201876	\$	X	to the	XPHIL X
5	202201877			Ø. 7	
(<u>6</u>)	20128 PuI			1.Ø	
A	202201877			0.7	
(8)	21128 PuI			1.00	
<u> </u>	2C137 Put			0.6	
10	202201876			Ø.4	
11	WRM 003			08	
(12)	2M128PuI			1.Ø	
13	20136 RuI			Ø. 9	
14	202201875			Ø.6 L	
每	2C003 PuI			Ø.8	
16	2002 PuI			0.8	
17	2 1128 Put			1	
187	2003 PuI			0.8	
19	20137 PuI			Ø. %	
20	2 C136 PuI			Ø.9	
21	2m128 PuI			1.0	

```
2M128 PLI (6,1.0~L); 1,6,8,12,17,21

2C137 PLI (3,0.6~L); 2,9,19

2C136 PLI (3,0.9~L); 3,13,20

2C003 PLI (4,0.8~L); 11,15,16,18

202201875 (1,0.6~L); 14

202201876 (2,0.4~L); 14,10

202201877 (2,0.7~L); 5,7
```

	Triton Loading Sheet				
Date:	01/23/20				
Turret #:	Ø77				
Instrument	SN 630				
Operator:	Hexel				

Turret Position	Sample ID	Element	Filament type (Re,W,Ta) {dbl single)	Loading Volume (uL)	Filament treatment
1	3M128RJ	Pa	Redbl. TE	126	0196 0.55 1 AC 605
2	3M137PJ	. 1			
3	21895 Put				
4	21877 PUI		_ dx	1	N/
5	21877 R.I	K			Lbe-
6	3MIZEPUT				
7	3C137 P.J	21877 R	I		
8	3C137Put				
9	21875 Put				
10	21877 Put				
11	21128 Put				
12	21875 Put				
13	3C137 Ret				
14	21877 Put				
15	21877 Rt				
16	3M128Rit				
17	21077Rt				
18	21875Put				
19	21877Rt				
20	3C137 Pul				
21	3M128Put				

APPENDIX B. VIAL 004 GUM WORKBENCH

Pu Isotopic for recert 137A

Author: Cole R. Hexel

This Workbench is designed to evaluate the uncertainties in the plutonium isotopic abundance data obtained using the multiple collector mass spectrometer.

Model Equation:

{GUM Uncertainty Calculations for Plutonium Isotopic (PuI) Characterization for a single sample.}

```
{TIMS Data}
{Pu 238/239 Ratio Data}
R_{89} = R_{89corr} * \delta_{Cert} * \delta_{CFVar} + \delta_{seq4};
{Pu 240/239 Ratio Data}
R_{09} = R_{09corr} * \delta_{Cert} * \delta_{CFVar} + \delta_{seq};
{Pu 241/239 Ratio Data}
R_{19} = R_{19corr} * \delta_{Cert} * \delta_{CFVar} + \delta_{seq2};
{Pu 242/239 Ratio Data}
R_{29} = R_{29corr} * \delta_{Cert} * \delta_{CFVar} + \delta_{seq3};
{ICP Data}
{Pu 240/239 Ratio Data}
ICPR_{09} = ICPR_{09corr} * \delta_{Cert} * \delta_{ICPCFVar} + \delta_{ICPseq};
{Pu 241/239 Ratio Data}
ICPR_{19} = ICPR_{19corr} * \delta_{Cert} * \delta_{ICPCFVar} + \delta_{ICPseq2};
{Pu 242/239 Ratio Data}
ICPR_{29} = ICPR_{29corr} * \delta_{Cert} * \delta_{ICPCFVar} + \delta_{ICPseq3};
```

List of Quantities:

Quantity	Unit	Definition
R _{89corr}		The corrected ²³⁸ Pu/ ²³⁹ Pu ratio data from OakLimbs.
R _{09corr}		The corrected ²⁴⁰ Pu/ ²³⁹ Pu ratio data from OakLimbs.
R _{19corr}		The corrected ²⁴¹ Pu/ ²³⁹ Pu ratio data from OakLimbs.
R _{29corr}		The corrected ²⁴² Pu/ ²³⁹ Pu ratio data from OakLimbs.
δ_{Cert}		Relative uncertainty associated with the decay-corrected certified ²⁴² Pu/ ²³⁹ Pu ratio on the mass bias standard certificate.
δ_{CFVar}		Relative standard error associated with the mass bias measurements before and after the sample for the ²⁴² Pu/ ²³⁹ Pu ratio
$\delta_{ m seq}$		Daily variability of each sequence run for the ²⁴⁰ Pu/ ²³⁹ Pu ratio
$\delta_{ m seq2}$		Daily variability of each sequence run for the ²⁴¹ Pu/ ²³⁹ Pu ratio
$\delta_{ m seq3}$		Daily variability of each sequence run for the ²⁴² Pu/ ²³⁹ Pu ratio
δ_{seq4}		Daily variability of each sequence run for the ²³⁸ Pu/ ²³⁹ Pu ratio
R ₀₉		The final ²⁴⁰ Pu/ ²³⁹ Pu ratio and uncertainty
R ₁₉		The final ²⁴¹ Pu/ ²³⁹ Pu ratio and uncertainty
R ₂₉		The final ²⁴² Pu/ ²³⁹ Pu ratio and uncertainty
R ₈₉		The final ²³⁸ Pu/ ²³⁹ Pu ratio and uncertainty
ICPR _{09corr}		The corrected ²⁴⁰ Pu/ ²³⁹ Pu ratio data from OakLimbs MC-ICP-MS
ICPR _{19corr}		The corrected ²⁴¹ Pu/ ²³⁹ Pu ratio data from OakLimbs MC-ICP-MS
ICPR _{29corr}		The corrected ²⁴² Pu/ ²³⁹ Pu ratio data from OakLimbs MC-ICP-MS
δ_{ICPseq}		Daily variability of each sequence run for the ²⁴⁰ Pu/ ²³⁹ Pu ratio on ICP
$\delta_{ICPseq2}$		Daily variability of each sequence run for the ²⁴¹ Pu/ ²³⁹ Pu ratio on ICP
δ_{ICPseq3}		Daily variability of each sequence run for the ²⁴² Pu/ ²³⁹ Pu ratio on ICP
$\delta_{\mathrm{ICPCFVar}}$		Relative standard error associated with the mass bias measurements before and after the sample for the ²⁴² Pu/ ²³⁹ Pu Ratio
ICPR ₀₉		The final ²⁴⁰ Pu/ ²³⁹ Pu ratio and uncertainty from ICP
ICPR ₁₉		The final ²⁴¹ Pu/ ²³⁹ Pu ratio and uncertainty from ICP
ICPR ₂₉		The final ²⁴² Pu/ ²³⁹ Pu ratio and uncertainty from ICP

Input Correlation

	R _{89corr}	R _{09corr}	R _{19corr}	R _{29corr}
R _{89corr}	1	-0.4174	0.7846	-0.0471
R _{09corr}	-0.4174	1	-0.5457	0.8651
R _{19corr}	0.7846	-0.5457	1	-0.4151
R _{29corr}	-0.0471	0.8651	-0.4151	1

B-4

	ICPR _{09corr}	ICPR _{19corr}	ICPR _{29corr}
ICPR _{09corr}	1	-0.0809	-0.2334
ICPR _{19corr}	-0.0809	1	-0.4418
ICPR _{29corr}	-0.2334	-0.4418	1

Uncertainty Budgets: R_{09} : The final 240 Pu/ 239 Pu ratio and uncertainty

1109.	I di I di I di I di	and uncertain	U J			
Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R _{09corr}	0.24062618	7.54×10^{-6}	normal	1.0	7.5×10^{-6}	3.9%
δ_{Cert}	1.000000	130×10^{-6}	normal	0.24	31×10^{-6}	66.4%
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	0.24	18×10^{-6}	22.9%
$\delta_{ m seq}$	0.0	10.0×10^{-6}	normal	1.0	10×10^{-6}	6.8%
R ₀₉	0.2406262	38.4×10^{-6}				

The final ²⁴¹Pu/²³⁹Pu ratio and uncertainty **R**₁₉:

1190 1111011			- J			
Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R _{19corr}	5.0994×10^{-3}	15.8×10^{-6}	normal	1.0	16×10^{-6}	84.2%
δ_{Cert}	1.000000	130×10^{-6}	normal	5.1×10^{-3}	660×10^{-9}	0.1%
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	5.1×10^{-3}	390 × 10 ⁻⁹	0.0%
$\delta_{ m seq2}$	0.0	6.80×10^{-6}	normal	1.0	6.8×10^{-6}	15.6%
R ₁₉	5.0994×10^{-3}	17.2×10^{-6}				

The final ²⁴²Pu/²³⁹Pu ratio and uncertainty \mathbf{R}_{29} :

<u>1110 111141</u>	y, The initial Turi Turiuo und uncertumey							
Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index		
R _{29corr}	0.01557764	1.76×10^{-6}	normal	1.0	1.8×10^{-6}	27.8%		
$\delta_{ ext{Cert}}$	1.000000	130×10^{-6}	normal	0.016	2.0×10^{-6}	36.6%		
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	0.016	1.2×10^{-6}	12.7%		
$\delta_{ m seq3}$	0.0	1.60×10^{-6}	normal	1.0	1.6×10^{-6}	22.9%		
R ₂₉	0.01557764	3.35×10^{-6}						

R₈₉: The final ²³⁸Pu/²³⁹Pu ratio and uncertainty

Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R _{89corr}	2.63702×10^{-3}	1.67×10^{-6}	normal	1.0	1.7×10^{-6}	40.3%
$\delta_{ ext{Cert}}$	1.000000	130×10^{-6}	normal	2.6×10^{-3}	340×10^{-9}	1.7%
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	2.6×10^{-3}	200 × 10 ⁻⁹	0.6%
$\delta_{ m seq4}$	0.0	2.00×10^{-6}	normal	1.0	2.0×10^{-6}	57.4%
R ₈₉	2.63702×10^{-3}	2.64×10^{-6}				

ICPR₀₉: The final ²⁴⁰Pu/²³⁹Pu ratio and uncertainty from ICP

Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
$\delta_{ ext{Cert}}$	1.000000	130×10^{-6}	normal	0.24	31×10^{-6}	76.3%
ICPR _{09corr}	0.24063095	5.05×10^{-6}	normal	1.0	5.0×10^{-6}	2.0%
δ_{ICPseq}	0.0	12.4×10^{-6}	normal	1.0	12×10^{-6}	12.0%
$\delta_{\mathrm{ICPCFVar}}$	1.0000000	46.3×10^{-6}	normal	0.24	11×10^{-6}	9.7%
ICPR ₀₉	0.2406309	35.8×10^{-6}				

ICPR₁₉: The final ²⁴¹Pu/²³⁹Pu ratio and uncertainty from ICP

- CT 11/9•	inc illiai i a,	i a ratio ana ar	reer earning in o	III I C I		
Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
δ_{Cert}	1.000000	130×10^{-6}	normal	5.1×10^{-3}	660×10^{-9}	0.1%
ICPR _{19corr}	5.10479×10^{-3}	6.60×10^{-6}	normal	1.0	6.6×10^{-6}	12.4%
$\delta_{\mathrm{ICPseq2}}$	0.0	17.5×10^{-6}	normal	1.0	18×10^{-6}	87.4%
$\delta_{\mathrm{ICPCFVar}}$	1.0000000	46.3×10^{-6}	normal	5.1×10^{-3}	240×10^{-9}	0.0%
ICPR ₁₉	5.1048×10^{-3}	18.7×10^{-6}				

ICPR₂₉: The final ²⁴²Pu/²³⁹Pu ratio and uncertainty from ICP

The final Tu/ Tu facto and uncertainty from Ter							
Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index	
δ_{Cert}	1.000000	130×10^{-6}	normal	0.016	2.0×10^{-6}	0.9%	
ICPR _{29corr}	0.01557253	5.59×10^{-6}	normal	1.0	5.6×10^{-6}	7.2%	
$\delta_{ICPseq3}$	0.0	19.9×10^{-6}	normal	1.0	20×10^{-6}	91.7%	
$\delta_{ICPCFVar}$	1.0000000	46.3×10^{-6}	normal	0.016	720×10^{-9}	0.1%	
ICPR ₂₉	0.0155725	20.8×10^{-6}					

Results:

Quantity	Value	Expanded uncertainty	Coverage factor	Coverage
R ₀₉	0.240626	77×10^{-6}	2.00	95% (normal)
R ₁₉	5.099×10^{-3}	34×10^{-6}	2.00	95% (normal)
R ₂₉	0.0155776	6.7×10^{-6}	2.00	95% (normal)
R ₈₉	2.6370×10^{-3}	5.3×10^{-6}	2.00	95% (normal)
ICPR ₀₉	0.240631	72×10^{-6}	2.00	95% (normal)
ICPR ₁₉	5.105×10^{-3}	37×10^{-6}	2.00	95% (normal)
ICPR ₂₉	0.015573	42×10^{-6}	2.00	95% (normal)

Result Correlation:

	R ₀₉	R ₁₉	R ₂₉	R ₈₉	ICPR ₀₉	ICPR ₁₉	ICPR ₂₉
R ₀₉	1	-0.0561	0.7533	0.0904	0.7120	0.0289	0.0794
R ₁₉	-0.0561	1	-0.1695	0.4636	0.0337	1.4×10^{-3}	3.8×10^{-3}
R ₂₉	0.7533	-0.1695	1	0.0900	0.5289	0.0215	0.0590
R ₈₉	0.0904	0.4636	0.0900	1	0.1135	4.6×10^{-3}	0.0127
ICPR ₀₉	0.7120	0.0337	0.5289	0.1135	1	0.0309	0.0871
ICPR ₁₉	0.0289	1.4×10^{-3}	0.0215	4.6×10^{-3}	0.0309	1	-0.0380
ICPR ₂₉	0.0794	3.8×10^{-3}	0.0590	0.0127	0.0871	-0.0380	1

APPENDIX C. VIAL 052 GUM WORKBENCH

Pu Isotopic for recert 137A

Author: Cole R. Hexel

This Workbench is designed to evaluate the uncertainties in the plutonium isotopic abundance data obtained using the multiple collector mass spectrometer.

Model Equation:

{GUM Uncertainty Calculations for Plutonium Isotopic (PuI) Characterization for a single sample.}

```
{TIMS Data}
{Pu 238/239 Ratio Data}
R_{89} = R_{89corr} * \delta_{Cert} * \delta_{CFVar} + \delta_{seq4};
{Pu 240/239 Ratio Data}
R_{09} = R_{09corr} * \delta_{Cert} * \delta_{CFVar} + \delta_{seq};
{Pu 241/239 Ratio Data}
R_{19} = R_{19corr} * \delta_{Cert} * \delta_{CFVar} + \delta_{seq2};
{Pu 242/239 Ratio Data}
R_{29} = R_{29corr} * \delta_{Cert} * \delta_{CFVar} + \delta_{seq3};
{ICP Data}
{Pu 240/239 Ratio Data}
ICPR_{09} = ICPR_{09corr} * \delta_{Cert} * \delta_{ICPCFVar} + \delta_{ICPseq};
{Pu 241/239 Ratio Data}
ICPR_{19} = ICPR_{19corr} * \delta_{Cert} * \delta_{ICPCFVar} + \delta_{ICPseq2};
{Pu 242/239 Ratio Data}
ICPR_{29} = ICPR_{29corr} * \delta_{Cert} * \delta_{ICPCFVar} + \delta_{ICPseq3};
```

List of Quantities:

Quantity	Unit	Definition
R _{89corr}		The corrected ²³⁸ Pu/ ²³⁹ Pu ratio data from OakLimbs.
R _{09corr}		The corrected ²⁴⁰ Pu/ ²³⁹ Pu ratio data from OakLimbs.
R _{19corr}		The corrected ²⁴¹ Pu/ ²³⁹ Pu ratio data from OakLimbs.
R _{29corr}		The corrected ²⁴² Pu/ ²³⁹ Pu ratio data from OakLimbs.
δ_{Cert}		Relative uncertainty associated with the decay-corrected certified ²⁴² Pu/ ²³⁹ Pu ratio on the mass bias standard certificate.
δ_{CFVar}		Relative standard error associated with the mass bias measurements before and after the sample for the ²⁴² Pu/ ²³⁹ Pu ratio
$\delta_{ m seq}$		day to day variability of each sequence run for the ²⁴⁰ Pu/ ²³⁹ Pu ratio
$\delta_{ m seq2}$		day to day variability of each sequence run for the ²⁴¹ Pu/ ²³⁹ Pu ratio
$\delta_{ m seq3}$		day to day variability of each sequence run for the ²⁴² Pu/ ²³⁹ Pu ratio
$\delta_{ m seq4}$		day to day variability of each sequence run for the ²³⁸ Pu/ ²³⁹ Pu ratio
R ₀₉		The final ²⁴⁰ Pu/ ²³⁹ Pu ratio and uncertainty
R ₁₉		The final ²⁴¹ Pu/ ²³⁹ Pu ratio and uncertainty
R ₂₉		The final ²⁴² Pu/ ²³⁹ Pu ratio and uncertainty
R ₈₉		The final ²³⁸ Pu/ ²³⁹ Pu ratio and uncertainty
ICPR _{09corr}		The corrected ²⁴⁰ Pu/ ²³⁹ Pu ratio data from OakLimbs MC-ICP-MS
ICPR _{19corr}		The corrected ²⁴¹ Pu/ ²³⁹ Pu ratio data from OakLimbs MC-ICP-MS
ICPR _{29corr}		The corrected ²⁴² Pu/ ²³⁹ Pu ratio data from OakLimbs MC-ICP-MS
δ_{ICPseq}		Daily variability of each sequence run for the ²⁴⁰ Pu/ ²³⁹ Pu ratio on ICP
$\delta_{\mathrm{ICPseq2}}$		Daily variability of each sequence run for the ²⁴¹ Pu/ ²³⁹ Pu ratio on ICP
δ_{ICPseq3}		Daily variability of each sequence run for the ²⁴² Pu/ ²³⁹ Pu ratio on ICP
$\delta_{ICPCFVar}$		Relative standard error associated with the mass bias measurements before and after the sample for the ²⁴² Pu/ ²³⁹ Pu ratio
ICPR ₀₉		The final ²⁴⁰ Pu/ ²³⁹ Pu ratio and uncertainty from ICP
ICPR ₁₉		The final ²⁴¹ Pu/ ²³⁹ Pu ratio and uncertainty from ICP
ICPR ₂₉		The final ²⁴² Pu/ ²³⁹ Pu ratio and uncertainty from ICP

Input Correlation

	R _{89corr}	R _{09corr}	R _{19corr}	R _{29corr}
R _{89corr}	1	-0.4174	0.7846	-0.0471
R _{09corr}	-0.4174	1	-0.5457	0.8651
R _{19corr}	0.7846	-0.5457	1	-0.4151
R _{29corr}	-0.0471	0.8651	-0.4151	1

C-4

	ICPR _{09corr}	ICPR _{19corr}	ICPR _{29corr}
ICPR _{09corr}	1	-0.0809	-0.2334
ICPR _{19corr}	-0.0809	1	-0.4418
ICPR _{29corr}	-0.2334	-0.4418	1

Uncertainty Budgets:

R₀₉: The final ²⁴⁰Pu/²³⁹Pu ratio and uncertainty

2-090 2 222	2 42/ 2 42 2 44 47 47		- J			
Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R _{09corr}	0.24062720	9.51×10^{-6}	normal	1.0	9.5×10^{-6}	6.0%
δ_{Cert}	1.000000	130×10^{-6}	normal	0.24	31×10^{-6}	64.9%
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	0.24	18×10^{-6}	22.4%
$\delta_{ m seq}$	0.0	10.0×10^{-6}	normal	1.0	10×10^{-6}	6.6%
R ₀₉	0.2406272	38.8×10^{-6}				

The final ²⁴¹Pu/²³⁹Pu ratio and uncertainty \mathbf{R}_{19} :

Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R _{19corr}	5.110839×10^{-3}	874×10^{-9}	normal	1.0	870×10^{-9}	1.6%
δ_{Cert}	1.000000	130×10^{-6}	normal	5.1×10^{-3}	660×10^{-9}	0.9%
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	5.1×10^{-3}	390×10^{-9}	0.3%
$\delta_{ m seq2}$	0.0	6.80×10^{-6}	normal	1.0	6.8×10^{-6}	97.1%
R ₁₉	5.11084×10^{-3}	6.90×10^{-6}				

The final ²⁴²Pu/²³⁹Pu ratio and uncertainty \mathbf{R}_{29} :

Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R_{29corr}	0.01557713	1.88×10^{-6}	normal	1.0	1.9×10^{-6}	30.4%
δ_{Cert}	1.000000	130×10^{-6}	normal	0.016	2.0×10^{-6}	35.3%
$\delta_{ ext{CFVar}}$	1.0000000	76.4×10^{-6}	normal	0.016	1.2×10^{-6}	12.2%
δ_{seq3}	0.0	1.60×10^{-6}	normal	1.0	1.6×10^{-6}	22.1%
R ₂₉	0.01557713	3.41×10^{-6}				

R₈₉: The final ²³⁸Pu/²³⁹Pu ratio and uncertainty

Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R _{89corr}	2.64401×10^{-3}	4.27×10^{-6}	normal	1.0	4.3×10^{-6}	81.4%
$\delta_{ ext{Cert}}$	1.000000	130×10^{-6}	normal	2.6×10^{-3}	340×10^{-9}	0.5%
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	2.6×10^{-3}	200 × 10 ⁻⁹	0.2%
$\delta_{ m seq4}$	0.0	2.00×10^{-6}	normal	1.0	2.0×10^{-6}	17.8%
R ₈₉	2.64401×10^{-3}	4.73×10^{-6}				

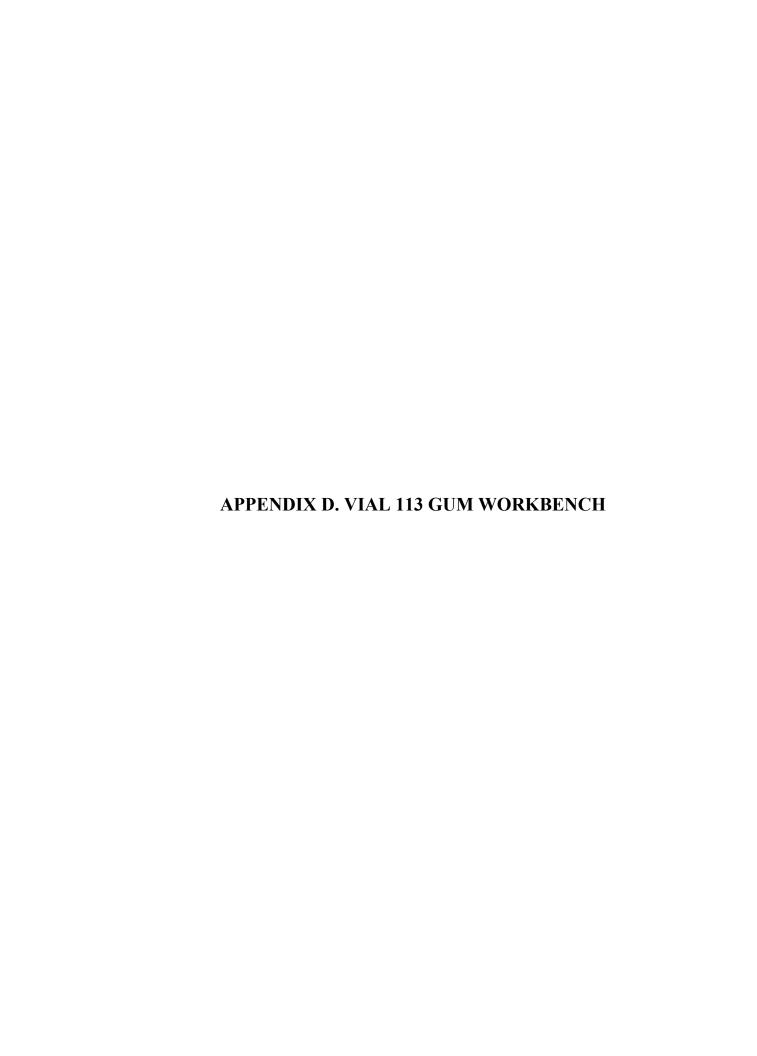
ICPR₀₉: The final ²⁴⁰Pu/²³⁹Pu ratio and uncertainty from ICP

Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
δ_{Cert}	1.000000	130×10^{-6}	normal	0.24	31×10^{-6}	75.6%
ICPR _{09corr}	0.24062296	6.13×10^{-6}	normal	1.0	6.1×10^{-6}	2.9%
δ_{ICPseq}	0.0	12.4×10^{-6}	normal	1.0	12×10^{-6}	11.9%
$\delta_{\mathrm{ICPCFVar}}$	1.0000000	46.3×10^{-6}	normal	0.24	11×10^{-6}	9.6%
ICPR ₀₉	0.2406230	36.0×10^{-6}				

ICPR₁₉: The final ²⁴¹Pu/²³⁹Pu ratio and uncertainty from ICP

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
δ_{Cert}	1.000000	130×10^{-6}	normal	5.1×10^{-3}	660×10^{-9}	0.1%
ICPR _{19corr}	5.10539×10^{-3}	4.58×10^{-6}	normal	1.0	4.6×10^{-6}	6.4%
$\delta_{\mathrm{ICPseq2}}$	0.0	17.5×10^{-6}	normal	1.0	18×10^{-6}	93.4%
$\delta_{ICPCFVar}$	1.0000000	46.3×10^{-6}	normal	5.1×10^{-3}	240×10^{-9}	0.0%
ICPR ₁₉	5.1054×10^{-3}	18.1×10^{-6}				

ICPR₂₉: The final ²⁴²Pu/²³⁹Pu ratio and uncertainty from ICP


101 129. The limit 1 tr 1 tracto and uncertainty from 101							
	Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
	δ_{Cert}	1.000000	130×10^{-6}	normal	0.016	2.0×10^{-6}	0.9%
	ICPR _{29corr}	0.01557139	7.17×10^{-6}	normal	1.0	7.2×10^{-6}	11.4%
	$\delta_{ICPseq3}$	0.0	19.9×10^{-6}	normal	1.0	20×10^{-6}	87.6%
	$\delta_{\mathrm{ICPCFVar}}$	1.0000000	46.3×10^{-6}	normal	0.016	720×10^{-9}	0.1%
	ICPR ₂₉	0.0155714	21.3×10^{-6}		_	_	

Results:

Quantity	Value	Expanded uncertainty	Coverage factor	Coverage
R ₀₉	0.240627	78×10^{-6}	2.00	95% (normal)
R ₁₉	5.111×10^{-3}	14×10^{-6}	2.00	95% (normal)
R ₂₉	0.0155771	6.8×10^{-6}	2.00	95% (normal)
R ₈₉	2.6440×10^{-3}	9.5×10^{-6}	2.00	95% (normal)
ICPR ₀₉	0.240623	72×10^{-6}	2.00	95% (normal)
ICPR ₁₉	5.105×10^{-3}	36×10^{-6}	2.00	95% (normal)
ICPR ₂₉	0.015571	43×10^{-6}	2.00	95% (normal)

Result Correlation:

	R ₀₉	R ₁₉	R ₂₉	R ₈₉	ICPR ₀₉	ICPR ₁₉	ICPR ₂₉
R ₀₉	1	0.0875	0.7614	-0.0136	0.7007	0.0295	0.0767
R ₁₉	0.0875	1	0.0480	0.0991	0.0837	3.5×10^{-3}	9.2×10^{-3}
R ₂₉	0.7614	0.0480	1	0.0346	0.5170	0.0218	0.0566
R ₈₉	-0.0136	0.0991	0.0346	1	0.0631	2.7×10^{-3}	6.9×10^{-3}
ICPR ₀₉	0.7007	0.0837	0.5170	0.0631	1	0.0324	0.0799
ICPR ₁₉	0.0295	3.5×10^{-3}	0.0218	2.7×10^{-3}	0.0324	1	-0.0338
ICPR ₂₉	0.0767	9.2×10^{-3}	0.0566	6.9×10^{-3}	0.0799	-0.0338	1

APPENDIX D. VIAL 113 GUM WORKBENCH

Pu Isotopic for recert 137A

Author: Cole R. Hexel

This Workbench is designed to evaluate the uncertainties in the plutonium isotopic abundance data obtained using the multiple collector mass spectrometer.

Model Equation:

{GUM Uncertainty Calculations for Plutonium Isotopic (Pul) Characterization for a single sample.}

```
{TIMS Data}
{Pu 238/239 Ratio Data}
R_{89} = R_{89corr} * \delta_{Cert} * \delta_{CFVar} + \delta_{seq4};
{Pu 240/239 Ratio Data}
R_{09} = R_{09corr} * \delta_{Cert} * \delta_{CFVar} + \delta_{seq};
{Pu 241/239 Ratio Data}
R_{19} = R_{19corr} * \delta_{Cert} * \delta_{CFVar} + \delta_{seq2};
{Pu 242/239 Ratio Data}
R_{29} = R_{29corr} * \delta_{Cert} * \delta_{CFVar} + \delta_{seq3};
{ICP Data}
{Pu 240/239 Ratio Data}
ICPR_{09} = ICPR_{09corr} * \delta_{Cert} * \delta_{ICPCFVar} + \delta_{ICPseq};
{Pu 241/239 Ratio Data}
ICPR_{19} = ICPR_{19corr} * \delta_{Cert} * \delta_{ICPCFVar} + \delta_{ICPseq2};
{Pu 242/239 Ratio Data}
ICPR_{29} = ICPR_{29corr} * \delta_{Cert} * \delta_{ICPCFVar} + \delta_{ICPseq3};
```

List of Quantities:

Quantity	Unit	Definition
R _{89corr}		The corrected ²³⁸ Pu/ ²³⁹ Pu ratio data from OakLimbs.
R _{09corr}		The corrected ²⁴⁰ Pu/ ²³⁹ Pu ratio data from OakLimbs.
R _{19corr}		The corrected ²⁴¹ Pu/ ²³⁹ Pu ratio data from OakLimbs.
R _{29corr}		The corrected ²⁴² Pu/ ²³⁹ Pu ratio data from OakLimbs.
$\delta_{ m Cert}$		Relative uncertainty associated with the decay-corrected certified ²⁴² Pu/ ²³⁹ Pu ratio on the mass bias standard certificate.
$\delta_{ ext{CFVar}}$		Relative standard error associated with the mass bias measurements before and after the sample for the ²⁴² Pu/ ²³⁹ Pu ratio
$\delta_{ m seq}$		Daily variability of each sequence run for the ²⁴⁰ Pu/ ²³⁹ Pu ratio
$\delta_{ m seq2}$		Daily variability of each sequence run for the ²⁴¹ Pu/ ²³⁹ Pu ratio
$\delta_{ m seq3}$		Daily variability of each sequence run for the ²⁴² Pu/ ²³⁹ Pu ratio
$\delta_{ m seq4}$		Daily variability of each sequence run for the ²³⁸ Pu/ ²³⁹ Pu ratio
R ₀₉		The final ²⁴⁰ Pu/ ²³⁹ Pu ratio and uncertainty
R ₁₉		The final ²⁴¹ Pu/ ²³⁹ Pu ratio and uncertainty
R ₂₉		The final ²⁴² Pu/ ²³⁹ Pu ratio and uncertainty
R ₈₉		The final 238Pu/239Pu ratio and uncertainty
ICPR _{09corr}		The corrected ²⁴⁰ Pu/ ²³⁹ Pu ratio data from OakLimbs MC-ICP-MS
ICPR _{19corr}		The corrected ²⁴¹ Pu/ ²³⁹ Pu ratio data from OakLimbs MC-ICP-MS
ICPR _{29corr}		The corrected ²⁴² Pu/ ²³⁹ Pu ratio data from OakLimbs MC-ICP-MS
δ_{ICPseq}		Daily variability of each sequence run for the ²⁴⁰ Pu/ ²³⁹ Pu ratio on ICP
$\delta_{\mathrm{ICPseq2}}$		Daily variability of each sequence run for the ²⁴¹ Pu/ ²³⁹ Pu ratio on ICP
δ_{ICPseq3}		Daily variability of each sequence run for the ²⁴² Pu/ ²³⁹ Pu ratio on ICP
$\delta_{ICPCFVar}$		Relative standard error associated with the mass bias measurements before and after the sample for the ²⁴² Pu/ ²³⁹ Pu ratio
ICPR ₀₉		The final ²⁴⁰ Pu/ ²³⁹ Pu ratio and uncertainty from ICP
ICPR ₁₉		The final ²⁴¹ Pu/ ²³⁹ Pu ratio and uncertainty from ICP
ICPR ₂₉		The final ²⁴² Pu/ ²³⁹ Pu ratio and uncertainty from ICP

Input Correlation

	R _{89corr}	R _{09corr}	R _{19corr}	R _{29corr}
R _{89corr}	1	-0.4174	0.7846	-0.0471
R _{09corr}	-0.4174	1	-0.5457	0.8651
R _{19corr}	0.7846	-0.5457	1	-0.4151
R _{29corr}	-0.0471	0.8651	-0.4151	1

D-4

	ICPR _{09corr}	ICPR _{19corr}	ICPR _{29corr}
ICPR _{09corr}	1	-0.0809	-0.2334
ICPR _{19corr}	-0.0809	1	-0.4418
ICPR _{29corr}	-0.2334	-0.4418	1

Uncertainty Budgets: R_{09} : The final 240 Pu/ 239 Pu ratio and uncertainty

1 <u>109. I iic iiiiai</u>	Iu/ IuIatio	and uncertain	· y			
Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R _{09corr}	0.24062551	4.53×10^{-6}	normal	1.0	4.5×10^{-6}	1.4%
δ_{Cert}	1.000000	130×10^{-6}	normal	0.24	31×10^{-6}	68.1%
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	0.24	18×10^{-6}	23.5%
$\delta_{ m seq}$	0.0	10.0×10^{-6}	normal	1.0	10×10^{-6}	7.0%
R ₀₉	0.2406255	37.9×10^{-6}				

The final ²⁴¹Pu/²³⁹Pu ratio and uncertainty \mathbf{R}_{19} :

Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R _{19corr}	5.1214×10^{-3}	13.9×10^{-6}	normal	1.0	14×10^{-6}	80.4%
δ_{Cert}	1.000000	130×10^{-6}	normal	5.1×10^{-3}	670×10^{-9}	0.2%
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	5.1×10^{-3}	390×10^{-9}	0.0%
$\delta_{ m seq2}$	0.0	6.80×10^{-6}	normal	1.0	6.8×10^{-6}	19.3%
R ₁₉	5.1214×10^{-3}	15.5×10^{-6}				

The final ²⁴²Pu/²³⁹Pu ratio and uncertainty R₂₉:

1829. The illian	Iu/ IuIatio	and uncertain	ty			
Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R _{29corr}	0.01557766	1.75×10^{-6}	normal	1.0	1.8×10^{-6}	27.5%
δ_{Cert}	1.000000	130×10^{-6}	normal	0.016	2.0×10^{-6}	36.8%
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	0.016	1.2×10^{-6}	12.7%
$\delta_{ m seq3}$	0.0	1.60×10^{-6}	normal	1.0	1.6×10^{-6}	23.0%
R ₂₉	0.01557766	3.34×10^{-6}				

R₈₉: The final ²³⁸Pu/²³⁹Pu ratio and uncertainty

Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R_{89corr}	2.64820×10^{-3}	9.37×10^{-6}	normal	1.0	9.4×10^{-6}	95.5%
δ_{Cert}	1.000000	130×10^{-6}	normal	2.6×10^{-3}	340×10^{-9}	0.1%
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	2.6×10^{-3}	200 × 10 ⁻⁹	0.0%
δ_{seq4}	0.0	2.00×10^{-6}	normal	1.0	2.0×10^{-6}	4.3%
R ₈₉	2.64820×10^{-3}	9.59×10^{-6}				

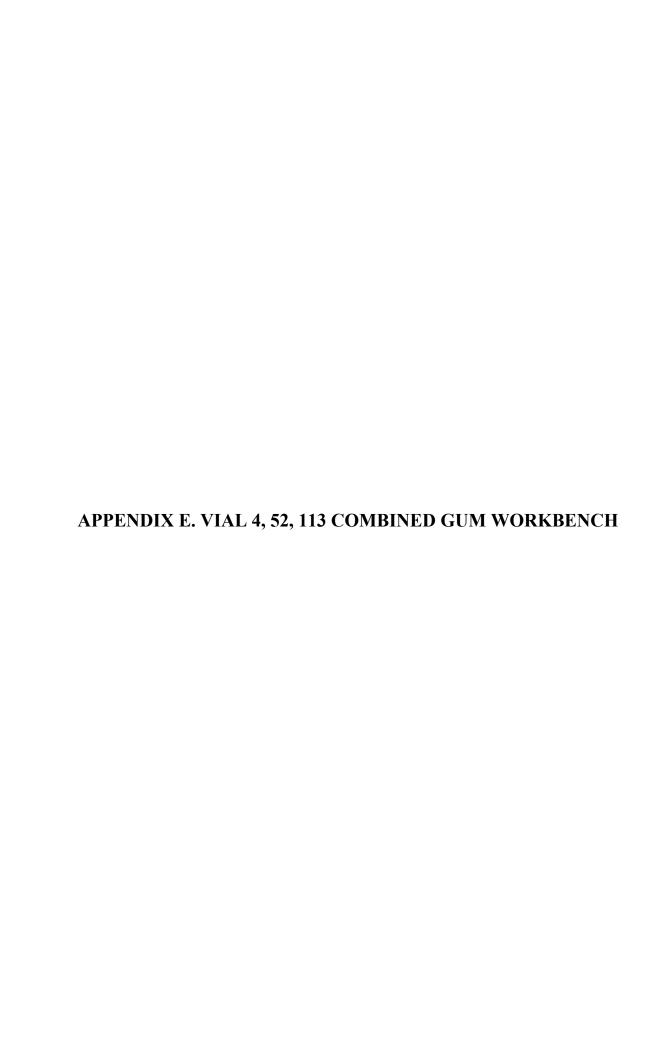
ICPR₀₉: The final ²⁴⁰Pu/²³⁹Pu ratio and uncertainty from ICP

Quantity	Value	Standard	Distribution	Sensitivity	Uncertainty	Index
		uncertainty		coefficient	contribution	
$\delta_{ ext{Cert}}$	1.000000	130×10^{-6}	normal	0.24	31×10^{-6}	75.7%
ICPR _{09corr}	0.24063514	5.95×10^{-6}	normal	1.0	6.0×10^{-6}	2.7%
δ_{ICPseq}	0.0	12.4×10^{-6}	normal	1.0	12×10^{-6}	11.9%
$\delta_{\mathrm{ICPCFVar}}$	1.0000000	46.3×10^{-6}	normal	0.24	11×10^{-6}	9.6%
ICPR ₀₉	0.2406351	35.9×10^{-6}				

ICPR₁₉: The final ²⁴¹Pu/²³⁹Pu ratio and uncertainty from ICP

1011190	ne mu i u	i a ratio ana ar	icer turnity in o	111 101		
Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
δ_{Cert}	1.000000	130×10^{-6}	normal	5.1×10^{-3}	660×10^{-9}	0.1%
ICPR _{19corr}	5.08573×10^{-3}	9.64×10^{-6}	normal	1.0	9.6×10^{-6}	23.2%
$\delta_{\mathrm{ICPseq2}}$	0.0	17.5×10^{-6}	normal	1.0	18×10^{-6}	76.6%
$\delta_{ICPCFVar}$	1.0000000	46.3×10^{-6}	normal	5.1×10^{-3}	240×10^{-9}	0.0%
ICPR ₁₉	5.0857×10^{-3}	20.0×10^{-6}				

ICPR₂₉: The final ²⁴²Pu/²³⁹Pu ratio and uncertainty from ICP


-	1et R29. The final Tu, Tu factor and uncertainty from fer						
	Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
	δ_{Cert}	1.000000	130×10^{-6}	normal	0.016	2.0×10^{-6}	0.8%
	ICPR _{29corr}	0.01558524	9.59×10^{-6}	normal	1.0	9.6×10^{-6}	18.7%
	$\delta_{ICPseq3}$	0.0	19.9×10^{-6}	normal	1.0	20×10^{-6}	80.4%
	$\delta_{\mathrm{ICPCFVar}}$	1.0000000	46.3×10^{-6}	normal	0.016	720×10^{-9}	0.1%
	ICPR ₂₉	0.0155852	22.2×10^{-6}		_		

Results:

Quantity	Value	Expanded uncertainty	Coverage factor	Coverage
R ₀₉	0.240626	76×10^{-6}	2.00	95% (normal)
R ₁₉	5.121×10^{-3}	31×10^{-6}	2.00	95% (normal)
R ₂₉	0.0155777	6.7×10^{-6}	2.00	95% (normal)
R ₈₉	2.648×10^{-3}	19×10^{-6}	2.00	95% (normal)
ICPR ₀₉	0.240635	72×10^{-6}	2.00	95% (normal)
ICPR ₁₉	5.086×10^{-3}	40 × 10 ⁻⁶	2.00	95% (normal)
ICPR ₂₉	0.015585	44×10^{-6}	2.00	95% (normal)

Result Correlation:

	R ₀₉	R ₁₉	R ₂₉	R ₈₉	ICPR ₀₉	ICPR ₁₉	ICPR ₂₉
R ₀₉	1	-0.0107	0.7278	-8.9×10^{-3}	0.7182	0.0273	0.0753
R ₁₉	-0.0107	1	-0.1601	0.6897	0.0375	1.4×10^{-3}	3.9×10^{-3}
R ₂₉	0.7278	-0.1601	1	5.2×10^{-3}	0.5280	0.0201	0.0554
R ₈₉	-8.9×10^{-3}	0.6897	5.2×10^{-3}	1	0.0312	1.2×10^{-3}	3.3×10^{-3}
ICPR ₀₉	0.7182	0.0375	0.5280	0.0312	1	0.0260	0.0728
ICPR ₁₉	0.0273	1.4×10^{-3}	0.0201	1.2×10^{-3}	0.0260	1	-0.0886
ICPR ₂₉	0.0753	3.9×10^{-3}	0.0554	3.3×10^{-3}	0.0728	-0.0886	1

APPENDIX E. VIAL 004, 052, 113 COMBINED GUM WORKBENCH

Pu Isotopic for recert 137A

Author: Cole R. Hexel

This Workbench is designed to evaluate the uncertainties in the plutonium isotopic abundance data obtained using the multicollector inductively coupled plasma—mass spectrometer.

Model Equation:

{GUM Uncertainty Calculations for Plutonium Isotopic (PuI) Characterization for a single sample.}

$$\{Pu\ 238/239\ Ratio\ Data\}$$
 $R_{89}=R_{89corr}*\delta_{Cert}*\delta_{CFVar}+\delta_{seq4};$
 $\{Pu\ 240/239\ Ratio\ Data\}$
 $R_{09}=R_{09corr}*\delta_{Cert}*\delta_{CFVar}+\delta_{seq};$
 $\{Pu\ 241/239\ Ratio\ Data\}$
 $R_{19}=R_{19corr}*\delta_{Cert}*\delta_{CFVar}+\delta_{seq2};$
 $\{Pu\ 242/239\ Ratio\ Data\}$
 $R_{29}=R_{29corr}*\delta_{Cert}*\delta_{CFVar}+\delta_{seq3};$

List of Quantities:

Quantity	Unit	Definition
R _{89corr}		The corrected ²³⁸ Pu/ ²³⁹ Pu ratio data from OakLimbs.
R _{09corr}		The corrected ²⁴⁰ Pu/ ²³⁹ Pu ratio data from OakLimbs.
R _{19corr}		The corrected ²⁴¹ Pu/ ²³⁹ Pu ratio data from OakLimbs.
R _{29corr}		The corrected ²⁴² Pu/ ²³⁹ Pu ratio data from OakLimbs.
δ_{Cert}		Relative uncertainty associated with the decay-corrected certified ²⁴² Pu/ ²³⁹ Pu ratio on the mass bias standard certificate.
δ_{CFVar}		Relative standard error associated with the mass bias measurements before and after the sample for the ²⁴² Pu/ ²³⁹ Pu ratio
$\delta_{ m seq}$		Daily variability of each sequence run for the ²⁴⁰ Pu/ ²³⁹ Pu ratio
$\delta_{ m seq2}$		Daily variability of each sequence run for the ²⁴¹ Pu/ ²³⁹ Pu ratio
$\delta_{ m seq3}$		Daily variability of each sequence run for the ²⁴² Pu/ ²³⁹ Pu ratio
$\delta_{ m seq4}$		Daily variability of each sequence run for the ²³⁸ Pu/ ²³⁹ Pu ratio
R ₀₉		The final ²⁴⁰ Pu/ ²³⁹ Pu ratio and uncertainty
R ₁₉		The final ²⁴¹ Pu/ ²³⁹ Pu ratio and uncertainty
R ₂₉		The final ²⁴² Pu/ ²³⁹ Pu ratio and uncertainty
R ₈₉		The final ²³⁸ Pu/ ²³⁹ Pu ratio and uncertainty

R_{89corr}: Type A

Method of observation: Direct Number of observations: 33

No.	Observation	No.	Observation	No.	Observation
1	0.002635	12	0.002646	23	0.002660
2	0.002635	13	0.002657	24	0.002643
3	0.002636	14	0.002634	25	0.002777
4	0.002640	15	0.002635	26	0.002632
5	0.002637	16	0.002634	27	0.002638
6	0.002635	17	0.002641	28	0.002634
7	0.002653	18	0.002661	29	0.002634
8	0.002634	19	0.002640	30	0.002643
9	0.002633	20	0.002637	31	0.002632
10	0.002634	21	0.002634	32	0.002641
11	0.002635	22	0.002644	33	0.002634

Arithmetic mean: 2.64358×10^{-3} Standard deviation: 25×10^{-6} Standard uncertainty: 4.39×10^{-6}

Degrees of freedom: 32

R_{09corr}: Type A

Method of observation: Direct Number of observations: 54

No.	Observation	No.	Observation	No.	Observation
1	0.240611	19	0.240615	37	0.240637
2	0.240631	20	0.240618	38	0.240631
3	0.240662	21	0.240617	39	0.240621
4	0.240614	22	0.240614	40	0.240649
5	0.240641	23	0.240641	41	0.240640
6	0.240576	24	0.240620	42	0.240596
7	0.240595	25	0.240612	43	0.240609
8	0.240633	26	0.240589	44	0.240628
9	0.240636	27	0.240639	45	0.240639
10	0.240640	28	0.240626	46	0.240631
11	0.240649	29	0.240641	47	0.240619
12	0.240627	30	0.240632	48	0.240655
13	0.240621	31	0.240615	49	0.240638
14	0.240620	32	0.240644	50	0.240638
15	0.240592	33	0.240660	51	0.240643
16	0.240677	34	0.240631	52	0.240644
17	0.240631	35	0.240608	53	0.240611
18	0.240623	36	0.240640	54	0.240617

Arithmetic mean: 0.24062754Standard deviation: 19×10^{-6} Standard uncertainty: 2.59×10^{-6}

Degrees of freedom: 53

The calculated 240 Pu/ 239 Pu ratio, Standard Deviation, and number of "Good Points" imported from OakLimbs.

R_{19corr}: Type A

Method of observation: Direct Number of observations: 54

No.	Observation	No.	Observation	No	. Observation
1	0.005108	19	0.005180	37	0.005116
2	0.005106	20	0.005170	38	0.005117
3	0.005107	21	0.005167	39	0.005114
4	0.005180	22	0.005180	40	0.005115
5	0.005105	23	0.005162	41	0.005106
6	0.005110	24	0.005182	42	0.005103
7	0.005194	25	0.005193	43	0.005099
8	0.005047	26	0.005075	44	0.005118
9	0.005054	27	0.005076	45	0.005125
10	0.005040	28	0.005075	46	0.005091
11	0.005042	29	0.005074	47	0.005097
12	0.005113	30	0.005074	48	0.005036
13	0.005112	31	0.005070	49	0.005101
14	0.005108	32	0.005069	50	0.005106
15	0.005110	33	0.005075	51	0.005101
16	0.005108	34	0.005071	52	0.005069
17	0.005114	35	0.005110	53	0.005085
18	0.005111	36	0.005090	54	0.005102

Arithmetic mean: 5.10672×10^{-3} Standard deviation: 39×10^{-6} Standard uncertainty: 5.33×10^{-6}

Degrees of freedom: 53

The calculated 241 Pu/ 239 Pu ratio, Standard Deviation, and number of "Good Points" imported from OakLimbs.

R_{29corr}: Type A

Method of observation: Direct Number of observations: 54

No.	Observation	No.	Observation	No.	Observation
1	0.015573	19	0.015573	37	0.015577
2	0.015578	20	0.015570	38	0.015552
3	0.015585	21	0.015573	39	0.015577
4	0.015573	22	0.015573	40	0.015572
5	0.015577	23	0.015578	41	0.015564
6	0.015565	24	0.015576	42	0.015551
7	0.015578	25	0.015576	43	0.015570
8	0.015579	26	0.015569	44	0.015597
9	0.015579	27	0.015576	45	0.015585
10	0.015581	28	0.015581	46	0.015586
11	0.015586	29	0.015580	47	0.015546
12	0.015575	30	0.015577	48	0.015617
13	0.015578	31	0.015577	49	0.015537
14	0.015576	32	0.015595	50	0.015587
15	0.015568	33	0.015589	51	0.015600
16	0.015585	34	0.015596	52	0.015595
17	0.015578	35	0.015577	53	0.015571
18	0.015579	36	0.015556	54	0.015589

Arithmetic mean: 0.01557700Standard deviation: 13×10^{-6} Standard uncertainty: 1.81×10^{-6}

Degrees of freedom: 53

The calculated 242 Pu/ 239 Pu ratio, Standard Deviation, and number of "Good Points" imported from OakLimbs.

 δ_{Cert} :

Type B normal distribution

Value: 1

Expanded uncertainty: 2.6×10^{-4}

Coverage factor: 2

The uncertainty of the decay-corrected 240 Pu/ 239 Pu on the certificate used as the mass bias standard. This value will be found in OakLimbs \rightarrow Common \rightarrow Support Data \rightarrow Standards \rightarrow "look up the 240 Pu/ 239 Pu ratio" with the ID Code used in the mass bias "M" sample.

Example 3M126PuI "M" equals mass bias ID Code is "126" The decay-corrected 242 Pu/ 239 Pu value is 1.00016 \pm 0.00026 $0.00026/1.00016 = 2.6 \times 10^{-4}$

 δ_{CFVar} :

Type B normal distribution

Value: 1

Expanded uncertainty: 0.0000764

Coverage factor: 1

Uncertainty in the mass bias factor estimated from the variability in the mass bias measurements across the sequences Since each sample is bracket corrected for mass fractionation throughout a run, the multiplicative correction factor is assumed to be 1. However, uncertainties are assigned to this correction factor based on the relative standard uncertainty of the mass bias measurements across a run. The Std Err on the ²⁴⁰Pu/²³⁹Pu measurements of the comparator in each sequence

Sequence Average R ²⁴²Pu/²³⁹Pu Std Err % RSE (Comparator)

Average %RSE for the fractionation correction factor = $1.66961 \times 10^{-7} / \sqrt{21}$ =

²⁴²Pu/²³⁹Pu 1 CRM 128 1.0017011 2 CRM 128 1.0017348 3 CRM 128 1.0018845 4 CRM 128 1.0014960 5 CRM 128 1.0015396 6 CRM 128 1.0015440 7 CRM 128 1.0016944 8 CRM 128 1.0017292 9 CRM 128 1.0016014 10 CRM 128 1.0016866 11 CRM 128 1.0015384 12 CRM 128 1.0015404 13 CRM 128 1.0016134 14 CRM 128 1.0015081 15 CRM 128 1.0021248 16 CRM 128 1.0014634 17 CRM 128 1.0016042 18 CRM 128 1.0020550 19 CRM 128 1.0004350 20 CRM 128 1.0019940 21 CRM 128 1.0021628 Average 1.0016501 Std Dev 0.0003503 %RSD 0.035% SE 0.0000764 %RSE 0.008%

 δ_{seq} :

Type B normal distribution

Value: 0

Expanded uncertainty: 0.000010

Coverage factor: 1

Normalized sequence variation obtained from first control analyzed for 240 Pu/ 239 Pu divided by the number of points in the control chart (N) . Therefore, normalized sequence variation is sequence variation/sqrt(N) = (standard uncertainty)

 240 Pu/ 239 Pu 0.240659 0.240672 0.240659 0.240692 0.240659 0.240706 0.240641 0.240641 0.240629 0.240632 0.240585 0.240595 0.240648 0.000035 0.015% 0.000010 0.0042%

 $\delta_{\text{seq}2}$:

Type B normal distribution

Value: 0

Expanded uncertainty: 0.0000068

Coverage factor: 1

Normalized sequence variation obtained from first control analyzed for 241 Pu/ 239 Pu divided by the number of points in the control chart (N). Therefore, normalized sequence variation is sequence variation/sqrt(N) = (standard uncertainty)

 $^{241}\text{Pu}/^{239}\text{Pu}\ 0.0051793\ 0.0051876\ 0.0051872\ 0.0051708\ 0.0051891\ 0.0051407\ 0.0051749\ 0.0051749\ 0.0051343\ 0.0051323\ 0.0051311\ 0.0051459\ 0.0051623\ 0.0000235\ 0.45\%\ 0.0000068\ 0.13\%$

 δ_{seq3} :

Type B normal distribution

Value: 0

Expanded uncertainty: 0.0000016

Coverage factor: 1

Normalized sequence variation obtained from first control analyzed for 242 Pu/ 239 Pu divided by the number of points in the control chart (N). Therefore, normalized sequence variation is sequence variation/sqrt(N) = (standard uncertainty)

 $^{242}\text{Pu}/^{239}\text{Pu} \ 0.0155814 \ 0.0155810 \ 0.0155813 \ 0.0155885 \ 0.0155795 \ 0.0155926 \ 0.0155800 \ 0.0155800 \ 0.0155780 \ 0.0155780 \ 0.0155780 \ 0.0155784 \ 0.0155723 \ 0.0155804 \ 0.0000056 \ 0.036\% \ 0.0000016 \ 0.010\%$

 $\delta_{\text{seq}4}$:

Type B normal distribution

Value: 0

Expanded uncertainty: 0.0000020

Coverage factor: 1

Normalized sequence variation obtained from first control analyzed for 238 Pu/ 239 Pu divided by the number of points in the control chart (N). Therefore, normalized sequence variation is sequence variation/sqrt(N) = (standard uncertainty) Rep STD 238 Pu/ 239 Pu 1 CRM 137 0.0026357 2 CRM 137 0.0026352 3 CRM 137 0.0026575 4 CRM 137 0.0026372 5 CRM 137 0.0026358 6 CRM 137 0.0026432 7 CRM 137 0.0026389 8 CRM 137 0.0026388 9 CRM 137 0.0026323 10 CRM 137 0.0026310 11 CRM 137 0.0026337 12 CRM 137 0.0026344 Average 0.0026378 Std Dev 0.0000070 %RSD 0.27% SE 0.0000020 %RSE 0.077%

Input Correlation

	R _{89corr}	R _{09corr}	R _{19corr}	R _{29corr}
R _{89corr}	1	-0.4174	0.7846	-0.0471
R _{09corr}	-0.4174	1	-0.5457	0.8651
R _{19corr}	0.7846	-0.5457	1	-0.4151
R _{29corr}	-0.0471	0.8651	-0.4151	1

Uncertainty Budgets:

 R_{09} : The final ²⁴⁰Pu/²³⁹Pu ratio and uncertainty

Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R_{09corr}	0.24062754	2.59×10^{-6}	normal	1.0	2.6×10^{-6}	0.5%
δ_{Cert}	1.000000	130×10^{-6}	normal	0.24	31×10^{-6}	68.8%
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	0.24	18×10^{-6}	23.7%
$\delta_{ m seq}$	0.0	10.0×10^{-6}	normal	1.0	10×10^{-6}	7.0%
R ₀₉	0.2406275	37.7×10^{-6}				

 R_{19} : The final ²⁴¹Pu/²³⁹Pu ratio and uncertainty

Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R _{19corr}	5.10672×10^{-3}	5.33×10^{-6}	normal	1.0	5.3×10^{-6}	37.8%
δ_{Cert}	1.000000	130×10^{-6}	normal	5.1×10^{-3}	660×10^{-9}	0.6%
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	5.1×10^{-3}	390×10^{-9}	0.2%
δ_{seq2}	0.0	6.80×10^{-6}	normal	1.0	6.8×10^{-6}	61.5%
R ₁₉	5.10672×10^{-3}	8.67×10^{-6}				

 R_{29} : The final ²⁴²Pu/²³⁹Pu ratio and uncertainty

Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R _{29corr}	0.01557700	1.81×10^{-6}	normal	1.0	1.8×10^{-6}	28.8%
δ_{Cert}	1.000000	130×10^{-6}	normal	0.016	2.0×10^{-6}	36.2%
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	0.016	1.2×10^{-6}	12.5%
$\delta_{ m seq3}$	0.0	1.60×10^{-6}	normal	1.0	1.6×10^{-6}	22.6%
R ₂₉	0.01557700	3.37×10^{-6}				

R₈₉: The final ²³⁸Pu/²³⁹Pu ratio and uncertainty

Quantity	Value	Standard uncertainty	Distribution	Sensitivity coefficient	Uncertainty contribution	Index
R _{89corr}	2.64358×10^{-3}	4.39×10^{-6}	normal	1.0	4.4×10^{-6}	82.2%
δ_{Cert}	1.000000	130×10^{-6}	normal	2.6×10^{-3}	340×10^{-9}	0.5%
δ_{CFVar}	1.0000000	76.4×10^{-6}	normal	2.6×10^{-3}	200×10^{-9}	0.2%
$\delta_{ ext{seq4}}$	0.0	2.00×10^{-6}	normal	1.0	2.0×10^{-6}	17.1%
R ₈₉	2.64358×10^{-3}	4.84×10^{-6}				

Results:

Quantity	Value	Expanded uncertainty	Coverage factor	Coverage
R ₀₉	0.240628	75×10^{-6}	2.00	95% (normal)
R ₁₉	5.107×10^{-3}	17×10^{-6}	2.00	95% (normal)
R ₂₉	0.0155770	6.7×10^{-6}	2.00	95% (normal)
R ₈₉	2.6436×10^{-3}	9.7×10^{-6}	2.00	95% (normal)

Result Correlation:

R ₀₉		R ₁₉	R ₂₉	R ₈₉
R ₀₉	1	0.0624	0.7026	0.0532
R ₁₉	0.0624	1	-0.0749	0.4445
R ₂₉	0.7026	-0.0749	1	0.0345
R ₈₉	0.0532	0.4445	0.0345	1

Appendix F. Representative Alpha Counting GUM WORKBENCH

Pu 238/239 Alpha

Author: kt4

Model Equation: {*Ratio*}

```
D 1 /
```

$$R = mol_{238} / mol_{239};$$

{Convert back to mol}

$$mol_{240} = G_{found240} / AW_{240};$$

$$mol_{239} = G_{found239} / AW_{239};$$

$$mol_{238} = G_{found238} / AW_{238};$$

{Convert back to grams}

$$G_{found240} = A_{meas240} / SA_{240}$$
;

$$G_{found239} = A_{meas239} / SA_{239};$$

$$G_{found238} = A_{meas238} / SA_{238}$$
;

{Activity in measurement}

$$A_{meas240} = (AcP_{240} * Ac_{240239})/1000/1000/1000/1000;$$

$$A_{meas239} = (AcP_{239} * Ac_{240239})/1000/1000/1000/1000;$$

$$A_{meas238} = Ac_{238}/1000/1000/1000/1000;$$

{Activity Percent}

$$AcP_{240} = Ci_{240} / Ci_{total};$$

$$AcP_{239} = Ci_{239} / Ci_{total};$$

$$Ci_{total} = Ci_{240} + Ci_{239};$$

{Ci ratio}

$$Ci_{240} = g_{240} * SA_{240};$$

$$Ci_{239} = g_{239} * SA_{239};$$

$$g_{240} = AW_{240} * R_{09};$$

$$g_{239} = AW_{239}$$

List of Quantities:

Quantity	Unit	Definition
Ac ₂₃₈	pCi/mL	Alpha spec instrument response intensity of the combined Pu238 peak

Quantity	Unit	Definition
Ac ₂₄₀₂₃₉	pCi/mL	Alpha spec instrument response intensity of the combined Pu239/240 peak
AW_{238}	g/mol	Atomic weight
AW_{239}	g/mol	Atomic weight
AW_{240}	g/mol	Atomic weight
R ₀₉	mol:mol	Ratio of 239:240 from TIMS data
SA ₂₃₉	Ci/g	Specific activity of 239
SA ₂₄₀	Ci/g	Specific activity of 240
SA_{238}	Ci/g	Specific activity of 338
mol ₂₃₈	mol	Conversion to mols for 238
mol ₂₃₉	mol	Conversion to mols for 239
G _{found240}	g	Convert back to grams for mass 240
G _{found239}	g	Convert back to grams for mass 239
G_{found238}	g	Convert back to grams for mass 238
A _{meas240}	Ci/mL	240 activity in measured
$A_{\text{meas}239}$	Ci/mL	239 activity in measured
$A_{\text{meas}238}$	Ci/mL	238 activity in measured
AcP_{240}	%	Ci:Ci activity fraction for 239:240 using TIMS data
AcP ₂₃₉	%	Ci:Ci activity fraction for 239:240 using TIMS data
Ci ₂₄₀	Ci	Curies of 240
Ci _{total}	Ci	Sum of the Ci activity of 238, 239 & 240
Ci ₂₃₉	Ci	Curies of 239
g ₂₄₀	g	Grams of 240
g ₂₃₉	g	Grams of 239
R	mol/mol	Final ratio mol:mol of 238:239
mol_{240}	mol	Conversion to mols for 240

Ac₂₃₈:

Type B normal distribution
Value: 3.289·10⁺³ pCi/mL
Expanded Uncertainty: 353.8 pCi/mL

Coverage Factor: 2

Ac₂₄₀₂₃₉:

Type B normal distribution
Value: 8.3580·10⁺³ pCi/mL
Expanded Uncertainty: 780.8 pCi/mL
Coverage Factor: 2

AW₂₃₈:

Type B normal distribution Value: 238.049559 g/mol

Expanded Uncertainty: 0.0000019 g/mol

Coverage Factor: 2

AW₂₃₉:

Type B normal distribution Value: 239.0521636 g/mol

Expanded Uncertainty: .0000019 g/mol

Coverage Factor: 2

AW₂₄₀:

Type B normal distribution Value: 240.0538138 g/mol

Expanded Uncertainty: .0000019 g/mol

Coverage Factor: 2

R₀₉:

Type B normal distribution Value: 0.240626 mol:mol

Expanded Uncertainty: 0.0000076 mol:mol

Coverage Factor: 2

SA₂₃₉: Constant

Value: 6.20400·10⁻² Ci/g

SA₂₄₀: Constant

Value: 0.22696 Ci/g

SA₂₃₈: Constant

Value: 1.7119·10⁺¹ Ci/g

Uncertainty Budgets:

R: Final ratio mol:mol of 238:239

Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
Ac ₂₃₈	3289 pCi/mL	177 pCi/mL	normal	820·10-9	150·10 ⁻⁶ mol/mol	56.9 %

Quantity	Value	Standard Uncertainty	Distribution	Sensitivity Coefficient	Uncertainty Contribution	Index
Ac ₂₄₀₂₃₉	8358 pCi/mL	390 pCi/mL	normal	-320·10-9	-130·10 ⁻⁶ mol/mol	43.1 %
AW ₂₃₈	238.049559000 g/mol	950·10 ⁻⁹ g/mol	normal	-11·10-6	-11·10 ⁻¹² mol/mol	0.0 %
AW ₂₃₉	239.052163600 g/mol	950·10 ⁻⁹ g/mol	normal	6.0·10-6	5.7·10 ⁻¹² mol/mol	0.0 %
AW ₂₄₀	240.053813800 g/mol	950·10 ⁻⁹ g/mol	normal	5.3·10-6	5.0·10 ⁻¹² mol/mol	0.0 %
R ₀₉	0.24062600 mol:mol	3.80·10 ⁻⁶ mol:mol	normal	5.3·10-3	20·10 ⁻⁹ mol/mol	0.0 %
SA ₂₃₉	0.06204 Ci/g					
SA ₂₄₀	0.22696 Ci/g					
SA ₂₃₈	17.119 Ci/g					
mol ₂₃₈	807.1·10 ⁻¹⁵ mol	43.4·10 ⁻¹⁵ mol				
mol ₂₃₉	299.1·10 ⁻¹² mol	14.0·10 ⁻¹² mol				
G _{found239}	71.51·10 ⁻⁹ g	3.34·10 ⁻⁹ g				
G _{found238}	192.1·10 ⁻¹² g	10.3·10 ⁻¹² g				
A _{meas239}	4.436·10 ⁻⁹ Ci/mL	207·10 ⁻¹² Ci/mL				
A _{meas238}	3.289·10 ⁻⁹ Ci/mL	177·10 ⁻¹² Ci/mL				
AcP ₂₃₉	0.53079488 %	3.93·10-6 %				
Ci ₂₄₀	13.109933 Ci	207·10 ⁻⁶ Ci				
Ci _{total}	27.940730 Ci	207·10 ⁻⁶ Ci				
Ci ₂₃₉	14.8307962297 Ci	58.9·10 ⁻⁹ Ci				
g ₂₄₀	57.763189 g	912·10 ⁻⁶ g				
g 239	239.052163600 g	950·10 ⁻⁹ g				
R	2.698·10 ⁻³ mol/mol	192·10 ⁻⁶ mol/mol				

Results:

Quantity	Value	Expanded Uncertainty	Coverage factor	Coverage
R	2.70·10 ⁻³ mol/mol	380·10 ⁻⁶ mol/mol	2.00	95% (normal)