

OAK RIDGE NATIONAL LABORATORY

OPERATED BY
UNION CARBIDE CORPORATION
NUCLEAR DIVISION

POST OFFICE BOX X OAK RIDGE, TENNESSEE 37830

MAPE ISSUED:

MAR 2 8 1969

ORNL ACT

68 - 11 - 20

104

DATE:

November 19, 1968

SUBJECT:

Measurements of Fission-Product Deposition in the MSRE

with Ge(Li) Gamma Ray Spectroscopy

TO:

Distribution

FROM:

R. Blumberg, F. F. Dyer, T. H. Mauney and Dunlap Scott

ABSTRACT

Measurements of fission products deposited in the piping, the heat exchanger, the pump bowl and the offgas system of the Molten-Salt Reactor Experiment (MSRE) were made by gamma-ray spectroscopy, following the shutdown of a long period of power operation. The remote maintenance shield and remote handling techniques were used because of high radiation coming from the shutdown reactor. A highly collimated, lithium-drifted germanium diode detector was coupled to a 400 channel analyzer to produce the energy spectra that constituted the basic measurements. These measurements were converted to area deposition concentrations for each isotope found, expressed in curies per square inch of metal surface. Ten isotopes were identified, with 5 being predominant in the heat exchanger. The results are tabulated for all the experimental data, summarized and compared to calculations of total amount of each isotope produced by the reactor. It appears that gamma ray spectroscopy is a useful technique for investigating fission product behavior in the MSRE.

NOTICE This document contains information of a preliminary nature and was prepared primarily for internal use at the Oak Ridge National Laboratory. It is subject to revision or correction and therefore does not represent a final report. The information is only for official use and no release to the public shall be made without the approval of the Legal and Information Control Department of Union Carbide Corporation, Nuclear Division.

CONTENTS

	Page
Abstract	
Purpose of Experiment	1
Experimental Method and Equipment	1
Fission Products Detected and Data Reduction	14
Discussion of the Accuracy of the Results	8
Results and Conclusions	10
Recommendations	13
References	14
Appendix I	15
Detector Calibration	15
Net Count Rates of 95Nb	15
Method of Calculation of Absorber Factors	16
Appendix II	20
Table V. Heat Exchanger Results and Data	21
Table VI. MSRE Pump Bowl, Lines. Results and Data	24
Distribution of Deposition in the Heat Exchanger 95-Nb 99-Mo 103-Ru 132-Te 132-I	26 27 28 29 30

Yes Curry 1 1 1 130 %

Measurements of Fission-Product Deposition in the MSRE with Ge(Li) Gamma Ray Spectroscopy

Purpose of Experiment

In molten-salt reactors, fission products deposit in components contacted by the fuel salt and the gases above the fuel salt. The types and amounts of fission products that deposit are important to the Molten Salt Reactor Program (MSRP) because of the heat they generate after reactor shutdown and because of their influence on remote maintenance of the reactor. A knowledge of the distributions of deposited fission products is of interest to determine if they are correlated with (1) fission-product precursor half lives, (2) thermal gradients within reactor components, and (3) molten-salt chemistry. In addition there is a specific interest in the extent of deposition of $^{95}\mathrm{Zr}$. All the Zr^{95} is expected to remain in the salt as the fluoride. The presence of appreciable 95Zr in the heat exchanger could indicate that ZrO2 had precipitated on the tubes. This would lead to concern about the analyses of the oxygen concentration in the salt and corrosion of the reactor equipment. An effort was therefore made to identify and quantitatively estimate the amount of gamma-emitting fission products that deposit in various components (principally the heat exchanger) of the MSRE.

This is an extension of a previous effort made at the MSRE, during the May 1967 shutdown. An ion chamber with a collimator was used to measure gross gamma activity and a NaI crystal detector with collimator was aimed at areas of the heat exchanger to obtain gamma-energy spectra. Information from the latter experiment led to the present work.

Experimental Method and Equipment

Measurements of fission product distributions were made at the MSRE, shortly after the cessation of a six month period of power operation, by gamma-ray spectroscopy using a highly collimated lithium-drifted germanium diode detector (GeLi). The detector had a resolution of 6 kev for the 1.33 Mev line of 60Co. A low-noise detector preamplifier was coupled to a biased amplifier which was coupled to a 400-channel analyzer. The biased amplifier permitted spectra to be accumulated over an energy range encompassing the fission-product gamma energies (nominally about 100 to 900 kev). Several spectra were taken to include energies to about 2000 kev. Gamma spectra were recorded on punched paper tape for subsequent data reduction.

The configuration of the detector and collimator positioned over the heat exchanger is shown in Figure 1. The collimator consisted of a lead cylinder with a length and diameter of 32 1/2 and 19 in., respectively. The diode, in a small Dewar filled with liquid nitrogen, was placed in a cavity in the shield over a hole with a diameter and length of ~ 0.125 in. and 12 in., respectively. The collimator permitted the detector to be "focused" on an area about 3 in. in diameter at a distance of 15 ft

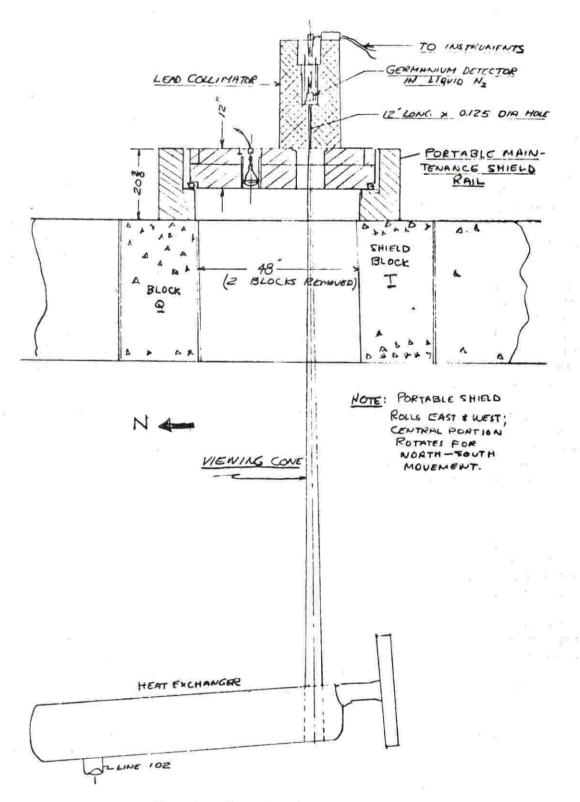


Fig. 1. Scanning System Sketch.

Table I. Chronology of the Measurements

Spec	tra No.	Time Elapsed Since Shutdown (hr)	Location *	Equipment and Condition
t	1 hru	/ 4 86.0	R&F	<pre>Inlet end of heat exchanger - flush salt and coolant salt circulating;</pre>
	19	92		heater in place.
	20 hru	114	R&S	Inlet end of heat exchanger - flush salt and coolant salt drained (heat
-	29	118		exchanger empty; heater removed.
30 t	hru 39	138	Q&R	Middle of heat exchanger - no salt;
3	4839	142 140	Q&R	heater removed. Line 102 - no salt; heater in place.
50 t	thru 66	227	G&H	Pump bowl - no salt.
5	53854	324 229	G&H	Line 101 - no salt.
	67	325	G&H	Line 522 - no salt; jumper in place.
ř	thru 89			
	70	345	Q&R	Middle of heat exchanger - no salt; no
4	thru 89	353		heater.
_	90	356	S&T	Inlet end of heat exchanger and down-
2	thru 99	360		stream end of Line 101 - no salt; heater in place.

^{*}Letters refer to the lower shield blocks removed for access.

(distance to the heat exchanger). The detector-collimator assembly was mounted on and shielded by the portable maintenance shield which also served to move the detector to various positions over the reactor components.

The time spent in taking the data was scheduled in between reactor operations and various remote maintenance activities. Further, access to the reactor components was limited to the 4-ft-wide areas made available by the portable maintenance shield. Figures 2 and 3 show the reactor components examined and Table I gives the chronological sequence of the measurements, the reactor component, and the absorber situation. In summary, 67 usable spectra of the heat exchanger, the fuel pump, the offgas line and primary system piping were taken during the period from 3 1/2 to 12 days after shutdown.

Fission Products Detected and Data Reduction

The fission products detected in the MSRE components, the energies and abundances (branching ratios) of their principal gamma rays are listed in Table II.

Nuclide	Energy (kev)	Abundance (%)	Half Life			
95 _{Nb}	765	100	35.0 days			
99 _{Mo}	740	12	66.7 hr			
103 _{Ru}	497	88	39.5 days			
106 _{Ru}	512	21	368 days			
132Te	230	95	77.7 hr			
132I	668	118	2.26 hr			
132 _I	773	89	2.26 hr			
140Ba	537	34	12.8 days			
140La	1596	109	40.2 hr			
137Cs	662	85	30.0 yr			
141Ce	145	48	32.5 days			
131T	364	82	8.05 day			

Table II. Nuclide Data

A typical gamma-ray spectrum is shown in Figure 4. The spectrum was obtained six days after reactor shutdown with the detector centered over the heat exchanger 1 ft from the heat exchanger inlet. Full energy peaks (photopeaks) for several of the fission products found in the reactor components are indicated in Figure 4.

For quantitative calculations, it was necessary to obtain the net count rate, CR, under the full energy peaks for the various radionuclides detected. The method used to obtain CR is illustrated in Figure 4 for the 497 kev peak of \$103\text{Ru}\$. The gross count in a peak was determined by summing the counts per channel over the peak. The Compton base line (background) was calculated by multiplying the number of counts in the last

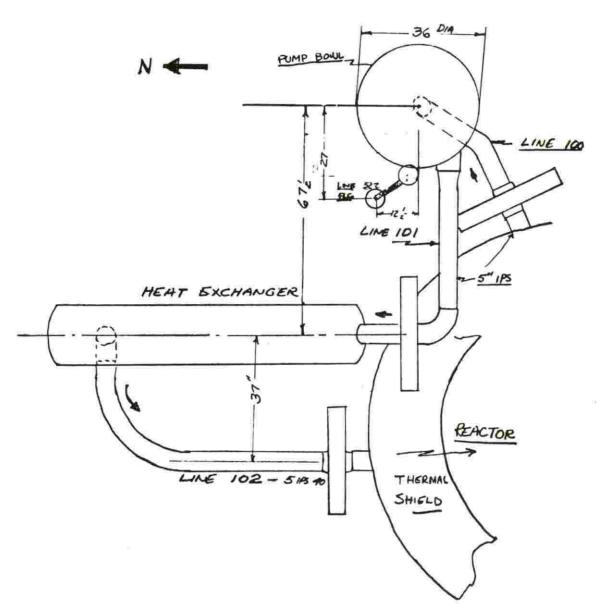


Fig. 2. Plan View of Items Scanned.

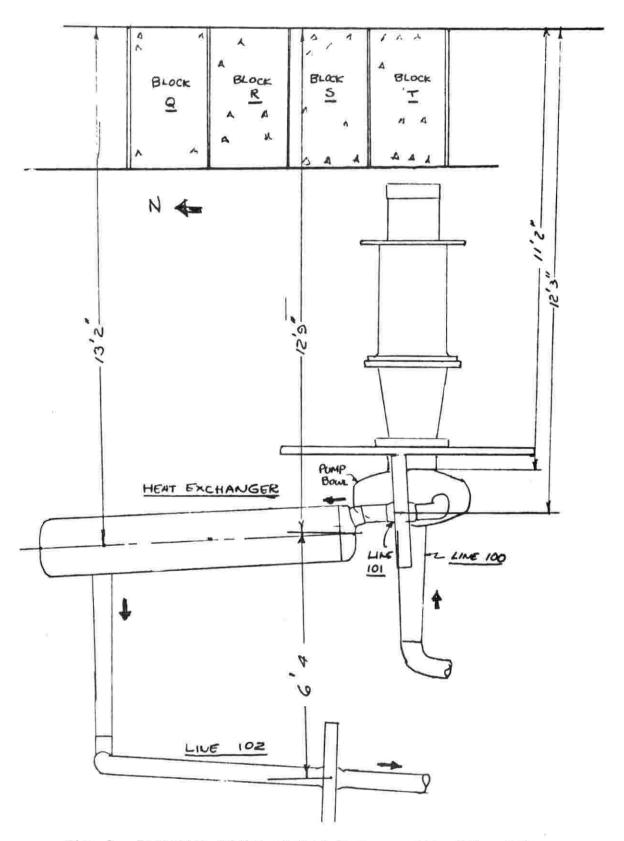


Fig. 3. Elevation Sketch of Heat Exchanger Line 102 and Pump.

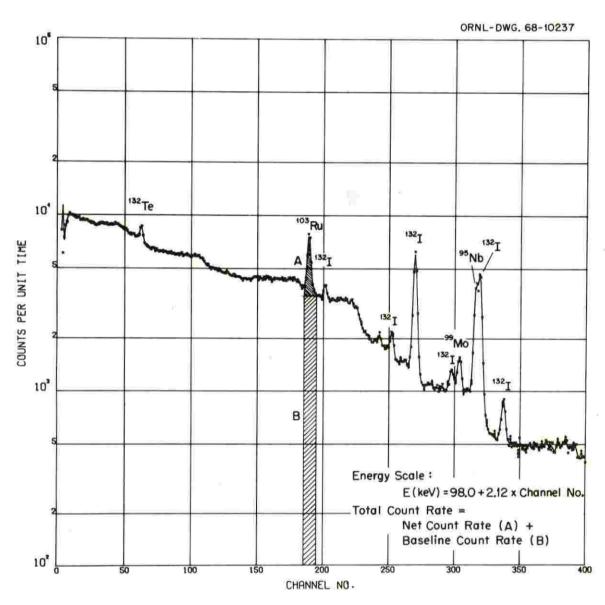


Fig. 4. Typical Spectrum.

channel (upper energy channel) taken for the peak, by the number of channels summed. The net count rate was then calculated by dividing the difference of the gross count and the base line by the counting time in seconds. To obtain the curies of a radionuclide deposited per square inch, CURIES, the following relation was assumed:

$$\frac{\text{CURIES}}{\text{in.}^2} = \frac{(\text{CR})e^{0.693\text{t/T}}_{1/2}}{(\text{F})(\text{B})(\text{AF})(\text{AB}) \ 3.7 \times 10^{10}},$$
 (1)

where t is the decay time in hours from reactor shutdown to the measurement time, $T_{1/2}$ is the half-life in hours of the specified radionuclide, B is the branching ratio of the measured gamma ray (photons emitted per disintegration), F is the counting efficiency, AF (area factor) is the number of square inches of metal surface with deposited isotopes per square inch of area normal to the axis of the detector, AB is an absorber factor denoting the fraction of the gamma photons that escape from the reactor component in the direction of the detector, and the factor 3.7 x 10^{10} converts the result to curies. The derivation of the counting efficiencies and the absorber factors are described in Appendix I.

Discussion of the Accuracy of the Results

The significance of the work done in this experiment is its value as design information for predicting the behavior of fission products in future molten salt reactors. With this in mind a discussion follows which attempts to estimate the accuracy of the results with regard to both the identification of the isotope and the amounts of deposited material.

We are certain that the correct identification of the isotopes has been made. The following discussion is in regard to the accuracy of the amounts reported. From Eq. (1) on p. 9 we see that the measured quantity, CR, (the count rate in counts per second) is modified by five factors. Of these, three are fairly well-known numerical values and therefore should introduce little error. These are: the decay factor, the branching ratio, and the area factor.

Larger inaccuracies, however, may appear in the two remaining factors, the absorber factor and the efficiency factor. There are three comparisons that can be made which lend a qualitative feeling of confidence to these results. One can compare results for different source-absorber configurations. One can compare the results of these measurements with calculations of the total inventory of each isotope produced in the power operation of the MSRE and finally one can compare these results with results of the chemical analysis of core and pump bowl samples. These comparisons are easily made, as in Table III, but one cannot point to a definite measure of accuracy.

TABLE III

Comparison of Gamma Measurements, Total Inventory Calculations, and Chemical Analysis of Core Samples

Isotope	Total Produced Curies/in.2 (1)	Gamma Measur Curies (2)	ement	Analytical Chemistry Core-Samples Curies/in. ² (4)
95-Nb High Low Average	3.28	3.09 0.95 1.90	2.23 0.69 1.37	0.31 0.10 0.25
99-Mo High Low Average	4.78	9.20 0.53 4.88	6.78 0.39 3.69	0.79 0.33 0.612
103-Ru High Low Average	1.75	2.43 0.19 1.12	2.43 0.19 1.12	0.035 0.025 0.030
132-I High Low Average	3.32	6.17 0.51 2.18	4.81 0.70 1.70	
132-Te High Low Average	3.32	3.93 0.46 1.54	7.16 0.84 2.81	0.242 0.175 0.209

⁽¹⁾ Based on E. L. Compere's unpublished calculation of the inventory of each isotope at shutdown, divided by the total area of salt contacted metal surface of the primary system, provided by R. E. Thoma.

⁽²⁾ As calculated with original efficiency curve given in Figure 5.

⁽³⁾ As calculated with a revised efficiency curve.

⁽⁴⁾ Results of data from core samples removed from MSRE, April 1968, Reported by Kirslis? et al.

One additional aspect concerning accuracy is involved in the criteria that all of the peaks from a multi-energy emitter such as 132I, which appear on a spectra should yield the same result. Results from 132I gamma rays at .668, .955 and 1.400 Mev revealed a discrepancy of a factor of 2. To satisfy the criteria one can change either the absorber factor, the efficiency factor or both. Since the adjustment was easier to accomplish and easier to rationalize, we chose to examine the effect of changing the efficiency factor. The two counting efficiency curves are shown in Figure 5. The new curve is not as steep as the one derived from the calibration data, and it has the effect of decreasing the results of isotopes with energies above .500 Mev and increasing results of isotopes with energies below .500 Mev. This effect increases the credibility of the present set of results. This effect is given only in the third data column of Table III. The results given throughout the report reflect the original efficiency factor. The correction is mentioned to give an indication of a possible source of inaccuracy.

In summary, one can conclude that these results can be inaccurate by as much as 200%.

Results and Conclusions

A summary of the results is given in Table IV. A complete list of raw data and calculated results is given in Appendix 2. Results for the examination of the heat exchanger, plotted in the plan view for each isotope, also appear in Appendix 2.

There was no 95Zr found.

The pump bowl contains large concentrations of deposited isotopes although the values in Table V in Appendix II are probably high, due to uncertainties in the knowledge of the geometry of the site examined. It is interesting to note that the peak values for different isotopes do not occur at the same physical locations.

In the heat exchanger, five isotopes of 4 decay chains were found to predominate, ^{95}Nb , ^{99}Mo , ^{103}Ru , and ^{132}Te and I. The density of deposited fission products is generally higher at the exchanger inlet than further downstream, although it is not uniform. The term splotchy would be descriptive.

In Table III the fission product concentrations on the tubes in the heat exchanger, obtained from our measurements, are in very poor agreement with those obtained from analysis of deposits on specimens from the core. However, calculations reported in MSR $68-138^3$ indicate that the mass transfer coefficients in the heat exchanger are probably a factor of 3 to 4 higher than in the vicinity of the samples in the core. Multiplying the results for the core samples by 4 brings them to within a factor of about 2 of our average results.

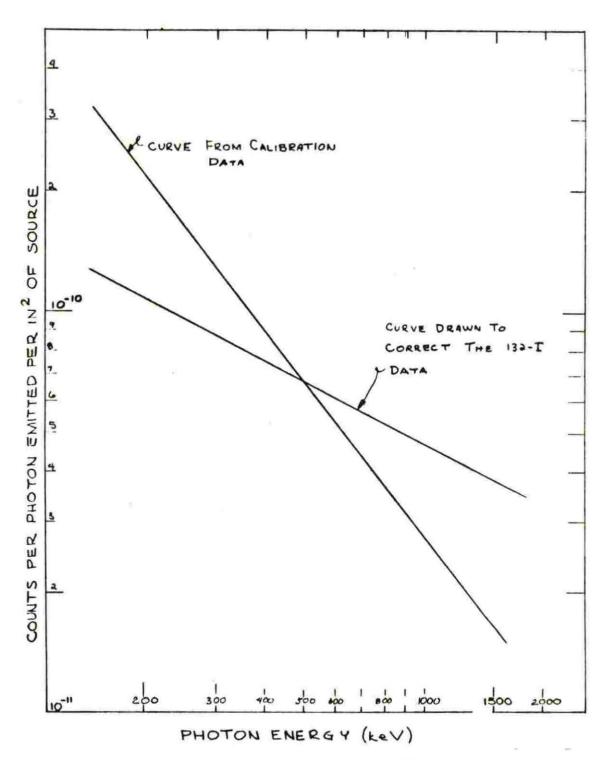


Fig. 5. Counting Efficiency vs Energy.

TABLE IV
Summary of Calculated Results (Curies/sq. in.)

T	Heat			Pump Bo		-	s Line
Isotope	High	Low	Average	_High(1)	Low	High	Low
95-Nb	3.09	0.95	1.90	1.36(50)	0.38	0.34	0.25
99-Mo	9.20	0.53	4.88	5.93(62)	22.99	36.24	28.61
103-Ru	2.43	0.19	1.12	35.97(62)	9.76	11.19	8.93
106-Ru				8.53(65)	1.51	1.83	1.48
131-I						1.29	0.95
132-I	6.17	0.51	2.18	0.78(62)			
132-Te	3.93	0.46	1.54	4.16(64)	4.16		
137-Cs						2.57	2.24
140-La	0.047	0.011	0.028	0.78(66)	0.78	3.28	0.10
141-Ce						0.33	0.33
							4

⁽¹⁾ The number in parentheses refers to locations shown in Figure 13.

There is an unexplained variation in the observed deposition of 132I and its precursor Te in the heat exchanger. With flush salt in the system, these two fission products appear to be close to the proper relationship. With the flush salt drained, however, I is higher than Te by a factor of 1.5. This can be due either to a mechanism which causes higher concentration of I in the heat exchanger, or inaccuracies in the energy dependent factors used to calculate results from the raw data. Because its 230 kev energy peak is obscured by the background count, 132Te does not appear on heat exchanger scans taken after the 14 days of decay (spectra 70 and on). However, its presence is known by the fact that 132I is still detected. Further, consistent results for 132I are calculated on the basis of the half life of the Te precursor, rather than the much shorter half life of the I itself.

In view of the fact that we are reasonably sure that we can improve accuracy and the ease of making the gamma measurements, one may conclude that gamma spectroscopy is a useful technique in fission product deposition studies.

Recommendations

Should this experiment be repeated, considerable improvement can be achieved. The following list of recommendations will increase confidence in the accuracy of the results, provide calculated results two to three days after taking the data, and increase the ease of operation for the experimenters.

- 1. Re-calibrate the equipment with a multi-energy gamma source.
- 2. Obtain an empirical value for the attenuation factor. This can be combined with item 1 above or conducted separately.
- 3. Modify the collimator, its mounting, and the method of establishing its position with respect to reactor components.
- 4. Set up all variables, inputs and computer programs so that the data can be analyzed quickly. This may require extra manpower during the data taking period.
- 5. Select and use the best possible detector and electronic components.

These recommendations will be described and discussed in more detail in a separate memorandum.

References

- 1. Molten Salt Reactor Program Semiann. Progress Report for Period Ending Aug. 31, 1967, ORNL-4191, pp 40-44.
- 2. Reactor Chemistry Division Semiann. Progress Report, not published.
- 3. R. B. Briggs, Estimate of the Afterheat by Decay of Noble Metals in MSBR and Comparison with Data from the MSRE, Nov. 4, 1968, MSR-68-138.

APPENDIX I

Detector Calibration

To permit quantitative estimation of the fission products, the collimated detector was calibrated with sources of known specific activity. In all measurements the source-to-detector distance was 15 ft. Because the reactor components, as measured by the detector, approximated plane sources, it was necessary to calibrate the detector with plane sources. Ideally, the calibrating source should be a thin plane slightly wider than the area subtended by the collimator. The source should contain one or more uniformly dispersed radionuclides which emit several gamma rays with energies spanning the gamma-energy range of the fission products. Because of several practical problems met in procuring such a source, a slightly modified procedure was used. A thin copper foil uniformly activated with neutrons to produce approximately 60 curies of 63cu was used to obtain a calibration point at 511 kev (the energy of annihilation photons). The foil was sandwiched between two 0.02-in. copper foils and measured. The photon emission rate per in. 2 of foil was standardized by measuring a specimen of known size cut from the foil on a NaI(Tl) scintillation detector calibrated by Heaths'(1) method. To obtain the counting efficiency as a function of energy, measurements were made with a small wafer (1/2 in. x 1/2 in. x 1/32 in.) containing about 30 curies of 192Ir. Iridium-192 emits seven principal gamma rays with energies ranging from 296 to 612 kev. Because the 1921r was not a plane source, gamma spectra were taken with the source placed at several positions with respect to the center line of the collimator. For each spectrum, the net count rates for the full energy peaks were obtained and divided by the corresponding branching ratios. This permitted arbitrary efficiency curves to be plotted for each source position. All curves closely approximated straight lines but had slightly different slopes. The variation of slope with source placement is thought to be due to the collimator edge which causes increasing attenuation with decreasing gamma energy. Each curve was normalized to the absolute efficiency value derived at 511 keV with $^{64}\mathrm{Cu}$. A median line drawn through the curves was used to obtain counting efficiencies for calculations with Eq. (1). The median line differed from the measured efficiency lines having maximum and minimum slopes by about ±11% at 230 kev (gamma energy of 132Te) and ±5% at 765 kev. The efficiency curve is shown in Figure 5.

Net Count Rates of 95Nb

Because of the relatively poor resolution of the detector, the 765 kev gamma rays of 95Nb were not resolved from the 773 kev gamma rays of 132I and 780 kev gamma rays of 99Mo. The resulting broad full-energy peak is indicated in Figure 4. To obtain the net count rate for 95Nb, it was necessary to subtract from the total net counts in the peak the counts due to 132I and 99Mo. The total net count rate was calculated as previously described. Because the 668 kev gamma ray of 132I and the 740 kev gamma ray of 99Mo were resolved, it was possible to use Eq. (1) and thus calculate

the net count rate under the unresolved peaks from the net count rates under the resolved peaks. For 132I the expression used was

$$CR_{773} = CR_{668} \frac{B_{773}F_{773}(AB)_{773}}{B_{668}F_{668}(AB)_{668}}$$
 (2)

Method of Calculation of Absorber Factors

It is desired to calculate the fraction of those gamma rays, emitted from isotopes uniformly deposited on the metal tubes of the heat exchanger, which penetrate the absorber material between it and the detector. The penetrating rays, S, coming from a point source $S_{\rm o}$, through absorber material whose coefficient of attenuation, and thickness are μ and t is given by

$$S = S_0 e^{-\mu t}$$
 The total source from N points is NS = $S_0 \sum_{i=1}^{N} e^{-\mu t} i$

and

$$\frac{\text{NS}}{\text{NS}_{o}} = \frac{\sum_{i=1}^{N} e^{-\mu t i}}{N},$$

which is the ratio of the penetrating rays divided by the rays which are emitted. We call this ratio the absorber factor. We chose N so that the area considered is typical of the geometry so that the ratio given does not change for different locations or larger areas.

Thus the calculation involves the surface on which source material is deposited and the thicknesses of absorber material. In this experiment the different geometries that were encountered are shown in Figure 6. For most of the heat exchanger cases the absorber material consists of metal tube walls and the vessel's shell, while other cases also involve the heat exchanger heater and the flush salt. As shown in Figure 7, the area of deposition; i.e., the outside of the tube is divided into equal segments of area. In the calculations a quadrant was divided into 18 areas. Corresponding to these are values of tube thickness ("y" in the sketch) and flush and coolant salt thickness (the dotted lines in the sketch). These absorber lengths were generated graphically. Note that radiation from source Q travels through tubes in two vertical columns while radiation from source P travels through tubes in only one vertical column. This fact complicates the generation of a general expression for the thickness of attenuating metal for a typical source located at any point in the heat exchanger. However, the absorber factor can be found by writing an expression for the attenuation of a point source located on one of the segments, summing this up over the circumference of the tube, and then summing up for all the tubes in a vertical column. This was done for the various conditions encountered such as: the heat exchanger full of flush and coolant salt with a heater, and the empty heat exchanger with and without a heater.

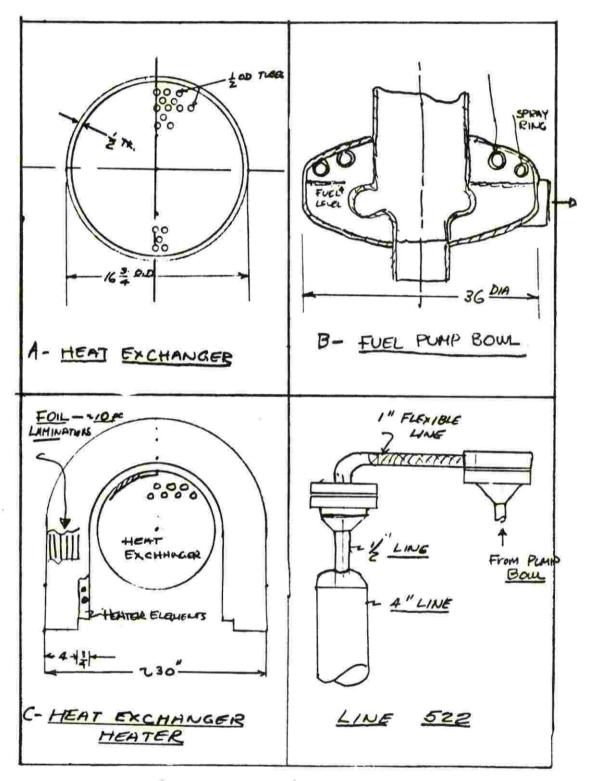


Fig. 6. Sketches of MSRE Components Scanned.

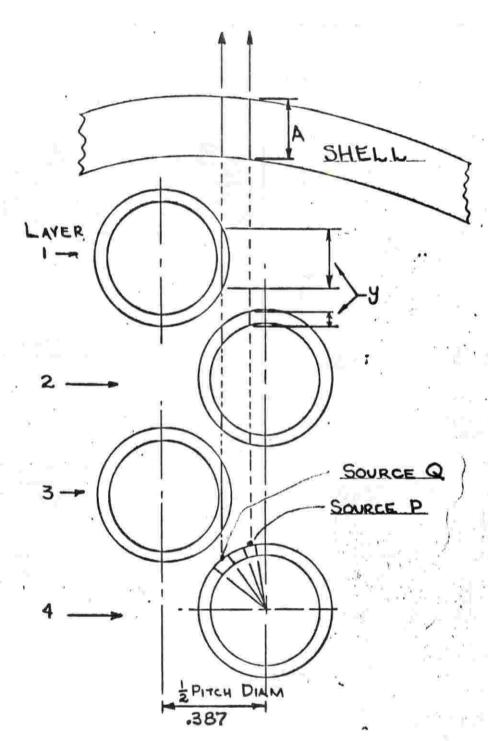


Fig. 7. Absorber Configuration in the Heat Exchanger.

1. R. L. Heath, <u>Scintillation Spectrometer</u>, <u>Gamma Ray Spectrum Catalog</u>, 2nd Ed., Vol. I, IDO Report 16880-1, August, 1964.

APPENDIX II

The tabulations and plots in this section are intended to provide data for the meaningful resolution of fission product behavior in molten salt systems. Table V gives the data for the heat exchanger and Table VI gives the data for the pump bowl and the pipe lines. So that the information will be most amenable to further interpretation and refinement, two numbers are presented for each isotope found in a given spectrum. On the same horizontal line as the spectrum number and beneath the particular isotope is the count rate corrected for only decay to the time of shutdown. Immediately below is the result calculated from Eq. 1 on page 9 in curies per sq. in. of metal surface. The reactor location of each spectrum number may be found on the plots of the heat exchanger and the pump bowl, Figures 8 through 13. Spectrum identification numbers are given in parentheses on the heat exchanger plots.

In Figures 8 through 12, calculated results in curies per sq. in. of metal are given, followed by the spectrum number inside the parentheses.

TABLE V. HEAT EXCHANGER RESULTS AND DATA

	Condition	Half life Energykev Abundance Eff.Factor	230	77.7h 670 1.18 4.65x10-11	66.7h 740 0.12 4.1x10-11	35d 765 1.0 3.9×10 ⁻¹¹	39.5d 497 0.88 6.7x10 ⁻¹¹	40.2h 1596 1.09
Spectra	of System		132 _{Te}	132 _I	99 _{Mo}	95 _{Nb}	103 _{Ru}	140 _{La}
1	Heater	Count Rate	3.67	2.13	2.05	4.70	3.65	
	+	Result	3.47	0.92	8.80	2.36	2.17	
2	Flush	Count Rate	3.93	2.64	2.74	4.41	4.14	
	Salt	Result	3.66	1.14	11.7	2.21	2.44	
3	:00	Count Rate	0.71	2.30	1.74	3.88	3.40	
	1	etc.	0.67	0.99	7.45	1.94	2.02	
4		200.	1.53				2.28	
		1	1.46				1.35	
8	-		2.84					
			3.17			==		
10			1.27	3.45	1.148	4.85	1.95	
			1.42	1.66	4.95	2.46	1.30	
11			0.78	1.44	0.66	2.62	1.00	
			1.98	1.28	5.53	2.64	1.26	
12			1.35	2.66	1.04	3.80	1.39	
	1		1.75	1.45	5.75	2.41	1.05	
13			1.15	2,41	0.61	3.90	1.41	
			1.29	1.16	2.62	1.98	0.94	
14	1		2.02	2.70	1.09	3.24	1.27	
			2.49	1.41	5.11	1.83	0.92	
15			2.25		0.56	3.50	1.32	
			2.91		3.12	2.22	1.00	
16			0.58	2.18	0.82	3.88	1.79	
			0.56	0.94	3.50	1.95	1.06	
17			2.00	2.81	1.24	3.41	2.26	
			2.04	1.35	5.34	1.73	1.50	
18		-		2,33	1.61	3.73	1.83	0.06
	į			.1.12	6.94	1.89	1.22	0.047
20			1==	39.92	4.35	8.76	7.26	
	No Heater			3.71	4.24	1.02	0.80	
22	No Flush		==	25.10		8.49	5.01	
	Salt			2.82	-55	1.32	0.76	
23	Ť		11.4	41.48	3.44	13.10	7.30	
			0.87	3.37	2.89	1.37	0.71	

35d

39.5d

40.2h

TABLE V. HEAT EXCHANGER RESULTS AND DATA

Half life 77.7h 66.7h 77.7h Energy kev 230 670 740 765 497 1596 1.18 0.88 Abundance 0.95 0.12 1.0 1.09 Eff.Factor 1.82x10-10 4.65x10-114.1x10-11 3.9x10-11 6.7x10-11 Condition of 132_{Te} 103_{Ru} 140_{La} 99_{Mo} 95_{Nb} 132_I Spectra System 24 15.08 7.78 No Heater Count Rate 10.02 32.09 3.12 No Flush 0.62 2.26 0.64 Result 2.27 1.37 25 Salt Count Rate 10.41 29.32 3.09 16.96 4.85 0.40 0.64 2.06 2.26 1.54 26 11.14 34.64 3.10 11.45 5.73 0.77 2.60 2.40 1.09 0.51 26.58 33.46 84.06 12.25 22.25 27 2.09 5.95 9.13 2.03 2.22 30.25 86.29 12.4 22.90 25.17 28 1.95 6.18 9.20 2.11 2.13 17.31 2.41 4.64 3.20 29 5.34 7.43 1.75 1.27 4.84 1.54 30 1.59 3.77 0.99 3.28 0.95 0.39 15.30 0.63 11.32 3.45 7.74 31 0.59 1.24 0.53 1.18 0.33 13.18 20.70 2.50 14.47 4.14 32 1.46 0.80 1.83 1.31 0.34 16.43 5.16 12.00 2.79 0.93 33 0.46 1.53 0.91 1.40 0.31 21.16 15.49 4.28 0.21 35 1.49 1.40 0.35 0.034 --4.67 4.04 1.40 0.73 36 1.44 2.26 1.53 0.55 16.27 39.48 4.33 17.41 10.19 37 0.99 2.78 3.17 1.57 0.83 40.53 17.41 11.64 38 2.85 0.95 1.57 22.38 14.11 0.75

4.57

24.57

1.73

23.13

1.63

3.56

13.27

1.20

12.40

1.12

0.19

11.04

0.90

9.24

0.76

0.19 0.029

73

74

75

TABLE V HEAT EXCHANGER RESULTS AND DATA

		Energy k	ce 0.95	77.7h 670 1.18 -10 4.65x10-1	66.7h 740 0.12	35d 765 1.0 3.9×10-11	39.5d 497 0.88 6.7x10-11	40.2h 1596 1.09
	Condition		OI I.OLAIO	4.07220	1 2 2 2 2	3,52,443	0.11120	
Spectra	of System	_	132 _{Te}	132 ₁	99 _{Mo}	95 _{Nb}	103 _{Ru}	140 _{La}
76		Count F	late	13.59		13.85	9.37	
		Resu	ilt	1.26		1.62	1.03	
77	5	ı,		****		0.27	0.12	
		1		25-9		0.03	0.013	
78		1					(***	
		- 1					(100.00)	
79		ď		18.31		14.39	7.98	
0		i		1.30		1.32	0.67	
80				7.28		12.26	3.55	
				0.51		1.11	0.29	
81		- 1		11.48			2.72	.07
		- 1		0.81			0.22	.011
84		1					6.35	.266
		1.					0.52	.041
85				24.63		12.97	8.60	
				1.85		1.24	0.76	
86	No Heate	r		20.50		12.24	9.39	
	•			4.19		3.09	2.39	
91	- $$	=		?		13.27	6.56	
	Į.			?		1.98	0.99	
92	With Heat	er		2.33		13.82	6.46	.087
	No Salt	I		0.28		2.06	0.97	.022
94	ī	I		19.56		8.65	9.49	
	1			2.33		1.29	1.43	
95		1		5.98		6.04	4.39	
		1		3.15		4.26	2.46	
96				3.13			·	
		i		1.65			-	
97		ł		8.74		12.48	6.03	
				1.04		1.86	0.91	
99							1.89	.052

0.28

.013

TABLE VI MSRE PUMP BOWL, LINES. RESULTS AND DATA

Spectra Number	Equipment		Te-132	<u>I-132</u>	Mo-99	Nb-95	Ru-103	La-140	<u>Ce-141</u>	<u>I-131</u>	<u>Cs-137</u>	Ru-106	
34	L-102	Count Rate Result		1.45		15.49	0.37						
39	L-102	Result ▲	10.41	3.48	0.91	1.76	0.96						
50	Pump Bowl		3.21	10.34	4.78	1.86	23.68						
51	"			15.85	27.83 5.24	1.40	13.74						
53	L-101			8.81	30.47	1.03 3.58	17.00 0.213						
54	L-102			.52 4.69	3.15	2.52	0.12						12
61	Pump Bowl			2.47 9.05	18.30 3.95	0.73	1.46					0.48	
62	"			0.51 28.06	23.00	1.06 1.75	9.76 61.99					1.51	
64	11		12.81	15.60 11.94	59 . 25	1.28 0.52	35.97 7.39					4.92	
65	11	1	4.16	6.64	 7.45	0.39	4.29					2.72	
66	"			10.00	43.38	0.85	20.43	0.54				8.52	
67	L-522			11.77	45.52	0.90	20.96	0.78		2.46	2.65	0.58	
68	n	1			28.61 5.56	0.34	11.19	0.104	1.22	0.95	2.24	1.83	
69	n				36.24	0.247		0.73	0.33	1.29	2.57	1.48	
72	L-102			2.37	28.76	1.46	9.57	3.28					
12	1-102	1		1.25		1.46	0.58						

Table VI - MSRE Pump Bowl, Lines. Results and Data (continuation)

Equipment	<u>Te-132</u>	<u>1-132 Mo</u>	-99 <u>Nb-95</u>	Ru-103	La-140	<u>Ce-141</u>	<u>I-131</u>	<u>Cs-137</u>	Ru-106
L-102		1.12	0.69	0.41					
L-102	↓	13.36	7.71	10.28					
HX Inlet	Count Rate Result	5.98	6.04	4.39					
L-102	Count Rate Result	3.13 1.65	1.12 0.785	1.18					
	L-102 L-102 HX Inlet	L-102 L-102 HX Inlet Count Rate Result L-102 Count Rate	L-102 1.12 0.587 L-102 13.36 7.04 HX Inlet Count Rate 5.98 Result 3.15 L-102 Count Rate 3.13	L-102 1.12 0.69 0.587 0.489 L-102 13.36 7.71 7.04 5.43 HX Inlet Count Rate 5.98 6.04 Result 3.15 4.26 L-102 Count Rate 3.13 1.12	L-102 1.12 0.69 0.41 0.587 0.489 13.36 7.71 10.28 7.04 5.43 5.76 HX Inlet Count Rate 5.98 Result 3.15 4.26 2.46 L-102 Count Rate 3.13 1.12 1.18	L-102 1.12 0.69 0.41 0.587 0.489 0.23 13.36 7.71 10.28 7.04 5.43 5.76 HX Inlet Count Rate 5.98 6.04 4.39 Result 3.15 4.26 2.46 L-102 Count Rate 3.13 1.12 1.18	L-102 1.12 0.69 0.41 0.587 0.489 0.23 13.36 7.71 10.28 7.04 5.43 5.76 HX Inlet Count Rate 5.98 Result 3.15 4.26 2.46 L-102 Count Rate 3.13 1.12 1.18	L-102 1.12 0.69 0.41 0.587 0.489 0.23 1.10	L-102 1.12 0.69 0.41 0.587 0.489 0.23 1.10

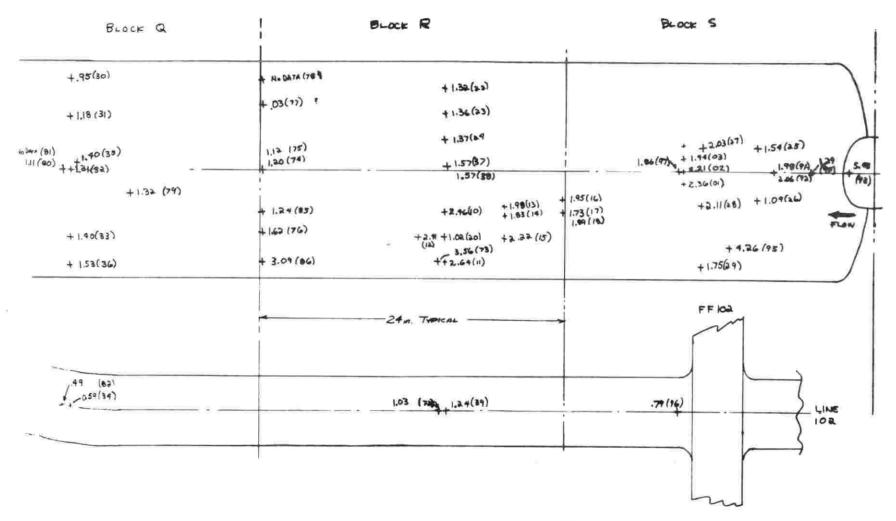


Fig. 8. Heat Exchanger Plot for 95Nb.

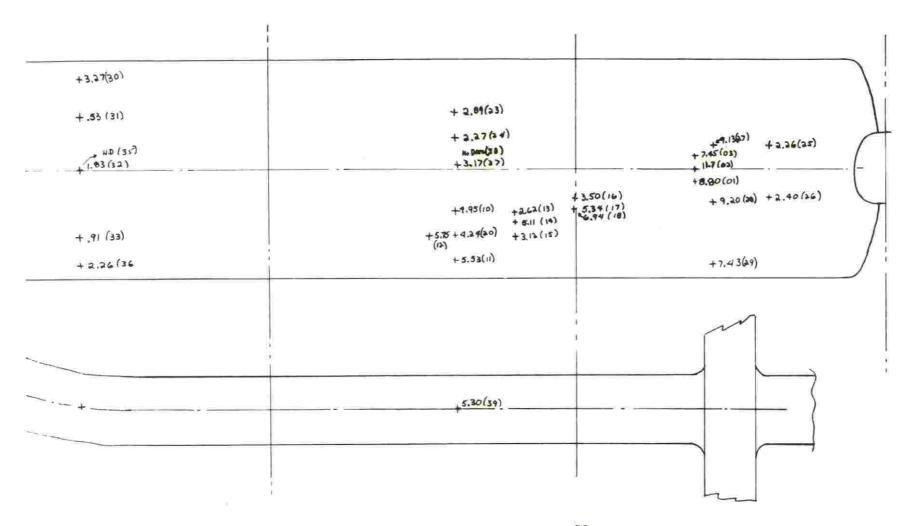


Fig. 9. Heat Exchanger Plot for 99 Mo.

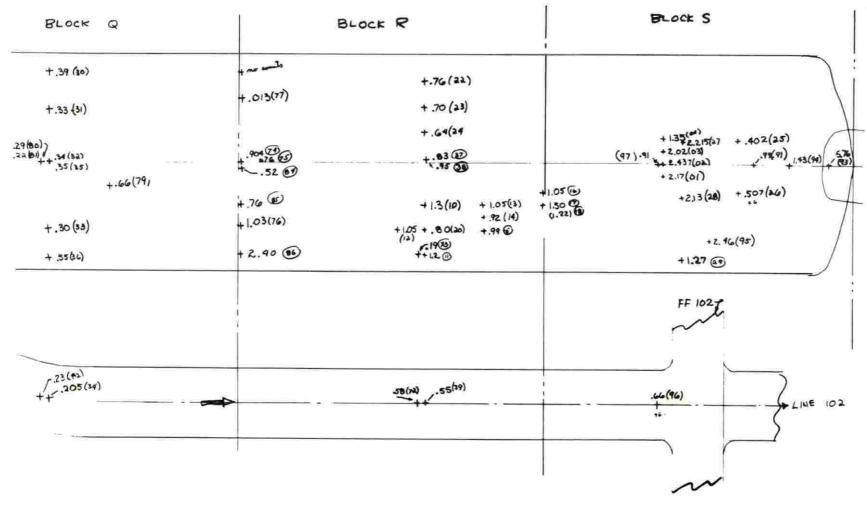


Fig. 10. Heat Exchanger Plot for $^{103}\mathrm{Ru}$.

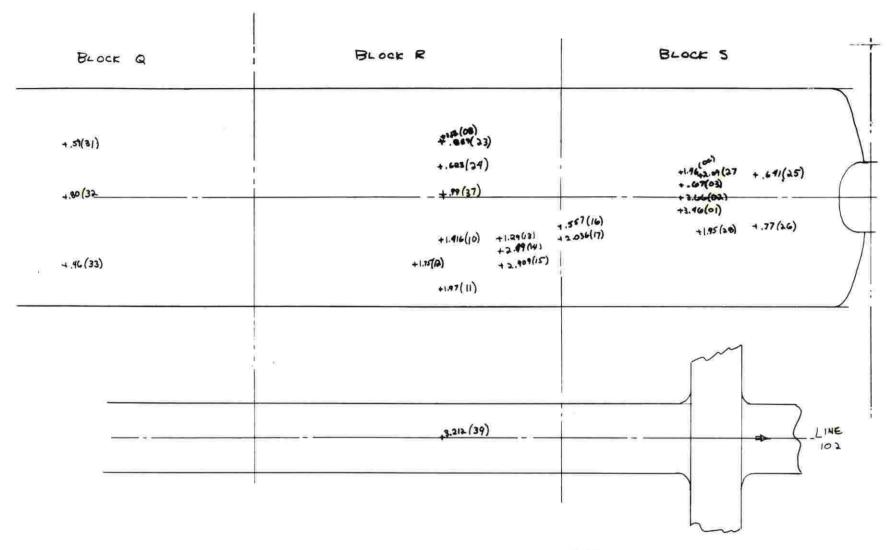


Fig. 11. Heat Exchanger Plot for ¹³²Te.

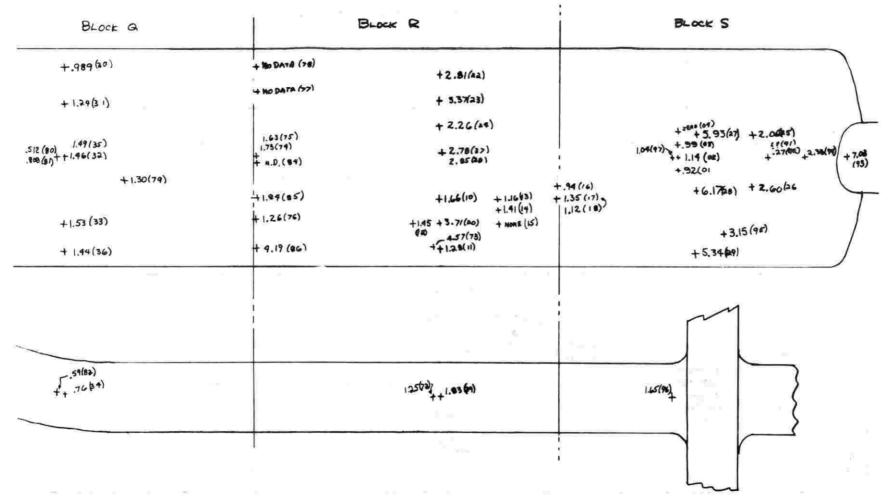


Fig. 12. Heat Exchanger Plot for ¹³²I.

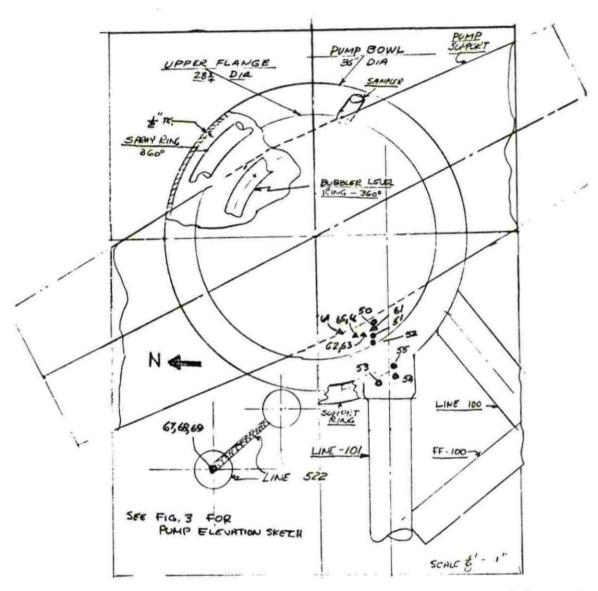


Fig. 13. Pump Bowl Area Showing Line 522 Pump Support and Internals with Scan Locations.