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1. INTRODUCTION

The understanding of electromagnetic fields is essential for many core applications at Oak Ridge National
Laboratory (ORNL). Electromagnetic fields play an important role in particle accelerators, antennas,
electric motors, power grids, and are a principal part of nuclear fusion. The team is developeing a
numerical solver called VERTEX-MAXWELL to solve Maxwell’s equation, allowing for the complex
behavior of electromagnetic fields to be modeled utilizing VERTEX’s framework [2]. The VERTEX
framework provides tools required to solve complex multiphysics problems in an environment optimized
for high performance computing. The current framework includes an implicit hyperbolic solver,
unstructured adaptive meshes, and particle-mesh integration algorithms.

VERTEX-MAXWELL will contribute to VERTEX’s overall strategy and research priorities by utilizing
VERTEX-CORE to implement higher-order temporal and spatial discretization methods. VERTEX-CORE
allows for efficient hyperbolic partial differential equation spatial/temporal stabilization through differential
eigensystem solvers and singly diagonal implicit Runge-Kutta (SDIRK) methods to advance the field in
time. VERTEX-MAXWELL will solve for electromagnetic fields on arbitrary unstructured meshes
whereby input/output data structures are provided by VERTEX-CORE. Implementation of volumetric
terms for the fully coupled time-domain Maxwell’s equations are also provided by VERTEX-CORE. The
partial differential equations will be implemented with automatic differentiation [3] in the Trilinos
framework developed by Sandia National Laboratory. Newton’s method will be used to progress solutions
implicitly in the time domain. The use of correction potentials [4] will provide corrections to the field
divergences to alleviate common numerical issues with Maxwell solvers.

VERTEX-MAXWELL will incorporate three research objectives during its development. First,
VERTEX-MAXWELL will provide a generalized method to solve Maxwell’s equations in the time
domain. The solver will ultimately be incorporated into future efforts that simulate the use of plasma in
isotope separation and the development of fusion blankets, wherein the dynamics of the electromagnetic
fields play an important role.

Second, the team aims to implement a variety of boundary/material interface conditions for a wide variety
of electromagnetic fields. Material interfaces will be represented by numerical jumps in current,
permeability, and/or permittivity. These interfaces will be simulated spatially through the discontinuous
Galerkin module in VERTEX-CORE. Far-field nonreflecting boundaries will be simulated with the
characteristic method that utilizes VERTEX-CORE’s eigensystem solver.

Finally, the team aims to verify the numerical order of accuracy of VERTEX-MAXWELL and validate the
solution methodology by comparing computed results to experimental data and problems with analytical or
known solutions. The validation cases considered are discussed in section 3.
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2. BACKGROUND

2.1 GOVERNING EQUATIONS

Maxwell’s equations govern electromagnetic phenomena, and can be written in their differential forms as
(in SI units) [5]:

∇ × E = −
∂B
∂t

(1)

∇ ×H =
∂D
∂t

+ J (2)

∇ · D = ρq (3)

∇ · B = 0 (4)

where B is the magnetic field vector, E is the electric field vector, ρq is the charge density, and J is the
current density vector. For linear materials, which are considered herein, the constitutive relations for D
and H are:

D = εE (5)

B = µH (6)

where µ and ε are the permeability and permittivity, respectively. The relationship between the relative
permeability and permittivity are µr = µ/µ0 and εr = ε/ε0, where µ0 is the permeability of free space and ε0
is the permittivity of free space. For linear materials, polarization and magnetization effects are neatly
accounted for by the specification of the material-dependant values for εr and µr. This treatment is
sufficient for application in describing a large variety of electromagnetic behavior.

In the Maxwell system, Equation 1 is referred to as Faraday’s law and describes how varying magnetic flux
density can induce an electric field, and vice versa. Equation 2 is Ampere’s law and describes how a
current or time-varying electric field can produce a magnetic field. The term containing ∂D

∂t is called the
displacement current or Maxwell’s correction. Guass’s law is provided by Equation 3 and describes the
relationship between charge and the electric field. Finally, Equation 4 accounts for the lack of the
observance of magnetic monopoles experimentally.

In Equations 1–6, an expression for ρq and J is required to close the system of equations. Taking the
divergence of Equation 2 and applying Equation 3 yields the continuity equation:

∂ρq

∂t
= −∇ · J (7)
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Physically, Equation 7 states that diverging current flow out of a volume element must be balanced by a
time-varying charge density in the absence of source terms (e.g., ionization). Because of errors introduced
by discretization, the continuity equation can be hard to satisfy numerically. Furthermore, the
phenomenology governing ρq and J can be complex, arising from individual behavior of all charged
particle species present. In some cases, ρq and J must be obtained from other computations, such as the use
of Particle-in-cell or some form of the magnetohydrodynamic (MHD) equations (e.g., ideal-MHD,
Hall-MHD, two-fluid MHD). In some situations, the continuity equation may not be strictly enforced. In
future VERTEX efforts, more complex models for ρq and J will be incorporated into the framework.

For the model developed here, the team will treat ρq and J as self-consistently defined inputs either
specified by the user or determined through other computational methods or theory. This design philosophy
enables a very versatile way to treat electromagnetic problems in VERTEX. For example, free space
conditions can be enforced by simply setting J=0 and ρq =0. Alternatively, by defining and specific
time-varying current density distribution, the fields produced by an antenna can be simulated, enabling the
design for fusion applications. This formulation also provides a means to account for the presence of
conductive material via Ohms law:

J = σE (8)

To provide a stable means to solve the Maxwell system (Equations 1–6), correction potentials will be
introduced to enforce the divergence constraints and provide a way to couple changes in ρq and ∇ · D.
When the correction potentials for the electric field φ and magnetic field ψ are utilized in the Maxwell
system, the following are obtained [4]:

∂B
∂t

+ ∇ × E + β∇ψ = 0 (9)

∂E
∂t
− c2
∇ × B + χc2∇φ = −J/ε (10)

1
χ

∂φ

∂t
+ ∇ · E = ρq/ε (11)

1
β

∂ψ

∂t
+ c2
∇ · B = 0 (12)

where χ and β govern the strength of the correction, and c is the speed of light in vacuum. For χ = β = 0, φ
and ψ do not evolve in time and Equations 9–12 revert back to the original form represented by Equations
1–6.

The correction potentials φ and ψ allow the system of equations to be solved, while simultaneously
enforcing the divergence constraints (∇ · B and ∇ · E) to account for numerical discretion errors. The
parameters χ and β (typically of order 1) are usually fixed in time [4]. For implementation within
VERTEX, we will explore the use of dynamic χ and β values that are determined by sub cycling methods
to enforce physical behavior of the solution to high accuracy.

Equations 9–12 are a set of linear differential equations that can be reorganized into hyperbolic form and
solved numerically using upwinding schemes in VERTEX. In VERTEX, the set of equations are
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numerically integrated by employing the unstructured higher-order accurate Streamline Upwind
Petrov-Galerkin (SUPG) finite-element method for spatial discretization [6]. Since the equation set
considered is unsteady, solution convergence is accelerated and numerical robustness is enhanced by
utilizing implicit time stepping. The linear system incurred from implicit time stepping is solved using the
Generalized Minimum Residual (GMRES) algorithm with preconditioning [7].

2.2 IMPLEMENTATION IN VERTEX

For numerical stability and implementation within VERTEX, the 3D Maxwell’s equations with the
magnetic and electric correction potentials are utilized by first casting the set of equations into
dimensionless form. This is accomplished by expressing Equations 9–12 in terms of several dimensionless
quantities:

J = J′voρ0 ρq = ρ′qρ0

B = B′B0 E = E′B0v0
ψ = ψ′B0v0 φ = φ′B0
t0 = L/v0 x=x’L
E0 = v0B0 J0 = v0ρ0

where dimensionless quantities are denoted with a prime (′), and B0, t0, L, v0, and ρ0 denote the
characteristic magnetic field, timescale, spatial scale, velocity, and charge density, respectively. The choice
in these quantities forces ∇ −→ 1

L∇
′, and ∂

∂t −→
1
t0

∂
∂t′ , where derivatives are taken with respect to the

dimensionless variables. By incorporating the dimensionless quantities into Equations 9–12, the following
is obtained:

∂B′

∂t′
+ ∇′ × E′ + β′∇′ψ′ = 0 (13)

∂E′

∂t′
− c′2∇′ × B′ + χc′2∇′φ′ = −ΓJ′ (14)

∂φ′

∂t′
+ χ′∇′ · E′ = χ′Γρ′q (15)

∂ψ′

∂t′
+ β′c′2∇′ · B′ = 0 (16)

Equations 13–16 provide the space and time evolution of Maxwell’s equations, and the correction
potentials, in non-dimensional form. The parameter Γ plays a special role in the behavior of the system,
and is strictly composed of the characteristic scaling parameters defined above, and can be expressed
several ways to provide physical insight:

Γ =
ρ0L

B0ε0v0
(17)

=
ρ0L
E0ε0

(18)

=
J0t0
E0ε0

(19)
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Mathematically, the magnitude of Γ determines the strength that ρ′q and J′ couples into the system, thereby
controlling the generation of electric and magnetic fields for the timescales (t0) and spatial scales (L)
chosen for a particular problem. Numerically, Γ provides a measure of the strength of the source vector
(discussed in Section 2.3), which may require the use of stiff time-integration methods. Its use will be
demonstrated in future sections.

2.3 HYPERBOLIC FORM AND NUMERICAL SOLUTION

The solvers employed in VERTEX are capable of solving systems of equations in hyperbolic form. For
Equations 13–16 we consider the form:

∂U
∂t

+ ∇ · F = S (20)

where U is called the parameter vector, F is known as the flux vector, and the source vector is S. The flux
vector can be expanded using Fx, Gy, and Hz, to treat the flux in terms of derivatives in each spatial
direction:

∂U
∂t

+
∂Fx

∂x
+
∂Gy

∂y
+
∂Hz

∂z
= S (21)

Equations 13–16 can be cast into the form of Equation 21 with suitable choices for U, S, Fx, Gy, and Hz:

Fx =



β′ψ′

−E′z
E′y

c′2χ′φ′

B′zc
′2

−B′yc′2

E′x
B′x


Gy =



E′z
β′ψ′

−E′x
−c′2B′z
c′2χ′φ′

c′2B′x
E′y
B′y


Hz =



−E′y
E′x
β′ψ′

c′2B′y
−c′2B′x
c′2χ′φ′

E′z
B′z



U =



B′x
B′y
B′z
E′x
E′y
E′z

χ−1φ′

(c′2β)−1ψ′


S = −Γ



0
0
0
J′x
J′y
J′z
χ′ρ′

0


In VERTEX, Equation 21 is solved implicitly in time using the SUPG finite-element method [6]. The
SUPG method utilizes the Galerkin form of Equation 21 and adds a stream-wise upwind stabilization term.
After the application of Green’s theorem it becomes [8]:
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∫ ∫ ∫
Ω

[
w +

(∂w
∂x

Mx +
∂w
∂y

My +
∂w
∂z

Mz
)
τ
][∂U
∂t

+ S
]
∂Ω+∫ ∫

Ξ

w
(
Fxηx + Gyηy + Hzηz

)
∂Ξ −

∫ ∫ ∫
Ω

(∂w
∂x

Fx +
∂w
∂y

Gy +
∂w
∂z

Hz
)
∂Ω∫ ∫ ∫

Ω

[(∂w
∂x

Mx +
∂w
∂y

My +
∂w
∂z

Mz
)
τ
][∂Fx

∂x
+
∂Gy

∂y
+
∂Hz

∂z

]
∂Ω = 0

(22)

The SUPG method is differentiated from other methods with the use of the (∂w
∂x Mx + ∂w

∂y My + ∂w
∂z Mz)τ

stabilization term, where τ is the stabilization matrix (Section 2.4), and w is a weighting function. For
tetrahedrons, w is determined from the shape function Ni(ξ, η, ρ) and an arbitrary displacement di [9]:

w =

Nnodes∑
i=1

Ni(ξ, η, ρ)di (23)

The matrices Mx, My, and Mz, are defined by the system of equations under consideration. For the
Maxwell system (Equations 13–16):

Mx =
∂Fx

∂U
=



0 0 0 0 0 0 0 c′2β′2

0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 c′2χ′2 0
0 0 c′2 0 0 0 0 0
0 −c′2 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0


(24)

My =
∂Gy

∂U
=



0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 c′2β′2

0 0 0 −1 0 0 0 0
0 0 −c′2 0 0 0 0 0
0 0 0 0 0 0 c2χ′2 0

c′2 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0


(25)

Mz =
∂Hz

∂U
=



0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 c2β′2

0 c′2 0 0 0 0 0 0
−c′2 0 0 0 0 0 0 0

0 0 0 0 0 0 c′2χ′2 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0


(26)
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The eigenvalues for the matrices given by Equations 24–26 are ±c′, ±β′c′, and ±χ′c′, which represent the
propagation of an electromagnetic wave and the φ′ and ψ′ correction potential waves.

2.4 THE STABILIZATION MATRIX

The stabilization matrix τ is defined by the Gauss points within an element [8, 6]:

τ =
( Nnodes∑

i=1

|
∂Ni

∂x j
M j|

)−1
(27)

for j = 1, 2, 3. For a linear element the stabilization matrix (Nnodes = 4), τ becomes:

τ =(∣∣∣∣∂N1

∂x
Mx +

∂N1

∂y
My +

∂N1

∂z
Mz

∣∣∣∣ +
∣∣∣∣∂N2

∂x
Mx +

∂N2

∂y
My +

∂N2

∂z
Mz

∣∣∣∣+∣∣∣∣∂N3

∂x
Mx +

∂N3

∂y
My +

∂N3

∂z
Mz

∣∣∣∣ +
∣∣∣∣∂N4

∂x
Mx +

∂N4

∂y
My +

∂N4

∂z
Mz

∣∣∣∣)−1

(28)

Equation 28 contains several terms with the form
∣∣∣∣NxMx + NyMy + NzMz

∣∣∣∣ where we have denoted
Nq = ∂q(Ni) for each coordinate q. Utilizing this simplified notation, each term in the stabilization matrix
takes the form:

∣∣∣∣NxMx + NyMy + NzMz

∣∣∣∣ =

0 0 0 0 −Nz Ny 0 c′2β′2Nx

0 0 0 Nz 0 −Nx 0 c′2β′2Ny

0 0 0 −Ny Nx 0 0 c′2β′2Nz

0 c′2Nz −c′2Ny 0 0 0 c′2χ′2Nx 0
−c′2Nz 0 c′2Nx 0 0 0 c′2χ′2Ny 0
c′2Ny −c′2Nx 0 0 0 0 c′2χ′2Nz 0

0 0 0 Nx Ny Nz 0 0
Nx Ny Nz 0 0 0 0 0



(29)

Equation 29 can also be written in diagonal form
∣∣∣∣NxMx + NyMy + NzMz

∣∣∣∣ = TΛT−1, where T is the matrix
of right eigenvectors, and Λ is the diagonal matrix of eigenvalues. For Equation 29:

7



T =

−
Ny

c′N
Nz

c′N
Ny

c′N −
Nz

c′N −
c′β′Nx

N
c′β′Nx

N 0 0
N2

x +N2
z

cN Nx

NyNz
cN Nx

−
N2

x +N2
z

c′N Nx
−

NyNz
c′N Nx

−
c′β′Ny

N
c′β′Ny

N 0 0

−
NyNz

c′N Nx
−

N2
x +N2

y
c′N Nx

NyNz
c′N Nx

N2
x +N2

y
c′N Nx

−
c′β′Nz

N
c′β′Nz

N 0 0
−

Nz
Nx

−
Ny
Nx

−
Nz
Nx

−
Ny
Nx

0 0 −
c′χ′Nx

N
c′χ′Nx

N

0 1 0 1 0 0 −
c′χ′Ny

N
c′χ′Ny

N

1 0 1 0 0 0 −
c′′χ′Nz

N
c′χ′Nz

N
0 0 0 0 0 0 1 1
0 0 0 0 1 1 0 0



(30)

Λ =

−c′N 0 0 0 0 0 0 0
0 −c′N 0 0 0 0 0 0
0 0 c′N 0 0 0 0 0
0 0 0 c′N 0 0 0 0
0 0 0 0 −c′β′N 0 0 0
0 0 0 0 0 β′c′N 0 0
0 0 0 0 0 0 −c′χ′N 0
0 0 0 0 0 0 0 c′χ′N


(31)

T−1 =

−
c′Ny
2N

c′Nx
2N 0 −

NxNz
2n2 −

NyNz

2n2

N2
x +N2

y

2n2 0 0
c′Nz
2N 0 −

c′Nx
2N −

NxNy

2n2
N2

x +N2
z

2n2 −
NyNz

2n2 0 0
c′Ny
2N −

c′Nx
2N 0 −

NxNz
2n2 −

NyNz

2n2

N2
x +N2

y

2n2 0 0

−
c′Nz
2N 0 c′Nx

2N −
NxNy

2n2
N2

x +N2
z

2n2 −
NyNz

2n2 0 0
−

Nx
2c′β′N −

Ny
2c′β′N −

Nz
2c′β′N 0 0 0 0 1

2
Nx

2c′β′N
Ny

2c′β′N
Nz

2c′β′N 0 0 0 0 1
2

0 0 0 −
Nx

2c′χ′N −
Ny

2c′χ′N −
Nz

2c′χ′N
1
2 0

0 0 0 Nx
2c′χ′N

Ny
2c′χ′N

Nz
2c′χ′N

1
2 0



(32)
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where N =

√
N2

x + N2
y + N2

z . Using the matrices given in Equations 30–32:

T|Λ|T−1 =



c′
(
β′N2

x +N2
y +N2

z

)
N

(β′−1)c′NxNy
N

(β′−1)c′NxNz
N 0

(β′−1)c′NxNy
N

c′
(
N2

x +β′N2
y +N2

z

)
N

(β′−1)c′NyNz
N 0

(β′−1)c′NxNz
N

(β′−1)c′NyNz
N

c′
(
N2

x +N2
y +β′N2

z

)
N 0

0 0 0
c′

(
N2

xχ
′+N2

y +N2
z

)
N

0 0 0 c′NxNy(χ′−1)
N

0 0 0 c′NxNz(χ′−1)
N

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

c′NxNy(χ′−1)
N

c′NxNz(χ′−1)
N 0 0

c′
(
N2

x +N2
yχ
′+N2

z

)
N

c′NyNz(χ′−1)
N 0 0

cNyNz(χ′−1)
N

c′
(
N2

x +N2
y +N2

z χ
′
)

N 0 0
0 0 c′χ′N 0
0 0 0 β′c′N



(33)

If χ′ = 1 and β′ = 1, then Equation 33 is fully diagonalized:

T|Λ|T−1 = c′N I =

c′N 0 0 0 0 0 0 0
0 c′N 0 0 0 0 0 0
0 0 c′N 0 0 0 0 0
0 0 0 c′N 0 0 0 0
0 0 0 0 c′N 0 0 0
0 0 0 0 0 c′N 0 0
0 0 0 0 0 0 c′N 0
0 0 0 0 0 0 0 c′N


(34)

where I is the identity matrix.

3. TEST PROBLEMS

Solutions obtained using VERTEX will be validated against several test cases. In Section 3.1, several cases
in magnetostatics will be discussed. In Section 3.2, cases designed to test the ability to enforce the ∇ · E
and ∇ · B constraints will be discussed. Finally, in Section 3.3, several full-wave cases will be examined.
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3.1 TEST CASES IN MAGNETOSTATICS

In magnetostatic problems, we consider steady-state current density distributions (J = J(x, y, z)) with ρq =

0. The magnetic field in these situations is readily determined from the Biot-Savart law:

dB = µ0I
dL × r’
4π|r’|3

(35)

where IdL is the current element, and r’ is the position vector. We now consider the solution to the
Biot-Savart equation for specific cases of J(x, y, z).

3.1.1 Steady Current in an infinitely long wire

The magnetic field produced by an infinitely long current conducting wire is a common textbook problem
useful for verification purposes. In this case J = J0δ(r)ẑ, and the application of the Biot-Savart provides the
magnetic field outside the wire :

Bθ =
µ0I
2πr

(36)

By utilizing the magnetic field profile predicted by Equation 36, test cases will be constricted in one, two,
and three dimensions utilizing one or more wires placed in the computational domain. Figure 1 shows the
field created with a single wire in one dimension, and two wires in three dimensions.

3.1.2 Steady Current in a loop

Consider the case of a loop of radius R in the x-y plane. In this case, J = J0δ(r − R)δ(θ − π/2)θ̂, where θ is
the polar angle. The application of the Biot-Savart law yields [10]:

Br =
µoI
2R

1
π
√

Q

(
E(k2)

1 − α2 − β2

Q − 4R
+ K(k2)

)
. (37)

Figure 1. Magnetic field profile of (a) a single wire with current aligned along the z-axis and (b) for
two wires shown in red.
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Figure 2. Slice plot of |B| with steam lines for a current loop with I=1 A and R = 1 m.

Bz =
µoI
2R

γ

π
√

Q

(
E(k2)

1 + α2 + β2

Q − 4R
− K(k2)

)
(38)

α = r/R (39)

β = z/R (40)

γ = x/r (41)

Q = (1 + α2) + β2 (42)

k =
√

(
4α
Q

(43)

where the complete elliptic integral function is denoted as K(k) for the first kind and as E(k) for the second
kind. The case of a current loop yields a magnetic field with a complex topology (Figure 2) sufficient for
testing the Maxwell solver in VERTEX for 2D polar and 3D Cartesian geometries.

3.1.3 Steady Current in a solenoid

The magnetic field created from a steady current traveling through a tightly-packed solenoid is another
good test case for the Maxwell solver. Solutions for a solenoid can be obtained directly from Equations
37–38 by superimposing many current loops. Figure 3 shows an example of the magnetic field distribution
for a case of 50 identical current loops oriented parallel to the x-y plane and uniformity separated in the
axial direction.
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Figure 3. (a) Magnetic field strength for 50 closely packed 1 cm radius loops carrying a current of 1
A (L/R = 2), where L is the total length of the solenoid. (b) Bz along the axis for the same case. The

dotted red line shows the long solenoid limit (L/R >> 1), or where Bz = µ0In when n is the number of
turns per length.

3.2 TEST CASES FOR DIVERGENCE CONSTRAINTS

The correction potentials introduced into Equations 13–16 provide a means to solve the system even in the
case where the continuity equation (Equation 7) is not strictly valid:

∂ρq

∂t
+ ∇ · J = δ (44)

where the right-hand side contains nonzero term δ, which may characterize a physical source term (e.g.,
ionization, sputtering) or a non-physical numerical error that can quickly drive a solution to be unstable.

To test the ability of the correction potentials to enforce the divergence constraints in the Maxwell system,
a test problem to consider is the case of a time-varying charge density located at the origin [4]:

J = 0 (45)

ρq = esin(ωt)δ(r) (46)

where ω is an angular frequency. The conditions set by Equations 45–46 violate the continuity equation,
but are still coupled into Equations 13–16 through the correction potential φ′. This distribution gives rise to
fields produced by a point charge located at the origin, and the analytical solution can be obtained using the
retarded-time form of the scalar potential [10]:

Φ(x) =
1

4πε0

∫
ρ(x′)

eik|x−x′ |

|x − x′|
d3x′ (47)
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Figure 4. |E| for the distribution given in Equations 45–46 with frequency of 1 Ghz.

where x is the position vector and x’ is the position vector integrated over the charge distribution ρ. Using
Equations 45–46, integration yields

Φ =
ρ0

4πε0

eik
√

x2+y2+z2√
x2 + y2 + z2

(48)

where the electric fields are simply E = −∇Φ. In figure 4 the electric field produced by an oscillating
charge at a frequency of 1GHz is shown, where the amplitude is equal to an elementary charge unit e.

3.3 TEST CASES IN ELECTROMAGNETICS

3.3.1 Test Case: Time-varying Loop Antenna

A loop antenna [5] is typically constructed by passing a time-varying sinusoidal with angular frequency ω
into a circular conductor of radius a. The electromagnetic fields radiated in this situation are characteristics
based on the value of a/λ, where λ is the wavelength.

For an electrically short antenna, the radiated fields can be determined analytically by computing the vector
potential A. For an electrically short antenna, the current is assumed not to vary along the circumference of
the antenna, which is typically physically valid if either (1) the loop is sufficiently small (a/λ <<1) or (2)
the loop is divided into several sections that are fed with phase-shifted sources to artificially force a
constant current. In this case, J = J0sin(ωt)δ(r − R)δ(θ − π/2)φ̂, and the vector potential only has
components along the azimuthal direction φ̂. Integrating over the current distribution φ′, A = Aφφ̂ and:

Aφ =
µ0J0

4π

∫ 2π

0

eik(a2+r2−2arsin(θ)cos(φ′))1/2

(a2 + r2 − 2arsin(θ)cos(φ′))1/2 cos(φ′)dφ′ (49)

Once A is known, the magnetic field and electric field [10] can be computed from B = ∇ × A and
E = ic∇ × B. Equation 49 is valid provided that the current is kept constant along the circumference of the
loop, and can be solved numerically to obtain the electric and magnetic fields for any value of a/λ (Figure
5).
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Figure 5. (a) Aφ (in arbitray units) for a/λ=0.8, and (b) the log of the radiated power, defined by
|P| = 1/(2µ0)E × B∗ when a=1 cm, I=1A, and f = 23.9 Ghz. The characteristic lobed structure for a

loop antenna is clearly visable.

3.3.2 Mie Scattering

The properties of a plane wave scattered from a sphere located at the origin were first considered for the
case of a perfectly conducting sphere by Mie, and was later expanded to pure and radially varying
dielectric distributions. For the purposes of this work, Mie solutions will be leveraged to provide a
validation for VERTEX-MAXWELL.

Mie solutions are derived by considering the case where an incident electromagnetic wave propagating in
the -ẑ direction encounters a sphere located at the origin. The incident fields are

Ei = E0e−ik0zx̂ (50)

Hi = −E0/ηe−ik0zŷ (51)

The generalized Mie solution for the scattered fields takes the form [1]:

Es(r′, θ′, φ′, ω) = E0

∞∑
n=1

(
AnMo,1,n + BnNe,1,n

)
(52)

Hs(r′, θ′, φ′, ω) = −i
√
ε0

µ0
E0

∞∑
n=1

(
AnMe,1,n + BnNo,1,n

)
(53)

at the observation point (r′, θ′, φ′), where An and Bn are coefficients that depend on the specific properties
of the sphere, which will be considered later. The vector quantities are defined by

Me,1,n =


0r̂

− 1
sin(θ) h

(1)(kor′)P1
n(cos(θ′))sin(φ′)θ̂

−h(1)(kor′) d
dθP1

n(cos(θ′))cos(φ′)φ̂

 (54)
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Mo,1,n =


0r̂

1
sin(θ) h

(1)(kor′)P1
n(cos(θ′))cos(φ′)θ̂

−h(1)(kor′) d
dθP1

n(cos(θ′))sin(φ′)φ̂

 (55)

Ne,1,n =


n(n+1)

kor′ h(1)(kor′)P1
n(cos(θ′))cos(φ′)r̂

1
kor′

d
d(kor′)

(
kor′h(1)(kor′)

) d
dθ

(
P1

n(cos(θ′)))
)
cos(φ′)θ̂

− 1
kor′sin(θ′)

d
d(kor′)

(
kor′h(1)(kor′)

)
P1

n(cos(θ′))sin(φ′)φ̂

 (56)

No,1,n =


n(n+1)

kor′ h(1)(kor′)P1
n(cos(θ′))sin(φ′)r̂

1
kor′

d
d(kor′)

(
kor′h(1)(kor′)

) d
dθ

(
P1

n(cos(θ′)))
)
sin(φ′)θ̂

1
kor′sin(θ′)

d
d(kor′)

(
kor′h(1)(kor′)

)
P1

n(cos(θ′))cos(φ′)φ̂

 (57)

where h(1) are spherical Hankel functions and P1
n are the associated Legendre functions. Equations 52–57

are valid for any value of k0r′, and thus can be used to compute the near (r′ << a) and far (r′ >> a)
scattered fields. With information of the scattered fields, it is possible to compute the scattering cross
section of a sphere, which are defined as

σ = 4π lim
r−>∞

(E · E*
E0

)
(58)

where E* is the complex conjugate of the vector E.

Perfectly Conducting Spheres The coefficients An and Bn are defined based on the properties of the
sphere. For a perfectly conducting sphere, these coefficients become [1]

An = −(−i)n 2n + 1
n(n + 1)

jn(koa)
h(1)(koa)

(59)

Bn = (−i)n+1 2n + 1
n(n + 1)

[koa jn(koa)]′

[koah(1)(koa)]′
(60)

where jn is a spherical Bessel function for the first kind, and the prime denotes differentiation of the
functions contained within the brackets with respect to k0a. With the generalized solutions Equations
52–53, along with Equations 59–60 and Equations 54–57, the scattered field can be obtained using a tool
such as MATLAB or Wolfram Mathematica. An example of the solved equations, obtained in MATLAB, is
shown in Figure 6.

In VERTEX, the fields scattered from a perfectly conducting sphere can be attained by injecting the
incident wave from the boundaries, and using a conductive boundary condition in the interior of the
computational domain to treat the sphere. In the free space region of the domain, J = 0 and ρq = 0.

15



Figure 6. (a) Plot of the normalized backscatter cross section (for θ = 0 and φ = 0) as a function of
a/λ. The plot shows the Rayleigh region for a/λ < 0.2, and the tendency for σ→ πa2 for large values

of a/λ. (b) The normalized scattered power for k0a = 1

Dielectric Spheres For dielectric spheres with a propagation wave vector of k1, the forms of An and Bn are
[1]:

An = (−i)n 2n + 1
n(n + 1)

[ jn(koa)[k1a jn(k1a)]′ − jn(k1a)[koa jn(koa)]′

jn(k1a)[k0ah(1)
n (koa)]′ − h(1)(koa)[k1a jn(k1a)]′

]
(61)

Bn = (−i)n+1 2n + 1
n(n + 1)

[ jn(koa)[k1a jn(k1a)]′ − m2
1 jn(k1a)[koa jn(koa)]′

h(1)
n (koa)[k1a jn(k1a)]′ − m2

1 j(k1a)[koah(1)
n (koa)]′

]
(62)

where the prime denotes differentiation k0a or k1a and k1 = k0m1.

Radially layered spheres The scattered fields can also be computed exactly for spheres composed of
layers that are homogeneous in the azimuthal and polar directions, which vary radially. An exact solution
has been derived in this case [1], by considering N spherical layers, each of thickness τl, and with
electromagnetic properties εl and µl (where l = 0, 1, ...N). In the cited work, the exact expressions are
readily solved by computing the effective values for An and Bn using a MATLAB script.

One specific case to consider is the case of an exponential distribution for the radial profile:

εr(r) = 1 − (ωp/ω)2 e−r/a

1 − iν/ω
(63)

where ωp is the plasma frequency, ω is the incident wave frequency, and ν characterizes collisions. The
value of ε is entirely governed by the ratios ωp/ω and ν/ω. For example, when ωp/ω > 1, ε tends to
negative values representing metallic behavior at smaller radii.

Using the exponential distribution, the radar cross section can be determined by using the scattered fields
determined from the Mie solutions for a sphere with a sufficient number of layers to resolve the distribution.
In Figure 7, the backscatter cross section is shown computed with a MATLAB script for several values.
The results compare agreeably to results in open literature [11] (see Figure 1 provided in the reference).

The team will compare predictions made by VERTEX-MAXWELL with those obtained using Mie
solutions for radially inhomogenous spheres. The distributions tested will be chosen from literature
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Figure 7. Radar backscatter as a function of ka for various values of ωp/ω and ν/ω, for the
distribution given in Equation 63. The layered-sphere Mie solution derived by Ruck [1] was utilized,

along with 200 individual spherical layers to capture the distribution.

[11, 12], and provide a means to test the solver when strong spatial gradients are present in εr. The team
will also test the ability of the solver to function in the numerically unfavorable limit where εr takes a
negative value and therefore acts as a conductor.

4. WORK PLAN

4.1 MILESTONES

The project has the following Milestones:

• Milestone 1 (12/31/22): Derivation of eigensystem for fully coupled Maxwell’s equations, including
the correction potentials (or Lagrange multipliers).

• Milestone 2 (6/30/23): Implementation of Maxwell’s equations in two spatial dimensions (cartesian
and polar) in the VERTEX-CORE framework with up-winding enabled.

• Milestone 3 (12/31/23): Implementation of Maxwell’s equations in three spatial dimensions in the
VERTEX-CORE framework with up-winding enabled.

• Milestone 4 (9/30/23): Implementation of boundary condition field closure terms consistent with the
volumetric finite-element terms. Material interfaces will be represented by numerical jumps in
current, permeability, or permittivity.

• Milestone 5 (9/30/25): Verify numerical order of accuracy for electromagnetic field for the cases,
described in Section 3., and experimentally obtained data. L1 and L2 error norms will be plotted to
ensure the anticipated numerical order of accuracy from the finite-element discretization method is
achieved.

17



References

[1] George Ruck. Radar Cross Section Handbook: Volume 1 Volume 1 of Radar Cross Section
Handbook. Bantam, Springer US, 1970.

[2] Franklin Curtis. Vertex advanced multiphysics simulations for core applications. ORNL LDRD
proposal, 2023.

[3] Roscoe A Bartlett, David M Gay, and Eric T Phipps. Automatic differentiation of c++ codes for
large-scale scientific computing. In Computational Science–ICCS 2006: 6th International
Conference, Reading, UK, May 28-31, 2006, Proceedings, Part IV 6, pages 525–532. Springer, 2006.

[4] Claus-Dieter Munz, Rudolf Schneider, and Ursula Voß. A finite-volume method for the maxwell
equations in the time domain. SIAM Journal on Scientific Computing, 22(2):449–475, 2000.

[5] Constantine A Balanis. Advanced engineering electromagnetics. John Wiley & Sons, 2012.

[6] Thomas JR Hughes and Michel Mallet. A new finite element formulation for computational fluid
dynamics: Iii. the generalized streamline operator for multidimensional advective-diffusive systems.
Computer methods in applied mechanics and engineering, 58(3):305–328, 1986.

[7] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7(3):856–869,
1986.

[8] Ryan Steven Glasby. Computational design for electromagnetic simulations. PhD thesis, The
University of Tennessee at Chattanooga, 2011.

[9] Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2012.

[10] John David Jackson. Classical electrodynamics, 1999.

[11] P Bisbing. Electromagnetic scattering by an exponentially inhomogeneous plasma sphere. IEEE
Transactions on Antennas and Propagation, 14(2):219–224, 1966.

[12] J Mikulski and E Murphy. The computation of electromagnetic scattering from concentric spherical
structures. IEEE Transactions on Antennas and Propagation, 11(2):169–177, 1963.

18


	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS
	Introduction
	Background
	Governing Equations
	Implementation in VERTEX
	Hyperbolic form and Numerical Solution
	The stabilization matrix

	Test Problems
	Test cases in Magnetostatics
	Steady Current in an infinitely long wire
	Steady Current in a loop
	Steady Current in a solenoid

	Test cases for Divergence Constraints
	Test cases in Electromagnetics
	Test Case: Time-varying Loop Antenna
	Mie Scattering


	Work Plan
	Milestones


