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EXECUTIVE SUMMARY 

Residential buildings consume 4.4 quads of electricity annually, approximately 37% of the total 
electricity consumption in the United States. This represents a vast resource that can be used for demand 
management and other ancillary services. This project aims to develop a robust, scalable hierarchical 
transactional control mechanism incorporating elements of model-free control (MFC) and game theory to 
harness buildings to provide ancillary services to the grid. This approach is being taken to address the 
challenges of incorporating traditional transactional control schemes into existing buildings. The 
challenges include small individual building sizes requiring aggregation of many buildings, unpredictable 
energy usage that makes model identification difficult, and satisfying the sensitive occupant comfort 
constraints. In the proposed approach, by separating the control mechanism into two layers above and 
below the load aggregator, MFC can be used below the aggregator to modulate flexible building loads in 
response to pricing signals with guaranteed performance. This allows the burden of identifying an 
accurate model of the system to be shifted to the above-aggregator layer, where fluctuations in individual 
building usage have less impact on predicted building system behavior. Game theory concepts can then be 
used to determine pricing curves and control signals among regional aggregators. Managing this control 
in a game-theoretic approach will allow us to build in financial incentives that increase customer 
engagement. Additionally, the usage of MFC necessitates less burdensome computational and 
communication requirements, thus, it is easily deployable on small, embedded devices. 

In a broader sense, developing a strategy capable of effectively incorporating residential and small 
commercial buildings will allow greater throughput of existing and emerging grid services in addition to 
future transactive energy grid management methods. Using MFC within a hierarchical control 
architecture will allow the shifting of existing forecasting challenges to an aggregate level, where 
dynamics are slower and more predictable. This will enable a smooth interface between the grid services 
requests of utilities and the reliable control required by participating buildings. MFC, which supports 
distributed control architecture, permits a scalable solution that can be deployed to neighborhood-size 
systems as well as individual buildings. 

This project focuses on three objectives: (1) developing the mathematical framework, algorithm toolkit, 
and software toolset of the two-layer transactive control testbed; (2) developing a scalable solution for 
application over many residential and small-size commercial buildings with sparse distributed 
communication; and (3) field testing and implementation on hardware of the control strategies developed 
in the previous two objectives. The research and development activities are focused and designed to be 
impactful within the relevant 2025 targets timeframe. An open-source control framework for exploiting 
variability and dispatchability of building loads will be delivered as the outcome of the project. This 
capability enables greater participation of loads in electricity markets and ancillary services that are both 
useful for the utility and financially beneficial for building owners. 
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1. BACKGROUND 

Due to the increasing concerns over climate change, the penetration of renewables has been increasing all 
over the world. For example, in the United States, the share of electricity generation from renewables has 
increased from 9% to 17% over the past 10 years and is expected to increase to 42% by 2050 [1]. 
Traditionally, the balance between the electricity supply and demand has been sustained through demand-
driven control techniques in which electricity generation is adjusted in response to the changes in the 
demand. Demand-driven control techniques are effective for power systems where the supply-side is 
dependent on fossil fuels. In such power systems, electricity generation can easily be ramped up or down 
in response to an instantaneous electricity demand due to the ample ramping capabilities of fossil fuels. 
Yet, demand-driven control techniques are not applicable for modern power systems with high renewable 
penetration. Unlike fossil fuels, renewables do not have sufficient ramping capabilities due to their 
variable, intermittent, and unpredictable nature. For this reason, modern power systems utilize supply-
driven control techniques that aim to control electricity demand in response to the changes in the supply 
[2]. Consequently, modern power systems require flexible demand-side resources to maintain the balance 
between electricity supply and demand [3].  

Buildings, as major electricity consumers, are one of the greatest demand flexibility assets [4]. 
Thermostatically controlled loads (TCLs) in buildings, such as heating, ventilation, and air conditioning 
(HVAC) units and water heaters (WHs), account for a significant portion of buildings’ electricity 
consumption. Because TCLs are operated within a comfort temperature range to swing inside, they 
provide the ability to store thermal energy. With a proper coordination, building TCLs can be 
manipulated to draw electricity demand at desirable levels when needed while still maintaining the 
comfort of end users. Thus, the coordinated aggregation of building TCLs can be excellent demand-side 
management resources [5, 6]. In this regard, demand response (DR) programs have long been used by 
grid operators to enable the coordination of a large number of grid-interactive efficient buildings (GEBs) 
[7]. In addition, many home and building energy management systems have been developed to facilitate 
the integration of GEBs to DR programs [8]. 

An electricity market includes various stakeholders such as distribution system operators (DSOs), load 
aggregators (LAs), and end users [9]. Therefore, it is essential to determine effective transactive control 
structures that can accommodate the interests of all stakeholders. In this regard, a two-level market 
structure in which the two levels are connected by the LAs is often utilized. In this structure, the role of 
LAs is crucial because they are employed as central agents that execute DR programs and interact with 
the DSO on behalf of the end users [10]. Specifically, the LAs negotiate the day-ahead electricity price 
with the DSO for the aggregated load of the end users, which results in an optimal pair of price and 
aggregated load. The role of the LAs is critical because they also need to control the loads of the end 
users in a way that maintains the quality of service provided to their end users while following the 
reference aggregated load power profiles resulted in the negotiations with the DSO.  

In a DR program, an operator, the DSO, purchases the electricity from different resources available in the 
wholesale market at a cost and sells the purchased electricity to end users at a price. When determining 
the price, the DSO will have several objectives such as increasing its profit and enhancing the reliability 
of the grid. The end users, on the other hand, adjust their electricity consumption in a way that minimizes 
their electricity cost while maintaining their comfort. In recent years, there has been a significant research 
attention in demand flexibility, and the effectiveness of DR in many areas has been proven. In this regard, 
many review studies on DR have been conducted to classify and compare existing methods. For example, 
[11] provided a comprehensive review on demand-side management (DSM). In [12], the authors 
conducted an exhaustive review on residential DSM architectures, approaches, optimization models, and 
methods. Accordingly, the DR programs can be classified based on either their ways to engage end users 
or control strategies. 



 

 2 

In terms of ways to engage end users, DR programs can broadly be categorized as price-based, direct-load 
control, and transactive control methods [13-15]. Price-based DR programs use dynamic price signals to 
incentivize or disincentivize consumption patterns of end users. However, these programs do not engage 
the end users in the pricing process and require an accurate modeling of end-user reactions in response to 
given electricity prices, and failure to do so can ultimately result in poor grid stability. Direct-load control 
programs enable DR operators to remotely control specific end-user loads. Such programs do not require 
any modelling efforts because the changes in electricity consumption is certain as it is directly controlled 
by the DR operator. However, these programs may violate the preferences and privacy of end users. 
Transactive control programs use market mechanisms to attract end users to provide DR. Such programs 
engage the end users in the pricing process using a set of optimization (negotiation) mechanisms that 
comply with their preferences. The most commonly used optimization mechanisms are the game 
theoretical mechanisms [16-19], metaheuristic mechanisms [20, 21], and parameterization-based 
mechanisms [22]. The main challenge associated with transactive control is to coordinate and aggregate 
the loads of end users. For a successful DR program, an effective and efficient coordination and control of 
a very large number of geographically distributed GEB is essential.  

In terms of control strategies, DR programs can broadly be categorized as rule-based, model-based, and 
reinforcement learning (RL)-based methods [23, 24]. Rule-based controllers (e.g., [25]) are one of the 
most popular control approaches used in DR due to their simplicity. These approaches simply rely on a 
set of simple heuristics that are derived based on expert knowledge. For this reason, the success of rule-
based controllers mainly depends on the expertise and knowledge of the users. However, these 
approaches may not be suitable for dealing with complex, multiple, and/or nonlinear objectives. Model-
based controllers are planning-based approaches that optimize a control problem over receding time. 
These controllers require accurate models that define the system dynamics. However, obtaining such 
models requires a significant amount of time and effort. On the contrary, RL-based approaches are 
potentially model free and can help alleviate the limitations associated with model-based approaches. 
Nevertheless, these approaches learn an optimal control policy by interacting with the surrounding 
environment and thus may take a long time to learn [26].  

In terms of solution approaches, bilevel optimization has been widely used for developing market-based 
control approaches due to its ability to capture the interaction between the strategic decision making of 
the different parties involved in DR [27]. Bilevel optimization problems are usually solved using 
centralized approaches such as the backward induction (BI) method (e.g., [28-30]), in which a central unit 
collects all the necessary information and plans accordingly. Centralized approaches are, however, 
computationally expensive and may arise privacy concerns among the participants of DR [31]. Also, 
centralized approaches are not fault tolerant. For instance, an issue affecting the DSO may cause the 
failure of the entire system [32]. For this reason, distributed approaches have attracted widespread 
research interests in recent years (e.g., [33]). In distributed approaches, the LAs are responsible for 
making their own decisions based on the information provided by the DSO. 

LAs can control both building non-TCLs (e.g., washers and dryers) and building TCLs (e.g., HVACs and 
water heaters). Existing studies have utilized several ways to maintain the quality of service that the LAs 
provide to the end users. For building non-TCLs, the LAs aim to follow the schedule of the end users as 
much as possible. As such, certain time constraints that are determined by the end-users are often used to 
guarantee the quality of service (e.g., [34]). For building TCLs, the LAs aim to maintain the thermal 
comfort of the end users. There are various control approaches to maintain thermal comfort. For example, 
the works in [6, 9, 35-37] used model-based control approaches (e.g., resistance-capacitance (RC) 
models, reduced-order models) to simulate TCLs and compute the resulting temperatures. Model-based 
control approaches, however, require the physical parameters of the building TCLs to accurately reflect 
their system dynamics. Considering that DR programs have a large number of participants, gathering all 
the physical parameters and developing an accurate model for each building TCL is impractical. To this 
end, recent studies (e.g., [38, 39]) have employed virtual batteries to compute the aggregated flexibility 
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that the TCLs can provide without sacrificing the comfort of the end users. Although virtual-battery-based 
control and coordination approaches do not require the modelling of each TCL, the physical parameters of 
the TCLs are still needed to develop a virtual battery model. Finally, some studies (e.g., [40-42]) used 
utility functions to quantify the level of satisfaction with thermal comfort. Despite their simplicity, such 
functions are very generic and often do not guarantee the actual satisfaction of end users. 

Towards addressing the aforementioned limitations related to the ways to engage end users and control 
strategies, this project proposes a scalable hierarchical model-free transactional control approach that 
incorporates elements of virtual battery, game theory, and model-free control (MFC) mechanisms. The 
proposed approach separates control into upper and lower levels connected by LAs. The upper level is 
based on virtual battery and game theory. A one-leader (DSO) and multiple-follower (LAs) Stackelberg 
game is formulated to coordinate the aggregated GEB using day-ahead load scheduling and pricing. In 
addition, the concept of virtual battery is integrated into the game as a set of constraints for guaranteed 
thermal comfort of end users. The lower level is based on MFC, which is a novel online control strategy 
that does not require any modelling or training efforts and can be applied to both linear and nonlinear 
systems [43]. To the date, it has already been successfully implemented in many other domains [44, 45]. 
This project also proposes a data-driven, distributed hierarchical transactional control approach, where the 
machine learning is utilized to predict the temperature responses in a data-driven manner, which 
facilitates maintaining the thermal comfort of the end users. This approach can be used for many DR 
applications to provide benefits for both the DSO and LAs in the electricity market. Using this approach, 
the DSO maximizes its profit and minimizes the total demand peak-to-average ratio (PAR) of the system, 
whereas the LAs minimize their electricity cost while maintaining the quality of service provided. 

This project contributes to the body of knowledge on three main aspects. First, this project couples the 
MFC with the game-theoretic control and proposes a scalable model-free transactive control approach. 
MFC does not require any modeling effort or model training for the various building loads. This is very 
beneficial since deriving an accurate model for every single unit participating in DR programs and 
obtaining all the parameters about the units (e.g., thermal coefficients, standby losses) are infeasible. 
Also, MFC is computationally efficient, easily deployable even on small, embedded devices, and can be 
implemented in real time. Second, this project integrates the concept of virtual battery into DR via the 
Stackelberg game. The concept of virtual battery enables efficient coordination and aggregation of a large 
number of flexible GEB with guaranteed thermal comfort of end users. Third, this project proposes a 
machine learning model to predict the hourly temperatures of TCLs for given day-ahead outdoor 
temperature and aggregated load profiles. The proposed model is purely data-driven and does not require 
any physical parameters of the various building TCLs. 
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2. THE DETERMINISTIC HIERARCHICAL MODEL-FREE TRANSACTIONAL CONTROL 
APPROACH 

2.1 OVERVIEW 

The proposed approach utilizes a two-level control architecture (see Figure 1). The architecture includes 
three parties: the DSO, LAs, and end users. The upper level is handled by a Stackelberg game and a set of 
virtual batteries. The Stackelberg game conducts the negotiation between the DSO and the LAs within the 
limits of the aggregate flexibility offered by the participating GEB. The virtual batteries assist with 
quantifying the aggregate flexibility that each LA can offer for a guaranteed thermal comfort of end users. 
The lower level has two objectives: (1) allocating a sufficient amount of power to all end users to ensure 
the comfort of end users are maintained, and (2) tracking the aggregated load profile determined in the 
upper level. Subsequently, the proposed hierarchical model-free transactional control approach includes 
three primary steps: determining the virtual battery constraints, computing the optimal power and price 
signals using a Stackelberg game, and allocating the optimal power to the loads of end users using MFC. 
In the next subsections, the concepts of virtual battery, Stackelberg game, and MFC are explained. 

 
Figure 1. Overview of the proposed hierarchical model-free transactional control approach. 

2.2 QUANTIFYING LOAD FLEXIBILITY USING THE VIRTUAL BATTERY MODEL 

   The virtual battery model assists in modelling the flexibility offered by a set of TCLs, including HVAC 
and WH units. For example, for a cooling scenario and assuming all TCLs have the same temperature 
setpoint (𝑇!) and comfort band (∆), a fully charged battery means that the temperatures of the TCLs are 
𝑇! − ∆. On the other hand, an empty battery means that the temperatures of the TCLs are 𝑇! + ∆. 
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The virtual battery model, adapted from [46, 47], determines whether a given power profile is feasible for 
a given set of TCLs. The feasibility of a power profile is defined by two criteria: (1) whether it can satisfy 
the comfort requirements of all TCLs, and (2) whether it can be tracked by the aggregate power 
consumption of all TCLs. 
 
As mentioned earlier, the proposed approach is fully model free, and therefore it does not require the 
mathematical models of any building TCLs. The mathematical models presented in the remaining of this 
section are only used for simulating the considered TCLs (HVAC and WH units). In practice, only the 
periodical input-output measurements of the TCL units (i.e., input powers and output indoor/water 
temperatures) that are participating in the DR program are needed for the controller.  
 
To simulate the residential and commercial HVAC units, the building thermal model depicted in Figure 2, 
adapted from [48], is used. 

 
Figure 2. Schematic of the building thermal model. 

 
The continuous-time dynamics of the building model are as follows: 
 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐺𝑤 (1) 
𝑥 = [𝑥" 𝑥# 𝑥$]% , 𝑤 = [𝑤" 𝑤#]% 	 

𝑦 = 𝐶𝑥 + 𝐷𝑢 (2) 
 
where  𝑥 is the system state vector (𝑥": room air temperature, 𝑥#: interior-wall surface temperature, and 
𝑥$: exterior-wall core temperature), u is the on-off state of the HVAC, 𝑤 is the vector of external 
disturbances (𝑤": outdoor temperature, 𝑤# solar irradiance), and y is the system output (room air 
temperature). The system parameters A, B, C, D, and G are defined as follows: 
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where 𝐾", 𝐾#, 𝐾$, 𝐾', and 𝐾& are the thermal conductivity values of ceiling, floor, windows, external 
walls, and internal walls, respectively; 𝐶", 𝐶#, and 𝐶$ are the heat capacity values of the air, interior wall, 
and exterior wall, respectively; 𝑃(!, 𝐶𝑂𝑃", and 𝛾 are the rated power of the HVAC, coefficient of 
performance of the HVAC, and solar heat gain coefficient, respectively. 
 
To simulate the WH units, the following model adapted from [49] is used: 
 

∆𝑇*
∆𝑡

=
𝑄̇ − 𝑈𝐴 × (𝑇* − 𝑇+(,) − 𝑚̇ × 𝑐- × (𝑇* − 𝑇.!/01)

𝑐- ×𝑚
																																					(4) 

𝑄̇ =
𝑃!! × 𝐶𝑂𝑃" × ∆𝑡

60  

where ∆𝑇 is the temperature change for a given time period ∆𝑡, 𝑄̇ is the heat added to the water tank, 𝑈𝐴 
is the standby heat loss coefficient, 𝑇* is the water temperature, 𝑇+(, is the ambient temperature, 𝑚̇ is the 
mass flow rate, 𝑐- is the specific heat of the water, 𝑇.!/01 is the inlet water temperature, 𝑚 is the mass of 
water, 𝑃(" and 𝐶𝑂𝑃# are the rated power and coefficient of performance of the WH, respectively. 
 
The aggregate nominal power for a set of GEB is defined as the power profile that is required to keep the 
TCLs in the set of GEB at their setpoints and maintain the operation of non-TCLs, such as pool pumps, 
washers, and dryers, in the set of GEB as desired by the occupants. There exist many data-driven methods 
(e.g., [50]) that predict the aggregate nominal power using weather forecasts and historical power usage 
data. In this pproject, the aggregate nominal power for a set of TCLs is determined by simply adding up 
the nominal power profiles for all HVACs and WHs. The nominal power for a single HVAC and a single 
WH can be computed by setting (1) and (4) to zero and extracting 𝑢 and 𝑄̇, respectively. Consequently, 
the aggregate nominal power for a set of TCLs can be computed by 
 

𝑃2 =O𝑝23

4

35"

(5) 

 
where 𝑃2 is the aggregated nominal power for N heterogenous HVAC and WH units, and 𝑝23 is the 
nominal power for TCL 𝑖 (HVAC or WH). On the other hand, the aggregate nominal power for a set of 
non-TCLs is obtained using the historical load profiles as 
 

𝑃" =O𝑝"3

6

35"

(6) 

 
where 𝑃" is the aggregated nominal power for I heterogenous non-TCLs, and 𝑝"3 is the nominal power for 
non-TCL 𝑖 obtained using the historical load profiles. 
 
The capacity of the aggregate TCL virtual battery is affected by the quantity and dynamics of the TCLs 
and the comfort preferences of the end users. The aggregate demand flexibility of the system increases as 
the number of TCLs increases. The slower the TCL dynamics are, the more flexible the set of TCLs are. 
Also, the higher the comfort bands are, the more flexible the set of TCLs are. The battery capacity for a 
single HVAC and WH is defined as in (7) and (8), respectively.  
 

𝐶789: =
∆789:
𝐵; × 𝑃(!

(7) 
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𝐶<7 =
∆<7 × 60

𝐶𝑂𝑃 × ∆𝑡 × 𝑃("

(8) 

 
where 𝐶789:  and 𝐶<7 are the virtual battery capacities, ∆789:  and ∆<7 are the comfort bands for HVAC 
and WH units, respectively, and 𝐵; is a coefficient extracted by discretizing the building model (1) into 
the intervals of ∆𝑡. The aggregate capacity for a set of HVAC and WH units is defined as 
 

𝐶 =O𝐶789:3

4!

35"

+O𝐶<7=

4"

=5"

(9) 

 
where 𝐶 is the aggregate capacity of 𝑁" HVAC units and 𝑁# WH units. The capacity of the virtual battery 
represents the amount of aggregate flexibility of the HVAC and WH units. The level of charge of the 
virtual battery capacity is given by 
 

𝑏(𝑡) = [𝑏(𝑡 − 1) + 𝑃(𝑡 − 1) − 𝑃2(𝑡 − 1)] × 𝛿 (10) 
 
where 𝑏(𝑡) is the current level of charge, 𝑏(𝑡 − 1) is the level of charge at the previous time step, 
𝑃(𝑡 − 1) is the power consumed at the previous time step, 𝑃2(𝑡 − 1) is the nominal power at the previous 
time step, and 𝛿 is the battery dissipation rate. The difference between the power consumed and nominal 
power determines whether the virtual battery is being charged or discharged. When the power consumed 
is greater than the nominal power, the virtual battery is charged and the level of charge increases, and vice 
versa. The 𝛿 variable depends on the properties of the TCLs (e.g., insulation characteristics) and can be 
determined empirically. The level of charge can be converted to the state of charge (SOC) as 
 

𝑆𝑂𝐶(𝑡) = [0.5 −
𝑏(𝑡)
2𝐶

] × 100% (11) 

 
The 𝑆𝑂𝐶(𝑡) satisfies the following constraint: 
 

0% < 𝑆𝑂𝐶(𝑡) < 100% (12) 
 
Whether a power profile can be tracked by the total power consumption of a set of TCLs is determined by 
the minimum and maximum powers that the TCLs can consume. The minimum power that they can 
consume is zero, which simply occurs when all TCLs are turned off. On the other hand, the maximum 
power that they can consume occurs when all TCLs are turned on. Such limits lead to the following 
constraint: 

0 ≤ 𝑃(𝑡) ≤O𝑃(#

4

35"

(13) 

where 𝑃(# is the power rating of the ith TCL. 
 

2.3 MODELING ENERGY MARKET USING A STACKELBERG GAME 

The interaction between the DSO and multiple LAs in a day-ahead pricing market is designed as a 
Stackelberg game, where the DSO acts as the leader and LAs are regarded as the followers. In the defined 
game, the DSO determines the electricity price, while the LAs modify their consumption in response to 
the given price. The DSO aims to maximize its profit and social satisfaction while minimizing the peak 
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load, while the LAs aim to maximize their satisfaction and minimize their electricity cost. In order to 
ensure that the optimal power profile for each aggregator is feasible (i.e., the reference power  
profile generated from the game theoretic approach can be tracked and the temperature responses of the 
building TCLs stay within the comfort bands), the virtual battery is integrated into the game as a set of 
constraints for the LAs. 
 
The Stackelberg game is applied using two types of electricity pricing structures: time-of-use (TOU) 
pricing and flat pricing. In the TOU pricing structure, the electricity prices vary according to the time of 
day. The DSO sets higher prices during the peak demand hours and lower prices during off-peak demand 
hours. In the flat pricing structure, the DSO sets a fixed electricity price throughout the day. For both 
pricing structures, it is assumed that all LAs are subject to the same prices set by the DSO.  
The objective function of the DSO for the TOU pricing structure is defined as in (14). The function 
consists of three terms. The first term is the profit of the DSO, generated through buying electricity from 
the wholesale market and selling to the LAs. The second term represents the overall satisfaction of the 
DSO that changes parallel to the satisfaction of the LAs. The DSO should pay attention to the satisfaction 
of the LAs, which are its customers. Thus, the DSO takes care of the satisfaction of the LAs as part of a 
customer fulfillment strategy. Finally, the third term is the amount of peak load. The objective of the DSO 
is to maximize the first and second terms and minimize the third term while fulfilling the constraints 
given as follows: 
 

𝑚𝑎𝑥
-$,?%,$

𝑈;@A =O(𝑝B − 𝑐B) × 𝑙C,B
C,B

+ 𝑆;@A − 𝜃 × 𝑆𝑇 × 𝑘 (14) 

𝑙C,B = 𝑑𝑟C,B + ℎ𝑟C,B , ∀C,B 
𝑐B ≤ 𝑝B , ∀B 

𝑆;@A =O𝑆D9C
C

(15) 

𝑆D9C =O𝐷C,B ∙ [
𝑙C,B
𝐷C,B

]
E%,$

, ∀C
B

(16) 

𝐷C,B = 𝑃2C,B + 𝑃"C,B , ∀C,B 
 
where 𝑝B is the electricity price for all LAs at time 𝑡, 𝑐B is the marginal cost of the electricity generation at 
time 𝑡,  𝑙C,B is the load of LA 𝑛 at time 𝑡, which is the sum of the TCLs (𝑑𝑟C,B) and non-TCLs (ℎ𝑟C,B) 
power consumption, 𝑆;@A is the overall satisfaction value of the DSO, which is the sum of the satisfaction 
values of all LAs as per in (15), 𝑆𝑇 is the number of time decision periods, 𝑘 is the peak load, 𝜃 is a 
weighting coefficient to prioritize or deprioritize peak load reduction. The satisfaction value of LA 𝑛 is 
computed as in (16) [51, 52], where 𝐷C,B is the nominal power of the LA 𝑛 at time 𝑡, which is the sum of 
the nominal powers of TCLs and non-TCLs, and 𝛼C,B is the sensitivity of LA 𝑛 at time 𝑡 towards 
consumption curtailment. 
 
For the flat pricing structure, only the following additional equality is added to the aforementioned set of 
constraints to ensure the price does not vary throughout the day. 
 

𝑝B = 𝑝BF", ∀B 
 
The objective function of the LAs is given as in (17). The function consists of two terms. The first term is 
the cost of electricity to the LAs. The second term is the satisfaction of the LAs. The satisfaction of the 
LAs reduces as the load of the LAs (𝑙C,B) deviates from the nominal power of the LAs (𝐷C,B). The LAs 
may prefer not to deviate much from their nominal loads as it might disturb the routine of end users. The 
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objective of the LAs is to minimize the first term and maximize the second term while fulfilling the 
constraints given as follows: 
 

𝑚𝑖𝑛
?%,$

𝑈D9 =O𝑝B ×
B

𝑙C,B − 𝑆D9C (17) 

𝑑𝑟C,B ≤ 𝑑𝑟C,B ≤ 𝑑𝑟C,B , ∀C,B 
ℎ𝑟C,B ≤ ℎ𝑟C,B ≤ ℎ𝑟C,B , ∀C,B 

𝑏C,B = 𝑏C,BF" + 𝑑𝑟C,BF" − 𝑃2C,BF", ∀C,B 
𝑏C," = 𝑏C,% = 0 
l𝑏C,Bl ≤ 𝐶, ∀C,B 

0.9 ×O𝑃"C,B
B

≤Oℎ𝑟C,B ≤ 1.1 ×O𝑃"C,B
BB

, ∀C 

 
where 𝑑𝑟C,B and 𝑑𝑟C,B are the minimum and maximum loads that the TCLs of LA 𝑛 at time 𝑡 can 
consume, respectively. Similarly, ℎ𝑟C,B and ℎ𝑟C,B are the minimum and maximum loads that the non-
TCLs of LA 𝑛 at time 𝑡 can consume, respectively. The level of charge of the LA 𝑛 at time 𝑡 , (𝑏C,B) must 
be within the range of the aggregate capacity (9), which is equivalent to the SOC (11) being between 0% 
and 100%. The initial and end charge levels are assumed to be 0 (SOC = 50%). Note that the objective 
function of neither the DSO nor the LAs includes any parameters (e.g., 𝐾" and 𝑈𝐴) from the 
mathematical models that are used for simulating the HVAC and WH units. This shows that the proposed 
approach is model free and does not require any mathematical modelling and/or model training.    
The Stackelberg game is solved using the backward induction method [51, 53], which follows two main 
steps. First, it derives the optimal load 𝑙C,B∗  by computing the first-order derivative of LAs’ objective 
functions (17). Second the optimal load, 𝑙C,B∗ , computed using (18), is plugged into the objective function 
of the DSO (14). This operation converts the bi-level optimization problem into a single level 
optimization problem, in which the price 𝑝B is the only variable. The backward induction method is 
simple yet effective method and scalable to any number of LAs. 
 

𝑙C,B∗ = 𝐷C,B × [
𝑝B
𝛼C,B

]

"
E%,$F"

, ∀C,B (18) 

 
In addition, the Stackelberg game in (14)-(17) can be solved in a distributed way (to preserve privacy 
and reduce computational complexity) using any of the distributed solving methods such as particle 
swarm optimization (PSO) [54], pattern search algorithm (PSA) [54], or collaborative optimization (CO) 
[55].  

2.4 POWER ALLOCATION OF BUILDING TCLS USING MEDEL-FREE CONTROL 

The control of the end-user TCLs is not a simple task because of their large scale, heterogenous nature, and 
sometimes uncertain behavior. The controller has to determine the TCL units that need to be powered on 
from a large number of units. Also, the controller needs to track the optimal power profile closely to ensure 
that the outcomes anticipated by the DSO and LAs can be realized. Failure to do so may cause significant 
discomfort, severe financial losses, and/or poor grid stability. Thus, the selection and design of the 
controller is crucial. For this reason, the MFC is utilized for the control of the end-user loads.     

MFC is a control mechanism that does not require any modeling effort for the various building TCLs such 
as HVAC systems, WHs, and others. It is based on approximating the TCL by an ultra-local model as [43]: 
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𝑦̇ = 𝐹 + 𝜎𝑢 (19) 

where 𝑢 is the input power (or on/off state) of the TCL system, 𝑦̇ is the rate of change in the indoor/water 
temperature of the TCL system, and 𝐹 describes the poorly known or unknown parts of the TCL system. 
The parameter 𝜎 is to correct the difference in the magnitudes of the input and the output. Equation (19) 
should not be confused with a “black box model” of the TCL system. In MFC, (19) is updated at each 
timestep from the knowledge of the input-output behavior of the unmodeled TCL system in order to 
estimate the quantity F, which is approximated by a piecewise constant function given as [56]: 

𝐹 =
−6
𝐿$
p [(𝐿 − 2𝜏)𝑦(𝜏) + 𝜎𝜏(𝐿 − 𝜏)𝑈(𝜏)]𝑑𝜏
B

BFD
(20) 

Note that 𝐹 is estimated using the measurements of the system obtained in the last 𝐿 seconds, and it is being 
updated accordingly. Unlike the classic proportional–integral–derivative (PID) controllers, MFC 
continuously updates the local model (𝐹) in (20) via the unique knowledge of the input-output behavior for 
both linear and nonlinear systems. For this reason, MFC has shown to overperform the classic PID 
controllers and many others including fuzzy and neuro-fuzzy controllers [57, 58]. Based on the numerical 
knowledge of 𝐹, the control is computed using (21) as a simple cancellation of the nonlinear terms, as 
described in 𝐹, in addition to a closed loop tracking of a reference trajectory. More specifically, using the 
latest 𝐹, the intelligent proportional control law is given by [59]: 

𝑢 = −
𝐹 − 𝑦̇∗ + 𝐾-(𝑦 − 𝑦∗)

𝜎
(21) 

where 𝑦∗ is the desired reference trajectory (TCL temperature set point), and 𝐾- is the proportional control 
gain. Combining (19) and (21) provides the error dynamics as: 

𝑟̇ + 𝐾-𝑟 = 0 (22) 

where 𝑟 = 𝑦 − 𝑦∗ is the tracking error and 𝐹 does not appear anymore. The solution of the first-order 
differential equation in (22) is given as: 

𝑟(𝑡) = 𝑟(𝑡2)𝑒FH'(BFB() (23) 

where 𝑡2 is the initial time. Equation (23) shows that the tracking error asymptotically decays to 0 for 𝐾- >
0, which guarantees the asymptotic stability of the system and makes the tuning of the proportional gain 
straightforward. Thus, the tracking condition can be easily achieved by setting the value of 𝐾- to be the 
solution of (23) as: 

𝐾- =
𝑙𝑜𝑔 𝑟(𝑡2) − 𝑙𝑜𝑔 𝑟(𝑡)

𝑡 − 𝑡2
(24) 

Note that 𝐾- is updated at every timestep according to (24). As a result, 𝜎 and 𝐿 are the only two parameters 
to be tuned, and their selection is also straightforward. A sufficiently small value is needed for the parameter 
𝐿, and 𝜎 can be determined from collected input-output measurements as 𝜎 = 𝑦̇/𝑢. This makes the control 
design simple to implement. The asymptotic stability criterion in addition to the closed form solution of the 
control gain 𝐾- for MFC make it more intelligent and beneficial than the classic PID controller. 

In summary, MFC is employed in this project because it has the following main characteristics: 

a) It does not require any modeling effort for the various building TCLs and their disturbances. 

b) It is straightforward to tune, in contrast to the commonly used classic PID controllers that are very 
challenging to tune (usually depends on trial-and-error methods). 

c) It is asymptoticly stable, in contrast to the classic PID controllers. 

d) It is very simple to implement in real time since it requires very light computations. 
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The additional power allocation and power tracking constraints in the MFC design are imposed using 
Algorithm 1, which works similar to the priority-based control algorithm in [46]. The only difference is 
that, instead of the priorities determined based on TCL temperature deviations, Algorithm 1 uses the control 
input 𝑢 values (power inputs) to determine the units to be turned on or off. 

 

Algorithm 1 Power Allocation of building TCLs for LA 𝑛 

1: FOR every time step, 𝑡 

2:     FOR every TCL 𝑗 with rated power of 𝑃((𝑗) 

3:          Compute 𝑢 using (21) 

4:     Sort 𝑢 values in descending order and get the rank 𝑟 of TCLs 

5:     Initialize as 𝑃KLC0M(/N = 0 and 𝑟 = 1      

6:     WHILE 𝑃KLC0M(/N ≤ 𝑑𝑟C,B 

7:          Find the TCL 𝑗 with the rank of 𝑟	  

8:          Turn on the TCL	𝑗 	  

9:          𝑃KLC0M(/N: = 𝑃KLC0M(/N + 𝑃((𝑗) 

10:        𝑟:= 𝑟 + 1 

11:    Simulate the TCLs using (1), (2), and (4)  

 

2.5 NUMERICAL CASE STUDY 

A large-scale case study is presented in this section to demonstrate the performance of the proposed 
hierarchical model-free transactional control approach with ten LAs and 10,000 heterogenous building 
TCLs and 10,000 non-TCLs. Each LA includes 1000 TCL and 1000 non-TCL units. For the TCL units, a 
random set of numbers adding up to 1000 is considered for the numbers of residential HVAC, commercial 
HVAC, and WH units. For the non-TCL units, two prototype building models provided by the U.S. 
Department of Energy are considered [60]. The non-TCL units include 500 single-family and 500 medium 
office buildings.  

The properties of the TCLs are summarized in Table I. As shown in the table, some properties of the HVAC 
and WH units are randomized within 20% range to further differentiate the LAs. 

In the case study, the Stackelberg game is conducted hourly, while the control of the TCLs using MFC is 
conducted at 10-minute intervals. Accordingly, the case study includes three main steps. First, the hourly 
nominal power profiles are generated using the day-ahead forecasts of the external temperature, solar 
radiation, and hot water usage profiles, and the corresponding battery constraints are determined for each 
LA. Second, as a result of the Stackelberg game, an optimal power profile and a price signal are generated 
for each LA. In computing the optimal power profiles, four different scenarios are considered. Table II 
summarizes the scenarios considered for the optimization. The scenarios aim to capture the impacts of the 
pricing strategy (e.g., flat and TOU) and the peak load reduction weight (θ) on the resulting optimal loads. 
Third, the obtained power profiles are allocated across the different building TCLs using the MFC every 
10-minute time intervals. 

Figure 3 shows the disturbances, including weather conditions and hot water usage profiles that the LAs 
are subjected to. The nominal power profiles and the battery constraints of the LAs are computed 
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accordingly and passed to the Stackelberg game model. The outdoor weather conditions including 
temperature and solar radiation data are taken from the typical meteorological year 3 (TMY3) weather data 
of Las Vegas [61]. The hot water usage profile data are taken from a single-family detached house [62]. 
Prior to the case study, both outdoor weather conditions and hot water usage data profiles are converted 
into hourly intervals. 

 

TABLE I. TCL properties. 

Parameter 
 

Range Residential 
HVAC 

Commercial 
HVAC 

Water Heater 

Pm 3.5 kW 11.0 kW 4.5 kW N/A 

K1 0.8 kW/℃ 2.4 kW/℃ N/A ±20% 

K2 5.4 kW/℃ 16.2 kW/℃ N/A ±20% 

K3 0.2 kW/℃ 0.7 kW/℃ N/A ±20% 

K4 1.5 kW/℃ 4.5 kW/℃ N/A ±20% 

K5 1.1 kW/℃ 3.4 kW/℃ N/A ±20% 

C1 45 MJ/℃ 140 MJ/℃ N/A ±20% 

C2 140 MJ/℃ 440 MJ/℃ N/A ±20% 

C3 30 MJ/℃ 100 MJ/℃ N/A ±20% 

COP 4 4 1 N/A 

γ 0.15 0.15 N/A N/A 

UA N/A N/A 0.07 Btu/min ±20% 

Tfresh N/A N/A 21.0℃ N/A 

Tambient N/A N/A 20.5℃ N/A 

V N/A N/A 250 l N/A 

Pm: rated power, K1: thermal conductivity of ceiling, K2: thermal conductivity of floor, K3: thermal 
conductivity of windows, K4: thermal conductivity of external walls, K5: thermal conductivity of internal 
walls, C1: heat capacity of air, C2: heat capacity of internal walls, C3: heat capacity of external walls, COP: 
coefficient of performance, γ: solar heat gain coefficient, UA: standby loss, Tfresh: intake water temperature, 
Tambient: ambient temperature of the room where water heater located, and V: tank volume.   

 

TABLE II. Optimization scenarios. 

Scenario Pricing Structure 𝜽 

1 Flat 10 

2 Flat 20 

3 TOU 10 

4 TOU 20 
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Figure 4 shows the hourly α values assumed for computing the satisfaction values of the LAs as per in (16). 
The higher the value of 𝛼, the less conservative the LAs to their satisfaction. By altering the α values, the 
potential variability that can occur in the preferences of the LAs are taken into account. 

 
Figure 3. Disturbances for the numerical case study. 

 

 
Figure 4. The 𝜶 values used for computing the satisfaction of LAs. 
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Figure 5 shows a comparison of hourly nominal and optimal power profiles for the four scenarios. It is 
observed that the scenarios with flat pricing (i.e., Scenarios 1 and 2) are not successful in reducing the peak 
load. However, the scenarios with TOU pricing (i.e., Scenarios 3 and 4) achieve significant amount of peak 
load reduction. The peak loads are 82.51 MW and 71.92 MW for Scenarios 3 and 4, respectively, as 
compared to the peak loads of 108.20 MW and 95.69 MW for Scenarios 1 and 2, respectively. This shows 
that the proposed Stackelberg game is able to optimize the power profiles for TOU pricing by shifting loads 
from peak to off-peak hours, and that the weight of load reduction is useful in prioritizing or deprioritizing 
the objective of peak load reduction. 

 
Figure 5. Nominal and optimal power profiles for different scenarios. 

Figure 6 shows the electricity prices across the different scenarios and the marginal cost of electricity. 
Scenarios 3 and 4 set higher prices between 12:00 and 18:00 to reduce the peak load occurred during this 
period. Overall, the prices in Scenario 4 are higher than the prices in Scenario 3, because Scenario 4 gives 
more importance to peak load reduction and therefore sets more aggressive prices. Likewise, Scenario 1 
sets a lower price than Scenario 2, because Scenario 1 gives less importance to peak load reduction. 
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Figure 6. Marginal cost of electricity generation and optimal price signals. 

 

Table III compares the overall results for the DSO and LA 1. For all scenarios, TOU pricing achieves higher 
peak load reduction than flat pricing, which shows the effectiveness of the TOU pricing structure in DR. 
Scenarios 1 and 3 result in more profit but higher peak loads. This shows the tradeoff between profit and 
peak load reduction from the DSO perspective. Scenarios 2 and 4 cost less to LA 1, because these scenarios 
attach more importance to peak load reduction, and therefore the DSO incentivizes LAs more to modify 
their consumption. The results for the other nine LAs are similar and therefore not included in the table for 
the sake of conciseness. 

 

TABLE III. Results of the Stackelberg game. 

Objective Scenario 1 Scenario 2 Scenario 3 Scenario 4 

DSO Profit $128,371 $125,033 $129,625 $126,087 

DSO Satisfaction 369,423 225,935 404,451 292,971 

Peak Load 108.20 MW 95.69 MW 82.51 MW 71.92 MW 

LA 1 Cost $20,785 $19,686 $20,428 $19,336 

LA 1 Satisfaction 41,336 39,242 41,188 39,164 

 

Figure 7 shows the resulting temperature responses for the optimal load profile for LA 1 in Scenario 4. The 
MFC was able to maintain temperatures within the comfort bounds for the given reference power profile 
with no prior information about the HVAC and WH units. Similarly, temperature responses for all scenarios 
and LAs are within the bounds. For this reason, only the results shown in Figure 7 are presented here. 

The case study also shows that MFC is a very computationally efficient algorithm and can be deployed for 
very small-time scales. Specifically, each iteration (time step) run for MFC requires 3 milliseconds to make 
control decisions using Matlab on a standard four-core personal computer, while it requires 600 
milliseconds for the traditional model-predictive control (MPC) [63]. Thus, MFC is 200 times faster. Such 
attribute makes MFC an ideal controller for real-time or near real-time DR applications. 
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Figure 7. Resulting temperature responses for the optimal load in LA 1 for Scenario 4. 

 

In terms of power allocation and tracking, MFC ensures the aggregate power consumption of LAs to closely 
follow the reference optimal power profiles. Figure 8 shows the tracking performance of the MFC for LA 
1 of Scenario 4. Please note that the MFC takes control after 20 minutes because MFC uses the previous 
20 minutes of measurements before starting to make decisions. So, there is no control in the first 20 minutes 
of the simulation. 

 
Figure 8. Tracking performance of MFC in LA 1 for Scenario 4. 
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Figure 9 shows the changes in the SOC of the virtual battery in LA 1 for Scenario 4. The virtual battery is 
charged until 6:00 as the optimal load is greater than the nominal load. Consequently, residential and 
commercial buildings’ indoor temperatures decrease, and WH temperatures increase. After that the optimal 
load is less than the nominal load and the virtual battery is discharged until 18:00. In this period, residential 
and commercial buildings’ indoor temperatures increase, and WH temperatures decrease. Finally, the 
virtual battery is charged again until 00:00. As shown in the figure, the battery constraints are never violated 
and therefore the temperatures stay in bounds.  

 

 
Figure 9. The SOC of the virtual battery in LA 1 for Scenario 4. 
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3.  THE STOCHASTIC HIERARCHICAL MODEL-FREE TRANSACTIONAL CONTROL 
APPROACH 

In this section, we have modelled the uncertainties with respect to the wholesale market prices and 
aggregated nominal loads of LAs by stochastic programming. The building level temperature preference is 
guaranteed by the virtual battery constraints in the model derived from the building thermal properties. In 
Section Error! Reference source not found., the stochastic game model for the DSO and LAs is presented, a
nd several case studies are shown in Section Error! Reference source not found. to demonstrate the 
effectiveness of the proposed model in preserving the benefits of both parties with uncertainties while 
maintaining the desired temperature range at the building level. 

3.1 STOCHASTIC PRICING-DEMAND GAME 

In the proposed DR pricing game, all the parameters and variables are listed in Table IV, followed by the 
mathematical model. 

Table IV. Notations for the stochastic game model. 

Index  

𝑇, 𝑡, 𝑛, 𝑠 Decision period, index for hours, LAs and scenarios 

Parameters  

𝐶0,B , 𝑃 Marginal cost of electricity generation, price upper bound 

𝐿C,B , 𝐿C,B Lower bound, upper bound of demand limit for LAs 

𝐷ℎ0,C,B , 𝐷𝑑0,C,B Nominal thermal demand, non-thermal demand of LAs 

𝛼C,B , 𝜃 Satisfaction preferences of LAs, penalty coefficient for peak load 

𝐵𝐼, 𝜖 Initial State-of-Charge (SOC), dissipation rate of virtual battery 

𝐵C,B , 𝐵C,B Lower bound, upper bound of state of charge for virtual battery 

Variables  

𝑝B , 𝑑𝑙0,C,B Resulted electricity price, total electricity load of each LA 

ℎ𝑟0,C,B , 𝑑𝑟0,C,B Resulted thermal load, non-thermal load of each LA 

𝑚0, 𝑏0,C,B Peak load, current level of charge in virtual battery 

 

In the Stackelberg game, the DSO is the leader with the privilege of setting the price signal. Its objective is 
to maximize the profit in (25), taking the overall satisfaction from LAs (the third term in (25)) and peak 
load penalty (the fourth term in (25) into account). Due to the uncertainties, the objective function is in its 
expectation form (product summation of the scenarios and their probabilities). The electricity price is 
limited by the marginal cost 𝐶 and allowable upper limit in any scenario (as described in the constraint 
(26)). Equation (27) is used to define the peak load, which should be the maximum total load for the whole 
duration. 

𝐷𝑆𝑂:max𝑈L =O𝑝
0

𝑟𝑜𝑏0 ⋅ �O𝑝B
C,B

⋅ 𝑑𝑙0,C,B −O𝐶0,B
C,B

⋅ 𝑑𝑙0,C,B +O𝑆
C,B

(𝐷𝑙, 𝑑𝑙) − 𝜃 ⋅ 𝑇 ⋅ 𝑚0�	 (25) 
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𝐶0,B ≤ 𝑝B ≤ 𝑃,	∀𝑠, 𝑡	 (26) 

𝑚0 ≥O𝑑
C

𝑙0,C,B , 	∀𝑠, 𝑡	 (27) 

LAs are the followers in the game that respond to the price signal from the leader and adjust the electricity 
consumption to maximize their own utility functions in (28). Similar to (25), the objective function in (28) 
is in the expectation form. The function 𝑆(𝐷𝑙, 𝑑𝑙) is used to represent the monetary value of the customers’ 
satisfaction. When the actual consumption after demand response is equal to its nominal demand, the 
satisfaction value is defined to be 1 as illustrated in Figure 10. 𝑆(𝐷𝑙, 𝑑𝑙) = (𝐷𝑙0,C,B) ⋅ 𝑤C,B ⋅ (

N?),%,$
;?),%,$

)E%,$ 
which is revised based on [52], and it keeps the convex property. Note that 𝐷𝑙0,C,B = 𝐷ℎ0,C,B + 𝐷𝑑0,C,B is 
the total nominal load; 𝑤 is a user defined parameter; 𝛼 represents the sensitivity of demand shifting, which 
is usually higher during peak hours. On the other hand, the electricity price during peak hours is also higher, 
and therefore, the feasibility and the quantity of load reduction during peak hours greatly depends on the 
trade-off potential between the occupants’ comfort level and monetary expense. 

 

 

Figure 10. The normalized customer satisfaction value (y-axis) for different 𝜶 (x-axis: 𝒅𝒍
𝑫𝒍

). 

Equation (29) calculates the resulting total consumption by summing up the thermal load ℎ𝑟 and the non-
thermal load 𝑑𝑟. Equation (30) limits the hourly non-thermal demand, and (31) uses the range ±10% to 
ensure that the daily non-thermal load does not fluctuate too much for the required daily work. The stricter 
equality constraint ∑ 𝑑B 𝑒𝑟C,B = ∑ 𝐷B 𝑑C,B could be an alternative to (31), which means no curtailment on 
the daily non-thermal consumption is allowed. 

𝐿𝐴𝑠:max𝑈C =O𝑝
0

𝑟𝑜𝑏0 ⋅ �O𝑆
B

(𝐷𝑙, 𝑑𝑙) −O𝑝B
B

⋅ 𝑑𝑙0,C,B�	 (28) 

𝑑𝑙0,C,B = ℎ𝑟0,C,B + 𝑑𝑟0,C,B , 	∀𝑠, 𝑛, 𝑡	 (29) 

𝐿C,B ≤ 𝑑𝑟0,C,B ≤ 𝐿C,B , 	∀𝑠, 𝑛, 𝑡	 (30) 

0.9 ⋅O𝐷
B

𝑑0,C,B ≤O𝑑
B

𝑟C,B ≤ 1.1 ⋅O𝐷
B

𝑑0,C,B , 	∀𝑠, 𝑛, 𝑡	 (31) 

𝐵C,B ≤ 𝑏0,C,B ≤ 𝐵C,B , 	∀𝑠, 𝑛, 𝑡	 (32) 

𝑏0,C,B = 𝜖 ⋅ �𝑏0,C,BF" + ℎ𝑟0,C,B − 𝐷ℎ0,C,B�, 	∀𝑠, 𝑛, 𝑡	 (33) 
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Equations (32) and (33) constrain the levels of charge of the virtual batteries for the aggregated buildings, 
which are derived based on the building thermal characteristics. The difference between the actual power 
consumed ℎ𝑟 by thermal appliance and the nominal thermal load 𝐷ℎ determines whether the virtual battery 
is being charged or discharged. 𝜖 is the virtual battery dissipation rate, which depends on the properties of 
the thermal load (e.g., insulation characteristics) and can be empirically determined. For further details on 
developing the virtual battery constraints, readers are referred to Section 2.2. 

To convert the bi-level game into the single model, the classical BI method (centralized approach) is 
adopted and can be broken down into the following the two steps. First, derive the optimal DR to the price. 
Assume the electricity price 𝑝B is provided as a parameter from the DSO, then the best load response 𝑑𝑙0,C,B⋆  
can be obtained by the first-order derivative of the LAs’ objective functions, as in (34). 

𝑑𝑙0,C,B⋆ = (
𝑝B

𝑤C,B ⋅ 𝛼C,B
)

"
(E%,$F") ⋅ (𝐷𝑑0,C,B + 𝐷ℎ0,C,B)	 (34) 

Second, derive optimal price based on the user response. After the optimal DR is obtained, the price can 
then be expressed using 𝑑𝑙0,C,B⋆  and plugged into the upper level with the other additional lower-level 
constraints. The resulting single level model requires all the parameter information from LAs and is solved 
by the DSO in a centralized way. 

3.2 NUMERICAL CASE STUDY 

In the proposed stochastic model, the uncertainties arise from the nominal thermal demand 𝐷ℎ, the nominal 
non-thermal demand 𝐷𝑑, and the marginal cost of electricity generation 𝐶. The nominal non-thermal 
demand is adopted and mixed based on the commercial building reference load from the U.S. Department 
of Energy in [60] and the marginal cost data in [52]. Without loss of generality, a uniform distribution is 
assumed for non-thermal demand and marginal cost, and the scenarios are sampled within a certain range 
based on the reference value for each hour. Scenarios of the nominal thermal demand are simulated based 
on different weather conditions. 

Ten LAs are considered in this study, and each one has three types of total 1000 heterogeneous thermal 
loads: residential HVAC, commercial HVAC, water heaters. Initially, 200 scenarios are generated for each 
of the three uncertain parameters 𝐷ℎ, 𝐷𝑑, 𝐶. To achieve a computational tractability while capturing the 
main stochastic information of the random distribution embedded in the original scenario set as much as 
possible, a simultaneous backward method [64, 65] is applied to reduce the number of deteriorated 
scenarios. This is explained in the following steps: 

• Step 1: Set 𝑆 as the initial set of scenarios, 𝐷𝑆 is the scenarios to be deleted. Initial 𝐷𝑆 is empty. 
Compute the distances 𝐷𝑇0,0*(𝑠, 𝑠) = 1,… ,𝑁) of all scenario pairs. 

• Step 2: For each scenario 𝑘, the distance 𝐷𝑇S(𝑟) = min𝐷𝑇S,0* . 𝑠), 𝑘 ∈ 𝑆, 𝑠) ≠ 𝑘. 𝑟 is the scenario 
index that has a minimum distance with scenario 𝑘. 

• Step 3: Compute the distance in the probability sense 𝑃𝐷S(𝑟) = 𝑝S ⋅ 𝐷𝑇S(𝑟), 𝑘 ∈ 𝑆. Choose 𝑑 so 
that 𝑃𝐷N = min𝑃𝐷S , 𝑘 ∈ 𝑆. 

• Step 4: Delete scenario 𝑑: 𝑆 = 𝑆 − {𝑑}, 𝐷𝑆 = 𝐷𝑆 + {𝑑}, 𝑝! = 𝑝! + 𝑝N. And repeat until the 
remaining scenario number meets requirement. 

Eventually, 20 scenarios of the three uncertain parameters are resulted from the reduction process and the 
probability for each scenario has been updated by Step 4. The nominal thermal load scenarios are shown 
for LA 1 and LA 10 in Figure 11. The nominal non-thermal load scenarios and marginal cost scenarios are 
shown in Figure 12. The α parameter in the satisfaction function and probabilities of the 20 scenarios are 
shown in Figure 13. 
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(a) Nominal thermal load of LA 1. 

 
(b) Nominal thermal load of LA 10. 

Figure 11. The nominal thermal load for LAs 1 & 10 for the resulted 20 scenarios. 

 
(a) Nominal non-thermal load of LA 1. 

 
(b) Marginal cost of electricity generation. 

Figure 12. The nominal non-thermal load of LA 1 and marginal cost of electricity generation for 
the resulted 20 scenarios. 

 
(a) 𝛼 parameter in the satisfaction function. 

 
(b) Probability of the resulted 20 scenarios. 

Figure 13. The α parameter and probability value of the resulted 20 scenarios. 

 
To illustrate the effectiveness of the proposed stochastic model in the peak load reduction for the DSO, two 
groups of experiments are conducted with penalty coefficients of peak load 𝜃 = 10 and 𝜃 = 20. Electricity 
price is the decision variable of the DSO at the upper level which needs to be determined regardless of the 
uncertainty scenarios in the LAs’ model. When the penalty on peak load is higher, the resulted electricity 
price is also higher in overall as shown in Figure 14(a). The peak load reduction is demonstrated in Figure 
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14(b), indicating that the 100 MW peak in the nominal total demand is reduced to about 80 MW in all 20 
scenarios by shifting it to early morning or late night. 

Take LA 1 as an example, the peak load (at about hour 17) of its aggregated nominal thermal load in Figure 
14(a) has shifted to about hour 7 and hour 24 in Figure 15(a) in the optimized results. The underlying reason 
is that shifting the peak of thermal load could reduce overall peak load in Figure 14(b) which benefits the 
DSO. Also, since the resulted price is lower at hour 7 and hour 24, the electricity cost will be lower for the 
LAs without sacrificing comfort level, which is ensured by the virtual battery constraints. 

 
(a) Optimum electricity price resulted from 

stochastic gaming model. 

 
(b) Peak reduction from the nominal total demand 

for 20 scenarios with 𝜃= 10. 

Figure 14. The resulted optimal electricity price and total demand (thermal & non-thermal) of all 
LAs in each scenario. 

As for the cooling case here, a fully charged battery means that the temperatures of the thermal loads are 
less than the setpoint temperatures as much as the comfort band limits. Shown by the virtual battery level 
of LA 1 in Figure 15(b), it charges before hour 7 as the resulted thermal load in Figure 15(a) is overall 
higher than its nominal thermal load in Figure 11(a), therefore its HVAC temperatures in Figure 16(a) also 
drops below the setpoint. Then, the virtual battery starts to discharge during hour 8 and hour 20 as the 
resulted thermal load is lower that its nominal load in this period and accordingly the HVAC temperatures 
raise. At the last several hours 20-24, the resulted thermal load of LA 1 in Figure 15(a) is above 4 MW, 
which is higher than its nominal thermal load in Figure 11(a) again, and thus the virtual battery level starts 
to charge again and indoor temperature goes down. Other aggregators like LA 10 shows a similar pattern 
in Figure 17. Scenario 2 is chosen to illustrate the building temperature responses of LAs in Figure 16 and 
Figure  17 as it has the highest occurrence probability (about 0.27) out of the final 20 scenarios, also the 
initial temperatures of all thermal loads are uniformly distributed within the temperature band. 

 
(a) Optimal thermal load for LA 1 under each 

scenario with 𝜃 = 10. 

 
(b) Virtual battery level for LA 1 under each 

scenario with 𝜃 = 10. 

Figure 15. The resulted thermal load and virtual battery level for LA 1 under each scenario. 
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(a) Temperature responses of LA 1 with 𝜃 = 10 

under Scenario 2. 

 
(b) Temperature responses of LA 1 with 𝜃 = 20 

under Scenario 2. 

Figure 16. The temperature responses of LA 1 under Scenario 2. 

 
(a) Temperature responses of LA 10 with 𝜃 = 10 

under Scenario 2. 

 
(b) Temperature responses of LA 10 with 𝜃 = 20 

under Scenario 2. 

Figure 17. Temperature responses of LA 10 under Scenario 2. 

 

Besides the peak reduction benefit for the DSO, the proposed stochastic pricing-demand response model 
could also benefit LAs on the cost saving with a trade-off on electricity consumption satisfaction. To 
demonstrate such trade-off, another group of experiments is added: the electricity price is assumed to be 
flat for the whole day. To realize the flat price, one additional constraint 𝑝BF" = 𝑝𝑡, 𝑡 ≥ 2 is added to the 
upper level of the proposed model. Since there are multiple scenarios with different probabilities, the 
expected results for some main metrics are summarized into Table V. LAs 1 & 10 are also used here as an 
example, and the results for all other load aggregators have a similar pattern. 
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Table V. Profit and cost in different groups of experiments considering uncertainties. 

DSO level Flat (𝜽 = 𝟏𝟎) Flat (𝜽 = 𝟐𝟎) TOU (𝜽 = 𝟏𝟎) TOU (𝜽 = 𝟐𝟎) 

Expected Peak Load 108.68 95.99 83.48 73.47 

Expected PAR value 1.53 1.50 1.18 1.13 

Expected DSO revenue 199365 188606 195242 185349 

Expected DSO cost 72477 64990 67059 60364 

Expected DSO profit 126888 123616 128183 124984 

Aggregator level Flat (𝜽 = 𝟏𝟎) Flat (𝜽 = 𝟐𝟎) TOU (𝜽 = 𝟏𝟎) TOU (𝜽 = 𝟐𝟎) 

Expected average price of LA1 117.13 123.09 114.84 118.93 

Expected average price of LA10 117.13 123.09 115.53 119.49 

Expected bill payment of LA1 20978 19862 20635 19605 

Expected bill payment of LA10 14602 13803 14271 13536 

Expected satisfaction of LA1 41817 39688 41638 39732 

Expected satisfaction of LA10 28618 27114 28310 26971 

 

In Table V, the expected average price for each LA is calculated by (∑ pT robT ⋅ ∑ pUU ⋅ dlT,V,U)/(∑ pT robT ⋅
∑ dU lT,V,U). As observed, under the same price structure (flat or TOU), higher penalty on peak load results 
in higher average price, which means the cost for LAs to consume one unit electricity is higher, and the 
TOU price has more advantage in lowering the average electricity price with the same peak penalty level. 
Meanwhile, the PAR (peak-to-average ratio) value is depressed lower along with a higher peak penalty 
level, the DSO has a slight lower profit in return of lower peak penalty which is more critical in stabilizing 
the power grid. The trade-off between satisfaction and bill payment for LAs can also be observed, for 
instance, the satisfaction decreases from flat price to TOU price due to the load shifting, but bill payment 
is also lower as more electricity is consumed during non-peak hours with lower prices. Based on different 
values of the 𝛼 parameter in each hour, the sensitivity of load shifting is different that will have impact on 
the trade-off potentials. At the end, the expected value of perfect information (EVPI) is also calculated for 
TOU (𝜃 = 20) by subtracting the DSO objective value of the stochastic model from the mean DSO 
objective value of 20 single scenarios, which is about $7244 representing the cost the DSO is willing to pay 
for perfect prediction on the uncertain parameters. 
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4. THE ROBUST HIERARCHICAL MODEL-FREE TRANSACTIONAL CONTROL 
APPROACH 

In this section, a bilevel electricity pricing and demand response Stackelberg game between the DSO and 
LAs is considered, and a robust decision model is proposed for the DSO to deal with the uncertainties from 
the wholesale market prices and demand consumptions of LAs. In the upper level, the objective of the DSO 
is in max-min form to maximize the minimum payoff, while the LAs at the lower level maximize their own 
utility values. With the max-min objective at the upper level, the robust bilevel model is converted into a 
single level model by the Karush-Kuhn-Tucker (KKT) conditions and prime-dual transformation. The 
building level temperature preference is guaranteed by the virtual battery constraints in the model derived 
from the building thermal properties. Several groups of case studies have been conducted based on different 
preferences on uncertainty gaps and peak load reductions to show its effectiveness. After-the-fact scenario 
analysis has indicated that the robust solution is more beneficial in reducing the risk of inaccurate 
predictions as compared to the risk neutral strategy. 

4.1 PRICING-DEMAND RESPONSE 

In this section, we review the proposed DR pricing game in Section 2, with slight change to the notations 
to better fit the robust game introduced in Section 4.2. All the parameters and variables are listed in Table 
VI, followed by the mathematical model. 

Table VI. Notations for the robust game model. 
 

Indices 

𝑇, 𝑡, 𝑛	 Total hours, index for hours, LAs 

Parameters 

𝐶B , 𝑃 Marginal cost, price upper bound 

𝐻C,B , 𝐻C,B Lower & upper bound of thermal demand 

𝐿C,B , 𝐿C,B Lower & upper bound of non-thermal demand 

𝐷ℎC,B , 𝐷𝑑C,B Nominal thermal, non-thermal demand 

𝛼C,B , 𝜃 Satisfaction preferences of LAs, penalty coef. 

𝐵𝐼, 𝜖 Initial level, Dissipation rate of virtual battery 

𝐵C,B , 𝐵C,B	 Lower bound, upper bound for virtual battery 

Variables 

𝑝B , 𝑑𝑙C,B	 Electricity price, total electricity load 

ℎ𝑟C,B , 𝑑𝑟C,B	 Resulted thermal load, non-thermal load 

𝑚, 𝑏C,B	 Peak load, storage level in virtual battery 

In the investigated DR game here, the DSO is the leader that makes decisions on the electricity price by 
considering the demand responses from the LAs, which are followers in the lower level. The objective of 
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the DSO is to maximize its overall utility, which includes its profit (first two terms in (35)), peak load 
penalty (fourth term in (35)), and the overall customer satisfaction (third term in (35)) that represents its 
social obligation. 

𝐷𝑆𝑂: max𝑈L =O𝑝B
C,B

⋅ 𝑑𝑙C,B −O𝐶B
C,B

⋅ 𝑑𝑙C,B +O𝑆
C,B

(𝐷𝑙, 𝑑𝑙) − 𝜃 ⋅ 𝑇 ⋅ 𝑚
 

(35) 

𝐶B ≤ 𝑝B ≤ 𝑃,	∀𝑡 (36) 

𝑚 ≥O𝑑
C

𝑙C,B , 	∀𝑡 (37) 

The constraints for the DSO optimization are the price range in (36) and the peak load calculation in (37). 

At the lower level, each LA also tries to maximize its own utility, which consists of its consumption 
satisfaction and the electricity bill payment in (38). The resulted load profile is the summation of the thermal 
load ℎ𝑟 and the non-thermal load 𝑑𝑟 in (39). Equation (40) defines the range for the non-thermal load in 
each time step, and (41) defines its overall shifting flexibility for the considered decision period. Equation 
(42) defines the range for thermal load. The virtual battery constraints in (43)-(45) are derived based on the 
building thermal characteristics and are used to guarantee a pre-defined temperature band of each 
aggregated building. The difference between the actual power consumed ℎ𝑟 by a thermal appliance and its 
nominal thermal load 𝐷ℎ determines whether the virtual battery is being charged or discharged. 𝜖 is the 
virtual battery dissipation rate, which depends on the properties of the thermal load (e.g., insulation 
characteristics) and can be determined empirically. Equation (46) ensures that the virtual battery level at 
the end of the day equals to its initial level. 
 

𝐿𝐴𝑠:max𝑈C =O𝑆
B

(𝐷𝑙, 𝑑𝑙) −O𝑝B
B

⋅ 𝑑𝑙C,B (38) 

𝑑𝑙C,B = ℎ𝑟C,B + 𝑑𝑟C,B: 	𝜆C,BK$  (39) 

𝐿C,B ≤ 𝑑𝑟C,B ≤ 𝐿C,B: 	 λC,BK' , 𝜆C,B
K'

 (40) 

0.9 ⋅O𝐷
B

𝑑C,B ≤O𝑑
B

𝑟C,B ≤ 1.1 ⋅O𝐷
B

𝑑C,B: 	 λC,BK& , 𝜆C,B
K&

 (41) 

𝐻C,B ≤ ℎ𝑟C,B ≤ 𝐻C,B: 	 λC,BKW , 𝜆C,B
KW

 (42) 

𝐵C,B ≤ 𝑏C,B ≤ 𝐵C,B: 	 λC,BKX , 𝜆C,B
KX

 (43) 

𝑏C,B = 𝜖 ⋅ (𝐵𝐼C + ℎ𝑟C,B − 𝐷ℎC,B):	𝜆C,B5"KY  (44) 

𝑏C,B = 𝜖 ⋅ (𝑏C,BF" + ℎ𝑟C,B − 𝐷ℎC,B):	𝜆C,BZ#KY  (45) 

𝑏C,B5% = 𝐵𝐼C: 	𝜆CK[ (46) 
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The consumption satisfaction function 𝑆(𝐷𝑙, 𝑑𝑙) is defined as 𝑆(𝐷𝑙, 𝑑𝑙) = 𝐷𝑙C,B ⋅ 𝑤C,B ⋅ 𝑓(
N?%,$
;?%,$

). Note that 
𝐷𝑙C,B = 𝐷ℎC,B + 𝐷𝑑C,B is the total nominal load; 𝑤 is a user defined parameter; and 𝛼 represents the 
sensitivity of demand shifting. To reduce the computational burden and guarantee optimality, the 
satisfaction function 𝑆 is linearized into two linear segments at the intersection point 𝑥2 where 𝑓)(𝑥2) = 1, 
thus 𝑥2 = ("

E
)

!
+,!. Since 𝛼 is also a step dependent parameter, 𝑥2 is different for each time step. Hence, the 

first linear segment passes through the two points (0, 0) and (𝑥2, 𝑥2E), and the second linear segment goes 
through the two points (𝑥2, 𝑥2E) and (1, 1). Thus, the following two satisfaction function constraints need 
to be added to the lower-level model. The lower-level model for LAs in the DR game becomes (38)-(48), 
where the dual variable of each constraint is presented following a colon. 
 

𝑆C,B ≤ 𝑤C,B ⋅ 𝑥2
E%,$F" ⋅ 𝑑𝑙C,B: 	𝜆C,BK"  (47) 

𝑆C,B ≤ 𝑤C,B ⋅ 𝑑𝑙C,B ⋅
1 − 𝑥2

E%,$

1 − 𝑥2
+𝑤C,B ⋅ 𝐷𝑙C,B ⋅

𝑥2
E%,$ − 𝑥2
1 − 𝑥2

: 	𝜆C,BK#  
(48) 

The developed bilevel model in this section is a deterministic model, which corresponds to the risk-neural 
strategy for the DSO. In the next subsection, a robust bilevel optimization model is derived based on this 
deterministic model to cope with the parameter uncertainties. 

4.2 ROBUST OPTIMIZATION MODEL 

4.2.1 BILEVEL MODEL 

In this section, the robust decision is made from the perspective of the DSO. To consider the related risk of 
the forecasted parameters 𝐶�B , 𝐷ℎ� C,B , 𝐷𝑑� C,B, a new variable set 𝛥 = {𝛥𝐶B , 𝛥𝐷ℎC,B , 𝛥𝐷𝑑C,B} is introduced to 
represent the deviation of the forecasted parameters. The robust factors 𝛾K , 𝛾1 , 𝛾N are defined by the decision 
makers to evaluate the length of the uncertain gap around the forecasted parameters. Since robust 
optimization stands at the risk-averse view point, the worst case of uncertainties occurrence in the allowable 
uncertain range is evaluated [66]. The robust bilevel optimization model is formulated as: 
 

𝐷𝑆𝑂:max
-,N?

min
\
𝑈L =O𝑝B

C,B

⋅ 𝑑𝑙C,B −O(
C,B

𝐶�B + 𝛥𝐶B) ⋅ 𝑑𝑙C,B

+O𝑆
C,B

(𝐷𝑙�, 𝑑𝑙) − 𝜃 ⋅ 𝑇 ⋅ 𝑚
 

(49) 

𝐶�B + 𝛥𝐶B ≤ 𝑝B ≤ 𝑃,	∀𝑡 (50) 

𝑚 ≥O𝑑
C

𝑙C,B , 	∀𝑡 (51) 

−𝛾K ⋅ 𝐶�B ≤ 𝛥𝐶B ≤ 𝛾K ⋅ 𝐶�B , 	∀𝑡 (52) 

−𝛾1 ⋅ 𝐷ℎ� C,B ≤ 𝛥𝐷ℎC,B ≤ 𝛾1 ⋅ 𝐷ℎ� C,B , 	∀𝑛, 𝑡 (53) 

−𝛾N ⋅ 𝐷𝑑� C,B ≤ 𝛥𝐷𝑑C,B ≤ 𝛾N ⋅ 𝐷𝑑� C,B , 	∀𝑛, 𝑡 (54) 
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As observed in the robust model for the DSO, its objective is maximized with respect to its main decision 
variables 𝑝, 𝑑𝑙 and minimized by the uncertain parameter set 𝛥. The length of the uncertain gap can be 
adjusted by the robust factors. 

Similarly, the constraints (41), (44), (45), and (48) in the lower-level model are updated as: 
 

0.9 ⋅O(
B

𝐷𝑑� C,B + 𝛥𝐷𝑑C,B) ≤O𝑑
B

𝑟C,B ≤ 1.1 ⋅O(
B

𝐷𝑑� C,B + 𝛥𝐷𝑑C,B) (55) 

𝑏C,B = 𝜖 ⋅ (𝐵𝐼C + ℎ𝑟C,B − 𝐷ℎ� C,B − 𝛥𝐷ℎC,B) (56) 

𝑏C,B = 𝜖 ⋅ (𝑏C,BF" + ℎ𝑟C,B − 𝐷ℎ� C,B − 𝛥𝐷ℎC,B) (57) 

𝑆C,B ≤ 𝑤C,B ⋅ 𝑑𝑙C,B ⋅
1 − 𝑥2

E%,$

1 − 𝑥2
+𝑤C,B ⋅ (𝐷𝑙C,B + 𝛥𝐷ℎC,B + 𝛥𝐷𝑑C,B) ⋅

𝑥2
E%,$ − 𝑥2
1 − 𝑥2  

(58) 

 
The resulted robust bilevel model now becomes the upper-level model (49)-(54) and the lower-level model 
(38)-(40), (42)-(43), (46)-(47), and (55)-(58). 

4.2.2 SINGLE-LEVEL MODEL 

To be able to solve the problem with commercial solvers, the equivalent single level optimization model 
needs to be obtained. The process to transform the proposed bilevel robust model into a single level model 
has two main steps: KKT transformation and prime-dual transformation. 

In KKT transformation, since the variables in the upper level are treated as parameters in the lower-level 
model of LAs that is then linear and convex, it can be substituted into the upper-level model by its equivalent 
KKT optimality conditions. This process has been conducted in related works frequently [67, 68], for the 
sake of conciseness, we avoid repeating it here. In this transformation, the strong duality theorem in (59)-
(61) is used to replace the bilinear term 𝑝B ⋅ 𝑑𝑙C,B in objective (49). Assume 𝛬 is the prime variables set in 
the lower model of LA, then 
 

O𝑆C,B
B

−O𝑝B
B

⋅ 𝑑𝑙C,B = 𝐺(𝛬) + 𝐺(𝛥) (59) 

𝐺(𝛬) =O[
B

𝑤C,B ⋅ (𝐷ℎ� C,B + 𝐷𝑑� C,B) ⋅
𝑥2E − 𝑥2
1 − 𝑥2

⋅ 𝜆C,BK# −

𝐿C,B ⋅ λC,BK' + 𝐿C,B ⋅ 𝜆C,B
K'
−𝐻

_ C,B
⋅ 𝜆
_ C,B
KW +𝐻C,B ⋅ 𝜆C,B

KW
−

𝐵C,B ⋅ λC,BKX + 𝐵C,B ⋅ 𝜆C,B
KX
] −O0.9

B

⋅ λCK& ⋅ 𝐷𝑑� C,B +

O1.1
B

⋅ 𝜆C
K&
⋅ 𝐷𝑑� C,B −O𝜖

B

⋅ 𝜆C,BKY ⋅ 𝐷ℎ� C,B +

𝜖 ⋅ 𝐵𝐼C ⋅ 𝜆C,B5"KY + 𝐵𝐼C ⋅ 𝜆CK[

 

(60) 
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𝐺(𝛥) =O[
B

𝑤C,B ⋅ (𝛥𝐷ℎC,B + 𝛥𝐷𝑑C,B) ⋅
𝑥2E − 𝑥2
1 − 𝑥2

⋅

𝜆C,BK# −O0.9
B

⋅ λCK& ⋅ 𝛥𝐷𝑑C,B +O1.1
B

⋅ 𝜆C
K&
⋅ 𝛥𝐷𝑑C,B

−O𝜖
B

⋅ 𝜆C,BKY ⋅ 𝛥𝐷ℎC,B

 

(61) 

 
After the KKT transformation and 𝑝B ⋅ 𝑑𝑙C,B replacement in the upper level, the robust bilevel model 
becomes a single level max-min optimization. Since the minimization in (49) is with respect to 𝛥, the 
objective of the final single level optimization can be rewritten as in (62)-(64). Together with other related 
constraints, the final single level max-min model is given as: 
 

𝐷𝑆𝑂:	max 𝑧 (62) 

2 ⋅O𝑆C,B
C,B

−O𝐺
C

(𝛬) −O𝐶�B
C,B

⋅ 𝑑𝑙C,B − 𝜃 ⋅ 𝑇

⋅ 𝑚 −min
\
{O𝐺
C

(𝛥) −O𝛥
C,B

𝐶B ⋅ 𝑑𝑙C,B} ≥ 𝑧
 

(63) 

(50)-(58), (39)-(40), (42)-(43), (46)-(47), KKT conditions of the lower level (64) 

 
In order to unify the problem as a final max optimization, the duality theorem is used to convert the inside 
min optimization to a max optimization by replacing the original min optimization with its max dual 
optimization problem. The method is well described in [66, 69]. After applying the above transformation, 
the final single level mixed integer programming model is obtained. The commercial solver CPLEX is used 
to solve the final model. 

4.3 NUMERICAL CASE STUDY 

In this section, the developed robust bilevel optimization is demonstrated by several groups of experiments. 
Five LAs are considered in the case study, and the nominal thermal load 𝐷ℎ of each LA consists of 1000 
residential & commercial HVACs and water heaters, see Figure 18. So, in total there are 5000 TCLs 
considered in this study. The detailed process to generate the data refers to [38, 39]. The nominal non-
thermal load 𝐷𝑑 in Figure 19 is adopted from [70] and mixed based on a commercial building reference 
load. The marginal cost 𝐶B is the same as in [52]. 𝛼C,B is assumed the same for all LAs as shown in Figure 
20. 
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Figure 18. Nominal thermal load of LAs (n refers to LA). 

 

 
Figure 19. Nominal non-thermal load of LAs (n refers to LA). 

 

 
Figure 20. 𝜶 preference in satisfaction function. 
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Based on the different robust gap length settings 𝛾 (= 𝛾K = 𝛾N = 𝛾1) on the uncertainties in (52)-(54) and 
the peak load penalty 𝜃 in (49), the objective value of the DSO and the resulted peak load from the robust 
bilevel optimization are illustrated in Figure 21. As observed, the DSO objective decreases when the penalty 
𝜃 increases with the same gap level; this is because the overall satisfaction term and penalty term in the 
objective function both move against maximization. Furthermore, the DSO objective also drops when the 
robust gap length increases from 0 to ± 20%; this is because the robust optimization targets the worst-case 
scenario in the uncertainty range. The peak load has a similar trend, and it is stabilized with max 𝛾 despite 
of the different 𝜃 levels due to the flexibility limitation of the load profile. 
 

 
Figure 21. DSO objective and peak load of the robust optimization under different cases. 

 
 
Take the peak penalty 𝜃 = 60 as an example, the resulted electricity prices and load profiles under different 
uncertainty gap lengths are shown in Figures 22 and 23. To optimize against more uncertainties from the 
wholesale marginal cost and customers’ overall consumption, the DSO tends to increase the prices until the 
allowable upper bound, especially in the high load range hour 8-21, see the nominal load profile in Figure 
23. The load shifting from peak hours to off-peak hours and peak load reduction can also be observed in 
Figure 23. 
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Figure 22. Price signals of the robust optimization under different cases. 

 

 
Figure 23. Resulted load profiles of the robust optimization under different cases. 

 
 
 
With the results of the robust models in several cases, MFC is used to allocate the optimal aggregate load 
profiles among the various TCLs under each LA. Figures 24-27 show the temperature responses of the 
thermal loads for one LA (325 residential HVAC units, 336 commercial HVAC units, 339 water heater 
units). As observed, the MFC strategy was able to maintain temperatures within the comfort bounds at all 
times. 
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Figure 24. Temperature responses and power tracking of TCLs (𝜸 = 𝟎, 𝜽 = 𝟔𝟎). 

 
 

 
Figure 25. Temperature responses and power tracking of TCLs (𝜸 = 𝟎. 𝟏, 𝜽 = 𝟔𝟎). 
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Figure 26. Temperature responses and power tracking of TCLs (𝜸 = 𝟎. 𝟏𝟓, 𝜽 = 𝟔𝟎). 

 

 
Figure 27. Temperature responses and power tracking of TCLs (𝜸 = 𝟎. 𝟐, 𝜽 = 𝟔𝟎). 
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To illustrate the impact of considering uncertainty in the studied problem, after-the-fact analysis is 
conducted to compare the risk neutral strategy and the proposed robust strategy. After-the-fact scenarios 
are generated by adding ± 20% random noise to the three considered uncertainty parameters 
𝐶B , 𝐷ℎC,B , 𝐷𝑑C,B. Two hundred scenarios are generated for this analysis. In Figure 28, the DSO objective 
from the robust bilevel model is $187375.2, which is the guaranteed lower bound with uncertainty gap ± 
20%. While the objective value from the neutral model without uncertainty (𝛾 = 0 assume prediction is 
accurate) is $250716.5. However, after the resulted price decisions from the robust and neutral models are 
fixed and used to solve the lower-level models (in (38)-(46)) over the 200 scenarios, the expected DSO 
objective value of robust price strategy ($262568.2) is higher than that of neutral price strategy ($256104.6). 
These results show the effectiveness of the proposed robust decision approach and thus indicate the 
importance of modeling uncertainties. 
 

 
Figure 28. The DSO objectives of robust and neutral strategies in after-the-fact analysis. 

 
The total energy consumption for the deterministic (developed in Section 2), stochastic (developed in 
Section 3), and robust (developed in this section) transactive optimization strategies for one day is shown 
in Table VII. It is observed that the robust optimization approach consumes the lowest energy, since it 
addresses the worst-case (lower-bound) scenario. Also, it is observed that the proposed TOU pricing 
scheme does not consume more energy than the (optimized) fixed pricing scheme as in most conventional 
transactive schemes; indeed, it consumes a bit less energy. 
 
Table VII. A comparison of 24-hour energy consumption (in MW) for 10 LAs (10,000 TCLs) using 

various optimization strategies and pricing schemes (𝜽 = 𝟏𝟎, 𝜸 = 𝟏𝟎). 
 Deterministic Stochastic Robust 
Fixed Pricing 1716 1702 1618 
TOU Pricing 1712 1693 1600 

 
In summary, the electricity pricing problem of a DSO is presented in this section with the consideration of 
DR from LAs and modeled as a bilevel problem. The uncertainties on LAs’ energy consumption and the 
electricity marginal cost are dealt with using a robust optimization with the attitude of risk averse. Based 
on the KKT optimality conditions, the lower-level model is substituted into the upper-level model, and dual 
transformation is used to convert the nested max-min objective of the DSO into a single level maximization 
form. The experimental results have shown that the DSO tends to raise the price when the risk of demand 
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uncertainty is higher. Moreover, the robustness of the price strategy from the proposed robust bilevel model 
is tested against random after-the-fact scenarios and compared to the risk-neutral model. Although the risk-
neutral strategy has higher objective value than the robust optimization (worse case), the robust strategy 
has higher expected objective value than the risk-neutral strategy by taking the actual prediction errors into 
account, and thus it is more immune to the related risk of predictions. 
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5. FIELD TESTING AND VALIDATION OF THE HIERARCHICAL MODEL-FREE 
TRANSACTIONAL CONTROL APPROACH 

This section presents a field implementation and testing of the hierarchical model-free transactive control 
strategy using residential building TCLs in real-world setting. Two different sites are selected for the 
testing: “Yarnell Station” residential house located in Knoxville, Tennessee, and “Altus at The Quarter” 
smart neighborhood in Atlanta, Georgia. The achieved experimental field-testing results demonstrate the 
effectiveness of the proposed transactive control strategy. 
 

5.1 FIELD TESTING AT YARNELL STATION RESIDENTIAL HOUSE 

The house used for the field testing is a single-family two-story building (2400 sqft) in an area located in 
Knoxville, Tennessee, USA (see Figure 29). It is a research house with emulated occupancy, and it is 
equipped with two single-zone HVAC units and one 66-gallon electric WH. This test is conducted for one 
month in the winter of 2021 to test the proposed transactive control strategy with a variety of conditions 
and scenarios. To scale up the testing, we added eight simulated single-zone HVAC units (only HVACs are 
considered in this test). So, the experiment included 10 HVAC units in total, 2 actual and 8 simulated. 
 
 

 
Figure 29. Yarnell Station residential house used in the field testing. 

 
The framework of the fully automated approach is shown in Figure 30, where day-ahead weather data is 
retrieved from a publicly available weather API (i.e., OpenWeather API [71]). Then, using the day ahead 
weather data, the aggregate virtual battery model computes the feasibility constraints and passes them to 
the optimization engine. In the optimization engine, the price and power profiles are hourly optimized using 
the bilevel Stackelberg game, and the optimal power is passed to the control engine. In the control engine, 
MFC controls the actual TCL units every 15 minutes through Ecobee and Skycentrics APIs (shown in 
brown solid arrow (control setpoint signals) and blue solid arrows (received measurements)), while MFC 
controls the simulated units directly (shown in black solid arrows (control signals and received temperature 
measurements)). When controlling the TCL units, MFC has two objectives. First, MFC ensures that the 
temperature responses are within the comfort bands. Second, the optimal power profile provided by the 
optimization engine is being tracked by the total power consumption of the TCLs.  
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Figure 30. The framework of the fully automated field testing. 

 
Figures 31-33 show the performance of the fully automated approach in three randomly selected days (the 
temperature responses of the two actual HVACs are shown in dashed lines in the top plots). Although the 
weather forecasts are accurate for most of the time, there were other times the actual weather was slightly 
different from the forecasted one. Despite that, the proposed approach was able to achieve all three intended 
objectives. First, the MFC controllers were able to maintain the temperatures within the comfort band. 
Second, the virtual battery-integrated game theory was able to reduce the peak load. Third, the MFC 
controllers were able to track the optimal power profile resulted from the virtual battery-integrated game 
theory optimization. 
 

 
Figure 31. Field testing results for Day 1. 



 

 39 

 

 
Figure 32. Field testing results for Day 2. 

 

 
Figure 33. Field testing results for Day 3. 
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5.2 FIELD TESTING AT ALTUS SMART NEIGHBORHOOD 

The test site for the field testing is a residential neighborhood in Atlanta, Georgia constructed by the 
Southern Company (see Figure 34). These homes are occupied and therefore demonstrate the behavior of 
actual inhabited homes. The homes themselves are four stories, with each story (referred to as zone moving 
forward) having its own thermostat. The fourth zone has a separate Lennox Mini-Split for cooling, while 
the three other zones share an HVAC unit, with their individual thermostats coordinate via a zone control 
board. Due to the lack of a reliable communication, the fourth floor was not utilized by the control in this 
field test. The control algorithm was tested for two weeks in summer of 2021. The experiment included a 
total of five GEBs, with the choice of homes approved by Southern Company. The control was implemented 
on a VOLTTRON software platform [72] using an agent-based approach. In these experiments, an API 
developed by Southern Company was utilized to implement the proposed transactive control approach. 
 

 
Figure 34. “Altus at The Quarter” smart neighborhood used in the field testing. 

 
Each relevant appliance is “smart” and networked to a vendor API (i.e., Ecobee) over site Wi-Fi. Southern 
Company has provided an intermediate API that anonymizes and serves the data to the research team. 
Southern Company parsing all data in front of the Oak Ridge National Laboratory (ORNL) team serves to 
both ensure ORNL team never has access to identifying information and keep any customer-facing 
interactions (such as device support) to Southern Company. Figure 35 shows the neighborhood data flow. 
To keep with cyber security requirements and ensure a safe and reliable deployment, the controller is hosted 
by Ace IoT [73]. They also provide some data recording services. 
 

 
Figure 35. Neighborhood data flow. 

 
The controller is an agent-based system with agents responsible for data gathering, MFC control, and 
aggregated optimization. One key benefit of utilizing VOLTTRON is the potential for securely scaling 
deployments across a wide geographic area. While the physical implementation of this test does not reach 
such scale, the architecture has been constructed in a way that the application can be scaled to many LAs 
coordinated through the optimization. In this case, all agents are run on a single VOLTTRON instance. 
Scaling up this architecture would only require introducing new MFC Agents and ensuring secure 
multiplatform communication.  
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Figure 36 shows the physically co-located architecture. There are two hierarchies of responsibility: the 
game-theoretic utility control of the LA and the device level control within the LA. At the start of every 
control run, the LA, represented by the MFC agents, publishes LA-specific estimated power consumption 
information to the Game Theoretic Control Agent. This agent computes an optimization to tailor specific 
consumption profiles for the LA and then sends the profile downwards. The MFC agents are responsible 
for steering their respective devices along the prescribed trajectory. This control flow can be halted and 
restarted depending on the control timelines. Figure 37 shows the control flow, where the blue color 
represents an action by the game theoretic controller, and the orange color represents actions by the MFC 
controllers. 
 

 
Figure 36. Physically co-located VOLTTRON architecture. 

 

 
Figure 37. Control flow. 

 
The control system uses the VOLTTRON software platform and as such is a Python program. Because 
there is a non-linear optimization component, the open-source solver IPOPT [74] is utilized for the game-
theoretic optimization. The database underlying the system is a time-series database called InfluxDB [75]. 
Upon maturity, the system can be containerized and deployed to a cloud architecture using Docker [76] that 
is accessible for any urgent patching. Grafana [77] is used to monitor the results and data collection coming 
out of the controller.  

The homes that are controlled at the Southern Company test site are fully occupied homes, with access 
granted to the ORNL controller through the Southern Company contract with the homeowners. As such, 
much care is taken to err on the conservative side of control. That is, as much as possible, the control must 
steer the control signal within a relatively narrow band around the preferred customer setpoint. In the case 
of this field test, temperatures were allowed to stray 0.5℃ above the recorded preferred temperature, and 
1℃ below the preferred temperature, resulting in a 1.5℃ band that the control can operate within. Further, 
homeowner interventions (termed “overrides”) must be adhered to, with the control adjusted to potentially 
unforeseen setpoints. 
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Several pieces of data are necessary in order to build the power forecast for the LA and then optimize for a 
power profile. The two main external pressures on the system are the temperature forecast and the solar 
forecast. These are gathered in two different ways: (1) The temperature forecast is taken from the 
OpenWeather API [71]. This is an API with a free tier that allows for hourly forecasting. (2) The solar 
forecast is a resource provided by Southern Company. An hourly forecast is given for 12 hours from the 
current hour. If a longer than twelve-hour forecast is needed, the solar forecast is inverted and appended to 
the end. The values provided by the solar forecast are Global Horizontal Irradiance (GHI), Diffuse 
Horizontal Irradiance (DHI), and Direct Normal Irradiance (DNI). The temperature and solar forecasts were 
used in conjunction with a data-driven model of the test site homes, with parameters trained using two 
weeks of historical data. This model is used to construct a forecast of the nominal power consumption of 
the individual homes for the incoming control window. 

Figures 38-40 show the performance of the proposed two-layer transactive controller approach on sample 
three days for the selected buildings of the Southern Company Smart Neighborhood Facility. The proposed 
control approach was able to mostly achieve all intended objectives. First, the MFC controllers were always 
able to maintain the temperatures within the comfort band. Nevertheless, the building occupants were 
always allowed to override the temperature setpoints set by our controller by simply adjusting their 
thermostats. Second, the virtual battery-integrated game theory was able to reduce the peak load. Figures 
38-40 clearly show that the optimal power profile has lower peak than the nominal power profile. Third, 
the MFC controllers were mainly able to track the optimal power profile resulted from the virtual battery-
integrated game theory optimization. For example, on June 23, the tracking performance of MFC was 
perfect except for a few exceptions. However, on June 22, the tracking performance was relatively poorer. 
The tracking performance is affected by many factors including communication issues, occupant overrides, 
unexpected weather patterns, and thermostat API and server failures. In particular, on June 23 at 15:41, we 
lost connection to the thermostats and failed to track optimal power around that time, which resulted in a 
peak power consumption. Similarly, on June 22 we experienced several communication issues, and 
observed that occupants overrode the setpoints set by our controller. For this reason, the tracking 
performance on June 22 was relatively poorer. 
 

 
Figure 38. Field testing results for June 22, 2021. 
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Figure 39. Field testing results for June 23, 2021. 

 
 
 

 
Figure 40. Field testing results for June 24, 2021. 
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6. SIGNIFICANT ACCOMPLISHMENTS AND CONCLUSIONS 

In this project, the team developed and demonstrated: (1) a detailed, simulation-driven understanding of 
utility-scale demand aggregation and control of load flexibility using model-free control and game theory 
to harness residential and small-size commercial buildings to provide grid services; (2) an end-to-end 
simulation-based design of a model-free control framework of building loads that increases customer cost 
saving (up to ~20%), improves occupants’ comfort, reduces peak demand (up to ~30%), and increases 
utility profit (up to ~20%); and (3) control technology deployment to evaluate the effectiveness and to 
perform scalability analysis at the utility scale.  
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8. PATH FORWARD 

The team developed and deployed an open-source, end-to-end software tool for controlling residential and 
small-size commercial building loads at scale. It enables large-scale residential aggregation to provide a 
substantial amount of demand-side flexibility to reliably provide grid services. It also facilitates a 
seamless interface between the grid service requests of utilities and the reliable control required by 
participating buildings. The project advanced the control formulation from the technology readiness level 
of this technology from 3 to 7, and it is currently ready for adoption by utilities, building equipment 
manufacturers, and energy service companies. The team is engaging with utility partners and building 
equipment manufacturers to demonstrate a seamless transition between the development phase, 
demonstration phase, and large-scale deployment phase consistent with the long-term objective of the 
funding agency of using funded research and development programs to promote job creation and 
economic prosperity within the United States. 
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