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ABSTRACT 

Demand-side management in the buildings is essential for meeting grid flexibility needs in a highly 

renewable energy scenario. Appliance load monitoring helps decision making for demand-side 

management by providing the information on operation status/power consumption from different 

appliances in the buildings. Nonintrusive load monitoring (NILM) is an attractive option for appliance load 

monitoring using because it has lower cost for sensors and helps mitigate privacy concerns. In this study, 

the team used an event detection technique followed by two different methods for event classification. The 

results from k-means clustering showed that the events from a single appliance are often distributed in 

multiple clusters. Thus, the unsupervised method of NILM using k-means clustering used in this study was 

not very suitable for load disaggregation. The results from NILM showed that the F1-score for event 

classification was 0.77 for a heat pump water heater and very low for other appliances using the rule-based 

classification.  
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1. INTRODUCTION 

Buildings consume approximately 75% of electricity in the United States (“US Energy Information 

Administration” 2019). The strategic goal of the US Department of State is to achieve net-zero greenhouse 

gas emissions by 2050, and clean distributed energy sources (including solar and wind) would be used for 

electricity production (United States Department of State 2021). However, because of the intermittent 

nature of renewable energy generation, energy storage and demand-side management are critical for 

meeting grid flexibility needs (Langevin et al. 2021). As the largest consumer of electricity, buildings are 

the major sector for providing demand-side management. Demand-side management refers to the change 

in electric energy consumption (load shape) by the end users to meet the needs of the electric grid 

(Gelazanskas and Gamage 2014). Various technologies and systems should be developed or upgraded for 

reliable and efficient demand-side management, including advanced metering infrastructures, controllers, 

and communication systems for enabling effective decision making (Siano 2014). Load monitoring is an 

essential component of demand-side management since it provides information of the operation status of 

various appliances in a building. The appliance load monitoring can be performed in both intrusive and 

nonintrusive techniques. Intrusive monitoring, however, requires costly submeter installations and raises 

privacy concerns (Hosseini et al. 2017). These issues have resulted in significant research efforts toward 

nonintrusive load monitoring (NILM), which was introduced three decades ago by George Hart (Hart 

1992). NILM includes analysis of voltage, current, and their derivates of total load to predict the number, 

nature, and operation and energy consumption of individual loads.  

The main steps for NILM include data collection, event detection, feature extraction, and load identification 

(Ruano et al. 2019). Data collection for NILM varies from sub-hourly data (Parson et al. 2016) to high-

frequency data in kilohertz (Filip 2011). The duration of the data collection (a few days to multiple years) 

and the number of buildings (one to hundreds) for which data are available also widely vary (Faustine et al. 

2017). NILM can be used to detect on/off events of the appliance as a classification problem or predict the 

energy consumption by the appliances as a regression problem. Different methods, such as event-based 

methods that use a change detection algorithm or state-based methods that use probability 

distribution/optimization, have been used for NILM (Le and Kim 2018). However, most of the prior NILM 

techniques used cannot perform disaggregation in real-time (Faustine et al. 2017). In this study, the team 

investigated an event detection–based algorithm that has potential to classify events in near real-time. 

Winbuild Inc.’s technology is an intelligent energy optimizer based on principles of power optimization. It 

senses the building load and matches that with the source impedance. The power optimization system 

measures load parameters, including voltage, power factor, harmonics, reactive power, and maximum 



 

 

demand, and automatically senses the necessity for voltage optimization, reactive power compensation, and 

harmonic suppression. The power optimization system constantly senses the incoming voltage and 

optimizes and maintains it within a specific rated voltage range. This setup has greater potential for load 

savings during loading/unloading and switching on/off of an inductive load. The system also keeps the 

power factor close to unity, and harmonics are suppressed. The power optimizer also has an integrated 

remote load management functionality. The product has been tested for residential applications. Based on 

user feedback, Winbuild is enhancing the system that can group the load based on the usage pattern, which 

can help users to understand and take further measures on energy savings. Furthermore, predicting the 

connected load/equipment efficiency will help preventive maintenance by reducing maintenance costs and 

unscheduled shutdowns. 

In this project, the team utilized NILM to obtain information on usage patterns of different appliances 

based on measurement of electric signals input in a subpanel. The initial main assumption for NILM in 

this project was that the information on the individual appliance operation will not be available for 

training purposes. This assumption included the absence of any information on electricity data of 

individual appliances, the number of appliances present in the building, or the types of appliances present 

in the building. The main reason for this approach was to create a generic method that could be applied to 

any residential building for NILM. Thus, only the main data would be used for NILM, and individual data 

could be used to verify the accuracy of NILM. Under this approach, the work described in Sections 2.1–

2.3.1 was performed. However, seeing the limitation of this approach to categorize any appliance, 

Section 2.3.2 describes efforts in which the individual appliance data were used for event classification. 

Thus, the team explored unsupervised learning using k-means clustering of the signal during a start event, 

as well as a rule-based classification (RBC) based on the appliance signal during a transient period and 

steady-state period. 

 

2. METHODOLOGY AND RESULTS 

The electricity data were collected for a subpanel located in the garage of the Yarnell Station research 

house, which is a residential test facility at the US Department of Energy’s Oak Ridge National 

Laboratory. For NILM, the monitoring was performed in two steps: event detection and event 

classification. 



 

 

2.1 DATA COLLECTION 

The data were collected for incoming electricity at the subpanel, as well as different appliances connected 

to the subpanel, which were as follows:  

• HVAC: outdoor unit (OD) and indoor unit (ID) 

• Heat pump water heater (HPWH) 

• Dryer 

• Fridge 

• Microwave 

The house is an unoccupied house where the occupant load is simulated, so dryer and microwave were 

only run for a couple of days, and the majority of the data collected included the cycles for the HVAC 

system and HPWH. The data were collected for approximately 1.5 months, which included current, 

voltage, active power, and apparent power data. The data were collected at 1 s intervals for each of the 

appliances, as well as total subpanel electricity (i.e., mains data). 

2.2 EVENT DETECTION 

An event detection algorithm was used on the mains data. Before event detection, the mains data were 

preprocessed via the method used by Pattem (Pattem 2012). Preprocessing of the data involved 

disaggregating the electricity consumption to an always-on component and variable component. Here, {x: 

x1, x2, …, xn} is the time series representing the electrical mains data ; the steps used for preprocessing 

and event detection following (Pattem 2012) are discussed next.  

2.2.1 Step 1: Always-On Component 

The always-on threshold (aoth) is defined as  

 𝑎𝑜𝑡ℎ = 0.5 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑥 . (1) 

The always-on component (aocx) and variable component (vcx) were obtained using the following: 

 𝑎𝑜𝑐𝑥 = {
𝑎𝑜𝑡ℎ, 𝑥𝑖 > 𝑎𝑜𝑡ℎ

0, 𝑥𝑖 < 𝑎𝑜𝑡ℎ
 , 

 𝑣𝑐𝑥 = 𝑥 − 𝑎𝑜𝑐𝑥 . (2) 



 

 

2.2.2 Step 2:  Smoothing 

The team quantized the data into power of discrete values in multiple of Δx to obtain the quantized 

variable component of power (qvcx): 

 𝑞𝑣𝑐𝑥 = Δ𝑥 ∗ 𝑓𝑙𝑜𝑜𝑟 [
𝑣𝑐𝑥

Δ𝑥
+

1

2
] . (3) 

In preprocessing, the variable component of the power was quantized with a quantization step of 0.3 kW. 

Then, a median smoothing was performed on qvcx to preserve the edge during any event while removing 

the transient portion of event detection. 

 𝑚𝑠 − 𝑞𝑣𝑐𝑥 = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝑞𝑣𝑐𝑥 [𝑖 −
𝑤𝑚𝑠

2
] , 𝑞𝑣𝑐𝑥 [𝑖 −

𝑤𝑚𝑠

2
+ 1] , … 𝑞𝑣𝑐𝑥 [𝑖 +

𝑤𝑚𝑠

2
+ 1]} , (4) 

where ms − qvcx is the median smoothed qvcx.  

Figure 1 shows an example of the raw active power signal and the preprocessed data. The figure shows 

that that data after preprocessing detected the edges of a power change while removing the transient 

portion of event detection. 

 

Figure 1. Time series of the raw active power signal and preprocessed data.  

2.2.3 Step 3: Event Detection 

Next, using the preprocessed data, the difference was measured between the consecutive element, and if 

the difference was not zero, then the change in power was labeled as an event. Because of the 



 

 

quantization of data, the power change was in multiples of Δx. If the difference of the ith element of the 

preprocessed data from (i+1)th element was positive (i.e., power had an increasing trend), then it was 

labeled as a start event, and if the difference was negative (i.e., power had a decreasing trend), then it was 

labeled as a stop event. Next, all the start events were paired with the next first stop event within the next 

7,200 s with the same power change. An example of an event detected for a corresponding mains 

electrical signal is shown in Figure 2. The figure shows a start event (positive impulse) and stop event 

(negative impulse) corresponding to an increase and decrease in electrical power, respectively. 

 

Figure 2. Time series of raw active power and events detected using preprocessed data. 

2.3 EVENT CLASSIFICATION 

The team used two methods for event classification of detected events. The first was an unsupervised 

method using k-means clustering of the active power signal during an appliance start event. The second 

was an RBC method that used rules formulated based on active and reactive power of individual 

appliances during different start events. Thus, the second approach used a supervised method. 

2.3.1 K-Means Clustering 

The team used k-means clustering to group the events observed from event detection into different 

categories. The clustering was done separately for the start events with a couple of iterations based on 

observations made from clustering. 



 

 

k-means clustering iteration 1: A window of mains active power data 30 s before and 30 s after the 

occurrence of an event was first chosen. The reason for this selection was that event detection was 

performed after median filtering with a filter width of 30 s. Then, the data in this window were scaled in 

the range of 0 to 1. This scaling was performed so that the clustering occurred based on the power profile 

during the start event if the power of the different appliances of same category varied (e.g., a dryer with 

different rated power values). Five clusters were selected based on the elbow method (Kodinariya and 

Makwana 2013) using a plot of inertia as a function of the number of clusters (Figure 3). The clusters 

were created based on the dynamic time warping distance between the time series of the window. Figure 

4 shows the results of the clustering. There are occurrences in clusters 0, 1, and 3 where the peaks of 

different elements of the clusters have similar shapes but also time lag.  The second iteration of k-means 

clustering was performed to prevent this time lag.  

 

Figure 3. Plot of number of clusters vs. inertia. 



 

 

 

Figure 4. Clustering of equipment start events: iteration 1. 

k-means clustering iteration 2: In this iteration, like in iteration 1, a window of mains active power data 

30 s before and 30 s after the occurrence of event was chosen. Before normalizing the data, in this 

window, the location where the maximum power lies were chosen. After obtaining the point with 

maximum power, a window of 15 s before and 15 s after the maximum power was selected and scaled in 

the range of 0 to 1. Then, clustering was performed for the 31 s interval time series centered at its 

maximum power. After centering, five clusters were chosen based on the elbow method, similar to 

iteration 1. The results of k-means clustering after centering are shown in Figure 5.  Each of these cluster 

shows more distinctive trends compared with the clusters in Figure 4. The red lines in each of the cluster 

represents the cluster center. In the figure, the Cluster 0 center starts around 0.5 and increases to 1 after a 

dip just before the peak and again becomes steady around 0.5. Cluster 1 center has steady power near 1 

for most of the time period which dips down at the end of the window. Cluster 2 center mainly starts are 

relatively high power slowly increasing to 1 and has a smooth decline in power after the peak. Cluster 3 

center  rises from ~0 to 1 at the center of the window and then declines to a value ~0.7 at the end of the 



 

 

window. Cluster 4 center starts from ~0 and remains such until the peak which dips after the peak and 

then becomes steady to ~0.7. 

 

Figure 5. Clustering of equipment start events: iteration 2. 

Clustering results check: The clusters created using the second iteration of k-means clustering show 

distinctive patterns but do not provide information on whether each of the clusters is a representation of 

the start of one or multiple appliances. Furthermore, knowing which appliance’s startup is represented by 

the cluster would be valuable. To obtain this information, the power data collected for individual 

appliances were used to check if the appliance had a startup event when the event was detected using 

mains power data. The individual appliances were assumed to have a start event if their power increased 

by 0.3 kW within the time window when the start event occurred. Table 1 describes the different 

appliances with start events when a startup event was detected in the mains power data. The table 

indicates that a single cluster can have a startup event from multiple appliances clustered. For example, 

the HPWH startup appears to be present in all clusters. 

 



 

 

Table 1. Appliance that had start event when a start event was detected in mains 

Appliance 
Cluster 

0 1 2 3 4 

Unknown 2 6 11 27 5 

HPWH 12 18 41 67 88 

HVAC_OD 154 2 0 0 11 

HVAC_OD + HPWH 406 3 0 1 22 

HVAC_OD + HVAC_ID 1 0 0 0 0 

HVAC_OD + HPWH + Fridge 0 0 0 0 2 

HVAC_OD + HVAC_ID + HPWH 3 0 0 0 0 

 

2.3.2 RBC  

Rules formulation: For using an RBC, the active power of the individual appliance was first used to 

detect events for each appliance. The appliance power cycle was considered between the period when the 

active power of the appliance went above the threshold of 0.3 kW until the period it went below that 

threshold. To detect the start event of the appliance, for each cycle, the team only considered the first 120 

s of data to extract the features to use to formulate the RBC. After obtaining the appliance cycle for 120 s, 

the reactive power of the appliance was also obtained for the same time frame. The active and reactive 

power were assumed to be transient until the first 20 s, assuming all the power surge occurred during this 

interval, and then the appliance was assumed to work at normal power or steady-state power for the next 

100 s. Following this assumption, polygon boundaries were formed for each of the appliances using the 

following for both active and reactive power: 

• x1 is 20th percentiles of the list of 20th percentiles of steady-state power values for each cycle 

• x2 is 80th percentiles of the list of 80th percentiles of steady-state power values for each cycle   

• y1 is 5th percentiles of the list of 95th percentiles transient power of each cycle 

• y2 is 95th percentiles of the list of 95th percentiles transient power of each cycle 

For steady-state power, the team took the list of 20th percentile and 80th percentile values to examine the 

median steady-state power value. For transient power, the team only took 95th percentile values and 

found the 5th and 95th percentile of the list of 95th percentile because to examine the approximately 

maximum value during the power spike. The bounding boxes formed for different appliances are shown 



 

 

in  Figure 6. The bounding boxes were obtained to use them to create a rule for classifying the different 

startup events. If the median of steady-state power and 95th percentile value for transient power of the 

cycle of each appliance is used as x and y co-ordinates respectively, the point should lie inside or nearby 

their respective bounding boxes. One of the challenges here is to distinguish the events that fall in the 

region where the bounding boxes for two of the appliances overlap. 

 

Figure 6. Bounding boxes for classification of different appliances. 

Figure 7 shows the bounding boxes with scatter plots of the median for the steady-state portion and the 

95th percentile transient power for each cycle of individual appliances. Here, the median and the 95th 

percentile were obtained from the individual power of the appliances. Figure 7 shows that for both active 

and reactive steady-state power median values can go out of the range in the x-axis, and 95th percentile 

transient power values can also go out of the range in the y-axis. This finding poses another problem for 

the assignment of the event data that fall outside of all the bounding boxes or some event data that fall 

inside multiple bounding boxes. To address this issue, the following method was used for the assignment 

of an event to the bounding box: 

1. If an event data point was outside of all bounding boxes, then the minimum distance of the event 

data from each bounding box was calculated. The event was then assigned to the bounding box 

from which the distance for event data was smallest. 

2. If an event data fell in only one bounding box, then the event corresponded to that bounding box. 

3. If an event data was inside multiple bounding boxes, then the distance between the event data and 

centers of bounding boxes were calculated. The event was then assigned to the bounding box 

whose center was closest to the event data. 



 

 

 

Figure 7. Bounding boxes for classification with scatter plot of transient-state 95th percentile power against 

steady-state median values obtained from individual power data of appliances. 

Rules evaluation: Next, a check was performed to identify the appliance where the actual start event 

occurred at the time when the event was detected in the mains data using the methods discussed in 

Section 2.2. Here, since the actual transient and steady-state power is important, the power during the 

period before which cycle started was subtracted from the total mains power. The cycle thus detected was 

then used to calculate the median steady-state power and transient-state 95th percentile power for both 

active and reactive power, which was then used to classify the events as shown in Figure 8. Figure 8 

shows that the scatter of the event and its classification is different from that in Figure 7, where the data 

from actual events obtained from individual data of the appliances were plotted. 

 

Figure 8. Bounding boxes for classification with scatter plots of transient-state 95th percentile power against 

steady-state median power obtained from disaggregation of mains electricity. 

Next, a check was done for the appliance detected using active power and reactive power using the 

individual measured data as ground truth. Here, a check was done whenever an event was detected from 



 

 

the mains electricity by taking a snippet of 30 s of individual appliance power around that event. Then, a 

maximum increase in electricity in that snippet was found by calculating the range from the start of the 

snippet until the location of maximum power occurrence. Cross-tables between the events detected from 

individual appliance power data and using RBC are provided in Table 2 and  

Table 3. The tables provide the frequency of each appliance in the rows detected as appliances in each 

column. For example, in Table 2, the number 3 in the first cell of the cross-table represents the number of 

events when the fridge start event was detected as an HPWH start event.  

Table 2. Cross-table of classification of appliances using RBC using active power vs. event detected using 

individual appliance power 

  

 Detected using RBC (active power) 

Fridge HPWH HVAC_ID HVAC_OD Unknown 

In
d

iv
id

u
al

 

 a
p

p
li

an
ce

s 

Fridge 0 3 1 0 0 

HPWH 0 1161 584 25 0 

HVAC_ID 0 0 0 0 0 

HVAC_OD 0 104 40 5 0 

Unknown 0 10 5 1 0 

 

Table 3. Cross-table of classification of appliances using RBC using reactive power vs. event detected using 

individual appliance power 

 

Detected using RBC (reactive power) 

Fridge HPWH HVAC_ID HVAC_OD Unknown 

In
d

iv
id

u
al

 

 a
p

p
li

an
ce

s 

Fridge 2 1 0 1 0 

HPWH 614 940 1 215 0 

HVAC_ID 0 0 0 0 0 

HVAC_OD 65 67 0 17 0 

Unknown 6 10 0 0 0 

 

Based on the results in Table 2 and  

Table 3, the true positive (TP), false positive (FP), true negative (TN), and false negative (FN) values 

were calculated for each of the appliances. The definition of TP, FP, TN and FN are as follows, where the 



 

 

event detected from individual appliances is the actual event, and the event using RBC is the predicted 

event: 

• TP: actual event, yes; predicted event, yes 

• TN: actual event, no; predicted event, no 

• FP: actual event, no; predicted event, yes 

• FN: actual event, yes; predicted event, no 

Based on these values, the recall, precision, accuracy, and F1-score were also calculated for individual 

appliances using Eqs. (5)–(8). The results from the calculations of these metrics for classification using 

active power data and reactive power data are provided in Table 4 and Table 5, respectively. The “N/A” 

in the tables is present for recall and/or precision due to division by zero and corresponding F1-score 

when either recall or precision in N/A was also N/A.  

  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6) 

  𝐴𝑐𝑐𝑢𝑟𝑎𝑟𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (7) 

  𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
) (8) 

In Table 4 and Table 5, recall, which represents the fraction of actual events for an appliance, correctly 

predicted range from 0.03 to 0.66 (excluding the unknown category because this category was not used 

during prediction of an event class). Precision, which represents the fraction of events that are predicted 

as an appliance being the actual event for the same appliance and not other appliances, was greater than 

0.9 for the HPWH. This indicates that more than 90% of the events classified as HPWH were actually 

events due to operation of the HPWH. However, this metric was only 0.16 using active power data and 

0.07 using reactive power data for HVAC_OD. Table 4 and Table 5 shows that the highest F1-score was 

for the HPWH while using both active power (0.77) and reactive power (0.67). For all other appliances, 

the F1-score was either N/A or below 0.1. This indicates that except for the HPWH, the classification of 

events from the use of the RBC needs significant improvement. 



 

 

Table 4. Appliance classification metrics using active power 

 TP FP FN TN Recall Precision Accuracy F1-score 

Fridge 0 0 4 1,935 0 N/A 1 N/A 

HPWH 1,161 117 609 52 0.66 0.91 0.63 0.77 

HVAC_ID 0 630 0 1,309 N/A 0 0.68 N/A 

HVAC_OD 5 26 144 1,764 0.03 0.16 0.91 0.05 

Unknown 0 0 16 1,923 0 N/A 0.99 N/A 

 

Table 5. Appliance classification metrics using reactive power 

 TP FP FN TN Recall Precision Accuracy F1-score 

Fridge 2 685 2 1,250 0.5 0 0.65 0 

HPWH 940 78 830 91 0.53 0.92 0.53 0.67 

HVAC_ID 0 1 0 1,938 N/A 0 1 N/A 

HVAC_OD 17 216 132 1,574 0.11 0.07 0.82 0.09 

Unknown 0 0 16 1,923 0 N/A 0.99 N/A 

 

3. CONCLUSIONS 

NILM was performed with data collected from Oak Ridge National Laboratory’s Yarnell Station research 

house for approximately 1.5 month. An event detection algorithm was used to find appliance start-up 

event, followed by event classification. Event classification was performed using two methods—first, an 

unsupervised approach with k-means clustering, and second, a supervised approach using RBC. From 

clustering, the events from a single appliance were present in multiple clusters, so the groups could not be 

categorized as a single appliance. Using RBC, the events were classified into different appliances and 

evaluated using the power data for individual appliances. The results demonstrate that the classification 

had an F1-score of 0.77 using active power data of the HPWH, but for all the other appliances, the value 

was very low. The method used for NILM in this project could be enhanced or other alternative methods 

could be used to increase the accuracy of NILM. 

4. REFERENCES 

Faustine, Anthony, Nerey Henry Mvungi, Shubi Kaijage, and Kisangiri Michael. 2017. “A Survey on Non-

Intrusive Load Monitoring Methodies and Techniques for Energy Disaggregation Problem.” ArXiv. 

Filip, Adrian. 2011. “Blued: A Fully Labeled Public Dataset for Event-Based Nonintrusive Load 



 

 

Monitoring Research.” In 2nd Workshop on Data Mining Applications in Sustainability (SustKDD). 

Vol. 2012. 

Gelazanskas, Linas, and Kelum A.A. Gamage. 2014. “Demand Side Management in Smart Grid: A Review 

and Proposals for Future Direction.” Sustainable Cities and Society 11: 22–30. 

https://doi.org/10.1016/j.scs.2013.11.001. 

Hart, George W. 1992. “Nonintrusive Appliance Load Monitoring.” Proceedings of the IEEE 80 (12): 

1870–91. https://doi.org/10.1109/5.192069. 

Hosseini, Sayed Saeed, Kodjo Agbossou, Sousso Kelouwani, and Alben Cardenas. 2017. “Non-Intrusive 

Load Monitoring through Home Energy Management Systems: A Comprehensive Review.” 

Renewable and Sustainable Energy Reviews 79 (April): 1266–74. 

https://doi.org/10.1016/j.rser.2017.05.096. 

Kodinariya, Trupti M, and Prashant R Makwana. 2013. “Review on Determining Number of Cluster in K-

Means Clustering.” International Journal 1 (6): 90–95. 

Langevin, Jared, Chioke B. Harris, Aven Satre-Meloy, Handi Chandra-Putra, Andrew Speake, Elaina 

Present, Rajendra Adhikari, Eric J.H. Wilson, and Andrew J. Satchwell. 2021. “US Building Energy 

Efficiency and Flexibility as an Electric Grid Resource.” Joule 5 (8): 2102–28. 

https://doi.org/10.1016/j.joule.2021.06.002. 

Le, Thi Thu Huong, and Howon Kim. 2018. “Non-Intrusive Load Monitoring Based on Novel Transient 

Signal in Household Appliances with Low Sampling Rate.” Energies 11 (12). 

https://doi.org/10.3390/en11123409. 

Parson, Oliver, Grant Fisher, April Hersey, Nipun Batra, Jack Kelly, Amarjeet Singh, William Knottenbelt, 

and Alex Rogers. 2016. “Dataport and NILMTK: A Building Data Set Designed for Non-Intrusive 

Load Monitoring.” 2015 IEEE Global Conference on Signal and Information Processing, GlobalSIP 

2015, 210–14. https://doi.org/10.1109/GlobalSIP.2015.7418187. 

Pattem, Sundeep. 2012. “Unsupervised Disaggregation for Non-Intrusive Load Monitoring.” Proceedings 

- 2012 11th International Conference on Machine Learning and Applications, ICMLA 2012 2: 515–

20. https://doi.org/10.1109/ICMLA.2012.249. 

Ruano, Antonio, Alvaro Hernandez, Jesus Ureña, Maria Ruano, and Juan Garcia. 2019. “NILM Techniques 

for Intelligent Home Energy Management and Ambient Assisted Living: A Review.” Energies 12 

(11): 1–29. https://doi.org/10.3390/en12112203. 

Siano, Pierluigi. 2014. “Demand Response and Smart Grids - A Survey.” Renewable and Sustainable 



 

 

Energy Reviews 30: 461–78. https://doi.org/10.1016/j.rser.2013.10.022. 

United States Department of State. 2021. “The Long-Term Strategy of the United States: Pathways to Net-

Zero Greenhouse Gas Emissions by 2050.” United States Department of State and the United States 

Executive Office of the President, no. November: 1–63. https://www.whitehouse.gov/wp-

content/uploads/2021/10/US-Long-Term-Strategy.pdf. 

“US Energy Information Administration.” 2019. US Energy Information Administration. 2019. 

 


