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ABSTRACT

The electricity generation sector is responsible for 25% of the world’s greenhouse gas (GHG) emissions 
and thus has been the focus of efforts to transition to clean energy and sustainable development in many 
nations. In the past 20 years, renewable energy sources have been the fastest-growing energy source in the 
world, comprising almost 29% of the world’s electricity generation in 2020. Renewable energy sources are 
expected to comprise nearly 95% of the world’s power capacity growth through 2026, with a share of 
planned capacity expansion of up to 46% in 2026.

The rapid development of renewable energy sources and technologies will require an enormous amount of 
raw materials to replace coal and gas plants and increase in the capacity to handle growing electricity 
demand because renewable energy sources have a low-power density and intermittent behavior. Accounting 
for the expected scale of rapidly deploying renewable energy sources that require rare earth elements 
(REEs), cement, and steel, the mining industry may face a supply problem for the materials critical for 
clean energy. And, as the exploration and development of new mining sites can be expensive and risky, the 
mining industry may require economic stimuli to grow supply. 

The increasing demand for renewable energy resources makes mining a threat to the environment unless 
proper regulations are established and calls for remining, cleanup, and circular economic development are 
made. Mining also contributes to environmental injustices related to the exploitation and pollution of lands 
near communities that are dependent on biodiversity in the area, while not always benefiting from 
technological advancements provided by the use of renewable energy and technologies. 

This study explored the opportunity of remining abandoned mining waste to extract metals and minerals 
essential for the production of renewable energy sources. The authors analyzed materials used in the 
production of these technologies, materials readily available in the United States, and which materials can 
be extracted locally in the United States from abandoned mine waste. The authors also studied 
environmental injustices that populations near mining sites experience and ways to mitigate these injustices, 
such as providing more control over extraction and cleanup activities, providing more job opportunities in 
those areas, and offsetting costs associated with cleanup and land restoration projects.



1 INTRODUCTION

Because over 60% of electricity is produced using fossil fuels, rapid decarbonization is difficult to achieve 
without a significant change in how electricity is generated and distributed. This leads to constant increases 
in greenhouse gas (GHG) emissions as electricity and economic growth, better health care, and access to 
education are provided to more populations and geographies (Zhang et al. 2019), increasing energy demand. 
In the past 20 years, renewable energy sources have been the fastest-growing energy source in the world 
(Apergis and Payne 2012). Renewable energy sources comprised almost 29% of the world’s electricity 
generation in 2020 (Iea 2020) and are expected to comprise nearly 95% of the world’s power capacity 
growth through 2026, with a projected share of the electricity generation portfolio being 46% by 2026 with 
solar photovoltaics comprising more than half of that share. Between 2021 and 2026, the amount of 
renewable capacity added is expected to be 50% higher than between 2015 and 2020 (“Renewable 
Electricity Growth Is Accelerating Faster than Ever Worldwide, Supporting the Emergence of the New 
Global Energy Economy”). The recent Bipartisan Infrastructure Law (“President Biden’s Bipartisan 
Infrastructure Law” 2021) showed that the United States is willing to reduce the environmental impacts of 
GHG emissions and slow global climate change. 

The rapid development of renewable energy sources and the technologies needed to build these systems 
will require an enormous amount of raw materials. The power density, or a surface area required to produce 
power, of renewable sources is much lower than that of coal or gas. For example, wind and solar have 
power densities of 1.84 W/m2 and 6.7 W/m2, respectively, whereas natural gas and coal have a power 
density of 240 W/m2 and 135 W/m2, respectively (Van Zalk et al. 2018). Thus, replacing these systems may 
require more raw materials to build renewable energy systems (Bauer et al. 2015; International Atomic 
Energy Agency 1996; Dunn et al. 2015; Giurco et al. 2019). Accounting for the expected scale of rapid 
deployment of renewable energy sources that require rare earth elements (REE), cement, Cu, Cr, Zn, and 
steel, the mining sector must keep up with the supply of these materials. 

These demand changes and the lack of alternative supply mechanisms such as reprocessing and remining 
have geopolitical influence, leading to unpredictable price changes controlled by countries that own more 
technology-specific resources, such as REEs and the ability to process them from ore. Dependence on the 
centralized export of materials needed for renewable energy sources threatens energy security and diversity 
in countries that do not possess technology-specific materials. Despite the massive outsourcing of mining 
to other countries, countries such as the United States have thousands of abandoned mining sites with 
mining waste that still contain valuable minerals and metals whose extraction was not economical 
previously (Sim et al. 2014; “Rare Earth Elements Project Receives Federal Funding” n.d., “International 
Mine Water Association” 2002). These mines could be used again with newer technologies to extract 
valuable materials from mining waste rock, tailings, and landfills. 

The mining sector is also responsible for 8% of total GHG emissions. The increasing demand for a growing 
capacity of renewable energy resources makes mining a threat to the environment unless proper regulations 
are established and calls for remining, cleanup, and circular economic development (Sonter et al. 2020; 
Navarro et al. 2008). The effects of increasing demand are worst in developing countries, such as Chile, 
China, and Peru, whose economies are dependent on commodity exports. Countries such as these are 
leading producers of metals and minerals and have less stringent environmental and public health protection 
regulations. These factors will greatly exacerbate the environmental injustices in both developing countries 
while they are not always beneficiaries of the technologies they provide materials for.

This study explored the opportunity of remining abandoned mining waste to extract metals and minerals 
essential for producing renewable energy systems. These abandoned mining sites can be used again with 
newer technologies to extract valuable materials from mining waste rock, tailings, and landfills, especially 
with the economic stimulus provided by growing material demand. The authors analyzed the materials used 
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to produce these technologies, the materials readily available in the United States, and which materials can 
be extracted locally in the United States to avoid dependence on imports. 

Remining activities may provide the first stage of cleaning up abandoned mines, offsetting some of the 
costs required for cleanup, providing jobs and infrastructure to a local population, and providing control 
over remining and cleanup activities to local communities who will be affected by either a lack of cleanup 
or benefit from access to new resources. Providing these choices to local communities will ensure just 
distribution and control of resources by the communities most impacted by mining activities, restore the 
sites, and provide control over the sites to local communities.  



2 IN-DEMAND MATERIALS FOR LOCAL RENEWABLE ENERGY PRODUCTION 
According to the International Energy Agency (IEA), the United States is expected to increase its electricity 
generation and grow its renewable energy capacity in the coming decades. As a result, coal usage will be 
significantly reduced to lower emissions (Figure 1), and solar and wind usage will significantly increase. 
Development of renewable energy technologies and infrastructure to support these systems (e.g., new 
transmissions, storage) are already changing material demand patterns (“Clean Energy Demand for Critical 
Minerals Set to Soar as the World Pursues Net Zero Goals” ). Because most GHG emissions from renewable 
technologies are embodied in infrastructure (up to 99% for photovoltaics), there could be wide variations 
in life cycle impacts, depending on the source of the raw materials, their origins (e.g., mining sites), the mix 
of energy used in production, the mode of transportation used at different stages of manufacturing and 
installation, etc (Figure 2). These variations refer to the embodied impact, or the energy and emissions (e.g., 
CO2), released to create, manufacture, transport, use, and dispose of each technology. The final life cycle 
assessment score, which may be lowered significantly if the infrastructure is more durable than anticipated, 
depends greatly on the load factor and expected equipment lifetime because impacts are embodied in the 
capital costs (UN Economic Commission For Europe 2022). Their embedded impact must be lessened by 
recycling used materials and reusing supporting structures (e.g., cement foundations, Al frames, etc), local 
mining, and reviving abandoned mines to extract necessary materials; embedded carbon emissions cannot 
be changed once a project is built, unlike operational carbon emissions, which can be reduced over time 
with technological advancements. To reduce the embedded carbon, researchers must implement the 
following methods.

● Reuse: Use materials that can be reused (e.g., concrete foundations, frames, steel elements); use 
recycled materials and design modular components for future recycling; and recycle mining waste 
before spending resources on a cleanup effort.

● Reduce: Perform material optimization and the specification of low- to zero-carbon materials.
● Repurpose: Repurpose sites that are no longer suitable for resident use; recycled mining sites can 

be suitable for this purpose.
● Produce: Produce locally, avoid outsourcing carbon emissions for mining activities to other 

countries, and be accountable for the waste generated in process and cleanup activities. 
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Figure 1. Estimated electricity generation and capacity changes in the United States from 2021 to 2050 
(Energy Information Administration).



Figure 2. Example of renewable energy life cycle. 

In a low-carbon future, it is anticipated that less coal and gas will be extracted but that the demand for more 
than 20 energy transition metals—including Fe, Cu, Al, Ni, Li, Co, Pt, Ag, crushed rock, cement, and rare 
earth metals—will increase (Lèbre et al. 2020; Ballinger et al. 2019).  Although Fe, crushed rock, cement, 
and Cu are abundant and their production is well established inside the United States, other important 
materials are primarily imported, which poses a serious energy security threat and a threat to sustainable 
energy transition goals. To alleviate this threat, the United States must have alternative supply solutions 
within the country.

This report focuses on the materials needed and the potential to extract these materials in the United States 
by recycling abandoned mining waste. Abandoned mines could become a source for some technology-
specific and economically valuable materials. Tables 1–3 show the material demand, what is currently 
recycled, what structures can sustain multiple life cycles, and the mining waste generated from renewable 
energy sources, such as wind, crystalline Si (c-Si) solar, and hydroelectric in the case of the raw material 
extracted from a pristine mining ore. The amount of mining waste can reach several million tons per 
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megawatt of added capacity and pounds per megawatt hours generated (Figure 3) if pristine mining ore is 
used, especially if the mining occurs at a different location without using different processing streams to 
also extract byproducts. 



Table 1. Raw material demand and mining waste generation to build a solar farm.

Material
Amount
(kg/MW)

Ore fraction
Mining waste

(kg/MW)
Recycling and 

reusing factors
Source

Silica 7,000
Ore grade about 35% and 
50% of Si goes into waste 

during manufacturing
33,000 0 (DoE 2015)

Al 19,000 30% 44,333.3 0.76

(Schwarz 2004; 
Agency 2019; 
“International 

Aluminium Institute 
Publishes Global 

Recycling Data” n.d.)

Concrete 47,000

67% for cement, and 
concrete contains 21% of 
cement, sand, gravel, and 

water

6,612.9 1
(Elchalakani, Aly, and 

Abu-Aisheh 2014; 
Agency 2019)

Glass 70,000 35% 130,000 0 (DoE 2015)

Cu 7,000 2% 343,000 0.6
(DoE 2015; Soares 

2022)

Steel 56,000 65% 30,153.85 0
(DoE 2015; 

Muwanguzi et al. 
2012)

Ge 440 0.015% 1,099,560 0
(DoE 2015; U. s. 

Government Printing 
Office 2011)

In 380 0.01% 3,799,620 0
(DoE 2015; Grandell 

and Höök 2015)
Plastic 6,000 - - 0 (DoE 2015)

Pb 2.4 1.732%

136.17

0

(Matasci 2021; 
Ponikvar and 

Goodwin 2013; 
Fraunhofer 2017)

Polyamide 
injection 
molded 485

-
-

0
(Mason et al. 2006; 
Moore, Post, and 

Mysak, n.d.)

Polyester 300
-

-
0

(Mason et al. 2006; 
Moore, Post, and 

Mysak, n.d.)

Polyethylene, 
Hd 150

-
-

0
(Mason et al. 2006; 
Moore, Post, and 

Mysak, n.d.)

Vegetable oil 6,001
-

-
0

(Mason et al. 2006; 
Moore, Post, and 

Mysak, n.d.)

Sn 463.1 50% 463.1 0

(Huber and 
Steininger 2022; 

Barry 2017)
Total mining waste 5,486,879.32
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Table 2. Raw material demand and mining waste generation to build wind turbines.

Material
Amount
(kg/MW)

Ore fraction
Mining waste

(kg/MW)
Recycling and 

reusing factors
Source

Al 8,026.8 30% 18,729.2 0.76
(Alsaleh and 
Sattler 2019)

Brass Cu 52.3776 2% 2,566.5 0
(Alsaleh and 
Sattler 2019)

Brass Zn 26.2 3% 847.13 0 (Richards 2019)

Cast iron 47,350.4 65% 25,496.37 1
(Alsaleh and 
Sattler 2019)

Concrete 2,246,400

67% for cement, and 
concrete contains 21% of 
cement, sand, gravel, and 

water

316,068.48 1
(Alsaleh and 
Sattler 2019)

Cu 5,568 2% 272,832 0.6
(Alsaleh and 
Sattler 2019)

Fiberglass 3,490.8 - - 0
(Alsaleh and 
Sattler 2019)

Steel 540,710 65% 291,151.54 1
(Alsaleh and 
Sattler 2019)

Lubricant 3,304 - - 0
(Alsaleh and 
Sattler 2019)

Paint 1,311.12 - - 0
(Alsaleh and 
Sattler 2019)

Polyethylene 329.4 - - 0
(Alsaleh and 
Sattler 2019)

Polymer 5,888 - - 0
(Alsaleh and 
Sattler 2019)

Porcelain 104.98 - - 0
(Alsaleh and 
Sattler 2019)

Nd 216 5% 4,104 0

(Wilburn 2011; 
Gschneidner, Jr., 

and Pecharsky 
2019; Dias et al. 

2021)

Pr 40 5% 760 0

(Gschneidner, Jr., 
and Pecharsky 

2019; 
International 

Energy Agency 
2021)

Tb 5 5% 95 0

(Gschneidner, Jr., 
and Pecharsky 

2019; 
International 

Energy Agency 
2021)

Dy 17 5% 323 0
(Gschneidner, Jr., 

and Pecharsky 
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2019; Huber and 
Steininger 2022)

Cr 902 31% 2,024.67 0

(Samuel Carrara, 
Patricia Alves 
Dias, Beatrice 

Plazzotta, Claudiu 
Pavel 2020; Moss 

et al; Downing 
and Bacon 2013)

Mn 80.5 35% 149.5 0

(Samuel Carrara, 
Patricia Alves 
Dias, Beatrice 

Plazzotta, Claudiu 
Pavel 2020; Moss 

et al; Downing 
2013)

Mo 136.6 0.50% 27,183.4 0

(Samuel Carrara, 
Patricia Alves 
Dias, Beatrice 

Plazzotta, Claudiu 
Pavel 2020; Moss 
et al; Sutulov and 

Wang 2018)

Ni 663.4 9% 6,707.71 0

(Samuel Carrara, 
Patricia Alves 
Dias, Beatrice 

Plazzotta, Claudiu 
Pavel 2020; Moss 

et al; Verma, 
Paul, and Haque 
2022; Wise and 

Taylor 2013) 

Total mining waste 969,038.5
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Table 3. Raw material demand and mining waste generation to build a hydroelectric plant.

Material
Amount
(kg/MW)

Ore fraction 
Mining waste

(kg/MW)
Recycling and reusing 

factors
Source

Al 1,585.2096 0.3 3,698.8224 0.76
(Eckermann 

2021)

Concrete 7,644,000

67% for cement, and 
concrete contains 21% of 
cement, sand, gravel, and 

water 1,075,510.8 -

(Pacca and 
Horvath 2002)

Cu 874.5984 0.02 42,855.3216 0.6
(Eckermann 

2021)

Fe 60,128.64 0.65 32,376.96 -
(Pacca and 

Horvath 2002)
Total mining waste 1,154,441.904

Figure 3. Raw material supply change.

Figure 4 shows the materials that may require substitution because of their scarcity and accelerated demand 
(“The Raw-Materials Challenge: How the Metals and Mining Sector Will Be at the Core of Enabling the 
Energy Transition” 2022). For example, Li and Te will see 700% and 800% increases by 2030 compared 
to 2010–2020 supply levels to satisfy the increasing demand. 
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Figure 4. Raw material supply change.



3 SOLUTION FOR SUPPLY CHAIN AND ABANDONED MINES

3.1 ECONOMIC MOTIVATION

The United States has approximately 500,000 abandoned hard rock mines, and these mines have an 
estimated cleanup cost of up to $54 billion (Figure 5). However, hard rock mining firms are not required to 
make any payments to address this legacy cleanup cost (“The House Committee on Natural Resources” 
n.d.). 

Figure 5. Map of abandoned US mines (“U.S. Environmental Protection Agency” 2001).

Raw metal and mineral mining, finished production, and recycling must coexist to meet the rising demand 
for metals (Fu, Ueland, and Olivetti 2017; Gerst and Graedel 2008). The effects of the carbon added tax 
(CAT) on particular metals and their recycled counterparts are illustrated in Figure 6 (Cox et al. 2022). 
Many studies on material flow analysis focus on the Cu and steel recycling industries (Fu, Ueland, and 
Olivetti 2017; Glöser, Soulier, and Tercero Espinoza 2013; Ekman Nilsson et al. 2017); however, CAT 
economically affects the mining and production of raw metals more than twice as much as it affects recycled 
metal. Additionally, low-grade scrap metal losses are a significant problem for recycled metals. The 
municipal waste management system must be changed globally to address this problem, and a CAT may 
not supply enough money to support that change. The current supply of metals and minerals, even with a 
theoretical 100% recycling rate, would not be enough to satisfy present or future demand. For example, by 
2050, the amount of above-ground Cu stocks needed per person is expected to increase 2–3.5 times. 
Material flow analyses show that because of the fundamental lack of above-ground stocks, current recycling 
rates can meet only a very small portion of this demand. Thus, supply-demand balances will increase the 
prices to meet the demand for these materials, making the abandoned ores a potentially lucrative venue for 
mining companies. 
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Figure 6. Three levels of CAT modeled as a percentage of present product value 
for selected commodities (Cox et al. 2022).

The McKinsey report predicts a lack of materials, price increases, and the need for technological innovation 
and metal substitution as a result of the supply not responding quickly enough (“The Raw-Materials 
Challenge: How the Metals and Mining Sector Will Be at the Core of Enabling the Energy Transition” 
2022). Although the demand for certain metals as raw materials will increase exponentially, the lead times 
for large-scale new greenfield assets can take up to 7 years and will necessitate a sizable capital investment 
before actual demand and price incentives are observed. Additionally, with increasingly complex and 
lower-quality deposits due to decreasing ore content of the mined deposits, miners will require significant 
monetary incentives (e.g., consistent Cu prices of more than $8,000–$10,000 per metric ton and Ni prices 
of more than $18,000 per metric ton) before large capital decisions are made. The industry will be unable 
to handle rapid exponential growth without slack in the system (e.g., strategic stockpiles and overcapacity). 
A combination of technological development on the supply side and widespread substitution and 
technological development on the demand side will occur—as was observed, for instance, with the past 
reduction of Co intensity in batteries. 

3.2 FEASIBILITY

Taking into account the number of abandoned mines and their cleanup needs, the costs are enormous and 
are not covered by the mining companies. Thus, remining existing waste may help in offsetting these costs. 
The costs for the cleanup of abandoned mines are expected to be over $54 billion, and accounting for the 
aforementioned economic value, cleanup and recycling can be coupled with actions to reduce the amount 
of valuable materials lost, as well as incentivize mining companies to share the responsibility for cleanup 
activities and offset cleanup costs for taxpayers, provide job opportunities, and implement the circular 
economy strategy (“The House Committee on Natural Resources”).

Because of the large amount of waste rock generated, coal mines present a viable option for remining and 
restoration initiatives. In partnership with the West Virginia Department of Environmental Protection, the 
University of West Virginia is exploring the extraction of rare earth materials from coal mining waste. This 
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initiative will help with water cleanup and, as a side product, provide materials that are critical for green 
energy supply and alleviate the negative effects of initial mining activities (Skousen, Ziemkiewicz, and 
McDonald 2019). Using this method, acid mine drainage (AMD) from the northern and central Appalachian 
coal basins will be collected and treated to meet clean water standards. Then, the REEs, Al, and vital 
minerals such as Co and Mn will be extracted (Figures 7 and 8) (Ziemkiewicz n.d.). The carbon footprint 
of this process is about half that of a conventional mining and milling operation, according to a principal 
investigator (“U.S. Senate Committee on Energy and Natural Resources” n.d.). 

Figure 6. AMD contains a high proportion of the valuable and heavy REEs. 
Together, they comprise approximately 60% of the total REEs in 

Appalachian AMD.

https://paperpile.com/c/iK6utm/4lvto
https://paperpile.com/c/iK6utm/4lvto
https://paperpile.com/c/iK6utm/cXqko
https://paperpile.com/c/iK6utm/yBkER


Figure 7. Distribution of REEs in coal and Cu mine AMD. The coal results represent 140 samples from 
northern and central Appalachian mines. The Cu AMD represents two samples 

from the Berkeley Pit in Butte, Montana. Red labels represent REEs (“U.S. Senate Committee on Energy and 
Natural Resources” n.d.).

Companies that specialize in reprocessing mineral waste have volunteered their technical knowledge, 
including Magnetation (United States), which uses a magnetic separation technology; BioteQ (Canada), 
which combines sulfide precipitation and ion-exchange technologies (“Key Sectors” 2014); and Ecologix 
(United States), which uses physicochemical processes involving flocculation and sedimentation (“Mining 
Industry Wastewater Treatment Systems” 2018), (Lèbre, Corder, and Golev 2017).

At this stage, more research and funding for these technologies is required to provide a basis for an 
industrial-scale development, as well as opportunities to extract other elements. 

3.3 ENVIRONMENTAL JUSTICE 

Large open pits, chemical and mechanical processes, and other highly industrialized aspects of large-scale 
modern mining—along with a lack of economic support for the regions—can cause environmental justice 
(EJ) conflicts at various points in the extraction process. These occurrences generate an unequal distribution 
of negative effects on the environment and public health while companies benefit from the produced 
technologies without facing the negative effects of their production. The transition to clean energy should 
not further these injustices.  

Mining has left a legacy of mining waste abandoned on 500,000 sites across the nation. Some are located 
on Native American lands or—as in the case of abandoned coal mines in central Appalachia—in 
marginalized communities who now suffer negative effects of these projects (Hendryx 2010). Finance 
company MSCI estimates that most of the US reserves for Co, Li, and Ni are located within 35 mi of Native 
American lands, and many groups associate mineral extraction with their historical memory of 
dispossession and the disruption of traditional lifestyles (Block n.d.; Keeling and Sandlos 2009).

Mining negatively affects populations in emerging countries such as South America, Africa, and Asia—
from which the United States imports certain raw materials—by polluting local waters or depleting natural 
water reserves and increasing concerns over neocolonialism (Blair et al. 2022), (Bridge 2004). In the 1990s, 
a growing share of mineral exploration occurred in tropical regions around the world, including ecologically 
delicate or highly valuable conservation areas (Bridge 2004). 

https://paperpile.com/c/iK6utm/yBkER
https://paperpile.com/c/iK6utm/yBkER
https://paperpile.com/c/iK6utm/VjGKC
https://paperpile.com/c/iK6utm/l2BEc
https://paperpile.com/c/iK6utm/l2BEc
https://paperpile.com/c/iK6utm/1Ao09
https://paperpile.com/c/iK6utm/O6tED
https://paperpile.com/c/iK6utm/9hfKZ+iMDqh
https://paperpile.com/c/iK6utm/FgVmn
https://paperpile.com/c/iK6utm/AMY4G
https://paperpile.com/c/iK6utm/AMY4G


Communities may once again experience environmental issues related to mining as the demand for 
renewable energy materials increases and lower-quality deposits (i.e., those with toxic minerals present) 
are exploited. These activities will use more water and produce more waste rock to meet demands, adding 
to social and environmental issues (Giurco 2010). Mining is also an inherently invasive process, and mining 
eco-efficiency and technological approaches are limited, so adverse effects cannot be predicted fully. As 
the quality of deposits decreases, larger amounts of ore will be processed. Because of previous negative 
experiences with mining projects, local communities may oppose new mining operations before extraction 
begins and seek to protect land, water, or/and bioresources—especially when, despite frequent claims that 
mines infringe on rights to fish, hunt, and gather plants guaranteed by treaties, federal mining law gives 
private companies enormous power to stake claims and dig on public lands. These factors affect the 
livelihood of the area and agricultural opportunities. Thus, pristine mines have the potential to exacerbate 
social inequality and environmental injustice instead of mitigating existing problems related to abandoned 
sites that are inhabitable. 

The approach would allow for extraction, quality control, and cleanup activities to some extent, depending 
on special treatment plans, the use of specialized equipment, and the nature of the waste. The approach 
would also provide jobs to the local communities, improve economic development, and extract valuable 
unused resources from the mining waste that is polluting rivers and groundwater. In this case, the local 
communities could be involved in the entire development, protecting their interests and environment that 
could otherwise be adversely affected. 
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4 CONCLUSION

As the transition to renewable energy sources receives more support, energy generated from renewable 
energy sources is expected to increase significantly by 2050 and lead to rapid demand for technology-
specific materials. Energy security concerns have resulted in considering local raw materials extraction to 
avoid dependence on imports, and this may lead to intensifying mining activities and conflicts with local 
communities and tribes where ores are located. 

This study explored remining abandoned mine waste to extract minerals and metals for technologies and 
REEs from economic, feasibility, and EJ perspectives. Remining may help reduce cleanup costs and prevent 
the mining of pristine lands, avoiding EJ issues. It could also provide an avenue for local communities to 
control cleanup efforts and provide jobs and materials to the manufacturers, while also generating a revenue 
with growing raw material prices. For the mining companies, it is a financial as well as risk to face an 
opposition from local communities to start an exploration of a new site and options for remining can be 
more welcomed if followed by cleanup activities. Hence increasing raw material prices due to increasing 
demand as well as the initiatives for localized production can be economic stimuli to help mining companies 
invest into remining option. 
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