Review of Experimental Data for Validating Computer Codes Used in Shielding Calculations for Spent Fuel Storage and Transportation Systems

Georgeta Radulescu Peter Stefanovic

September 2022

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect.

Website www.osti.gov

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 *Telephone* 703-605-6000 (1-800-553-6847) *TDD* 703-487-4639 *Fax* 703-605-6900 *E-mail* info@ntis.gov

Website http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source:

Office of Scientific and Technical Information PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website https://www.osti.gov/

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Nuclear Energy and Fuel Cycle Division

REVIEW OF EXPERIMENTAL DATA FOR VALIDATING COMPUTER CODES USED IN SHIELDING CALCULATIONS FOR SPENT FUEL STORAGE AND TRANSPORTATION SYSTEMS

Georgeta Radulescu Peter Stefanovic

September 2022

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, TN 37831-6283
managed by
UT-BATTELLE LLC
for the
US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

CONTENTS	III
ABBREVIATIONS	IV
ABSTRACT	1
1. INTRODUCTION	1
2. EXPERIMENTAL ASSAY DATA FOR SPENT NUCLEAR FUEL	2
3. SHIELDING CODE BENCHMARKS	6
3.1 PROTOTYPIC ENVIRONMENTS	10
4. CONCLUSIONS	10
REFERENCES	12
LIST OF TABLES	
Table 1. PWR reactor, fuel assembly design, sample initial enrichment, and estimated sample burnup	4
Table 2. BWR reactor, fuel assembly design, sample initial enrichment, and estimated sample burnup	
Table 3. Summary of RCA data for nuclides important to radiation source terms and dose rate Table 4. Summary of applicable fission reactor integral shielding experiments available in the	
2018 SINBAD release	7

ABBREVIATIONS

BWR boiling water reactor D-T deuterium-tritium

ICSBEP International Criticality Safety Benchmark Evaluation Project OECD Organisation for Economic Co-operation and Development

ORNL Oak Ridge National Laboratory

NEA Nuclear Energy Agency
PCA Pool Critical Assembly
PWR pressurized water reactor
RCA radiochemical assay

REGAL Rod-Extremity and Gadolinia Analysis

RSICC Radiation Safety Information Computational Center SINBAD Shielding Integral Benchmark Archive and Database

SFCOMPO Spent Fuel Composition database

SNF spent nuclear fuel

TDS thermoluminescent dosimetry
TRG technical review group
VSC ventilated storage cask

ABSTRACT

This report presents a review of available radiochemical assay data and shielding benchmarks applicable to spent nuclear fuel (SNF) shielding calculations. The relevant information reviewed herein includes the Spent Fuel Composition (SFCOMPO) database, the Shielding Integral Benchmark Archive and Database (SINBAD), the International Handbook of Evaluated Criticality Safety Benchmark Experiments, and published measurements of external dose rates of casks loaded with SNF. The relevant experimental data identified in this report may be used to support verification and validation of computer codes used in SNF cask/transport shielding applications, as well as development of calculation uncertainties.

It should be noted that a relatively small subset of the identified experimental data (e.g., criticality alarm experiments) is available in a standard format established by the international community participating in experimental isotopic and shielding data evaluations. An effort of the SFCOMPO Technical Review Group (TRG) is underway to publish first isotopic evaluations of individual assay data using a standard data evaluation format. The SINBAD TRG has recently initiated benchmark evaluations and modernization of the database. Therefore, more relevant information is expected in the future that will enable users to select quality experimental data in depletion code and shielding code validations for SNF applications.

1. INTRODUCTION

The accuracy of calculated dose rates can only be assessed by comparison to benchmark measurements. The scope of this report is to identify publicly available radiochemical assay (RCA) data and shielding benchmarks that may be used to support (1) verification and validation of depletion and shielding computer codes used in spent nuclear fuel (SNF) transportation and storage applications and (2) determination of calculation uncertainties. Databases reviewed in this work include the Spent Fuel Composition (SFCOMPO) database [1], Shielding Integral Benchmark Archive and Database (SINBAD) [2], and the International Handbook of Evaluated Criticality Safety Benchmark Experiments [3]. These databases are developed and maintained by the members of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA). Published measurements of external dose rates produced by loaded SNF casks [4] were also reviewed.

The SFCOMPO database, which contains publicly available experimental SNF assay data, is developed by the NEA in close collaboration with Oak Ridge National Laboratory (ORNL). The SFCOMPO 2.0 database, which was released in 2017, includes measurement data for a total of 750 fuel samples from 44 different reactors. This database can be accessed online from OECD [5]. The data in SFCOMPO have been independently reviewed for consistency with the original reports, but these data have not been formally evaluated. An effort of the SFCOMPO Technical Review Group (TRG) is underway to publish first isotopic evaluations of individual assay data using a standard data evaluation format.

SINBAD is available from the Radiation Safety Information Computational Center (RSICC) at ORNL as data package RSICC DLC-237 and from the NEA as data packages NEA-1517, NEA-1552, and NEA-1553. SINBAD contains measurement data from fission reactor, fusion reactor, and accelerator shielding experiments. Examples of measurement data include neutron reaction rates for various irradiated activation detectors, neutron spectra measured with organic liquid scintillators, and gamma radiation exposure rates measured with ionization chambers. Benchmark evaluations and calculation results are available in the database for some of the experiments. The SINBAD TRG recently initiated benchmark evaluations and modernization of the database.

The International Handbook of Evaluated Criticality Safety Benchmark Experiments is published by the International Criticality Safety Benchmark Evaluation Project (ICSBEP). The evaluated criticality safety benchmark data contain criticality benchmark specifications for critical, near-critical, or subcritical configurations, criticality alarm placement/shielding configurations, and fundamental physics measurements relevant to criticality safety applications. The criticality alarm placement/shielding configurations, which represent a small subset of these criticality safety benchmark experiments, also can be used for validation of computer codes used for spent fuel transportation and storage system applications [6].

This report is organized as follows. A summary of available RCA data for pressurized water reactor (PWR) and boiling water reactor (BWR) SNF samples is presented in Section 2. RCA data providing measurement data for nuclides important to radiation source terms and dose rate evaluations are also presented in Section 2. A summary of applicable shielding benchmarks and measurements of prototypic cask environments is presented in Section 3. Conclusions are provided in Section 4.

2. EXPERIMENTAL ASSAY DATA FOR SPENT NUCLEAR FUEL

A summary of available SNF experimental assay data widely used in depletion code validations is presented in this section. These data consist of measurements of nuclide concentrations in PWR and BWR SNF samples by post irradiation destructive RCA. Publicly available data are included in the SFCOMPO database [1]. However, proprietary data are also available for depletion code validations. The SFCOMPO database provides both the measurement data and the fuel design and irradiation data required for modeling and simulations. The data in the SFCOMPO database have been independently reviewed for consistency with the original reports but have not been formally evaluated using a standard evaluation format. Previous data evaluations have been performed as part of depletion code validations, with emphasis on validation data for burnup credit criticality safety [e.g., 7, 8, 9, 10, 11]. An effort of the SFCOMPO TRG is underway to publish the first evaluations for individual assay data using a standard data evaluation format [12]. These initial evaluations will also provide sample SCALE 6.2.3 input descriptions and depletion calculation results. As a result of this effort, data quality will be evaluated, models will be developed, depletion calculations will be performed, and recommendations will be provided to database users.

RCA data for 302 PWR SNF samples and 249 BWR SNF samples are currently available in the SFCOMPO database. The PWR SNF samples, obtained from 15 PWRs representative of old and modern reactor designs, have a maximum evaluated burnup of 75 GWd/MTU. The BWR SNF samples, obtained from 12 BWRs primarily representative of old reactor designs, have a maximum evaluated burnup of 77.6 GWd/MTU. Table 1 presents the main characteristics of measured PWR fuel samples, including reactor names, fuel assembly designs, the range of the initial enrichments of the measured fuel samples, and the range of estimated sample burnup. The same information for the BWR is presented in Table 2. However, not all RCAs provide measurement data for nuclides important to radiation source term and shielding calculations.

The most important radionuclides in SNF with respect to radiation source terms have been identified in previous work based on cask shielding calculations [13, 14, 15]. The cooling times analyzed in those studies are 1 to 40 years, 100 years, and 10,000 years. The list of nuclides includes radioactive fission products, transuranic nuclides, and 60 Co. Principal gamma emitters in SNF include 144 Ce ($T_{1/2}$ =284.89 days)/ 144 Pr ($T_{1/2}$ =17.29 min), 106 Ru ($T_{1/2}$ =1.02 years)/ 106 Rh ($T_{1/2}$ =2.18 h), 134 Cs ($T_{1/2}$ =2.0652 years), 154 Eu ($T_{1/2}$ =8.593 years), and 137 Cs ($T_{1/2}$ =30.1 years)/ 137m Ba ($T_{1/2}$ =2.6 min). 90 Sr ($T_{1/2}$ =28.78 years)/ 90 Y ($T_{1/2}$ =64 h) contributes bremsstrahlung radiation. Principal neutron emitters in the SNF currently in dry storage

include 244 Cm ($T_{1/2}$ =18.1 years) and 242 Cm ($T_{1/2}$ =0.45 years). Other transuranic nuclides important for SNF with long cooling times (100 years or longer) include 246 Cm, 241 Am, 238 Pu, 239 Pu, 240 Pu, and 242 Pu. Available RCA data for nuclides important to dose rate are marked with the character "×" in Table 3. This table shows that limited RCA data measurements are available for fission product gamma emitters than are for the transuranic nuclides. Notably, BWR 90 Sr measurement data only exist for old fuel assembly types (6×6 and 7×7) from two BWRs.

Proprietary RCA data for fuel samples from the BWR reactors Leibstadt-3 [16] and Limerick [17] have been evaluated at ORNL for burnup credit criticality safety validations [10]. The evaluated Leibstadt-3 UO₂ fuel samples, which have an initial 235 U of 3.9% and an evaluated burnup range of 56–63 GWd/MTU, were obtained from a 10×10 (SVEA-96) fuel assembly. The evaluated Limerick fuel samples were obtained from UO₂ (3.95% 235 U) and UO₂ – Gd₂O₃ (3.6% 235 U – 5.0% Gd₂O₃) rods of a 9×9 (GE-11) fuel assembly and have an evaluated burnup range of 37–65 GWd/MTU.

Most recent experimental program at the time of this writing, called the Rod-Extremity and Gadolinia Analysis (REGAL) program [18], is an international program with the scope to provide high quality nuclide inventory data to fill in existing gaps in the database of nuclide inventories for irradiated PWR UO₂ and UO₂-Gd₂O₃ fuel rods. These data are primarily intended for code validations for burnup credit criticality safety. The UO₂ sample analyzed so far for the REGAL program [18] was obtained from a UO₂ rod with initial enrichment of 4.25% and rod average burnup of 50 GWd/MTU. The analyzed UO₂-Gd₂O₃ sample was obtained from a fuel rod with an average burnup value of 12 GWd/tHM. The ²³⁵U enrichment of the UO₂-Gd₂O₃ fuel rod is 2%, and the Gd₂O₃ percentage in the UO₂-Gd₂O₃ fuel is 10%.

Cobalt-60 is an activation product primarily produced by neutron capture reactions of the cobalt impurity existing in fuel hardware and non-fuel hardware materials such as steel and nickel-based alloys. Calculating ⁶⁰Co activation sources in SNF assembly hardware materials requires determining the average neutron flux and spectrum in the hardware regions outside the fueled region of the reactor. The accuracy of ⁶⁰Co predictions is affected by the uncertainty associated with the cobalt impurity amount in fuel assembly structural materials. Because the cobalt impurity amount is typically unknown, the historic analysis approach has been to calculate ⁶⁰Co activation sources using a bounding cobalt impurity concentration in hardware materials and the average neutron flux and spectrum from the active fuel region. The neutron flux in a hardware region is then factored in by applying flux scaling factors [19] to this activation source.

Table 1. PWR reactor, fuel assembly design, sample initial enrichment, and estimated sample burnup

Reactor (country)	Assembly lattice	Number of samples	UO ₂ sample enrichment (% ²³⁵ U)	UO2 – Gd2O3 sample enrichment (wt% ²³⁵ U–wt% Gd2O3)	Sample burnup range (GWd/MTU)
Calvert Cliffs-1 ^a (US)	14×14	33	2.453; 2.72; 3.038	_	12.92-47.05
Genkai-1 (JPN)	14×14	2	3.415	_	38.1–38.7
GKN II ^b (GER)	18×18	1	3.8	_	54.1
Gösgen (SWTZ)	15×15	9	3.5; 4.1	_	21.76–59.7
H. B. Robinson-2 (US)	15×15	7	2.561	_	16.0-30.92
Mihama-3 (JPN)	15×15	9	3.203; 3.208; 3.21	_	6.9–34.2
Obrigheim (GER)	14×14	33	2.83; 3.00; 3.13	_	15.6–37.5
Ohi-1 (JPN)	17×17	1	3.2	_	52.434
Ohi-2 (JPN)	17×17	5	1.6874	1.6874–6.0	21.465–38.496
Takahama-3 (JPN)	17×17	16	2.63; 4.11	2.63-6.0	7.4–47.3
TMI-1 (US)	15×15	24	4.01; 4.66	_	22.8–55.7
Trino Vercellese (ITLY)	15×15	49	2.719; 3.13; 3.897	_	7.2–27.8
Turkey Point-3 (US)	15×15	18	2.556	_	20.0–31.6
Vandellos II (SPN)	17×17	17	4.5	_	43.5–75.0
Yankee-1 (US)	18×18-B; 18×18-A	78	3.4	_	6.3–43.2

^aAdditional data for two Calvert Cliffs-1 SNF samples measured at ORNL are documented in a paper by J. Hu et al. [20]. The initial enrichment and burnup of these samples are 3.038% and ~43.5 GWd/MTU, respectively.

Table 2. BWR reactor, fuel assembly design, sample initial enrichment, and estimated sample burnup

Decetor (country)	Assembly	Number of	UO ₂ sample enrichment	UO ₂ – Gd ₂ O ₃ sample enrichment (wt%	Sample burnup range
Reactor (country)	lattice	samples	(wt% ²³⁵ U)	²³⁵ U-wt% Gd ₂ O ₃)	(GWd/MTU)
Cooper-1 (US)	7×7 (GE-3B)	17	2.94	_	17.84–34.45
Dodewaard-1 (NETH)	6×6	5	4.92	_	55.49
Forsmark-3 (SWDN)	10×10	2	3.97	_	60.7
	(SVEA-100)				
Fukushima-Daiichi-3	8×8-1	36	1.45; 1.87; 3.01	3.01- N/A ^a	4.24-33.6
(JPN)					
Fukushima-Daini-1 (JPN)	9×9-9	13	2.1; 4.9	3.0-5.0	27.89–68.42
Fukushima-Daini-2 (JPN)	8×8-2; 8×8-4	44	3.4; 4.5	3.4–4.5	7.19–59.1
Garigliano-1 (ITLY)	8×8; 9×9	26	1.6; 2.1; 2.41	_	5.58-12.83
Gundremmingen-1 (GER)	6×6GUN	18	2.53	_	15.22–30.12
JPDR-1 (JPN)	6×6	30	2.6	_	2.185-7.04
Monticello-1 (US)	8×8	30	1.45; 1.87; 2.14;	2.87-1.5	32.7-58.7
			2.87		
Quad Cities-1 (US)	8×8	18	3; 3.8	_	52.5–77.6
Tsuruga-1 (JPN)	7×7	10	1.44	_	8.64–27.74

^aNot available.

^bUnder the name of Neckarwestheim-2 in the SFCOMPO database, reactor name abbreviated as GKN II [21, 22].

Table 3. Summary of RCA data for nuclides important to radiation source terms and dose rate

Nuclide	¹⁴⁴ Ce	¹⁰⁶ Ru	¹³⁴ Cs	¹⁵⁴ Eu	⁹⁰ Sr	¹³⁷ Cs	²⁴² Cm	²⁴⁴ Cm	²³⁸ Pu	²⁴¹ Am	²⁴⁶ Cm	²⁴⁰ Pu	²³⁹ Pu	²⁴² Pu
Half-life (years)	0.78	1.02	2.065	8.59	28.9	30.07	0.446	18.1	87.81	433	4.73×10^{3}	6.56×10^3	2.41×10^{4}	3.75×10^{5}
						PW	R							
Calvert Cliffs-1				×	×	×			×	×		×	×	×
Genkai-1		×	×	×		×		×	×	×		×	×	×
GKN II	×			×		×	×	×	×	×		×	×	×
Göesgen-1	×	×	×	×	×	×	×	×	×	×	×	×	×	×
H. B. Robinson-2	×		×	×	×	×	×	×	×	×		×	×	×
Mihamma-3		×	×	×		×	×	×	×	×		×	×	×
Obrigheim-1			×	×		×	×	×	×	×		×	×	×
Ohi-1	×	×	×	×		×	×	×	×	×	×	×	×	×
Ohi-2	×	×	×	×		×	×	×	×	×	×	×	×	×
Takahama-3	×	×	×	×		×	×	×	×	×	×	×	×	×
TMI-1			×	×		×	×	×	×	×		×	×	×
Trino Vercellese	×	×	×	×		×	×	×	×	×		×	×	×
Turkey Point-3									×			×	×	×
Vandellos II	×	×	×	×		×		×	×	×	×	×	×	×
Yankee-1					×	×			×	×		×	×	×
						BW	/R							
Cooper-1					×	×			×	×		×	×	×
Dodewaard-1	×	×	×	×	×	×	×	×	×	×	×	×	×	×
Forsmark-3	×							×	×	×		×	×	×
Fukushima-Daiichi-3												×	×	×
Fukushima-Daini-1			×	×		×			×			×	×	×
Fukushima-Daini-2	×	×	×	×		×	×	×	×	×	×	×	×	×
Garigliano-1	×	×	×			×	×	×	×	×		×	×	×
Gundremmingen-1			×	×		×	×	×	×	×		×	×	×
JPDR-1	×	×	×	×		×	×	×	×	×		×	×	×
Monticello-1							×					×	×	×
Quad Cities-1			×			×		×	×	×		×	×	×
Tsuruga-1									×			×	×	×

3. SHIELDING CODE BENCHMARKS

Radiation shielding for transportation packages is typically provided by thick layers of steel, lead, and neutron absorber materials such as polymers and/or borated materials. Concrete is the primary shielding material used in dry storage casks. The shielding materials for transfer casks used in storage systems may include carbon steel, lead, concrete, water, and borated materials. The external cask dose rate consists of gamma and neutron radiation components. It is therefore of interest to validate shielding code results against benchmark experiments designed to test neutron and gamma transport through typical shielding materials.

A dry storage cask typically requires maintaining an air flow around the fuel canister to control the cladding temperature of the stored fuel. The air flow is facilitated by a set of inlet and outlets vents or openings through the shielding layers. To minimize the impact of vents on dose rates produced by a dry storage cask, these vents are typically shaped as a labyrinth. Such configuration prevents a direct streaming path from the radiation source. It is therefore important to benchmark the computer codes against the measurements of radiation streaming through shielding labyrinths.

At large distances from a dry storage installation, the skyshine and groundshine components become a dominant part of the far-field dose rate from the installation. It is therefore important to benchmark radiation transport codes against measurements of skyshine and groundshine radiation.

Table 4 presents a summary of applicable fission reactor benchmark experiments documented in the SINBAD 2018 release [2]. Table 5 presents a summary of applicable shielding benchmarks included in the International Handbook of Evaluated Criticality Safety Benchmark Experiments [3, 6]. These selected experiments have tested radiation attenuation in shielding materials (e.g., Fe, steel, Pb, water, elements found in concrete and soil) and radiation scattering phenomena (e.g., radiation streaming through ducts with labyrinth-like configurations, skyshine and groundshine) relevant to radiation transport calculations for SNF transportation packages/dry storage casks/transfer casks. The typical radiation sources in these selected experiments are thermal-neutron reactors, ²⁵²Cf sources, and ⁶⁰Co sources.

Table 4. Summary of applicable fission reactor integral shielding experiments available in the 2018 SINBAD release

Experiment name	Shielding materials		Measurement/phenomena tested						
	Experiments testing radiation attenuation in individual shielding materials								
YAYOI iron	Fe	YAYOI reactor, University of Tokyo, JPN	Transmission of neutron spectra through iron slabs with a						
			thickness up to 20 cm						
Karlsruhe iron sphere ^a	Fe	²⁵² Cf source, Karlsruhe Nuclear Research	Neutron leakage spectra from a set of iron spheres of						
		Center, GER	diameters 15, 20, 25, 30, 35, and 40 cm, with a ²⁵² Cf source						
			in the center						
CSEWG SB2 a	Fe, Al, Cu, Zn, Ti,	The Tower Shielding Reactor, ORNL, US	Secondary gamma-ray spectra from thermal-neutron capture						
	Ni, Si, Ca, P, Na, Ba,		in materials important to reactor shielding						
	Cl, S; stainless steel								
CSEWG SB3 a	Same as above	Same as above	Secondary gamma-ray spectra from fast-neutron capture in						
			different shielding materials						
Iron broomstick a	Fe	Same as above	Spectra of uncollided fission neutrons transmitted through						
	_		thick samples of iron						
Oxygen broomstick ^a	O	Same as above	Spectra of uncollided fission neutrons transmitted through						
			thick samples of oxygen						
Nitrogen broomstick ^a	N	Same as above	Spectra of uncollided fission neutrons transmitted through						
	~		thick samples of nitrogen						
Stainless steel broomstick ^a	Stainless steel	Same as above	Spectra of uncollided fission neutrons transmitted through						
			thick samples of stainless steel						
Neutron transport through	Fe, stainless steel	Same as above	Spectra of uncollided fission neutrons transmitted through						
iron and stainless steel a	_		thick samples of iron/stainless steel						
Ispra iron (EURACOS)	Fe	Fission plates placed at the end of the thermal	Neutron flux and spectra measured up to 130 cm in iron						
		column of the 250 kW TRIGA MARK II							
X 1 1 0	*** 0	reactor of the University of Pavia, ITLY							
Neutron leakage from water	H_2O	²⁵² Cf source, NIST, US	Fission reaction rates and neutron leakage from water						
spheres	II. O		surrounding a ²⁵² Cf source						
NAÏADE 1 light water ^a	H_2O	Fission plates irradiated by a beam of purely	Fission neutron transport in light water for penetration up to						
		thermal neutrons coming from the graphite	50 cm for the fast and up to 150 cm for the thermal neutrons						
		reflector of the ZOE heavy water reactor,							
NAÏADE 1 in a g	Г.	NAÏADE facility, Fontenay aux Roses, FRAN							
NAÏADE 1 iron ^a	Fe	Same as above	Fission neutron transport in iron for penetration up to 80 cm						
NAÏADE 1 concrete	Concrete	Same as above	Fission neutron transport in concrete for penetration up to						
			100 cm for fast neutron measurements and up to						
			approximately 120 cm for thermal neutrons						

^aAn input file for shielding calculations is not currently available in SINBAD for this experiment.

Table 4. Summary of applicable fission reactor integral shielding experiments available in the 2018 SINBAD release (continued)

Experiment name	Shielding materials	Radiation source and facility	Measurement/phenomena tested						
	Experiments testing radiation attenuation in individual shielding materials								
University of Illinois iron sphere	Fe	(1) ²⁵² Cf source, and (2) deuterium-tritium (D-T) fusion neutron source provided by a neutron generator, University of Illinois, US	Fast neutron leakage spectra from a spherical shell of iron to test the validity and accuracy of the neutron cross section data						
Winfrith water (ASPIS)	H ₂ O	²⁵² Cf source, AEE Winfrith, UK	Fast neutron spectra above 1 MeV and detector reaction rates up to 50 cm in water						
Winfrith iron (ASPIS)	Fe	Fission converter plates driven by a thermal flux from the extended graphite reflector of the NESTOR reactor, ASPIS shielding facility, AEE Winfrith, UK	Neutron spectra and detector reaction rates at different depths in a bulk iron shield about 1 m thick						
Winfrith iron 88 (ASPIS)	Steel	Same as above	Neutron transport for penetrations up to 67 cm in steel						
Janus phase I	Stainless steel	Same as above	Testing the prediction of neutron penetration through stainless steel where the incident spectrum was typical of that emerging from a fast reactor						
		Reactor / mock-up reactor shielding configu	urations						
VENUS-3	Mock-up of the pressure vessel internals representative of a 3-loop Westinghouse reactor	VENUS-3 zero power core, VENUS Critical Facility, CEN/SCK Mol, BELG	Power distribution for validating the analytical methods needed to predict the azimuthal variation of the fluence in the pressure vessel						
H.B. Robinson-2 pressure vessel dosimetry	H.B. Robinson-2 shielding materials	H.B. Robinson-2 reactor, US	In- and ex-vessel neutron dosimetry measurements for verifying neutron transport calculations						
NESDIP-2 (ASPIS) ^a	H ₂ O, stainless steel, and carbon steel	NESTOR reactor, ASPIS shielding facility, AEE Winfrith, UK							
NESDIP-3 (ASPIS) ^a	Water and stainless steel	Same as above	Same as above						
ASPIS neutron/gamma- ray transport through water/steel arrays ^a	Fe and H ₂ O	Same as above	Neutron activation and gamma-ray dose rate in an experimental configuration comprising a shield of iron and water						
Winfrith water/iron (ASPIS-PCA REPLICA)	Model of the Oak Ridge Pool Critical Assembly (PCA) 12/13 configuration	Same as above	Neutron transport in a water/iron shield reproducing the excore radial geometry of a PWR						

^aAn input file for shielding calculations is not available in SINBAD for this experiment.

Table 4. Summary of applicable fission reactor integral shielding experiments available in the 2018 SINBAD release (continued)

Experiment name	Shielding materials	Radiation source and facility	Measurement/phenomena tested						
	Experiments involving neutron streaming through ducts								
Streaming through ducts	Steel and concrete	Research reactor, Institute of Nuclear	Fast and thermal neutron reaction rates in straight and bent						
		Techniques (NTI), the Technical University of	steel-walled cylindrical ducts in concrete						
		Budapest, HUNG							
	Skyshine experiments								
Baikal-1 skyshine	Air and soil	The research RA reactor, Semipalatinsk	Spatial energy distributions of neutrons and photons						
		Nuclear Test Site, KAZ	scattered in the air near the ground-air interface up to 1500						
			m from the reactor axis						
Photon skyshine	Air and soil	⁶⁰ Co photon sources, Kansas State University	Skyshine from ⁶⁰ Co photon sources measured at distances in						
-		Nuclear Engineering Shielding Facility, US	air up to 700 m						

Table 5. Summary of criticality alarm experiments relevant to shielding

ICSBEP evaluation identifier	tion identifier Shielding materials Radiation so		Measured quantity					
Experiment involving individual shielding materials								
ALARM-CF-PB-SHIELD	Pb	²⁵² Cf source, Institute of Physics and	Neutron and photon leakage spectra from ²⁵² Cf at					
		Power Engineering, RUS	centers of lead spheres of various diameters					
ALARM-CF-FE-SHIELD	Fe	Same as above	Neutron and photon leakage spectra from ²⁵² Cf at					
			centers of iron spheres of various diameters					
ALARM-CF-Air-SHIELD	Air	Same as above	²⁵² Cf neutron and photon spectra in air					
ALARM-TRAN-Air-SHIELD	Air	SILENE reactor facility, Valduc, FRA	Neutron activation and thermoluminescent dosimetry					
			(TDS) in air					
ALARM-TRAN-CH ₂ -SHIELD	CH ₂	Same as above	Neutron activation and TDS in polyethylene					
ALARM-TRAN-PB-SHIELD	Pb	Same as above	Neutron activation and TDS in lead					
		Skyshine and groundshine						
ALARM-REAC-AIR-SKY ^a	Air and soil	The research RA reactor, Semipalatinsk	Spatial energy distributions of neutrons and photons					
		Nuclear Test Site, KAZ	scattered in the air near the ground-air interface					
		Radiation streaming experiments						
ALARM-CF-AIR-LAB	Concrete	²⁵² Cf source, Institute of High Energy	Neutron fields in concrete labyrinth with additional					
		Physics, RUS	plates of polyethylene and borated concrete					
ALARM-CF-CH2-LAB	Concrete	²⁵² Cf source filtered by 30.5 cm diameter	Same as above					
		polyethylene sphere, Institute of High						
	<u></u>	Energy Physics, RUS						

^aBaikal-1 skyshine experiment in SINBAD.

3.1 PROTOTYPIC ENVIRONMENTS

Dose rate measurements around a cask loaded with SNF assemblies may be used to validate the overall calculational procedure that includes both source term and shielding calculations [4]. Examples of prototypic measurements performed during the period 1984 to 1990 are described in EPRI TR-104329 [4] for five casks loaded with PWR fuel. The cask designs are CASTOR-V/21, MC-10, TN-24P, and VSC-17. The fuel initial enrichment varied from 1.9 to 3.2%, and fuel assembly average burnup varied from 24 to 36 GWd/MTU. The Westinghouse MC-10 cask [23] is a representative overpack for transportation packages, with a fuel basket for 14 PWR fuel assemblies, a containment vessel made of forged steel, and neutron shielding on the periphery. The Ventilated Storage Cask (VSC)-17, which has a capacity of 17 fuel assemblies, is a typical dry storage concrete cask with inlet and outlet vents for cooling. Source term and shielding calculations were performed at ORNL [4] and compared against the measured dose rates. The calculated neutron dose rates differed from the measured dose rates by less than 30%, and the calculated gamma dose rate over predicted dose rate by approximately 60%. The discrepancy between calculated and measured gamma dose rate values was attributed to uncertainties associated with the cobalt impurity amount in fuel hardware materials. Dose rate measurements for the CASTOR-V/21 cask were again obtained in 2001 [24]. More recent gamma dose rate measurements were obtained at ORNL for the NAC International Light Weight Truck Cask containing 25 high burnup fuel rods. The calculated gamma dose rate values for axial locations away from cask top and bottom regions were in good agreement (within 20%) with the measurements, and a larger discrepancy was obtained for measurement locations at the top and bottom of the cask [25].

4. CONCLUSIONS

This report identifies RCA data and shielding benchmarks that may be used to support verification and validation of computer codes used in SNF cask/transport shielding applications, as well as determination of calculation uncertainties, based on a review of publicly available information. The reviewed relevant information includes the SFCOMPO database for isotopic validations, the shielding benchmarks available in SINBAD and the International Handbook of Evaluated Criticality Safety Benchmark Experiments, and published measurements of external dose rates produced by loaded casks.

RCA data for 302 PWR SNF samples and 249 BWR SNF samples are currently available in the SFCOMPO database. The PWR SNF samples, obtained from 15 PWRs representative of old and modern reactor designs, have a maximum evaluated burnup of 75 GWd/MTU. The range of initial ²³⁵U enrichment in the measured PWR UO₂ fuel rods is 1.6874% to 4.66%. PWR RCA data also include isotopic measurements for fuel samples from two UO₂-Gd₂O₃ rods with a 6% gadolinia content and initial ²³⁵U enrichments of 1.6874% and 2.63%. The BWR SNF samples, obtained from 12 BWRs primarily representative of old reactor designs, have a maximum evaluated burnup of 77.6 GWd/MTU. The range of initial ²³⁵U enrichment in the measured BWR UO₂ fuel rods is 1.44% to 4.92%. For the measured BWR UO₂-Gd₂O₃ rods, the range of ²³⁵U enrichment is 2.87% to 3.4% and the range of gadolinia content is 1.5% to 5%. However, not all of these RCAs provide measurement data for nuclides important for radiation source term and shielding. Notably, BWR ⁹⁰Sr measurement data only exist for old fuel assembly types (6×6 and 7×7) from two BWRs.

The shielding benchmark measurements relevant to radiation transport calculations for SNF transportation packages/dry storage casks/transfer casks have tested radiation attenuation in shielding materials (25 benchmarks), including Fe, steel, Pb, water, elements found in concrete and soil; radiation streaming through ducts with labyrinth-like configurations (3 benchmarks); and radiation scattering in the air and the ground (i.e., skyshine and groundshine) (2 benchmarks). The typical radiation sources in these

selected experiments are thermal-neutron reactors, ²⁵²Cf sources, and ⁶⁰Co sources. Dose rate measurements around a cask loaded with SNF assemblies may be used to validate the overall calculational procedure that includes both source term and shielding calculations.

It should be noted that only a relatively small subset of the identified experimental data (e.g., criticality alarm experiments) is available in a standard format established by the international community participating in experimental isotopic and shielding data evaluations. An effort of the SFCOMPO TRG is underway to publish first isotopic evaluations of individual assay data using a standard data evaluation format. The SINBAD TRG has recently initiated benchmark evaluations and modernization of the database. Therefore, more relevant information will be available in the future that will enable users to select quality experimental data in depletion code and shielding code validations for SNF applications.

ACKNOWLEDGMENTS

The work described in this report was accomplished with funding provided by the US Nuclear Regulatory Commission. The authors acknowledge review and useful comments by Lucas Kyriazidis of the Office of Nuclear Regulatory Research, Division of Systems Analysis, and Zhian Li and Andrew Barto of the Office of Nuclear Material Safety and Safeguards, Division of Spent Fuel Management.

REFERENCES

- 1. F. Michel-Sendis et al., "SFCOMPO-2.0: An OECD NEA Database of Spent Nuclear Fuel isotopic Assays, Reactor Design Specifications and Operating Data," *Ann. Nucl. Energy* 110, 779–788, 2017, https://doi.org/10.1016/j.anucene.2017.07.022 (accessed June 2022).
- 2. SINBAD 2017.12, Shielding Integral Benchmark Archive and Database, Version February 2016, available from Radiation Safety Information Computational Center as DLC-237, 2016.
- 3. International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook (database), https://www.oecd-nea.org/download/science/icsbep-handbook/CD2019/ (accessed June 2022).
- 4. B. L. Broadhead, J. S. Tang, R. L. Childs, C. V. Parks, and H. Taniuchi, *Evaluation of Shielding Analysis Methods in Spent Fuel Cask Environments*, EPRI TR-104329, prepared by Oak Ridge National Laboratory, Oak Ridge, Tennessee (1995).
- 5. https://www.oecd-nea.org/jcms/pl_21515/sfcompo-2-0-spent-fuel-isotopic-composition (accessed June 2022).
- 6. J. D. Bess, T. Ivanova, S. Tsuda, *Availability of Shielding Benchmark Experiment Data in the ICSBEP Handbook*, INL/CON-20-57421-Revision-0, Idaho National Laboratory, Idaho Falls, Idaho, 2020.
- 7. G. Ilas and B. Hiscox, "Validation of SCALE 6.2.4 and ENDF/B-VII.1 Data Libraries for Nuclide Analysis in PWR Used Fuel," *ANS Transactions*, V124 pp 552-553, 2021 ANS Virtual Annual Meeting, June 14–16, 2021.
- 8. G. Ilas, *Review of Experimental Assay Data of PWR Spent Fuel*, ORNL/SPR-2019/1143, Oak Ridge National Laboratory, Oak Ridge, TN, 2019.
- 9. G. Radulescu, I. C. Gauld, G. Ilas, *SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions*, ORNL/TM-2010/44, Oak Ridge National Laboratory, Oak Ridge, TN, 2010.
- 10. I. C. Gauld and U. Mertyurek, *Margins for Uncertainty in the Predicted Spent Fuel Isotopic Inventories for BWR Burnup Credit*, NUREG/CR-7251 (ORNL/TM-2018/782), Oak Ridge National Laboratory, Oak Ridge, TN, 2018.
- 11. U. Mertyurek and G. Ilas, "Nuclide Inventory Benchmark for BWR Spent Nuclear Fuel: Challenges in Evaluation of Modeling Data Assumptions and Uncertainties," *J. Nucl. Eng.*, 3(1), 18–36, 2022, doi: 10.3390/jne3010003.
- 12. Nuclear Science Committee, Evaluation Guide for the Evaluated Spent Nuclear Fuel Assay Database (SFCOMPO), NEA/NSC/R(2015)8, Nuclear Energy Agency, Organisation for Economic Cooperation and Development, 2016.
- 13. B. L. Broadhead et al., *Investigation of Nuclide Importance to Functional Requirements Related to Transport and Long-Term Storage of LWR Spent Fuel*, ORNL/TM-12742, Oak Ridge National Laboratory, Oak Ridge, TN, 1995.
- 14. I. C. Gauld and J. C. Ryman, *Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel*, NUREG/CR-6700 (ORNL/TM-2000/284), US Nuclear Regulatory Commission, 2000.

- 15. G. Radulescu and P. Stefanovic, A Study on the Characteristics of the Radiation Source Terms of Spent Fuel and Various Non-Fuel Hardware for Shielding Applications, ORNL/SPR-2021/2373, Oak Ridge National Laboratory, 2022.
- 16. D. Boulanger, M. Lippens, L. Mertens, J. Basselier, and B. Lance, "High Burnup PWR and BWR MOX Fuel Performance: A Review of Belgonucleaire Recent Experimental Programs," *Proceedings of the 2004 International Topical Meeting on LWR Fuel Performance*, September 19–22, 2004, American Nuclear Society, 2004.
- 17. H. R. Radulescu, *Limerick Unit 1 Radiochemical Assay Comparisons to SAS2H Calculations*, CAL-DSU-NU-000002 Rev 00A, Office of Civilian Radioactive Waste Management, US Department of Energy, Washington, DC, 2003.
- 18. J. Eysermans et al., "REGAL International Program: Analysis of experimental data for depletion code validation," *Ann. Nucl. En.* 172, 2022, 109057.
- 19. A. Luksic, "Spent Fuel Assembly Hardware: Characterization and 10CFR 61 Classification for Waste Disposal," Volume1-Activation Measurements and Comparison with Calculations for Spent Fuel Assembly Hardware, PNL-6906-vol. 1, Pacific Northwest Laboratory, June 1989.
- 20. J. Hu et al., Analysis of new measurements of Calvert Cliffs spent fuel samples using SCALE 6.2, *Ann. Nucl. En.*, 106, 2017, 221–234.
- 21. REBUS International Program, *Reactivity Tests for a Direct Evaluation of the Burnup Credit on Selected Irradiated LWR Fuel Bundles*, Final Report, SCK-CEN, Belgonucleaire, RE 2005/37, February 2006.
- 22. G. Ilas I. C. Gauld, and B. D. Murphy, *Analysis of Experimental Data for High Burnup Data for High Burnup PWR Spent Fuel Isotopic Validations ARIANE and REBUS Programs (UO₂ Fuel), NUREG/CR-6969 (ORNL/TM-2008/072), Oak Ridge National Laboratory, Oak Ridge, TN (2010).*
- 23. M. A. McKinnon et al., *The MC-10 PWR Spent-Fuel Storage Cask: Testing and Analysis*, EPRI NP-5268 (PNL-6139), prepared by Pacific Northwest Laboratory, Virginia Power Company, and EG&G Idaho, Idaho National Engineering Laboratory (1987).
- 24. W. C. Bare, L. D. Torgerson, *Dry Cask Storage Characterization Project- Phase 1: CASTOR V/21 Cask Opening and Examination*, NUREG/CR-6745 (INEEL/EXT-01-00183), prepared by Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (2001).
- 25. R. Cumberland and K. Banerjee, "Baselining a Spent Nuclear Fuel Cask Shielding Model," *ANS Transactions*, ANS 2017 Winter Meeting, Oct. 29 Nov. 2, 2017, Washington, DC.