
Counting Abelian Squares More E�ciently

Ryan Bennink

Quantum Computational Science Group, Oak Ridge National Laboratory

I present a recursive formula for calculating the number of abelian squares of length n+n

over an alphabet of size d. The presented formula is similar to a previously known formula

but has substantially lower complexity when d ≫ n.

INTRODUCTION

An abelian square is a word whose �rst half is an anagram of its second half, for example

intestines = intes · tines or bonbon = bon · bon. Abelian squares are fundamentally interesting

combinatoric structures [1�7] that can arise in a variety of contexts in applied mathematics. The

work reported here was motivated by a problem in quantum computing. As discussed in a related

manuscript [8], the expressiveness of a certain class of variational quantum circuits can be related

to the number of abelian squares over a certain alphabet. However, due to fact that the alphabet

in this case is exponentially large, existing formulas for evaluating the number of abelian squares

were found to be impractical.

In this letter I present a recursive formula for calculating the number of abelian squares of length

n+n over an alphabet of size d that is e�cient even when d is very large. I �rst review the problem

of counting abelian squares and an existing recursive formula [9] whose cost is O(n2d). Then I

derive a new recursive formula whose cost is only O(n2min(n, d)), a substantial improvement when

d ≫ n. I furthermore give a constructive interpretation of the formula.

BACKGROUND

Let fd(n) denote the number of abelian squares of length n+ n over an alphabet of d symbols.

Trivially, f1(n) = 1 for all n and fd(0) = 1 for all d. It is also not di�cult to see that fd(1) = d. To

determine fd(n) for arbitrary d and n, we de�ne the signature (sometimes called the Parikh vector)

of a word w ∈ {a1, . . . , ad}∗ as (m1, . . . ,md) where mi is the number of times the symbol ai appears

in w. Note that two words are anagrams if and only if they have the same signature. Thus the

number of abelian squares is the number of pairs (x, y) such that x and y have the same signature.

2

d\n 0 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 1

2 1 2 6 20 70 252 924 3432

3 1 3 15 93 639 4653 35169 272835

4 1 4 28 256 2716 31504 387136 4951552

5 1 5 45 545 7885 127905 2241225 41467725

6 1 6 66 996 18306 384156 8848236 218040696

Table I. Number of abelian squares of length n+ n over an alphabet of size d [9].

The number of words with a particular signature (m1, . . . ,md) is given by the multinomial coe�cient(
m1 + · · ·+md

m1, . . . ,md

)
=

(m1 + · · ·+md)!

m1! · · ·md!
. (1)

The number of ways to choose a pair of words, each with signature (m1, . . . ,md), is just the square

of this quantity. Therefore the number of abelian squares of length n+ n is

fd(n) =
∑

0≤m1+···+md≤n

(
n

m1, . . . ,md

)2

. (2)

The �rst few values of fd(n) are shown in Table I.

Eq. (2) is not easy to evaluate when n is large, as the number of signatures grows combinatorially

in d and n. Richmond and Shallit [9] derived a recursive formula using a simple constructive

argument: To create size (n, n) abelian word pair (x, y) over alphabet {a1, . . . , ad}, one can �rst

choose the number i ∈ {0, . . . , n} of occurrences of ad in each word. There are
(
n
i

)
ways to distribute

these occurrences in each word. Then there are fd−1(n − i) ways to create an abelian pair over

{a1, . . . , ad−1} for the remaining n− i symbols in each word. Setting k = n− i and summing over

the choice of k yields

fd(n) =
n∑

k=0

(
n

k

)2

fd−1(k). (3)

Using this formula, fd(n) can be obtained by starting with f1(0) = · · · = f1(n) = 1 and computing

fi(0), . . . , fi(n) in turn for i = 2, . . . , d (Fig. 1 left). The cost of computing the values of fi given the

previously computed values of fi−1 is O(1+2+ · · ·+n) = O(n2). Thus the complexity of evaluating

fd(n) using (3) is O(n2d), a huge improvement over (2) when n and d are both small. In contexts

where d is very large, however, (2) is impractical.

3

AN ALTERNATIVE RECURSIVE FORMULA

In this section I derive an alternative to (3) whose cost of evaluation is only O(n2min(n, d)).

Let Ad denote an alphabet of d symbols. The number of abelian squares (x, y) ∈ An
d × An

d can be

expressed as the sum of the number of anagrams of each word x:

fd(n) =
∑
x∈An

d

(
n

m1, . . . ,md

)
. (4)

Here m implicitly denotes the signature of x = (x1, . . . , xn). We split o� the sum over xn:

fd(n) =
∑

x′∈An−1
d

∑
xn∈Ad

(
n

m′
1, . . . ,m

′
xn

+ 1, . . .m′
d

)
(5)

where m′ is the signature of x′ ≡ (x1, . . . , xn−1). We have(
n

m′
1, . . . ,m

′
xn

+ 1, . . .m′
d

)
=

n

m′
xn

+ 1

(
n− 1

m′
1, . . . ,m

′
d

)
. (6)

Then

fd(n) =
∑

x′∈An−1
d

∑
xn∈Ad

n

m′
xn

+ 1

(
n− 1

m′
1, . . . ,m

′
d

)
. (7)

By symmetry xn can be replaced by any value; choosing d yields

fd(n) = d
∑

x′∈An−1
d

n

m′
d + 1

(
n− 1

m′
1, . . . ,m

′
d

)
. (8)

Now, each x′ with a given signature contributes the same value to the sum. We may thus replace

the sum over x′ by a sum over the signatures of x′, weighted by the number of occurrences of each

signature:

fd(n) = d
∑

m′
1+···+m′

d=n−1

n

m′
d + 1

(
n− 1

m′
1, . . . ,m

′
d

)2

. (9)

We henceforth suppress the primes on m. The goal now is to move the dependence on md out of

the sum, leaving something which has the form of (2). We have(
n− 1

m1, . . . ,md

)
=

(
n− 1

md

)(
n− 1−md

m1, . . . ,md−1

)
. (10)

This yields

fd(n) = d
∑

m1+···+md=n−1

n

md + 1

(
n− 1

md

)2(n− 1−md

m1, . . . ,md−1

)2

. (11)

= d

n−1∑
md=0

n

md + 1

(
n− 1

md

)2 ∑
m1+···+md−1=n−1−md

(
n− 1−md

m1, . . . ,md

)2

. (12)

4

In terms of k ≡ n− 1−md,

fd(n) = d

n−1∑
k=0

n

n− k

(
n− 1

n− 1− k

)2 ∑
m1+···+md−1=k

(
k

m1, . . . ,md

)2

. (13)

Comparison of the latter sum to (2) reveals that it is none other than fd−1(k). The remaining

quantities can be simpli�ed as follows:(
n− 1

n− 1− k

)
=

(
n− 1

k

)
, (14)

n

n− k

(
n− 1

n− 1− k

)
=

(
n

k

)
. (15)

Making these substitutions yields the main result:

fd(n) = d
n−1∑
k=0

(
n

k

)(
n− 1

k

)
fd−1(k). (16)

Note the close similarity between (16) and (3). The crucial di�erence is that in (16) the sum goes

up to only n − 1; that is, each level of recursion decreases both n and d (Fig. 1 right). Thus only

min(n, d) levels of recursion are needed. The cost of this algorithm is O(n2min(n, d)).

Eq. (16) can be interpreted in terms of the following approach approach to constructing an

abelian pair: There are d choices for the �rst symbol a of x. Let k ∈ {0, . . . , n− 1} be the number

of occurrences in each word of symbols from Ad/a. There are
(
n−1
k

)
choices to place those other

symbols in x and
(
n
k

)
places to place those other symbols in y. Then, one creates an abelian pair of

size (k, k) over Ad/a, which is an alphabet of size d− 1.

Fig. 2 showsfd(n) as a function of n for exponentially increasing values of d. (The lines for d ≥ 64

are truncated due to some of the results being outside the range of double-precision arithmetic.) The

entire plot, comprising 1000 computed points, took less than two seconds to compute in MATLAB

on a standard computer.

ACKNOWLEDGEMENTS

This work was performed at Oak Ridge National Laboratory, operated by UT-Battelle, LLC

under contract DE-AC05-00OR22725 for the US Department of Energy (DOE). Support for the

work came from the DOE Advanced Scienti�c Computing Research (ASCR) Accelerated Research

in Quantum Computing (ARQC) Program under �eld work proposal ERKJ354.

5

1 2 3 40

1

2

3

4

5

6

7

1 1 1 1 1

1

1

1

1

1

1
𝑓𝑑(𝑛)

𝑛

𝑑

1 2 3 40

1

2

3

4

5

6

7

1 1 1 1 1

1

1

1

1

1

1
𝑓𝑑(𝑛)

𝑛

𝑑

Figure 1. Computational dependencies for two di�erent recursive formulas for fd(n), the number of abelian

squares. (left) Dependency graph for eq. (3), obtained from [9]. (right) Dependency graph for eq. (16). In

each case, the desired quantity fd(n) is shown as a red dot, arrows show the direct dependencies, and the

gray shaded region covers all the quantities that must be calculated to determine fd(n). The pattern on the

left leads to a cost of O(n2d), while the pattern on the right leads to a cost of O(n2 min(n, d)).

0 20 40 60 80 100
t

100

10100

10200

10300

N
um

be
r

of
 a

be
lia

n
sq

ua
re

s

d = 2
d = 4
d = 8
d = 16
d = 32
d = 64
d = 128
d = 256
d = 512
d =1024

Figure 2. Number fd(n) of abelian squares of length n+ n over an alphabet of size d.

6

[1] Paul Erd®s. Some unsolved problems. Michigan Math. J., 4(3):291�300, 1957. ISSN 0026-2285, 1945-

2365. doi:10.1307/mmj/1028997963.

[2] Veikko Keränen. Abelian squares are avoidable on 4 letters. In W. Kuich, editor, Automata, Languages

and Programming, Lecture Notes in Computer Science, pages 41�52, Berlin, Heidelberg, 1992. Springer.

ISBN 978-3-540-47278-0. doi:10.1007/3-540-55719-9-62.

[3] Costas S. Iliopoulos, Dennis Moore, and W. F. Smyth. A characterization of the squares in a Fi-

bonacci string. Theoretical Computer Science, 172(1):281�291, February 1997. ISSN 0304-3975. doi:

10.1016/S0304-3975(96)00141-7.

[4] Arturo Carpi. On the number of Abelian square-free words on four letters. Discrete Applied Mathematics,

81(1):155�167, January 1998. ISSN 0166-218X. doi:10.1016/S0166-218X(97)88002-X.

[5] Julien Cassaigne, Gwénaël Richomme, Kalle Saari, and Luca Q. Zamboni. Avoiding abelian powers in

binary words with bounded abelian complexity. Int. J. Found. Comput. Sci., 22(04):905�920, June 2011.

ISSN 0129-0541. doi:10.1142/S0129054111008489.

[6] Mari Huova, Juhani Karhumäki, and Aleksi Saarela. Problems in between words and abelian words:

K-abelian avoidability. Theoretical Computer Science, 454:172�177, October 2012. ISSN 0304-3975.

doi:10.1016/j.tcs.2012.03.010.

[7] M. Crochemore, C. S. Iliopoulos, T. Kociumaka, M. Kubica, J. Pachocki, J. Radoszewski, W. Rytter,

W. Tyczy«ski, and T. Wale«. A note on e�cient computation of all Abelian periods in a string. Infor-

mation Processing Letters, 113(3):74�77, February 2013. ISSN 0020-0190. doi:10.1016/j.ipl.2012.11.001.

[8] Ryan Bennink. Counting abelian squares for a problem in quantum computing. Journal of Combinatorics,

(submitted).

[9] L. B. Richmond and Je�rey Shallit. Counting Abelian Squares. Electron. J. Combin., 16(1):R72, June

2009. ISSN 1077-8926. doi:10.37236/161.

