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ABSTRACT

This report demonstrates new functionality and applications enabled by the development of high-fidelity to
low-fidelity (high-low) coupling for system simulations. Additionally, this development allows further
exploration of the capabilities of the Risk Analysis Virtual Environment (RAVEN), a novel software
framework, in the performance of uncertainty quantification in these high-low coupled system models. The
work builds on previous work on high-low coupling that utilized COBRA-TF (CTF), the high-fidelity
subchannel analysis code, with a low-fidelity model built in the system analysis code TRANSFORM,
utilizing the Functional Mock-up Interface (FMI). Steady-state and transient analysis examples using the
high-low coupled models generated from CTF and TRANSFORM/FMI are investigated. The workflows
for in-memory and out-of-memory coupling are shown with specific applications to nuclear systems’
uncertainty and system characterization studies. This work elucidates some of the potential benefits and
future needs of using RAVEN for high-low system coupling analysis of energy systems.
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1. INTRODUCTION

1.1 BACKGROUND

An aim of the US Department of Energy (DOE) Office of Nuclear Energy Integrated Energy Systems (IES)
program is to develop increasingly coupled simulations of systems with a large diversity of scales and
complexity to capture the physical behaviors of mixed electrical and thermal energy usage and storage
systems. This desire to couple high- and low-fidelity (high-low) modeling has been an area of active
research in the nuclear energy community for many decades and is receiving increased attention due to the
potential of digital twins. A digital twin (DT) refers to an integrated multiphysics, multiscale, probabilistic
simulation of the physical asset/twin, and it offers a framework to better quantify design margins,
parameter uncertainty, and system performance associated with the physical object [2]. An increased
computational capacity enabled the ability to bring a more intimate coupling of high-low systems between
popular nuclear energy simulation codes. The recently developed software framework called the Risk
Analysis Virtual Environment (RAVEN) enables increasingly flexible statistically driven analysis of
traditional simulation codes and advanced new codes [3]. The potential use cases are rapidly growing as
the capabilities of RAVEN increase. Therefore, it is of great interest to explore use cases of RAVEN for
performing High/Low coupled simulations as a way to demonstrate the possibilities.

1.2 OVERVIEW OF RAVEN

RAVEN began in 2012 as a project to create a modernized risk evaluation framework as a part of the
Risk-Informed Safety Margin Characterization (RISMC) work, now known as Risk-Informed Systems
Analysis (RISA) [3]. These research paths were developed as a part of the Light Water Reactor
Sustainability (LWRS) program at the DOE Nuclear Energy Office (NE). Initially, RAVEN was envisioned
as a framework for driving dynamic risk assessment capabilities to existing traditional codes such as
RELAP5; however, it was built in an agnostic format and has since gained the capability to couple with
many standard nuclear and systems codes. The agnostic nature of RAVEN interfaces either directly to the
code via software coupling or indirectly to the external code executables through input and output files for
the codes. This workflow is described in the examples provided later in the report (2. and 3.). RAVEN
contains the following core capabilities inside its framework as shown here [3]:

• Distributions: To allow for the exploration of input/output space of a system/physics, RAVEN has
the capability to perturb the input space (i.e., initial conditions and/or model coefficients of a
system). The input space is generally characterized by one or several probability distribution
(density) functions (PDFs), which can be sampled depending on the kind of input desired. In this
respect, a large library of PDFs is available.

• Samplers: A proper approach to sampling the input space is fundamental for optimizing the
computational time. In RAVEN, a ‘sample’ employs a unique perturbation strategy that is applied to
the input space of a system. The input space is defined through the connection of uncertain variables
(i.e., initial conditions and/or model coefficients of a system) and their relative probability
distributions. The link of the input space to the relative distributions allows the sampler to perform a
probability-weighted exploration.
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• Optimizers: Optimizers are tools for optimizing (constrained or unconstrained) the controllable
input space (i.e., parameters) to minimize/maximize an objective function of the system/physics
under examination. In RAVEN, an optimizer employs an active learning process (feedback from the
underlying model, system, or physics) aimed to accelerate the minimization or maximization of an
objective function.

• Models: A model is the representation of a physical system (e.g., nuclear power plant). Therefore,
it can predict the evolution of a system given a coordinate set in the input space. Additionally, it can
represent an action on a piece of data to extract key features (e.g., data mining).

• Data Objects and Databases: Data objects and databases provide standardized Application
Program Interfaces (APIs) for storing the results of any RAVEN analysis (e.g., sampling,
optimization, statistical analysis). Additionally, these storage structures represent the common “pipe
network” among any entity in RAVEN.

• Outstreams: Outstreams export the results of any RAVEN analysis (e.g., sampling, optimization).
This entity enables the exposition of analysis results to the user, both in text-based (e.g., XML, CSV)
or graphical (e.g., pictures, graphs,) output files.

• Steps: Steps provide a standardized way for the user to combine the aforementioned entities to
construct a particular analysis. Steps are the core of the calculation flow of RAVEN and are the only
system that is aware of any simulation component.

• Job Handler: The job handler coordinates and regulate the dispatch of jobs in the RAVEN
software. It can monitor and handle parallelism in the driven models to interact with
high-performance computing and other similar systems.

This report demonstrates some of the major applications of these components for high-low coupling, as
discussed later in the report (2. and 3.).

1.3 OVERVIEW OF CTF

COBRA-TF (CTF) is a subchannel thermal hydraulics code jointly developed by Oak Ridge National
Laboratory (ORNL) and North Carolina State University as part of the Consortium for Advanced
Simulation of Light Water Reactors (CASL) program and was built from the legacy code COBRA-TF [4].
CTF is based on a two-fluid, three-field (i.e., vapor, continuous liquid, and entrained droplets) semi-implicit
modeling approach that can be solved either in a 3D Cartesian representation or by using a subchannel
representation (axial and lateral directions). Under the CASL program, extensive capabilities were added
into CTF to analyze light-water reactors (LWRs) for nominal operating conditions, departure from nucleate
boiling (DNB), and system transients. Further development of CTF was undertaken to improve its
modeling and simulation capabilities for boiling water reactors (BWRs) under the Nuclear Energy
Advanced Modeling and Simulation (NEAMS) program. CTF was also incorporated into Virtual
Environment for Reactor Applications (VERA), a multiphysics core simulator, and provides a coupling
framework to couple various codes, such as thermal hydraulics, fuel performance, and neutronics. VERA
is being developed in conjunction with CTF to model multiphysics applications such as crud-induced
power shift (CIPS) and reactivity-insertion accidents (RIAs) [5].
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1.4 OVERVIEW OF TRANSFORM AND THE FMI/FMU

TRANSFORM is a Modelica-based library developed at ORNL to enable rapid development of dynamic,
advanced energy systems with an extensible system modeling tool [6]. TRANSFORM is organized as a
series of packages, each of which has a general application. The object-oriented nature of Modelica allows
users to view, extend, and/or modify any component or add new models to TRANSFORM. The
TRANSFORM code, which is built upon the Modelica libraries, solves a time-dependent ordinary
differential equations (ODEs) system based on a finite-volume–based staggered grid formulation that is
applicable for single- and two-phase flows.

TRANSFORM can model lumped and 1D fluid mechanics, lumped and multi-dimensional heat and mass
transfer, control logic and sensors, and simple power systems. It can also construct complex thermal
hydraulics systems of mixed components, including nuclear and mechanical subsystems and components.
These dynamic models can be used to study the dynamic interdependency of any and all system parameters.

The TRANSFORM Modelica library is currently implemented in the commercial Dymola dynamic
modeling laboratory software environment by Dassault Systèmes. Dymola is a GUI that allows for visual
drag-and-drop system modeling from the various standard Modelica libraries and from the imported
TRANSFORM libraries. Dymola also can also perform text-based editing of models in the Modelica
language. More importantly, Dymola provides the translator that converts the code listings of the Modelica
models into a system of solvable equations. Once these are translated, Dymola provides a host of
numerical time integration methods (e.g., DASSL, Runge–Kutta) that can be used to run model simulations
or solutions. Dymola also enables enhanced flexibility in interfacing with other codes implementing the
Functional Mock-up Interface (FMI). The FMI defines a standard interface to an exchangeable package
that contains a ODE-based system model of a component, or set of coupled components, called Functional
Mock-up Units (FMU) [7]. Dymola translates the Modelica models into C-code, and can compile the FMU
into a binary format that fully encapsulates the model into a simulator that can be imported for use in a
larger system. The FMU then behaves as a standardized black-box simulator that calculates simulated
dynamic outputs driven by user-supplied inputs. These inputs and outputs can be driven and accessed by
other codes through the standardized interface defined by the FMI, as in this project with CTF or RAVEN.

1.5 COUPLING OF CTF AND TRANSFORM USING THE FMU

Recent work generated an in-memory coupling between the subchannel thermal hydraulics code
CTF—which is included in the VERA—and the systems code TRANSFORM by utilizing the FMI standard
to create a coupling of the models [1]. The coupling enables an exchange of boundary conditions, run-time
setting of system parameters and may be used in a steady state or transient coupled simulation mode. This
coupling allows one to trace uncertainties and sensitivities through a range of fidelities and scales, with the
fine-fidelity core model supplied by CTF and are coarse system model of the primary, secondary, and
tertiary loop supplied by TRANSFORM, which is helpful for detailed investigation of integrated energy
systems that would not be possible with a simple core-simulator operating as a standalone core model.

Figure 1 shows a simplified MSRE model example of a potential high-low model from a previous work [1]
built by coupling VERA/CTF to the TRANSFORM model. The simplified core of the MSRE reactor was
simulated in VERA/CTF, whereas the components external to the reactor core vessel—which includes the
primary, secondary, and tertiary components—were modeled in TRANSFORM. Fortunately, only a few
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typical parameters are required to be coupled between high-low system models. In this example, only
in-memory coupling of six key boundary condition parameters is required. 1 provides the six boundary
condition parameters and the direction of the exchange between codes. The interface was achieved through
an FMU representation of the TRANSFORM model compiled into an FMU (using the Dymola software
package), which was then accessed by CTF with a FORTRAN-composed FMU wrapper. The wrapper
enables users to load and interact with co-simulation FMUs that conform to the FMI version 2 standard
from a FORTRAN program. The developed wrapper is accessible as an open-source addition to the Futility
library [8]. The FMU includes the ODE solver from Dymola for the simulation, called the co-simulation
model.

Figure 1. Example of a coupled CTF core model and TRANSFORM FMU system model.

Table 1. Boundary conditions exchanged at core inlet and outlet interface [1].

Variable Unit Note Direction

Tin K Core inlet temperature VERA/CTF← TRANSFORM
Pin Pa Core inlet static pressure VERA/CTF→ TRANSFORM
ṁin kg/s Core inlet flow rate VERA/CTF← TRANSFORM
Tout K Core outlet temperature VERA/CTF→ TRANSFORM
Pout Pa Core outlet static pressure VERA/CTF← TRANSFORM
ṁout kg/s Core outlet flow rate VERA/CTF→ TRANSFORM

As previously mentioned, the MSRE model used in the study is similar to that from a previous work [1].
The TRANSFORM model comprises MSRE piping, pumps, heat exchangers, and heat rejection; the
nodalization is shown in 2. The focus of the model developed in Gurecky et al. [1] is not to validate against
experimental measurements but to demonstrate the coupled model capabilities of simulating the complex
system dynamics and to perform uncertainty propagation, which is the focus of the current study.

A coupled CTF-FMU model requires the following [1]:

1. a CTF input deck,

2. the FMU zip archive extracted to the directory, and

4



Figure 2. TRANSFORM nodalization of the MSRE external reactor core vessel components.
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3. an XML coupling specification file.

An example of a coupling specification file for the coupled CTF–TRANSFORM model of the MSRE
model is shown below. The file name should be the same as that specified in the caption, and it should be
placed in the working directory. The coupling file contains the coupled solver tolerances, initial values of
the exposed variables, boundary mappings between the codes, FMU variables that vary as a function of
time, and FMU variables to log to file. A detailed description of the XML coupling specifications file can
be found in Gurecky et al. [1]. For brevity, only BC_VAR_NAMES, which contains the mapping from the
CTF boundary conditions, is described in detail below in Listing 1.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <ParameterList name="CASEID">
3 <Parameter name="toltemp" type="double" value="0.01"/>
4 <Parameter name="tolmf" type="double" value="2.0"/>
5 <Parameter name="tolpress" type="double" value="1.0e1"/>
6 <Parameter name="toltemp_FMU" type="double" value="1.0e-4"/>
7 <Parameter name="tolmf_FMU" type="double" value="1.0e-4"/>
8 <Parameter name="tolpress_FMU" type="double" value="1.0e-4"/>
9 <Parameter name="FMU_dt_max" type="double" value="2.0e-1"/>

10 <Parameter name="ulax_T_corein" type="double" value="1.0"/>
11 <Parameter name="ulax_P_coreout" type="double" value="1.0"/>
12 <Parameter name="ulax_mflow_corein" type="double" value="1.0"/>
13 <ParameterList name="FMU_VAR_INIT">
14 <!-- Set FMU Parameters and inital values -->
15 <Parameter name="P_in" type="double" value="101.33e3"/>
16 <Parameter name="P_corein" type="double" value="101.33e3"/>
17 <Parameter name="T_in" type="double" value="907.0"/>
18 <Parameter name="mflow_in" type="double" value="171.0"/>
19 <Parameter name="mflow_pumpprimary" type="double" value="171.0"/>
20 <Parameter name="mflow_secondary" type="double" value="105.745"/>
21 </ParameterList>
22 <ParameterList name="BC_VAR_NAMES">
23 <!-- Parameter name= CTF_name value= FMU_name -->
24 <Parameter name="T_corein" type="string" value="T_out"/>
25 <Parameter name="T_coreout" type="string" value="T_in"/>
26 <Parameter name="P_corein" type="string" value="P_corein"/>
27 <Parameter name="P_coreout" type="string" value="P_in"/>
28 <Parameter name="mflow_corein" type="string" value="mflow_out"/>
29 <Parameter name="mflow_coreout" type="string" value="mflow_in"/>
30 <Parameter name="mflow_pumpprimary" type="string" value="mflow_pumpprimary"/>
31 </ParameterList>
32 <ParameterList name="FMU_VAR_TRANSIENT">
33 <!-- FMU vars that vary as a fn of time -->
34 <Parameter name="time" type="Array(double)" value="{0,10,100}"/>
35 <Parameter name="mflow_secondary" type="Array(double)" value="{80,90,105.7}"/>
36 </ParameterList>
37 <ParameterList name="FMU_VAR_LOG">
38 <!-- FMU Variables to log to file -->
39 <Parameter name="mflow_pumpprimary" type="bool" value="true"/>
40 <Parameter name="mflow_secondary" type="bool" value="true"/>
41 <Parameter name="T_in" type="bool" value="true"/>
42 <Parameter name="T_out" type="bool" value="true"/>
43 </ParameterList>
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44 </ParameterList>

Listing 1. XML coupling specification [1] fmu_param.xml

• Parameter T_corein (required): name of the FMU variable corresponding to the core inlet
temperature in Kelvin.

• Parameter T_coreout (required): name of the FMU variable corresponding to the core outlet
temperature in Kelvin.

• Parameter P_corein (required): name of the FMU variable corresponding to the core inlet pressure
in pascals.

• Parameter P_coreout (required): name of the FMU variable corresponding to the core outlet
pressure in pascals.

• Parameter mflow_corein (required): name of the FMU variable corresponding to the core inlet mass
flow rate in kilograms per second.

• Parameter mflow_coreout (required): name of the FMU variable corresponding to the core outlet
mass flow rate in kilograms per second.

A separate parameter is defined in the CTF input file under Card 1.5, in which the path of the compiled
FMU object should be specified. The FMU should be extracted into the (relative to working directory or
absolute) path specified under {fmu_unzip_directory} before running the CTF executable with the input
file. The shared object libraries and an XML model description file—which are generated during the FMU
creation—also reside inside the FMU folder [1]. A snippet of the CTF input file for the simplified MSRE
model showing {fmu_unzip_directory} is given below in Listing 2.

1 *Card 1.3
2 ** PREF HIN HGIN VFRAC1 VFRAC2
3 3.44738 -633.88889 288.4200000 1.0000000 0.9999000
4 *Card 1.4
5 **GTP(1) VFRAC(3) GTP(2) VFRAC(4) GTP(3) VFRAC(5) GTP(4) VFRAC(6)
6 air 0.0001
7 *Card 1.5
8 {fmu_unzip_directory} "../../transform_fmus/MSRE_HX_wPiping_Full_v7__wFixedAlpha

"
9 ********************************************************************************

10 *GROUP 2 - Channel Description
11 ********************************************************************************
12 **NGR
13 2
14 *Card 2.1
15 ** NCH NDM2 NDM3 NDM4 NDM5 NDM6 NDM7 NDM8 NDM9 NM10 NM11 NM12 NM13 NM14
16 1 0 0 0 0 0 0 0 0 0 0 0 0 0
17 *Card 2.2
18 ** I AN PW ABOT ATOP NMGP X Y XSIZ

YSIZ
19 1 1.6360e-01 4.1286e+01 0.0 0.0 0 0.0000e+00 0.0000e+00 0.0000e+00

0.0000e+00

Listing 2. CTF input file snippet with the FMU path specified. system_coupling_transform.inp
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2. STEADY-STATE ANALYSIS OF HIGH-LOW COUPLING IN RAVEN

This section describes the workflow for performing a steady-state co-simulation of the coupled system.
The workflow description is followed by two use case demonstrations: parameter estimation and
uncertainty analysis. The goal is to demonstrate common use cases for RAVEN in steady-state analysis.

2.1 OVERVIEW OF RAVEN WORKFLOW FOR STEADY-STATE SIMULATIONS

The RAVEN workflow for the CTF–FMU co-simulation is shown in Figure 3. RAVEN has two preferential
Python-based APIs for interacting with external applications: ‘External Model’ and ‘External Code’ [3].
Both the approaches were used in this study. In the External Model approach, an external Python “entity”
is used that can act as a system model, whereas in the External Code approach, an API is used to drive
external codes at run time. The External Code approach in this study is based on an existing CTF code
coupling interface with two modifications, which are discussed in this section.

Figure 3. Generalized RAVEN workflow with CTF and TRANSFORM FMU system model coupling.

The workflow in 3 can be enumerated as follows.

1. Search for the appropriate CTF input file(s).

2. Find the parameters to be varied.

3. Write new input file(s) with the sampled variables passed from the RAVEN framework.

4. Perform simultaneous runs with the sampled variables.
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5. Read the CTF output for each set of sampled variable(s) and export required output parameters.

6. Obtain RAVEN output, which includes generating data files of the output parameters, generating
plots, and compiling statistics.

The code coupling interface can interpret the information from RAVEN and pass the required input to the
driven code [3]. The existing CTF code interface can accomplish most of the above steps by:

• using a ‘GenericCode’ interface to look for parameters to be varied in the CTF input files whose
values are passed from the RAVEN framework,

• writing new input files with the substituted variables using the GenericCode interface, and

• writing a Comma-Separated Value (CSV)–based RAVEN output file by reading the generated
standard CTF output file for each set of sampled variable(s).

Because the code interface drives only the CTF code, the in-memory CTF–FMU coupling approach was
used to run the coupled CTF–FMU simplified MSRE model. The steady-state coupling algorithm for the
in-memory coupling approach is shown below in Algorithm 1. For the steady-state model, alternating
pseudo-transient calculations of CTF and the transform FMU models were performed using a fixed-point
iteration scheme [1]. In the algorithm, x is the vector of temperatures, pressures, and mass flow rates, at the
core inlet and outlet; θCT F are the CTF model parameters; θFMU are the FMU model parameters; and i is
the outer iteration number.

Algorithm 1
Solution strategy for steady-state CTF-FMU (in-memory) coupling [1]

1: Initialization
2: (1) Set maximum number of outer iterations, N.
3: (2) Set under relaxation factors, ω ∈ (0, 1]. Default ω = 1.
4: (3) Set outer loop convergence tolerance. Default ε � 0.25K.
5: (4) Supply initial guess for x0 = {T0,in, ṁ0,in, P0,out, ...}

6: (5) Initialize CTF and FMU from input
7: for Outer step: i in {0, ...N} do
8: Execute a pseudo-transient CTF computation, given: xi:
9: x̃i+1 ← GCT F(xi, θCT F)

10: Execute a pseudo-transient FMU computation:
11: x̂i+1 ← FFMU(x̃i+1, θFMU)
12: Update the state vector with under relaxation
13: xi+1 = ωx̂i+1 + (1 − ω)x̂i

14: if |xi+1 − xi| < ε then
15: Break
16: end if
17: end for

Two modifications were made to the existing CTF code coupling interface in RAVEN. The first pertains to
the output parser. The existing interface reads the ‘.out’ output file, which is a legacy format, and thus a
new output parser was written to read the hdf5 output file. A method in the CTF CodeInterface class was
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modified to reflect the change to reading the hdf5 file when generated, and the relevant code is shown
below in Code 3.

1 def finalizeCodeOutput(self,command,output,workingDir):
2 """
3 This method is called by the RAVEN code at the end of each code run to create

CSV files containing the code output results.
4 @ In, command, string, the command used to run the just ended job
5 @ In, output, string, the Output name root
6 @ In, workingDir , string, current working dir
7 @ Out, response, dict, dictionary containing the data {var1:array, var2:array,

etc}
8 """
9 if os.path.isfile(os.path.join(workingDir ,output+’.native.h5’)):

10 outfile = os.path.join(workingDir ,output+’.native.h5’)
11 outputobj= ctfdataHDF5(outfile)
12 else:
13 outfile = os.path.join(workingDir ,output+’.out’)
14 outputobj= ctfdata(outfile)
15 response = outputobj.returnData()
16 return response

Listing 3. Snippet of the modifications to the CTF interface module in RAVEN. CTFinterface.py

A snippet of the new hdf5 output parser is shown in Listing 4. The current version of the code performs an
area averaging across all channels and provides key output variables as a CSV file for only the initial and
final states. Furthermore, the current hdf5 output parser is restricted to single-section models. A future
update will include support for multi-section models and expand the list of output variables. The hdf5
output parser uses methods from an external hdf5 module, which was developed as part of the CTF SubKit
package [9].

1 class ctfdataHDF5:
2 """
3 Class that parses CTF output file and reads in (output files type: .ctf.out) and

write a csv file
4 """
5 def __init__(self, filein):
6 """
7 Constructor
8 @ In, filen, string, file name to be parsed
9 @ Out, None

10 """
11 # check file existence
12 if ("ctf.native.h5" not in filein):
13 raise IOError(
14 "Check if the supported hdf5 output file (*.ctf.native.h5) is included.")
15

16 self.majorData , self.headerName = self.getData(filein)
17

18 def returnData(self):
19 """
20 Method to return the data in a dictionary
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21 @ In, None
22 @ Out, data, dict, the dictionary containing the data {var1:array,var2:array,etc

}
23 """
24 return data
25

26 def testConverged(self, convFile):
27 f = open(convFile)
28 convergedString = ’Steady state reached’
29 if f.read().find(convergedString)>0:
30 return True
31 else:
32 return False
33

34 def getData(self, h5File):
35 """
36 Method that reads the hdf5 file
37 @ In, string, output file (.ctf.native.h5)
38 @ Out, (dictArray , header), tuple, tuple containing:
39 -[0] -> dictionary containing the edit info
40 -[1] -> header
41 """
42 h5 = Hdf5Tools.Hdf5Interface(h5File)

Listing 4. Snippet of a new CTF HDF5 file parser for the CTF interface module in RAVEN.
ctfdataHDF5.py

An example of a sampled variable to be substituted into the CTF input file is shown in Listing 5. The
sampled variable is defined as follows: $RAVEN-SampledVar$, where ‘SampledVar’ is the sampled
variable name as defined in the RAVEN XML input file. The ‘GenericCode’ parser—the default option for
searching for the sampled variables in the CTF input file(s)—required a modification to accommodate
fractional sampled variable parameter values, say, as a percentage of the nominal input parameter.

1 ********************************************************************************
2 *GROUP 1 - Calculation Variables and Initial Conditions
3 ********************************************************************************
4 **NGR
5 1
6 **NGAS IRFC EDMD IMIX ISOL GINIT NOTRN MESH MAPS IPRP MFLX IBTM PPV NM14
7 1 2 0 3 0 171.0*$RAVEN-priMF$+171.0 1 1 0 4 0 0

7 0
8 *Card 1.2
9 ** GTOT AFLUX DHFRAC

10 171.0*$RAVEN-priMF$+171.0 6.40020 0.99990
11 *Card 1.3
12 ** PREF HIN HGIN VFRAC1 VFRAC2
13 3.44738 -633.88889 288.4200000 1.0000000 0.9999000

Listing 5. CTF input file snippet with the $ RAVEN$ flag for variable substitution from the RAVEN
framework. system_coupling_transform.inp

The input parser was modified to allow for a pre/post addition/multiplication of the sampled variable in the
text-based CTF input file. The current version checks only for the previous or the next character to the
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sampled variable and only allows for pre/post addition and multiplication. A future version will be
expanded to allow for more complex operations. A code snippet of the modified input parser showing the
functions that perform the pattern search is shown below in Listing 6.

1 def addPrefixFloat(keyType, start, line, segments , infileName , var):
2 """
3 Identifies any floats to be added/multiplied before an input variable
4 @ In, keyType, str, the operator type
5 @ In, start, int, starting position of input variable in the current line being

parsed in the input file
6 @ In, line, str, current line being parsed in the input file
7 @ In, segments, list, list of parsed line(s) segments
8 @ In, infileName , str, input file name
9 @ In, var, str, input variable name

10 @ Out, segments, list, modified list of parsed line(s) segments
11 @ Out, start, int, modified starting position
12 """
13 endMult = start-1
14 index = endMult -1
15 while True:
16 if index >= 0 and re.match(r’^[+-]|[.]|\d|e|E$’,line[index]) is not None:
17 index = index - 1
18 else:
19 break
20 startMult = index + 1
21 start = start - (endMult - startMult) - 1
22 segments[infileName].append(line[:start])
23 if keyType == ’+’:
24 segments[infileName].append(’ADD’)
25 if keyType == ’*’:
26 segments[infileName].append(’MULT’)
27 segments[infileName].append(line[startMult:endMult])
28 segments[infileName].append(var)
29 return (segments, start)
30

31 def addPostfixFloat(keyType, flag, start, end, line, segments , infileName , var):
32 """
33 Identifies any floats to be added/multiplied after an input variable
34 @ In, keyType, str, the operator type
35 @ In, flag, int, flag to indicate if input variable has been added or not
36 @ In, start, int, starting position of input variable in the current line being

parsed in the input file
37 @ In, end, int, end position of input variable in the current line being parsed

in the input file
38 @ In, line, str, current line being parsed in the input file
39 @ In, segments, list, list of parsed line(s) segments
40 @ In, infileName , str, input file name
41 @ In, var, str, input variable name
42 @ Out, segments, list, modified list of parsed line(s) segments
43 @ Out, end, int, modified end position
44 """
45 startMult = end+1
46 index = startMult+1
47 while True:
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48 if index <= len(line) and re.match(r’^[+-]|[.]|\d|e|E$’,line[index]) is not None
:

49 index = index + 1
50 else:
51 break
52 endMult = index - 1
53 end = end + (endMult - startMult) + 1
54 if flag != 1:
55 segments[infileName].append(line[:start])
56 segments[infileName].append(var)
57 if keyType == ’+’:
58 segments[infileName].append(’ADD’)
59 if keyType == ’*’:
60 segments[infileName].append(’MULT’)
61 segments[infileName].append(line[startMult+1:endMult+1])
62 return (segments, end)

Listing 6. Snippet of the modified generic input parser for the CTF code interface module in RAVEN
flag for pre/post addition and multiplication of sampled variables. CTFParser.py

To use the code coupling interface in the RAVEN input file, the <Code> XML node must be defined in the
Model block with the attribute ‘subType’, which takes the value of “CTF”, as shown below in Listing 7 [3].
The path of the CTF executable is specified in a child node, <executable>. Under the <Files> XML node,
the CTF input file must be specified with the ‘.inp’ extension. In the current study, an additional
thermophysical properties file was used to define the salt properties, and an ‘fmu_param.xml’ XML file
was used to define the coupling between CTF and the exposed FMU parameters, shown in Listing 1.

1 <RunInfo>
2 <WorkingDir>Testfmu1</WorkingDir>
3 <Sequence>testRun</Sequence>
4 <batchSize>25</batchSize>
5 <NumThreads>1</NumThreads>
6 <expectedTime>1:00:00</expectedTime>
7 <CustomMode class="MPIEXECSimulationMode" file="%BASE_WORKING_DIR%/mpi_custom.py">

mpicust</CustomMode>
8 <mode>mpicust</mode>
9 </RunInfo>

10

11 <Files>
12 <Input name="cobra_input" type="ctf" >system_coupling_transform.inp</Input>
13 <Input name="thermophy" type="thermophy" >thermophysical_properties.dat</Input>
14 <Input name="fmu_param" type="fmu_param" >fmu_param.xml</Input>
15 </Files>
16

17 <Models>
18 <Code name="MyCobraTF" subType="CTF">
19 <executable>
20 "/home/vk8/build/install/bin/cobratf"
21 </executable>
22 <csv>True</csv>
23 </Code>
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24 </Models>

Listing 7. RAVEN input file snippet showing the models block using the existing CTF code interface.
test1_ctf_fmu.xml

The second approach to running an external application with RAVEN is by using an External Model. An
External Model is an entity that is embedded in the RAVEN framework at run time via a Python module,
which is treated as a predefined internal model object [3]. The External Model paradigm provides the
ability to interact directly with a user-supplied python module which encapsulates arbitrary physics models
and IO routines. This allows for rapid prototyping in cases where a large fixed, compiled, executable
program may not be available, but a more flexible python-based physics model is available.

To flex this External Model RAVEN capability, an out-of-memory coupling between the TRANSFORM
FMU and CTF was developed aside from the previously developed in-memory coupling approach [1]. This
out-of-memory coupling is effectively a python driver script to automate the execution of CTF and
TRANSFORM in a coupled manner via boundary condition exchange via file input/output.

One advantage in using an external python based out-of-memory code coupling rather than the in-memory
coupling approach is the flexibility that it affords in incorporating powerful third party machine learning
(ML) and data processing libraries into the model. The in-memory coupling approach is not well suited to
rapidly prototype the inclusion of such ML tools within the FMU or CTF model. The Python script–based
coupling code is listed in Appendix A. There are two Python modules: ‘fmuCTF.py’ and
‘fmuCTFCouple.py’. The former module is loaded with the RAVEN input file and contains the methods
to interface with the RAVEN framework. The latter module contains the procedures to drive the CTF and
FMU code. The FMPy package is used to load and run the transform FMU in the script [10]. The
steady-state coupled CTF-FMU algorithm is based on a fixed-point scheme, similar to the in-memory
coupled algorithm (1).

To use the External Model interface in the RAVEN input file, the <ExternalModel> XML node must be
defined in the Model block with the attribute ‘ModuletoLoad’ which in the present case is ’fmuCTF’, as
shown below in Listing 8 [3]. The path of the CTF executable is specified in the child node, <executable>,
and the variables that are input/output to the external module are specified under the child node,
<variables>. Finally, under the <Files> XML node, the python scripts are specified along with
supplementary files, similar to the code interface coupling approach. One difference between the
in-memory and python scripting approach in terms of code predictions is that the predicted temperatures
for the python scripting approach were consistently biased lower by ∼ 1 ◦K (not shown here). It must be
noted that all the cases discussed henceforth are based on the in-memory coupling approach using the CTF
code interface in RAVEN.

1 <RunInfo>
2 <WorkingDir>Testfmu1</WorkingDir>
3 <Sequence>testRun</Sequence>
4 <batchSize>1</batchSize>
5 </RunInfo>
6

7 <Files>
8 <Input name="fmuCTF.py" type="">fmuCTF.py</Input>
9 <Input name="fmuCTFCouple.py" type="">fmuCTFCouple.py</Input>

10 <Input name="make_deck.py" type="subKit">make_deck.py</Input>
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11 <Input name="thermophysical_properties.dat" type="" >thermophysical_properties.dat
</Input>

12 <Input name="fmu_param.xml" type="" >fmu_param.xml</Input>
13 </Files>
14

15 <Models>
16 <ExternalModel ModuleToLoad="fmuCTF" name="PythonModule" subType="">
17 <variables>HEAT,AVG_ax21_chan_temp</variables>
18 <executable>
19 /home/vk8/build/install/bin/cobratf
20 </executable>
21 <fmuDir>transform_fmus</fmuDir>
22 </ExternalModel>
23 </Models>

Listing 8. RAVEN input file snippet showing the models block with an external code coupling
interface. test1_ctf_fmu_ext.xml

2.2 PARAMETER SWEEP OF PRIMARY FLOW RATES

The first case shown here is a parameter sweep of primary pump flow rates using the steady-state coupled
CTF–FMU algorithm of the simplified MSRE. The details of the nominal boundary conditions for the case
are discussed in detail in Gurecky et al. [1] and are not repeated here. The advantage of using RAVEN to
conduct this sweep is the relative ease of using multiple samplers and distributions for various sampled
variables and generating new input files, as previously discussed. A snippet of the RAVEN input file for
this case is shown in Listing 9. Twenty samples of the primary pump mass flow rate (fraction), ‘priMF’,
were drawn from a uniform distribution with a grid sampler with a ±25% variation with respect to the
nominal mass flow rate.

1

2 <Distributions>
3 <Uniform name="dist_for_priMF">
4 <lowerBound>-0.25</lowerBound>
5 <upperBound>0.25</upperBound>
6 </Uniform>
7 </Distributions>
8

9 <Samplers >
10 <Grid name="grid">
11 <variable name="priMF">
12 <distribution>dist_for_priMF</distribution>
13 <grid construction="equal" steps="20" type="value">-0.25 0.25</grid>
14 </variable>
15 </Grid>
16 </Samplers>

Listing 9. RAVEN input file snippet showing the sampler and distribution for a parameter sweep of
primary pump mass flow rates. test1_ctf_fmu.xml

The results of the parameter sweep of primary pump flow rates are shown in Figure 4. The nominal result
compares well with the actual MSRE operating condition [1]. As expected with an increase/decrease in the
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primary pump mass flow rate and with a constant heated rod power, the enthalpy change across the core
decreases/increases correspondingly. All the plots generated in this study were generated using external
Python scripts. However, advanced plotting tools are available within the RAVEN framework which will
be explored in a future study.

Figure 4. Change in core delta temperatures vs. primary pump flow rates for a parameter sweep of
primary pump flow rates of a coupled CTF core model and TRANSFORM FMU system model.

2.3 UNCERTAINTY ANALYSIS OF REACTOR POWER AND PRIMARY FLOW
RATES STEADY STATES

An uncertainty analysis of both the heated rod power and the primary pump mass flow rates was conducted
using the steady-state coupled approach. These variables were selected for treatment as sampled random
variables because they were exposed by the FMU model and easily accessible, in the future other model
parameters, such as heat exchanger convective heat transfer coefficients, can be targeted as part of a
forward propagation of uncertainty study. A snippet of the RAVEN input file for this case is shown below
in Listing 10. Two hundred samples of a combined set of heated rod power (fraction), ‘powerFrac’, and
the primary pump mass flow rate (fraction), ‘priMF’, were drawn from individual normal distributions
with a Monte Carlo sampler with a ±20% variation relative to the nominal values.
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1

2 <Distributions>
3 <Normal name="dist_for_powerFrac">
4 <mean>0.0</mean>
5 <sigma>0.05</sigma>
6 <upperBound>0.2</upperBound>
7 <lowerBound>-0.2</lowerBound>
8 </Normal>
9 <Normal name="dist_for_priMF">

10 <mean>0.0</mean>
11 <sigma>0.05</sigma>
12 <upperBound>0.2</upperBound>
13 <lowerBound>-0.2</lowerBound>
14 </Normal>
15 </Distributions>
16

17 <Samplers >
18 <MonteCarlo name="MC_samp">
19 <samplerInit>
20 <limit>200</limit>
21 </samplerInit>
22 <variable name="powerFrac">
23 <distribution>dist_for_powerFrac</distribution>
24 </variable>
25 <variable name="priMF">
26 <distribution>dist_for_priMF</distribution>
27 </variable>
28 </MonteCarlo>
29 </Samplers>

Listing 10. RAVEN input file snippet showing the sampler and distribution for an uncertainty analysis
of reactor power and primary pump mass flow rates. test2_ctf_fmu.xml

The results of the uncertainty analysis of reactor power and primary pump flow rates are shown in Figure 5.
The system response can be well characterized through this study, especially if the CTF model were also
coupled to a neutronics code. Even in the absence of a neutronics solver, the Gaussian density distribution
indicates the expected region of operation in terms of the enthalpy change and the primary pump mass flow
rate.
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Figure 5. Change in core delta temperatures vs. primary pump flow rates (with Gaussian density
contours overlaid) for an uncertainty analysis of reactor power and primary pump flows rates of a
coupled CTF core model and TRANSFORM FMU system model.
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3. TRANSIENT ANALYSIS OF HIGH-LOW COUPLING IN RAVEN

This section describes the workflow for performing a transient co-simulation of the coupled system. The
workflow description is followed by three use case demonstrations: a pump trip sensitivity study, a power
ramp sensitivity study, and a periodic perturbation study with frequency analysis. The goal is to
demonstrate common use cases for RAVEN in transient analysis.

3.1 OVERVIEW OF RAVEN WORKFLOW FOR TRANSIENT SIMULATIONS

The transient coupled CTF–FMU cases in RAVEN were run in a manner like the steady-state cases using a
similar code interface coupling approach. The ‘GenericCode’ input parser also allows for sampling
transient FMU variables, such as the secondary pump mass flow rate, via the ‘fmu_param.xml’ file. The
transient coupling algorithm is discussed in detail in Gurecky et al. [1]. The transient method, given by
algorithm 2, begins by specifying an initial condition and running a steady-state solve, similar to algorithm
1. Once the steady-state solve is completed, the transient CTF solve begins by executing one CTF time
step, where the time step size is calculated internally based on a Courant–Friedrichs–Lewy (CFL) stability
criteria. The FMU solver then executes a series of smaller substeps to avoid unstable behavior within the
FMU model. It should be noted that since the FMU is used in a Co-Simulation mode, the FMU is
responsible for implementing its own internal ODE stepping method that could be explicit depending on
the FMU implementation. Once the FMU solver has reached the same solution time, the CTF solver
advances, and the cycle repeats until the transient is completed. Five transient coupled cases were
conducted, starting with a pump trip case.

Algorithm 2
Solution strategy for transient CTF–FMU (in-memory) coupling [1]

1: Initialization
2: (1) Set the CTF and FMU time steps, dt.
3: (2) Supply initial guess for x0 = {T0,in, ṁ0,in, P0,out, ...}.
4: (3) Initialize CTF and FMU from input.
5: (4) Perform an initial steady-state calculation (based on Listing 1).
6: while tCTF <= T do
7: Set the FMU solution time to previous CTF time for sub-stepping:
8: tFMU = tCTF
9: Execute a transient CTF computation, given: xtCTF :

10: x̃t+dt ← GCT F(xtCTF , θCT F)
11: Step the transient time step of the CTF solve:
12: tCTF = tCTF + dtCTF
13: while tFMU <= tCTF do
14: Execute a transient FMU computation using the interpolated transient CTF solution:
15: xt+dt ← FFMU(x̃tFMU+dtFMU , θFMU)
16: Step the transient time step of the FMU solve:
17: tFMU = tFMU + dtFMU
18: end while
19: end while
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The transient coupled CTF–FMU cases were also tested using the External Model interface via the FMPy
package.

One difficulty encountered in the development of the External, FMPy based transient transient coupling
method is that CTF does not allow for a fixed time step to be set for its transient solver and instead
calculates the timestep based on the CFL number. To make data exchange simpler the time points at which
data exchange were passed from CTF to the FMU were pre-specified to be 0.2s, such that CTF was forced
to step the core model forward for 0.2s, then write output and restart files that could be parsed for the
boundary conditions to subsequently hand off to the FMU model.

The FMU solver used a fixed timestep of ∼ 0.076 s that was determined based on the mean timestep used
for the internal coupling. The total computational time for the python scripting transient coupling was
much higher than the internal coupling solve—by a factor of ∼ 8.5. The efficiency of the Python scripting
coupling would have to be considerably improved to come closer to the total run time of the internal
coupling solve. The reduced performance of the external FMPy based transient coupling was hypothesized
to be due, in part, to reading, writing, and parsing the input and output files of CTF and the FMU. In the
internal in-memory coupling strategy no such reliance on file exchange at each time step is required.
Further investigations to improving performance bottlenecks could be done.

3.2 TRANSIENT PUMP TRIP SENSITIVITY STUDY

The first coupled CTF-FMU transient case performed was a secondary loop transient with a consequent
reduction in heated rod power, simulating a SCRAM event [1]. The transients were all initiated after a
lead-in period of 4,000 s for the system to reach thermal equilibrium. Although the pump coast-down rate
investigated in Gurecky et al. [1] was based on an MSRE technical report to simulate the transient
operating conditions for the 10 s transient in which the secondary mass flow rate drops from nominal to
∼5%, in the current study, the coast-down rate was varied while preserving the power reduction curve. A
snippet of the RAVEN input file for this case is shown below in Listing 11. Nine samples of the pump
coast-down transient time (fraction), ‘timeFrac’, were drawn from a uniform distribution with a grid
sampler with a ±30–40% variation with respect to the expected pump coast-down time.

1

2 <Distributions>
3 <Uniform name="dist_for_timeFrac">
4 <lowerBound>0.6</lowerBound>
5 <upperBound>1.3</upperBound>
6 </Uniform>
7 </Distributions>
8

9 <Samplers>
10 <Grid name="grid">
11 <variable name="timeFrac">
12 <distribution>dist_for_timeFrac</distribution>
13 <grid construction="equal" steps="8" type="value">0.6 1.3</grid>
14 </variable>
15 </Grid>
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16 </Samplers>

Listing 11. RAVEN input file snippet showing the sampler and distribution for a transient pump trip
sensitivity study. test3_ctf_fmu.xml

The results of the pump coast-down analysis are shown in Figure 6. Figure 6a and Figure 6c are essentially
boundary conditions. As evidenced in Figure 6b, some cases did not converge all the way to the end of the
transient. From a solver point of view, this type of study is useful in understanding the robustness of the
coupled solver toward improving its convergence for some of these extreme conditions. For a more
accurate analysis, a neutronics solver would be required, as mentioned previously. Using the in-memory
coupling approach, the neutronics solver within the VERA toolkit could be used to couple it with CTF.
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(a) Simulated sweep of pump trip frequency variation with time.

(b) Core inlet (solid lines) and outlet (dashed lines) temperatures vs.
time for a sweep of pump trip frequency variation.

Figure 6. Sweep of pump trip frequency variation with time of a coupled CTF core model and
TRANSFORM FMU system model.
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(c) Pump secondary mass flow rates vs. time for a sweep of pump trip
frequency variation.

Figure 6. Sweep of pump trip frequency variation with time of a coupled CTF core model and
TRANSFORM FMU system model (contd.).
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Results of the core inlet and outlet temperatures variation for the pump trip sensitivity study are shown
below (Figure 7) for both the (in-memory) internal coupling interface (solid and dashed lines) and the
Python scripting interface (markers). The results of the Python scripting interface are uniformly shifted
upward by 1 K. For all cases except for the 0.6 factor case, both the results compare reasonably well across
‘timeFrac’ factors for most of the transient. The 0.6 ‘timeFrac’ factor case requires greater investigation,
although the poor CTF convergence during the transient might be the contributing factor for the difference.

Figure 7. Comparison of core inlet and outlet temperatures with time for in-memory coupling (solid
and dashed lines) and Python scripting coupling (markers) for a sweep of pump trip frequency vari-
ation.

3.3 TRANSIENT POWER RAMP SENSITIVITY STUDY

The second coupled CTF–FMU transient case performed was a 200 s heated rod power ramp transient with
mirror image rising and falling power profiles for one cycle 8a, similar to Gurecky et al. [1]. Utilizing the
capabilities of RAVEN, the amplitude of the profiles were varied to study the system response. A snippet
of the RAVEN input file for this case is shown in Listing 12. Eleven samples of the power ramp amplitude
(fraction), ‘powerFrac’, were drawn from a uniform distribution with a grid sampler variation of 0–30%
with respect to a baseline power ramp. The highest and lowest peak amplitudes were within the expected
MSRE operating range.

1
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2 <Distributions>
3 <Uniform name="dist_for_powerFrac">
4 <lowerBound>0.0</lowerBound>
5 <upperBound>0.30</upperBound>
6 </Uniform>
7 </Distributions>
8

9 <Samplers>
10 <Grid name="grid">
11 <variable name="powerFrac">
12 <distribution>dist_for_powerFrac</distribution>
13 <grid construction="equal" steps="10" type="value">0.05 0.30</grid>
14 </variable>
15 </Grid>
16 </Samplers>

Listing 12. RAVEN input file snippet showing the sampler and distribution for a rod power amplitude
and frequency perturbation study. test4_ctf_fmu.xml

The results of the reactor power ramp transient study are shown in Figure 8. Interestingly, the system
response is sharper for the initial ramp up than the ramp down. The CTF core model is a simplified model,
and a more accurate model with heat loss calibration would provide a more accurate representation of the
system’s thermal inertia.
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(a) Simulated sweep of rod power ramp amplitude variation with time.

(b) Core inlet (solid lines) and outlet (dashed lines) temperatures vs.
time for a sweep of rod power ramp amplitude variation.

Figure 8. Sweep of rod power ramp amplitudes with time of a coupled CTF core model and TRANS-
FORM FMU system model.
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3.4 PERIODIC PERTURBATION AND FREQUENCY ANALYSIS STUDY

One of the primary goals of this work was to demonstrate the capabilities of RAVEN and how it can be
used to study coupled systems consisting of a large diversity of scales, complexities, and physical
behaviors. To understand the integral behavior resulting from the coupling of such a diversity of systems,
RAVEN can be used to develop an understanding of the coupled configuration by studying the impact that a
given input actuation can have on measured outputs as the perturbations propagate through the network of
subcomponents and coupled systems. This understanding can be challenging to obtain from first-principles
as systems increase in complexity, involving different physical phenomena on different scales. For example,
if a nuclear reactor’s primary loop is coupled to thermal energy storage, power conversion systems, and
electricity distribution lines, then it can be difficult to understand how a change in reactor power could
impact the grid frequency measured along the distribution lines, or to understand the impact that a change
in electricity demand might have on the conditions inside the thermal energy storage vessels or reactor
primary loop. Using RAVEN, it is possible to run a large series of diagnostic tests and systematically
sweep across time scales for phenomena of interest to observe the behavior of the coupled systems and
provide a concise description of the nature of these coupled systems. This was done by utilizing periodic
perturbations at different frequencies and analyzing the resulting data in the frequency domain.

3.4.1 OVERVIEW OF FREQUENCY DOMAIN STUDIES USING RAVEN

Steady-state and transient simulations provide useful information for studying the performance of coupled
systems under expected operating conditions and anticipated transient scenarios. However, these
simulations have their limits: they might perturb only certain aspects of a given system over a limited range
of time scales. To obtain a greater understanding of the nature and behavior of coupled systems, it is often
useful to study the behavior in the frequency domain. By perturbing the relevant inputs to the system with
periodic input signals at different frequencies, the coupled relationships can be systematically studied over
large time scale ranges to reveal any unexpected behavior or instabilities and provide a concise description
of how outputs at different locations are impacted by changes in different input conditions. Here, a
technique is demonstrated using simulations of the CTF–FMU coupling that could be used to characterize
such behavior by using RAVEN to perform sensitivity studies with periodic perturbations and measuring
the resulting changes in output variables.

3.4.2 TEST SEQUENCE DESIGN

For these tests, a square wave periodic perturbation was selected as the input sequence (Figure 9). A square
wave is a binary sequence that can concentrate around 81% of the signal energy in the fundamental
harmonic corresponding to the period of oscillation (Figure 10). They are generated easily by making a
binary approximation of a sine wave, where a positive value is equal to the positive amplitude, and a
negative value corresponds to the negative amplitude. This is typically calculated by dividing a sine wave
of a certain frequency by the absolute value of that same sine wave at the same frequency, multiplying the
result by the desired amplitude for the input perturbation, and then adding the steady-state input value to
the perturbation value to obtain a time-dependent input sequence for actuating the system.

In this scenario, the parameters that can be changed are the input sequence amplitude and the input
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sequence frequency. RAVEN was used to generate the parameters based on different distributions and
perform the simulations of the input with the coupled CTF–FMU model.

Figure 9. Periodic square wave input perturbation on reactor power and resulting reactor outlet
temperature

3.4.3 CHARACTERIZATION OF LOW FREQUENCIES

To characterize the system across a large range of time scales, it was necessary to obtain a characterization
of the lower frequency behavior. Lower frequencies require long simulation times, and in this scenario, the
low frequencies were far from the time scales for the main phenomena of interest. For this reason, only a
single slow transient was simulated to obtain the frequency response at the lower frequencies. The first
transient case ran for a total of ∼160,000 s, and it is shown in Figure 11.

3.4.4 CHARACTERIZATION WITH DISTRIBUTIONS OF PERTURBATION AMPLITUDES
AND FREQUENCIES

3.4.4.1 Distributions with Variable Fraction of Base Value For the higher frequencies, an array of
periodic perturbation tests were generated using RAVEN to demonstrate how such a technique can be
useful for understanding high-low coupled systems. In the first set of simulations, 40 samples of the heated
power amplitude (fraction), ‘powerFrac’, and perturbation frequency (fraction), ‘timeFrac’, were drawn
from a uniform distribution with a Monte Carlo sampler. A snippet of the RAVEN input file for this case is
shown in Listing 13. The distribution of values produced by RAVEN for this input are shown in Figure 13.

1

2 <Distributions>
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Figure 10. Signal energy spectrum of a square wave perturbation

3 <Uniform name="dist_for_powerFrac">
4 <lowerBound>0.0</lowerBound>
5 <upperBound>0.30</upperBound>
6 </Uniform>
7 <Uniform name="dist_for_timeFrac">
8 <lowerBound>10.0</lowerBound>
9 <upperBound>100.0</upperBound>

10 </Uniform>
11 </Distributions>
12

13 <Samplers >
14 <MonteCarlo name="MC_samp">
15 <samplerInit>
16 <limit>40</limit>
17 </samplerInit>
18 <variable name="powerFrac">
19 <distribution>dist_for_powerFrac</distribution>
20 </variable>
21 <variable name="timeFrac">
22 <distribution>dist_for_timeFrac</distribution>
23 </variable>
24 </MonteCarlo>
25 </Samplers>

Listing 13. RAVEN input file showing the sampler and distribution for a rod power frequency
perturbation study. test5_ctf_fmu.xml

3.4.4.2 Distribution with Fixed Fraction of Base Values An additional coupled CTF–FMU transient
case to characterize the system frequency response involved a perturbation of frequency and heat rod power
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(a) Power perturbation for low-frequency transient

(b) Resulting temperature variation for low-frequency transient

Figure 11. Low-frequency square wave power perturbation and resulting temperature changes.
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Figure 12. Overview of the selected wave frequencies and amplitudes from RAVEN for test cases
sampled with uniform distribution with the Monte Carlo sampler, for variable fractions of the base
value.
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magnitude for a fixed perturbation (±10%) of amplitude variation. A snippet of the RAVEN input file for
this case is shown in Listing 14. Forty samples of the heated rod power magnitude (fraction), ‘powerFrac’,
and perturbation frequency (fraction), ‘timeFrac’, were drawn from a uniform distribution with a Monte
Carlo sampler. The distribution of values produced by RAVEN for this input are shown in Figure 13.

Figure 13. Overview of the selected wave frequencies and amplitudes from RAVEN for test cases
sampled with uniform distribution with the Monte Carlo sampler, for fixed fractions of the base value.
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1

2 <Distributions>
3 <Uniform name="dist_for_powerFrac">
4 <lowerBound>-0.20</lowerBound>
5 <upperBound>0.20</upperBound>
6 </Uniform>
7 <Uniform name="dist_for_timeFrac">
8 <lowerBound>10.0</lowerBound>
9 <upperBound>100.0</upperBound>

10 </Uniform>
11 </Distributions>
12

13 <Samplers >
14 <MonteCarlo name="MC_samp">
15 <samplerInit>
16 <limit>40</limit>
17 </samplerInit>
18 <variable name="powerFrac">
19 <distribution>dist_for_powerFrac</distribution>
20 </variable>
21 <variable name="timeFrac">
22 <distribution>dist_for_timeFrac</distribution>
23 </variable>
24 </MonteCarlo>
25 </Samplers>

Listing 14. RAVEN input file showing the sampler and distribution for a rod power frequency
perturbation study. test6_ctf_fmu.xml

3.4.5 ANALYSIS AND RESULTS

After the simulations were performed using RAVEN, the data underwent frequency analysis. First, the time
segment containing the periodic perturbations was isolated from the larger dataset that included an
approach to steady state and any post-perturbation transients. From this segment, the starting points and
end points of the individual periods were identified, enabling the removal of the first few periods before the
system stabilized to a steady-state periodicity about a stable mean without significant variable drift away
from a mean value. The system frequency response is not defined by the absolute value of the variable
values, but rather the change in the input and the resulting measured change in the output about some
steady state achieved before the perturbations were implemented. Before frequency analysis could be
performed on the data, the steady-state value was subtracted from the snipped data to obtain the change in
input and change in output as a function of time.

The discrete Fourier transform was calculated for both the input and output perturbation data. The
frequency response of the system was then calculated by dividing the discrete Fourier transform of the
output perturbation by the discrete Fourier transform of the input perturbation. This gives a complex valued
function with the magnitude providing the gain and the argument providing the phase angle. The bin values
of the Fourier transform were then correlated to frequency values using the sample time of the data with an
upper limit given by the Nyquist frequency, and the lower limit was given by the fundamental harmonic.
During the analysis of this work, it became clear that initial simulations had floating time step values
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instead of a constant time step. Frequency domain analysis requires a constant sampling rate. This variable
sampling rate was an artifact of the CTF tool and not a result of RAVEN. Luckily, it is possible to use
RAVEN to break the simulation into constant time step values and run them as separate simulations if fixed
interval values are needed.

Input perturbations are typically designed to study certain frequencies in a system by spreading signal
energy across chosen frequencies. The basic square wave that was used for this demonstration allowed for
roughly 81% of the signal energy to be concentrated in the fundamental harmonic while still allowing for a
binary input sequence that is easy to implement in a large variety of systems. The frequency response
characteristics were filtered to retain frequencies with the highest signal energy calculated from the
measured input perturbation. The RAVEN simulations ran sequences with different fundamental
harmonics. The frequency domain data from all these tests were combined to provide a
frequency-dependent description of the coupled system’s frequency response characteristics, providing a
concise description of the transient behavior of this coupling across a large frequency range.

These analysis steps were performed externally to RAVEN; however, if the analysis methods were included
within RAVEN, it could make these techniques readily available for quickly performing this type of
characterization with a large number of actuated inputs and measured outputs.

The resulting Bode plots for the variable-fraction and fixed-fraction distributions are shown in Figure 14
and 15, respectively.

Figure 14. Bode plot of gain and phase angle from variable-fraction distribution.
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Figure 15. Bode plot of gain and phase angle from from fixed-fraction distribution.
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4. CONCLUSIONS

This work demonstrated new functionality and applications that stemmed from the development of
high-fidelity to low-fidelity (high-low) coupling for system simulations. RAVEN is a useful platform for
coordinating these simulations and performing uncertainty quantification in this kind of high-low coupled
system models. The FMU is an excellent methodology for interfacing with more complex system models,
but there are limitations. Time step handling for the exchange of data between models can be affected for
codes that allow for floating time steps. This can significantly increase the amount of processing time by
the need to perform more information exchange between the models. This can result in a much finer time
discretization in the lower fidelity model than what is needed, which slows calculation speed. Additionally,
in-memory coupling of the codes was found to provide for much better computational performance.
However, this may be due to the unoptimized usage of FMPy in Python. The additional need to exchange
data in the out-of-memory implementations could make high-low coupling expensive.

Demonstrating RAVEN’s ability to perform high-low coupled uncertainty quantification is an important
step toward modeling increasingly more complex integrated energy systems in which overall system
behavior will become more intertwined and performance effects of individual components are hard to
quantify at the system scale. This tool should enable further exploration of these systems-of-systems in
which mixed fidelity and mixed models prevail. Future work will continue to explore and expand these
capabilities with RAVEN and FMUs.

Periodic perturbations were used to demonstrate techniques that can be used with RAVEN to investigate
the transient nature of coupled systems across various time scales. It was possible to use RAVEN to create
a distribution of test simulations that studied coupled system behavior at a range of time scales. Future
work could incorporate these capabilities into RAVEN to make it possible to complete frequency analysis
and characterization of the transient behavior of complex coupled configurations within the current
framework. This would allow for rapid assessment and iteration of design configurations to achieve desired
transient capabilities in systems. This could be valuable for validating load-following capabilities of
integrated energy systems or evaluating potential resonance behavior that might emerge when merging
different systems, among other applications.
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APPENDIX A. RAVEN CTF-FMU external model procedures

The main external model Python script is listed below, followed by the supplementary code procedures
script. The procedure in the main script interface with RAVEN includes reading from the external model
block in the RAVEN input file, relevant variable(s) initialization, receiving inputs coming from the RAVEN
framework, passing the inputs to the supplementary code procedures script, and returning the output to
RAVEN. For simultaneous runs of the external code, the necessary input files along with the supplementary
code procedures script are copied to new folders created in the working directory. The supplementary
module is then loaded from the working folder, and the relevant procedures are called.

1 """
2 Created on October 15, 2021
3

4 @author: Vineet Kumar, ORNL
5 """
6 import numpy as np
7 import os
8 import sys
9 import shutil

10 import importlib.util
11

12 def _readMoreXML(self,xmlNode):
13 """
14 Method to read additional params from the RAVEN XML input file
15 @ In, object, xml object, XML object
16 @ Out, None
17 """
18 self.ctfExe = None
19 self.fmuDir = None
20 for child in xmlNode:
21 if child.tag == ’executable’:
22 self.ctfExe = child.text
23 if child.tag == ’fmuDir’:
24 self.fmuDir = child.text
25 if self.ctfExe is None:
26 raise IOError("CTF executable not provided")
27 if self.fmuDir is None:
28 raise IOError("FMU Directory not provided")
29 if not isinstance(self.ctfExe, str):
30 raise IOError("CTF executable should be a (string) path " + self.ctfExe)
31 if not isinstance(self.fmuDir, str):
32 raise IOError("FMU directory should be a (string) dirname " + self.fmuDir)
33

34 def initialize(self,runInfo,inputs):
35 """
36 Method to define all variable initializations defined in ExternalModel
37 @ In, runInfo, dict, Dictionary of the run parameters
38 @ In, inputFiles , file object, File object of all input files
39 @ Out, None
40 """
41 self.inputFiles = inputs
42 self.workDir = runInfo[’WorkingDir’]
43 self.batchSize = runInfo[’batchSize’]
44 return
45
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46 def createNewInput(self,inputs,samplerType ,**Kwargs):
47 """
48 Method to pass the information coming from the RAVEN framework
49 @ In, inputs, dict, Dictionary of other input variables
50 @ In, samplerType , file object, File object of all input files
51 @ In, **Kwargs, dict, variable dictionary of sampled variables
52 @ Out, Dictionary of sampled variables
53 """
54 self.caseNo = Kwargs[’prefix’]
55 # return sampled variables as a dict
56 return Kwargs[’SampledVars’]
57

58 def run(self,Input):
59 """
60 Method to define all variable
61 @ In, Input, dict, Dictionary of the run parameters
62 @ Out, None
63 """
64 caseDir = ’case’ + self.caseNo
65 printOutput = True
66 # Move input scripts into a seperate directory
67 for dirName in os.listdir(self.workDir):
68 # Does not clear working directory. User has to manually clear.
69 if dirName == caseDir and os.path.isdir(dirName):
70 shutil.rmtree(dirName, ignore_errors=True)
71 os.makedirs(caseDir)
72 files = os.listdir(self.workDir)
73 for file in files:
74 if os.path.isfile(file):
75 if file.endswith(".xml") or file.endswith(".dat") or file.endswith(".txt")

or file.endswith("fmuCTFCouple.py") or file.endswith("make_deck.py"):
76 shutil.copy(file,caseDir)
77 workDir = os.path.join(self.workDir,caseDir)
78 # Load the python module in the directory
79 spec = importlib.util.spec_from_file_location(’fmuCTFCouple’,os.path.join(workDir,

’fmuCTFCouple.py’))
80 fmuCTFCouple = importlib.util.module_from_spec(spec)
81 spec.loader.exec_module(fmuCTFCouple)
82 if self.batchSize > 1:
83 printOutput = False
84 assert(len(Input.keys())==1)
85 fmu = fmuCTFCouple.solveFMUCTF(self.fmuDir, self.ctfExe, self.inputFiles , workDir,

printOutput , Input)
86 self.AVG_ax21_chan_temp = fmu.solveSteadyFMU()

Listing 15. Main RAVEN external code procedure fmuCTF.py
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The supplementary module contains the procedures that perform the steady-state CTF–FMU coupling
using the Picard iteration scheme and then returns the output to the main module.

1 """
2 Created on October 15, 2021
3

4 @author: Vineet Kumar, ORNL
5 """
6 from __future__ import division , print_function , unicode_literals , absolute_import
7 import os
8 import sys
9 import shutil

10 import subprocess as sp
11 from fmpy import read_model_description , extract, dump
12 from fmpy.fmi2 import FMU2Slave
13 from fmpy.util import plot_result , download_test_file
14 import numpy as np
15 import csv
16 import pandas as pd
17 import xml.etree.ElementTree as ET
18 from collections import OrderedDict
19 mypath = os.path.dirname(os.path.abspath(__file__))
20 from ctfdataHDF5 import ctfdataHDF5
21 from GenericCodeInterface import GenericParser
22

23 class solveFMUCTF:
24 """
25 Class that runs the coupled CTF-FMU steady state solve to convergence
26 """
27 def __init__(self, fmuDir, ctfExe, inputFiles , workDir, printOutput , Input):
28 """
29 Constructor
30 @ In, fmuDir, string, FMU working directory name
31 @ In, ctfExe, string, CTF executable
32 @ In, inputFiles , file objects, list of input file objects
33 @ In, workDir, string, Working directory path
34 @ In, printOutput , bool, print output to screen.
35 @ In, Input, dict, dictionary of perturbed var(s).
36 @ Out, None
37 """
38 # Define the simulation parameters for a steady state run
39 # These are hardcoded for now
40 self.start_time = 0.0
41 self.threshold = 1.0
42 self.step_size = 0.2
43 self.nstepMax = 25000
44

45 # Unit conversions
46 self.t_K_F = 1.8
47 self.t_F_K = 1.0/self.t_K_F
48 self.t_Pa_bar = 1.e-5
49 self.t_bar_Pa = 1.0/self.t_Pa_bar
50 self.t_bar_psi = 14.5038
51 self.t_psi_psf = 144.0
52 self.t_bar_psf = self.t_bar_psi * self.t_psi_psf
53 self.t_psf_bar = 1.0/self.t_bar_psf
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54 self.t_lbm_kg = 0.453592
55 self.t_kg_lbm = 1.0 / self.t_lbm_kg
56

57 # read the model description
58 fmu_filename = None
59 self.workDir = workDir
60 self.fmuDir = os.path.join(self.workDir, ’../’, fmuDir)
61 self.printOutput = printOutput
62 self.ctfExe = ctfExe
63 self.inputFiles = inputFiles
64

65 if not os.path.isdir(self.fmuDir):
66 raise IOError("fmu directory is incorrect " + self.fmuDir)
67 for file in os.listdir(self.fmuDir):
68 if file.endswith(’.fmu’):
69 fmu_filename = os.path.join(self.fmuDir,file)
70 break
71 if fmu_filename is not None:
72 model_description = read_model_description(fmu_filename)
73 else:
74 raise IOError("fmu object not found in " + self.fmuDir)
75 if self.printOutput:
76 dump(fmu_filename)
77

78 # collect the input and output value references
79 self.fmuInputs = OrderedDict()
80 self.fmuOutputs = OrderedDict()
81 for variable in model_description.modelVariables:
82 if variable.causality == ’input’:
83 self.fmuInputs[variable.name] = variable.valueReference
84 if variable.causality == ’output’:
85 self.fmuOutputs[variable.name] = variable.valueReference
86 # Make sure the FMU only supplies mflow_corein , T_corein, and

P_coreout
87 assert(variable.name in [’T_out’, ’P_out’, ’mflow_out’])
88

89 # Make sure the FMU takes in mflow_coreout , T_coreout , and P_corein, amongst
optional args

90 # Better variable name checking feature to be implemented.
91 assert(all(var in list(self.fmuInputs.keys()) for var in [’T_in’, ’P_in’, ’

mflow_in’]))
92 # FMU can only output 3 variables currently. To be modified.
93 assert(len(list(self.fmuOutputs.keys()))==3)
94

95 # Error checking for CTF input files.
96 self.qPrime = None
97 varFound = None
98 self.checkCTFInp(self.inputFiles)
99 fmuParamPertFlag = 0 # Flag to check if fmu_param.xml is perturbed.

100 if ’HEAT’ in Input.keys():
101 self.qPrime = Input[’HEAT’]
102 else:
103 fmuParamPertFlag = 1
104 keys = list(Input.keys())
105 pertName = "$RAVEN-" + keys[0] + "$"
106 pertValue = Input[keys[0]]
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107

108 # Parse the xml file
109 if not os.path.isfile(os.path.join(self.workDir, ’fmu_param.xml’)):
110 raise IOError("fmu_param.xml not found in working directory")
111 filenameXML = os.path.join(self.workDir, ’fmu_param.xml’)
112 xmlDict = self.readXML(filenameXML)
113 # Remove the fmu_param file from the work dir because it is read by CTF
114 # and if it contains a perturbed variable CTF would throw up an error
115 # Future capability to be added to use the raven generic parser to
116 # write to the fmu_params file.
117 os.remove(os.path.join(self.workDir, ’fmu_param.xml’))
118 # Get list of inputs and outputs from XML file
119 rowNames = list(xmlDict.index)
120 indicesInit = [index for index, strings in enumerate(rowNames) if ’

FMU_VAR_INIT’ in strings]
121 indicesBC = [index for index, strings in enumerate(rowNames) if ’BC_VAR_NAMES’

in strings]
122 indicesTol = [index for index, strings in enumerate(rowNames) if ’tol’ in

strings]
123 indicesLog = [index for index, strings in enumerate(rowNames) if ’FMU_VAR_LOG’

in strings]
124

125 fmuInit = OrderedDict()
126 fmuBC = OrderedDict()
127 self.fmuTol = OrderedDict()
128 self.fmuLog = OrderedDict()
129

130 for index in indicesInit:
131 if fmuParamPertFlag == 1 and xmlDict.iloc[index]["value"] == pertName:
132 xmlDict.iloc[index]["value"] = str(pertValue)
133 varFound = True
134 try:
135 float(xmlDict.iloc[index]["value"])
136 except ValueError:
137 print(xmlDict.iloc[index]["value"] + " cannot be converted to a float

in fmu_param.xml")
138 fmuInit.update({xmlDict.iloc[index]["name"]: \
139 float(xmlDict.iloc[index]["value"])})
140 if fmuParamPertFlag == 1 and not varFound:
141 raise IOError("Incorrect perturbed variable found in fmu_param.xml file")
142 # Currently unused
143 for index in indicesBC:
144 fmuBC.update({xmlDict.iloc[index]["name"]: \
145 xmlDict.iloc[index]["value"][0]})
146

147 for index in indicesTol:
148 try:
149 float(xmlDict.iloc[index]["value"])
150 except ValueError:
151 print(xmlDict.iloc[index]["value"] + " cannot be converted to a float

in fmu_param.xml")
152 self.fmuTol.update({xmlDict.iloc[index]["name"]: \
153 float(xmlDict.iloc[index]["value"])})
154 for index in indicesLog:
155 self.fmuLog.update({xmlDict.iloc[index]["name"]: \
156 xmlDict.iloc[index]["value"]})
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157

158 for key in self.fmuLog.keys():
159 assert(key in self.fmuInputs.keys() or key in self.fmuOutputs.keys())
160

161 assert(all(var in list(self.fmuTol.keys()) for var in [’toltemp’, ’tolmf’, ’
tolpress’, ’toltemp_FMU’, ’tolmf_FMU’, ’tolpress_FMU’]))

162 # Add relaxation params if not specified in fmu_params
163 if not ’ulax_T_corein’ in self.fmuTol.keys():
164 self.fmuTol.update({’ulax_T_corein’:1.0})
165 if not ’ulax_P_coreout’ in self.fmuTol.keys():
166 self.fmuTol.update({’ulax_P_coreout’:1.0})
167 if not ’ulax_mflow_corein’ in self.fmuTol.keys():
168 self.fmuTol.update({’ulax_mflow_corein’:1.0})
169 # Set initial values based on the values provided in the XML file
170 self.initInputs = []
171 self.initOutputs = []
172 for input in self.fmuInputs.keys():
173 assert(input in fmuInit.keys())
174 self.initInputs.append(fmuInit[input])
175

176 for output in self.fmuOutputs.keys():
177 if output == ’P_out’:
178 self.initOutputs.append(fmuInit[’P_in’])
179 if output == ’T_out’:
180 self.initOutputs.append(fmuInit[’T_in’])
181 if output == ’mflow_out’:
182 self.initOutputs.append(fmuInit[’mflow_in’])
183

184 # extract the FMU
185 self.unzipdir = extract(fmu_filename)
186

187 self.fmu = FMU2Slave(guid=model_description.guid,
188 unzipDirectory=self.unzipdir ,
189 modelIdentifier=model_description.coSimulation.modelIdentifier

,
190 instanceName=’instance1’)
191

192 # initialize
193 self.fmu.instantiate()
194 self.fmu.setupExperiment(startTime=self.start_time)
195 self.fmu.enterInitializationMode()
196 self.fmu.exitInitializationMode()
197

198 def readXML(self, xmlFileName):
199 """
200 Method to parse the XML params file
201 @ In, filename, string, FMU XML params file
202 @ Out, data, dict, the pandas dataframe containing the data
203 """
204 with open(xmlFileName , ’r’) as xml_file:
205 # read the data and store it as a tree
206 tree = ET.parse(xml_file)
207

208 # get the root of the tree
209 root = tree.getroot()
210

45



211 # return the DataFrame
212 return self.iterXML(root)
213

214 def iterXML(self, root):
215 """
216 Method to return the XML data in a pandas DataFrame
217 @ In, xml root, object, parsed XML root
218 @ Out, data, dict, the dictionary containing the data
219 """
220 # temporary dictionary to hold values
221 temp_dict = {}
222 flag = 0
223 for child in root:
224 # iterate through all the fields
225 if child.tag == ’ParameterList’:
226 index = 0
227 for var in child:
228 temp_dict.update({child.attrib[’name’] + str(index):var.attrib})
229 index +=1
230 else:
231 temp_dict.update({’tol’+ str(flag):child.attrib})
232 flag += 1
233

234 return(pd.DataFrame.from_dict(temp_dict , orient="Index"))
235

236 def checkCTFInp(self, inputFiles):
237 """
238 Performs error checking for CTF input files.
239 @ In, inputFiles , list, list of the input files
240 @ Out, None
241 """
242 vuqParam = []
243 vuqMult = []
244 subKit = []
245 # otherInp = []
246 # inputDict = {}
247 for inputFile in inputFiles:
248 if inputFile.getFilename() == ’fmuCTF.py’ or inputFile.getFilename() == ’

fmuCTFCouple.py’ or inputFile.getFilename() == ’thermophysical_properties.dat’:
249 continue
250 if inputFile.getType().strip().lower() == "vuq_param":
251 vuqParam.append(inputFile)
252 elif inputFile.getType().strip().lower() == "vuq_mult":
253 vuqMult.append(inputFile)
254 elif inputFile.getType().strip() == "subKit":
255 subKit.append(inputFile)
256 # else:
257 # otherInp.append(inputFile)
258

259 if len(subKit) != 1:
260 raise IOError(’One subKit based input file must be defined.’)
261 # raise error if the names of the vuq files are defined different than hard

coded ones (not allowed)
262 hardCodedInputNames = ["make_deck.py", "vuq_mult.txt", "vuq_param.txt"]
263 # multiplier modifier name check
264 if (len(subKit) == 1) and (subKit[0].getFilename() != hardCodedInputNames[0]):
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265 raise IOError("Name of the subKit input file must be " +
hardCodedInputNames[0] + " in RAVEN input and placed in the working directory. No
other name is accepted!")

266 if (len(vuqMult) == 1) and (vuqMult[0].getFilename() != hardCodedInputNames
[1]):

267 raise IOError("Name of the multiplier modifier file must be " +
hardCodedInputNames[1] + " in RAVEN input and placed in the working directory. No
other name is accepted!")

268 # parameter modifier name check
269 if (len(vuqParam) == 1) and (vuqParam[0].getFilename() != hardCodedInputNames

[2]):
270 raise IOError("Name of the parameter modifier file must be " +

hardCodedInputNames[2] + " in RAVEN input and placed in the working directory. No
other name is accepted!")

271

272 def genCTFInput(self, **Kwargs):
273 """
274 Method to return the passed simulation working directory
275 @ In, Kwargs, dict, variable inputs
276 @ Out, ctfName, string, ctf input file name
277 @ Out, nLev, int, Number of nodes
278 """
279 cmd = []
280 cmd.extend([’python2’, ’make_deck.py’])
281 if ’inletTemp’ in Kwargs.keys():
282 cmd.extend([’--inletTemp’, str(Kwargs[’inletTemp’])])
283 if ’inletFlow’ in Kwargs.keys():
284 cmd.extend([’--inletFlow’, str(Kwargs[’inletFlow’])])
285 if ’qPrime’ in Kwargs.keys():
286 cmd.extend([’--qPrime’, str(Kwargs[’qPrime’])])
287 p1 = sp.Popen(cmd, stderr=sp.PIPE, stdout=sp.PIPE, universal_newlines=True,

cwd=mypath)
288 stdout, stderr = p1.communicate()
289 if p1.returncode != 0:
290 raise IOError("Failed to generate CTF input file %d %s %s" % (p1.

returncode , stdout, stderr))
291 # Fixed params. To be modified in the future.
292 ctfFname = ’system_coupling_transform.inp’
293 nLev = 20
294 return (ctfFname, nLev)
295

296 def runCTF(self, ctfFname):
297 """
298 Method to return the passed simulation working directory
299 @ In, ctfFname, float, CTF input file name
300 @ Out, None
301 """
302 p1 = sp.Popen([self.ctfExe, ctfFname], stderr=sp.PIPE, stdout=sp.PIPE,

universal_newlines=True, cwd=mypath)
303 if self.printOutput:
304 while True:
305 line = p1.stdout.readline()
306 if line != ’’:
307 print(line)
308 else:
309 break
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310 stdout, stderr = p1.communicate()
311 if p1.returncode != 0:
312 raise ValueError("Failed CTF solve %d %s %s" % (p1.returncode , stdout,

stderr))
313

314 def extractCTFOutput(self, output):
315 """
316 This method is used to extract the code output results.
317 @ In, output, string, the Output name root
318 @ Out, response, dict, dictionary containing the data {var1:array, var2:

array, etc}
319 """
320 if os.path.isfile(os.path.join(self.workDir,output+’.ctf.native.h5’)):
321 outfile = os.path.join(self.workDir,output+’.ctf.native.h5’)
322 outputobj = ctfdataHDF5(outfile)
323 else:
324 raise IOError("h5 file not generated. Check CTF input file.")
325 response = outputobj.returnData()
326 return response
327

328 def K2C(self, T):
329 """
330 Converts Kelvin to Celsius
331 @ In, T, float, Temperature in Kelvin
332 @ Out, T, float, Temperature in Celcius
333 """
334 return T - 273.15
335

336 def C2K(self, T):
337 """
338 Converts Celcius to Kelvin
339 @ In, T, float, Temperature in Celcius
340 @ Out, T, float, Temperature in Kelvin
341 """
342 return T + 273.15
343

344 def writeCSV(self, couplingCTFDict , couplingFMUDict , couplingFMULogDict):
345 """
346 Write output BC dicts to csv files
347 @ In, couplingCTFDict , dict, Dict of BCs from FMU to CTF
348 @ In, couplingFMUDict , dict, Dict of BCs from CTF to FMU
349 @ In, couplingFMULogDict , dict, Dict of FMU log vars from fmu_params
350 @ Out, None
351 """
352 couplingCTF_File = os.path.join(self.workDir, "coupling.ctf.out")
353 couplingFMU_File = os.path.join(self.workDir, "coupling.transform.out")
354 couplingFMULog_File = os.path.join(self.workDir, "coupling.fmu.out")
355 dfCTF = pd.DataFrame.from_dict(couplingCTFDict , orient="Index")
356 dfFMU = pd.DataFrame.from_dict(couplingFMUDict , orient="Index")
357 dfFMULog = pd.DataFrame.from_dict(couplingFMULogDict , orient="Index")
358 dfCTF.to_csv(couplingCTF_File , index=False, sep=’ ’,quoting=csv.QUOTE_NONE ,

escapechar=’ ’,float_format=’%13.4e’)
359 dfFMU.to_csv(couplingFMU_File , index=False, sep=’ ’,quoting=csv.QUOTE_NONE ,

escapechar=’ ’,float_format=’%13.4e’)
360 dfFMULog.to_csv(couplingFMULog_File , index=False, sep=’ ’,quoting=csv.

QUOTE_NONE , escapechar=’ ’,float_format=’%13.4e’)
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361

362 def solveSteadyFMU(self):
363 """
364 Method to return the converged solution of the steady state CTF-FMU case
365 @ In, None
366 @ Out, float, Core outlet temperature
367 """
368 simTime = self.start_time
369 outDictCTF = {} # Dict to record BC from FMU sent to CTF
370 outDictFMU = {} # Dict to record BC from CTF sent to FMU
371 outDictFMUlog = {} # Dict to FMU lo vars from fmu_params
372 vr_inputs = list(self.fmuInputs.values())
373 inputs = self.initInputs
374 input_keys = list(self.fmuInputs.keys())
375 vr_outputs = list(self.fmuOutputs.values())
376 outputs = self.initOutputs
377 output_keys = list(self.fmuOutputs.keys())
378

379 # FMU does not compute the core outlet pressure correctly
380 presFromFMU = outputs[output_keys.index(’P_out’)] # Core inlet pressure
381 tempFromFMU = outputs[output_keys.index(’T_out’)] # Core outlet temperature
382 mfFromFMU = outputs[output_keys.index(’mflow_out’)] # Core outlet mass flow

rate
383

384 couplingConv = False
385 flag = 0
386

387 # Have to run system code for a few time steps. Not implemented.
388 cool_temp_inlet = self.K2C(tempFromFMU) # C
389 cool_mflow_inlet = mfFromFMU # kg/s
390

391 # Coupling loop
392 while (couplingConv == False):
393 tmp_cool_temp_inlet = cool_temp_inlet
394 cool_temp_inlet = self.fmuTol[’ulax_T_corein’]*self.K2C(tempFromFMU) +

(1.0 - self.fmuTol[’ulax_T_corein’])*cool_temp_inlet # C
395 tmp_cool_mflow_inlet = cool_mflow_inlet
396 cool_mflow_inlet = self.fmuTol[’ulax_mflow_corein’]*mfFromFMU + (1.0 -

self.fmuTol[’ulax_mflow_corein’])*cool_mflow_inlet # kg/s
397 # Generate CTF inputs
398 if self.qPrime:
399 ctfFname , nLev = self.genCTFInput(inletTemp=cool_temp_inlet , inletFlow

=cool_mflow_inlet , qPrime=self.qPrime)
400 else:
401 ctfFname , nLev = self.genCTFInput(inletTemp=cool_temp_inlet , inletFlow

=cool_mflow_inlet)
402

403 if self.printOutput:
404 print("Setting CTF core inlet temperature [K] from ", str(self.C2K(

tmp_cool_temp_inlet)), " to ", str(self.C2K(cool_temp_inlet)))
405 print("Setting CTF core inlet mass flow rate [kg/s] from ", str(

tmp_cool_mflow_inlet), " to ", str(cool_mflow_inlet))
406

407 # Run the CTF Code
408 self.runCTF(ctfFname)
409
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410 # Extract CTF Output data
411 ctfOutput = self.extractCTFOutput(’system_coupling_transform’)
412 presFromCTF = ctfOutput[’AVG_ax1_chan_pressure’][-1]*self.t_bar_Pa # Pa
413 tempFromCTF = self.C2K(ctfOutput[’AVG_ax’+str(nLev+1)+’_chan_temp’][-1]) #

K
414 mfFromCTF = ctfOutput[’AVG_ax’+str(nLev+1)+’_chan_mdot_liq’][-1] # kg/s
415 cool_pres_outlet = ctfOutput[’AVG_ax’+str(nLev+1)+’_chan_pressure’][-1] #

bar
416 ctfTime = ctfOutput[’time’][-1]
417

418 # Set FMU inputs from CTF Outputs
419 for key in input_keys:
420 # Core outlet mass flow rate
421 if key == ’mflow_pumpprimary’ or key == ’mflow_in’:
422 tmp_mfFromCTF = inputs[input_keys.index(key)]
423 inputs[input_keys.index(key)] = mfFromCTF
424 # Core outlet pressure
425 if key == ’P_in’:
426 inputs[input_keys.index(key)] = cool_pres_outlet*self.t_bar_Pa
427 # Core inlet pressure
428 if key == ’P_corein’:
429 tmp_presFromCTF = inputs[input_keys.index(key)]
430 inputs[input_keys.index(key)] = presFromCTF
431 # Core outlet temperature
432 if key == ’T_in’:
433 tmp_tempFromCTF = inputs[input_keys.index(key)]
434 inputs[input_keys.index(key)] = tempFromCTF
435

436 # Run the FMU Code
437 if self.printOutput:
438 print("Setting FMU core outlet temperature [K] from ", str(

tmp_tempFromCTF), " to ", str(tempFromCTF))
439 print("Setting FMU core outlet mass flow rate [kg/s] from ", str(

tmp_mfFromCTF), " to ", str(mfFromCTF))
440 print("Setting FMU core inlet pressure [bar] from ", str(

tmp_presFromCTF*1.e-5), " to ", str(presFromCTF*1.e-5))
441 print("****************************************")
442 print("****************************************")
443 print("*** start FMU SS run ***")
444 print("No ", " TempDiff ", " presDiff ", " mfDiff ",
445 " tempFMU ", " tempCTF ", " pressFMU ", " pressCTF ", "

mfCTF ", " mfFMU ")
446 nstep = 0
447

448 # FMU loop
449 while True:
450 # set the input
451 self.fmu.setReal(vr_inputs , inputs)
452

453 # Assign previous time-step values
454 oldPressure = presFromFMU
455 oldTemperature = tempFromFMU
456 oldMassFlow = mfFromFMU
457

458 # perform one step
459 self.fmu.doStep(currentCommunicationPoint=simTime,
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communicationStepSize=self.step_size)
460

461 # get the values for ’outputs’
462 outputs = self.fmu.getReal(vr_outputs)
463 presFromFMU = outputs[output_keys.index(’P_out’)]
464 tempFromFMU = outputs[output_keys.index(’T_out’)]
465 mfFromFMU = outputs[output_keys.index(’mflow_out’)]
466

467 # Check of the FMU steady state
468 presDiffT = abs(oldPressure - presFromFMU)
469 tempDiffT = abs(oldTemperature - tempFromFMU)
470 mfDiffT = abs(oldMassFlow - mfFromFMU)
471 nstep += 1
472

473 wf = "{0:3d} {1:11.3E} {2:11.3E} {3:11.3E} {4:11.3E} {5:11.3E} {6:11.3
E} {7:11.3E} {8:11.3E} {9:11.3E}"

474

475 if (nstep == 1 and self.printOutput):
476 print(wf.format(nstep, tempDiffT , presDiffT , mfDiffT, tempFromCTF ,

tempFromFMU , presFromFMU , presFromCTF , mfFromCTF , mfFromFMU))
477

478 if (nstep % 100 == 0.0 and self.printOutput):
479 print(wf.format(nstep, tempDiffT , presDiffT , mfDiffT, tempFromCTF ,

tempFromFMU , presFromFMU , presFromCTF , mfFromCTF , mfFromFMU))
480

481 if (tempDiffT < self.t_F_K*self.fmuTol["toltemp_FMU"]):
482 if (presDiffT < self.t_psf_bar*self.t_bar_Pa*self.fmuTol["

tolpress_FMU"]):
483 if (mfDiffT < self.t_lbm_kg*self.fmuTol["tolmf_FMU"]):
484 simTime += self.step_size
485 break
486

487 if (nstep > self.nstepMax):
488 if self.printOutput:
489 print("FMU: max. iteration reached")
490 simTime += self.step_size
491 break
492

493 # advance the time
494 simTime += self.step_size
495

496 # append the results
497 flag += 1
498 outDictCTF.update({flag : {’ Time [s]’: ctfTime, ’ Temperature [K]’:

tempFromFMU , ’ Massflow [kg/s]’:mfFromFMU , ’ Pressure [Pa]’:presFromFMU}})
499 outDictFMU.update({flag : {’ Time [s]’: ctfTime, ’ Temperature [K]’:

tempFromCTF , ’ Massflow [kg/s]’:mfFromCTF , ’ Pressure [Pa]’:presFromCTF}})
500 subDict = {}
501 for key in self.fmuLog.keys():
502 if key in input_keys and self.fmuLog[key]=="true":
503 subDict.update({key:inputs[input_keys.index(key)]})
504 if key in output_keys and self.fmuLog[key]=="true":
505 subDict.update({key:outputs[output_keys.index(key)]})
506 outDictFMUlog.update({flag:subDict})
507

508 # Temporary variable defined because FMU outlet pressure not computed
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correctly
509 presFromFMUTemp = cool_pres_outlet*self.t_bar_Pa
510

511 # Check convergence tolerances
512 if (abs(self.C2K(cool_temp_inlet) - tempFromFMU) < self.t_F_K*self.fmuTol[

"toltemp"]):
513 if (abs(cool_pres_outlet*self.t_bar_Pa - presFromFMUTemp) < self.

t_psf_bar*self.t_bar_Pa*self.fmuTol["tolpress"]):
514 if (abs(cool_mflow_inlet - mfFromFMU) < self.t_lbm_kg*self.fmuTol[

"tolmf"]):
515 couplingConv = True
516 if self.printOutput:
517 print("Steady State simulation converged")
518 break
519

520 # Terminate FMU
521 self.fmu.terminate()
522 self.fmu.freeInstance()
523

524 # Write CSV Files
525 self.writeCSV(outDictCTF , outDictFMU , outDictFMUlog)
526

527 # clean up
528 shutil.rmtree(self.unzipdir, ignore_errors=True)
529

530 # return core outlet Temperature
531 return tempFromCTF

Listing 16. Supplementary RAVEN external code procedure fmuCTFCouple.py
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