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ABSTRACT 

Design-space exploration analysis techniques represent a data-centric approach to integrating 

performance analysis during a project’s early design phases—when the greatest potential exists to 

efficiently and cost effectively improve the energy efficiency of a building. This work describes a novel 

extension of design-space exploration, called universal design space exploration (UDSE), which 

leverages massive databases of pre-simulated analysis that represent all possible outcomes of common 

analysis workflows. The resulting databases, called design spaces, become universal when a single pre-

simulated design space can be reapplied to future unknown projects. Unlike current simulation methods, 

which require a design to exist before it can be analyzed and often require minutes or hours to simulate, 

UDSE uses pre-simulation to deliver rapid and relevant insight as new designs are conceptualized. The 

data underpinning UDSE enables advanced statistical and artificial intelligence methods, which allow 

UDSE to deliver a greater understanding of the larger problem being explored rather than simply 

delivering analysis of several preconceived design options. UDSE has the potential to provide 

instantaneous, relevant analysis for all building design projects at a negligible cost. This paper has two 

main goals: to develop a relevant universal design space that showcases the potential of UDSE and to 

release these data freely to industry and academia, thereby removing obstacles to digital literacy in 

statistics, machine learning, and artificial intelligence within the architecture, engineering, and 

construction industries. 

1. BACKGROUND 

1.1 EARLY CONCEPTUAL PERFORMANCE ANALYSIS ISSUES 

Architects are under increasing pressure to design energy-efficient buildings, and they need high-quality 

performance analysis to inform their design decisions. Traditional performance analysis workflows are 

well suited for the later stages of the design process when the detailed inputs required for accurate results 

have been determined, and when the analysis delivered a week or two after it was requested is still 

relevant. Traditional performance analysis workflows are not effective in early conceptual design phases 

when major design changes occur by the hour, and when key inputs are undetermined. However, building 

designers can have the greatest contribution to performance at the least cost during the early design stages 

because the design is still flexible. Unfortunately, performance analysis is not often performed for the 

design phases in which it would be most valuable. 

To analyze a design, it must already be available. Analyzing the contribution of design decisions can only 

happen after those decisions have been made. Most designers follow an optioneering design approach in 

which several design variations or options are developed and analyzed to determine which approach is 

best. Performance analysis is delivered only after the options have been generated; decisions made during 

the development of these options are supported by experience or rules of thumb. Energy-assessment tools 

can provide insight into an architect’s performance after the fact by heavily leveraging  industry standards 

or best practices. The difference between typical design and utilization of design space are shown in 

Figure 1. 
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Figure 1. Design challenge flowchart illustrating how Universal Design Space Exploration (UDSE) can 

improve the design process by providing energy performance feedback on design decisions during the design 

process whereas traditional design cannot. 

1.2 UNIVERSAL DESIGN SPACE EXPLORATION 

Universal design space exploration (UDSE) has the potential to deliver instantaneous, high-quality insight 

and analysis for building design projects at a minimal cost. The key is in the term universal. Design-space 

exploration (DSE) techniques leverage iterative simulation of parametric models to generate databases of 

simulation analysis that represent a comprehensive sampling of all possible design scenarios defined by 

the parametric model (the design space). These data become a map of the design space, which can then be 

explored and mined for insight. This approach addresses some of the limitations of traditional 

performance analysis workflows: rather than respond to several predetermined design options, DSE 

provides analysis of likely alternatives and variations of these predetermined options, thereby allowing 

the next steps to be guided by analysis rather than experience or rules of thumb alone. Analysis of 

alternatives is instantaneous because the simulations and resulting analysis already exist. This approach 

supports real-time discussion of priorities and alternatives within integrated teams, which enhances the 

significance of the analysis. However, DSE is time-consuming. Simulating the hundreds or thousands of 

iterations required to make a useful design space can take days or weeks, thereby undermining the speed 

advantage of instantaneous feedback. DSE is also inflexible. Its analysis is only applicable to the design 

possibilities contained within the design space. By the time the design space is generated, the current 

design has likely evolved and left the previous design space. Expanding the design space to account for 

more possibilities further increases the simulation time required. These limitations prevent DSE from 

being widely applied in a conceptual design environment characterized by rapid change. Instead, DSE is 

more often applied toward specific, well-defined challenges in design development in which 

multiparameter exploration and optimization are required. 

UDSE addresses the limitations of traditional DSE and leverages the benefits of DSE during the early 

conceptual design phases in which instantaneous, free, and forward-looking analysis is most needed. 

UDSE accomplishes this task by modeling common problems. Common problems are, by definition, 

well-defined and repeatable across multiple projects. If a well-understood problem is expected on a future 

project, then a design space can be generated long before the project requires it, which avoids the speed 

and interactivity issues when a project requires new, massive building simulations. If speed is no longer 

an issue, then the design space can become gigantic to cover more possible scenarios, thus becoming 

more flexible and applicable to more projects (i.e., universal). If a problem is common, then defining the 

parameters is more predictable, the resulting design space is more applicable, and the investment required 

to produce the simulation is recouped through multiple uses. In this way, a gigantic design space that 

encompasses a common problem becomes universal, extending across all designs, schedules, and project 

fees. 
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UDSE introduces new opportunities for statistical analysis, machine learning (ML), and app development. 

Unlike traditional DSE, which is typically limited to 3–7 dimensions that can be manually explored and 

understood, UDSE generates massive multidimensional design spaces that are difficult to comprehend 

using typical analysis. Common visualization methods, such as a scatter plot, can show at most 4 

dimensions (x, y, color, dot shape) before becoming unintelligible. Universal design spaces can easily 

support more than 15 dimensions. Exploring and analyzing such large spaces requires engineers to learn 

tools typically employed by big data scientists. The design space exploration process is shown in Figure 

2. 

 

Figure 2. The DSE process.(left) Selection of design parameters, (middle) sample-based simulation of those 

parameters, and (right) summary analysis of results using metrics that inform better user decisions. 

1.3 PUBLIC DATA TO SUPPORT DIGITAL LITERACY IN ARCHITECTURE, 

ENGINEERING, AND CONSTRUCTION 

ML and artificial intelligence (AI) are transforming industries around the world, but the architecture, 

engineering, and construction (AEC) industry typically views these as buzzwords with few useful 

applications within design. The industry may be better served if these words were seen as algorithmic 

tools that leverage data to solve problems. The AEC industry has many problems to solve but few people 

who know how to deploy these novel, powerful, algorithmic tools. 

Adopting these tools presents challenges. Few designers invest in learning the skills required to deploy 

novel tools, especially for market segments in which few examples showcase the value such skills might 

bring. This report describes one data-centric approach to leveraging ML within the design process. Most 

existing ML examples and sample data sets are designed for other industries, so AEC professionals and 

students have difficulty recognizing or testing the advantages that new digital methods might offer. 

Generating AEC-specific data requires a significant investment of time and expertise, especially in the 

field of performance analysis for which simulations can take hours per design iteration. This 

computational bottleneck is one of the problems UDSE promises to alleviate, yet it remains an obstacle. 

Freely providing universal design spaces that frame common design questions to industry and academia 

will reduce the obstacles to the development of next-generation digital tools and applications. 

The methodology described in this report will enable other AEC firms, students, and start-ups to use large 

and complex building simulation data by developing innovative, data-centric, AI-enabled, and interactive 

design apps that have the potential to advance the market in unexpectedly useful ways. Expanding the 

reach of performance modeling to more firms and project types should result in reduced energy usage and 

improved building quality across the industry. 
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1.4 AUTOMATIC BUILDING ENERGY MODELING 

The US Department of Energy’s Oak Ridge National Laboratory has developed a collection of software 

and algorithms called Automatic Building Energy Modeling (AutoBEM), which enables users to model 

building energy for each structure at large geographic scales (New 2021). Within AutoBEM, building 

properties are detected, inferred, or predicted as inputs to generate building energy models using 

OpenStudio. The primary building properties necessary to generate building energy models using 

AutoBEM include physical characteristics, such as building footprint and height, and performance 

characteristics, such as building type and vintage (building code). These models are then simulated using 

EnergyPlus.OpenStudio is a collection of open-source software tools to support energy modeling in 

EnergyPlus, which is a physical building energy simulation engine (NREL 2021a; NREL 2021b). The 

simulation results can be customized to provide any combination of thousands of simulation outputs, 

which typically include building energy end uses. These results can be aggregated, analyzed, and 

visualized in a variety of different ways to gain insights about a building or group of buildings. AutoBEM 

has been used to model a utility service area (180,000 buildings) in Chattanooga, Tennessee and to create 

a coarse model of every building in the United States (123 million buildings). 
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2. REFINE FEATURES, METRICS, AND SAMPLING METHODOLOGY 

The features, metrics, and sampling methodology of the design space exploration were developed by 

surveying designers and engineers. These experts defined which areas of the design space were most 

important and should be selected for simulation. The final parameter and sampling space included design 

parameters known to be building properties of high importance and less commonly used features that may 

affect building energy performance under different design conditions. The variables considered for the 

parametric sampling are shown in Table 1. 

Table 1. Parametric sampling of design space variables, resulting in a total of about 3.35 million individual 

buildings 

Sampling parameter Inputs Sampling parameter Inputs 

Program type 

Higher education 

Plate depth 

Low 

Lab - high intensity Typical 

Office High 

Hospital 

Floor-to-floor height 

Low 

Healthcare - outpatient Typical 

Residential High 

Climate zone 

1A 

Solar design 

Bad 

1B Typical 

2A Good 

2B 
Average window-to-

wall ratio 

0.25 

3A 0.4 

3B 0.7 

3C 

Envelope quality 

Baseline 

4A High 

4B Ultra 

4C 
Construction type 

Common 

5A Less Common 

5B 

Lighting power density 

Baseline 

5C Better 

6A Best 

6B 

HVAC system 

Baseline 

7A Good 

7B Great 

Total square footage 

Low Ultra 

Typical 
Set points 

Baseline 

High Expanded 

Target floor area 

Low   

Typical   

High   
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3. PARAMETRIC SAMPLING, BUILDING MODEL GENERATION, AND SIMULATION 

3.1 PARAMETRIC SAMPLING AND BUILDING MODEL GENERATION 

To generate the parametric sampling for building-energy models, the AutoBEM 1.0 workflow was 

modified to generate custom buildings rather than existing buildings. A previously developed data set of 

122.9 million US buildings (https://doi.ccs.ornl.gov/ui/doi/339) was used to select building geometries 

that fit a parametric sampling of simulation inputs commonly considered during building design. 

Buildings were simplified to the relevant footprint area and used only four vertices for a rectangular 

footprint. Because footprint geometry can be extruded to any user-defined height, only the footprint area, 

plate length, and plate width were considered for geometry selection. If a building geometry was selected, 

then the orientation of the building was stored so it could be rotated properly after generation. 

Each building’s data was saved as a row of a table; additional design parameters could be appended to the 

table as columns to complete the design space. This building data table is one of several inputs required 

for AutoBEM’s building-energy model generation. Several physical and functional building properties 

could be added to the table, with a new row for each variation of the design parameters. The following 

parameters (i.e., columns of the building data table) are required parameters in this project: 

• Building type 

• Building energy code (standard 90.1-2013 for this study) 

• Climate zone 

• Window-to-wall ratio (typical) 

• Floor-to-floor height 

• Number of floors (total area ÷ floor area) 

• Height (number of floors × floor-to-floor height) 

• HVAC type 

The following optional design parameters are part of the design space and can be added to a building’s 

row in the data table for model generation: 

• Wall R-value 

• Roof R-value 

• Window U-value 

• Window solar heat gain coefficient 

• Lighting adjustment 

• Setpoint adjustment 

• Solar design adjustment 

• Unique ID based on all distinct parameters 

The typical AutoBEM workflow implements a default HVAC type for each building type, vintage, and 

climate zone combination. This default was adjusted to include 16 new HVAC types, each with multiple 

settings, for AutoBEM’s generation process. 

The building input table initially consisted of 3.3 million rows of buildings. This number was randomly 

sampled down to 256,000 for computational feasibility and initial analysis. This initial analysis indicated 

that a high-quality AI, with a very small difference between actual simulation results and those from the 

AI-generated surrogate model, could be trained on a much smaller sample of the data. The models were 

then generated using AutoBEM and executed as a fully parallelized workload on a 72-core server. The 

model generation times are shown in Table 2. 

https://doi.ccs.ornl.gov/ui/doi/339
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Table 2. Sample of building model generation timings; larger buildings typically take longer to generate 

Building 

area (ft2) 

Number of 

buildings 
Time (s) 

Buildings 

generated per 

second 

<50 124 24 14 

<50 508 125 18 

<50 128 31 17 

<50 951 189 14 

50–150 2,004 535 19 

50–150 449 214 34 

50–150 3,156 687 16 

>150 3,536 1,509 31 

>150 285 270 68 

All 11,141 3,584 231 

Two model post-generation steps were completed using OpenStudio measures and an application 

programming interface to make changes to the model of a building. OpenStudio measures are typically 

used for more complex building changes (e.g., HVAC changeouts), whereas smaller changes can be made 

via EnergyPlus measures or direct text-based replacement in the EnergyPlus model. The first OpenStudio 

measure invoked was building rotation for solar design. Building models were rotated a variable amount 

based on their original orientation to 0° or 90° north. Another measure was then used to adjust the 

window-to-wall ratio to either a good or bad solar design by adding all of the windows to two faces and 

removing windows from the other two (the typical prototype model solar design kept even window 

spacing across all four faces). 

The post-generation adjustments were implemented in the models using EPPY, a python library used for 

editing EnergyPlus models (Santosh 2021). These changes included adjustments to wall and roof 

insulation (R-value), window insulation (U-value), solar heat gain coefficient, lighting power density, and 

heating and cooling coefficients of performance. 

A final python script defined the simulation output files, variables, and frequency to be generated. A 

tabular hypertext markup file (with HVAC sizing data), comma-separated values file (time series end-use 

energy data), and log files were output for each simulation in this analysis. The settings for the output 

included 14 reporting variables at a monthly resolution. 

3.2 BUILDING MODEL SIMULATION 

The building models are simulated using Python and EnergyPlus to run in parallel on the 72-core server. 

Another parallelized python script is then used to aggregate building simulation results, including annual 

simulation energy data. This output data can be joined with the input data to obtain a single table, 

including all relevant inputs and outputs for the design space. 

A representative sample of 4,506 building models took 1,023 s to simulate on a 72-core server. The 

average simulation time of each of these buildings was 16 s. A summary flowchart illustrating each step 

of the DSE process is shown in Figure 3. 



 

8 

 

Figure 3. Flow chart of the process to generate the UDSE data set. The generated UDSE data set involved (left) 

development of the design space, (middle) generation and simulation of the models, and (right) analysis-based 

development of derivative technology to improve design decisions. 
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4. INITIAL RESULTS ANALYSIS 

4.1 DATA VISUALIZATION 

Initial data visualization, including box plots and violin charts, illustrate statistical trends and distributions 

of relationships among input and output variables within the design space. Figures 4 and 5 display energy 

use intensity (EUI), which is a well-recognized metric used by architects to normalize energy use by the 

floor area of the building. A violin plot comparing EUI per building type for each of the HVAC settings is 

shown in Figure 4, and a box plot showing the end use of each of these energy building types is shown in 

Figure 5. The end uses of each building include the energy use of total, electricity, cooling, natural gas, 

lighting, equipment, fans, pumps, heat rejection, and heat recovery. 

 

Figure 4. Total building EUI shown for five building classes. Laboratory not included for scale. 
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Figure 5. Building EUI split by end use for five building classes. Laboratory not included for scale. 

4.2 CORRELATIONS 

Relationships between building properties and building energy use is a critical component of UDSE. The 

data were filtered by building type and climate zone. Pearson, Spearman, and Kendall correlations 

between each input variable and building EUI were calculated. The Spearman and Kendall correlation 

statistics were employed explicitly because they can process ordinal variables, of which there were 

several in the feature set. These correlation values are shown in Table 3 for each building type and 

climate zone.



 

 

 

1
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Table 3. Pearson input variable correlation coefficients to building EUI for building types and climate zones (Hospital omitted for similarity to 

outpatient)  

 College

_1A 

College

_2A 

College

_2B 

College

_3A 

College

_3B 

College

_3C 

College

_4A 

College

_4B 

College

_4C 

College

_5A 

College

_5B 

College

_6A 

College

_6B 

College

_7A 

Height 0.25 0.20 0.26 0.35 0.34 0.17 0.26 0.30 0.25 0.30 0.30 0.28 0.27 0.40 

NumberFloors 0.24 0.20 0.27 0.33 0.30 0.21 0.24 0.28 0.27 0.32 0.28 0.27 0.29 0.39 

TotalArea -0.06 -0.06 -0.04 -0.07 -0.02 -0.23 -0.08 -0.06 -0.09 0.10 -0.02 -0.03 -0.09 -0.12 

WindowWallRatio 0.09 0.04 0.13 0.05 0.12 0.01 0.02 0.12 0.08 0.06 0.07 0.12 0.20 0.12 

FloorHeight 0.03 0.03 0.01 0.11 0.19 -0.09 0.08 0.06 -0.08 -0.03 0.09 0.05 -0.08 0.08 

PlateDepth 0.06 0.05 0.07 0.18 0.08 0.14 0.11 -0.02 0.20 0.06 0.09 0.00 0.04 0.02 

PlateLength 0.14 0.07 0.12 0.12 0.08 0.12 0.15 0.22 0.26 0.21 0.11 0.23 0.33 0.30 

SkinArea 0.26 0.20 0.27 0.35 0.30 0.21 0.34 0.34 0.42 0.37 0.32 0.33 0.40 0.43 

SkinFloorRatio 0.26 0.21 0.27 0.33 0.28 0.25 0.34 0.35 0.43 0.35 0.32 0.33 0.40 0.44 

GlassArea 0.28 0.19 0.29 0.33 0.32 0.21 0.34 0.34 0.43 0.37 0.34 0.35 0.45 0.46 

EnvelopeFloorAreaRatio 0.26 0.21 0.27 0.33 0.28 0.25 0.34 0.34 0.43 0.35 0.32 0.33 0.40 0.43 

EnvelopeQuality -0.04 0.01 0.01 -0.02 -0.03 0.15 -0.04 0.14 0.01 -0.18 -0.02 -0.31 -0.21 -0.28 

LightingPowerDensity -0.37 -0.38 -0.40 -0.52 -0.49 -0.80 -0.55 -0.58 -0.59 -0.50 -0.48 -0.37 -0.50 -0.39 

SetpointSetting -0.24 -0.17 -0.38 -0.12 -0.41 -0.35 -0.24 -0.37 -0.37 -0.30 -0.33 -0.31 -0.25 -0.27 

HVACSetting 0.67 0.68 0.58 0.61 0.52 0.23 0.47 0.45 0.28 0.39 0.49 0.41 0.34 0.35 

SolarDesign -0.04 -0.04 -0.05 -0.05 -0.06 -0.01 -0.09 -0.06 -0.07 -0.12 -0.06 -0.10 -0.11 -0.13 

TotalBuildingRValue -0.05 0.00 0.02 -0.01 -0.02 0.16 -0.08 0.13 -0.04 -0.18 -0.02 -0.32 -0.21 -0.27 

AvgSkinRValue 0.00 -0.02 -0.11 -0.02 -0.07 -0.14 0.02 -0.17 -0.06 0.04 -0.06 0.05 -0.10 -0.05 

WallRValue -0.05 0.00 0.02 -0.01 -0.02 0.16 -0.06 0.14 -0.02 -0.17 -0.02 -0.32 -0.21 -0.20 

GlassFrameUValue 0.03 -0.02 -0.01 0.02 0.03 -0.14 0.04 -0.14 0.00 0.18 0.02 0.31 0.20 0.29 

RoofRValue -0.05 -0.01 0.03 -0.01 -0.02 0.16 -0.08 0.13 -0.05 -0.18 -0.02 -0.31 -0.20 -0.28 

TotalBuildingOpaqueRValue -0.05 0.00 0.03 -0.01 -0.02 0.16 -0.08 0.13 -0.04 -0.18 -0.02 -0.32 -0.21 -0.26 

 Laborat

ory_1A 

Laborat

ory_2A 

Laborat

ory_2B 

Laborat

ory_3A 

Laborat

ory_3B 

Laborat

ory_3C 

Laborat

ory_4A 

Laborat

ory_4B 

Laborat

ory_4C 

Laborat

ory_5A 

Laborat

ory_5B 

Laborat

ory_6A 

Laborat

ory_6B 

Laborat

ory_7A 

Height 0.08 0.14 0.13 0.19 0.14 0.19 0.20 0.17 0.23 0.26 0.16 0.25 0.27 0.27 

NumberFloors -0.05 0.02 0.00 0.06 0.00 0.06 0.05 0.06 0.10 0.15 0.00 0.11 0.14 0.12 

TotalArea -0.19 -0.09 -0.11 -0.06 -0.13 -0.01 -0.03 -0.06 -0.02 0.06 -0.04 0.02 -0.06 0.02 

WindowWallRatio -0.03 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01 0.01 -0.03 0.03 0.00 -0.04 -0.03 -0.01 

FloorHeight 0.42 0.41 0.43 0.45 0.46 0.45 0.47 0.48 0.47 0.46 0.49 0.49 0.51 0.49 

PlateDepth 0.04 0.00 0.03 -0.02 -0.07 0.07 0.01 0.03 0.06 0.01 -0.01 0.00 -0.05 -0.05 

PlateLength 0.02 0.02 -0.01 -0.04 0.10 0.02 0.01 0.04 0.08 0.01 0.00 0.00 0.03 0.02 

SkinArea 0.04 0.07 0.05 0.07 0.12 0.12 0.09 0.11 0.17 0.15 0.09 0.13 0.15 0.16 

SkinFloorRatio 0.11 0.12 0.09 0.10 0.17 0.13 0.12 0.14 0.19 0.14 0.11 0.14 0.16 0.16 

GlassArea 0.02 0.05 0.03 0.04 0.09 0.10 0.06 0.09 0.14 0.12 0.07 0.09 0.10 0.12 

EnvelopeFloorAreaRatio 0.11 0.12 0.09 0.10 0.17 0.13 0.12 0.14 0.19 0.14 0.11 0.13 0.16 0.16 

EnvelopeQuality 0.11 0.00 0.01 0.00 0.03 -0.11 -0.07 -0.11 -0.10 -0.01 -0.06 -0.07 -0.16 -0.05 

LightingPowerDensity -0.01 -0.03 0.01 -0.03 -0.01 0.02 -0.01 -0.03 -0.02 -0.04 0.01 -0.01 -0.01 -0.01 

SetpointSetting -0.26 -0.25 -0.39 -0.24 -0.40 -0.33 -0.39 -0.43 -0.39 -0.38 -0.41 -0.35 -0.39 -0.32 

HVACSetting 0.68 0.69 0.63 0.69 0.62 0.66 0.63 0.60 0.63 0.64 0.60 0.63 0.61 0.65 

SolarDesign 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 

TotalBuildingRValue 0.11 0.01 0.03 0.03 0.03 -0.11 -0.03 -0.10 -0.08 -0.01 -0.06 -0.07 -0.16 -0.05 

AvgSkinRValue -0.08 0.01 -0.01 -0.02 -0.01 0.09 0.04 0.07 0.09 -0.02 0.03 0.06 0.09 0.02 

Note: Solid red indicates positive correlation (close to 1), solid blue indicates negative correlation (close to −1), and white indicates no correlation (close to 0).  
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Table 3. Pearson input variable correlation coefficients to building EUI for building types and climate zones (Hospital omitted for similarity to 

outpatient) (continued) 

 Laborat

ory_1A 

Laborat

ory_2A 

Laborat

ory_2B 

Laborat

ory_3A 

Laborat

ory_3B 

Laborat

ory_3C 

Laborat

ory_4A 

Laborat

ory_4B 

Laborat

ory_4C 

Laborat

ory_5A 

Laborat

ory_5B 

Laborat

ory_6A 

Laborat

ory_6B 

Laborat

ory_7A 

WallRValue 0.11 0.01 0.03 0.03 0.03 -0.11 -0.05 -0.10 -0.09 0.00 -0.06 -0.05 -0.15 -0.04 

GlassFrameUValue -0.10 0.00 0.00 0.01 -0.02 0.11 0.06 0.11 0.10 0.01 0.06 0.07 0.16 0.05 

RoofRValue 0.11 0.01 0.03 0.03 0.03 -0.11 -0.02 -0.10 -0.07 -0.01 -0.06 -0.07 -0.16 -0.05 

TotalBuildingOpaqueRValue 0.11 0.01 0.03 0.03 0.03 -0.11 -0.03 -0.10 -0.08 -0.01 -0.06 -0.07 -0.16 -0.05 

 Outpati

ent_1A 

Outpati

ent_2A 

Outpati

ent_2B 

Outpati

ent_3A 

Outpati

ent_3B 

Outpati

ent_3C 

Outpati

ent_4A 

Outpati

ent_4B 

Outpati

ent_4C 

Outpati

ent_5A 

Outpati

ent_5B 

Outpati

ent_6A 

Outpati

ent_6B 

Outpati

ent_7A 

Height -0.50 -0.57 -0.55 -0.55 -0.48 -0.47 -0.42 -0.50 -0.44 -0.50 -0.43 -0.44 -0.44 -0.44 

NumberFloors -0.50 -0.56 -0.56 -0.57 -0.50 -0.49 -0.45 -0.51 -0.45 -0.51 -0.45 -0.45 -0.47 -0.46 

TotalArea -0.77 -0.79 -0.77 -0.78 -0.75 -0.70 -0.67 -0.68 -0.66 -0.68 -0.66 -0.65 -0.68 -0.62 

WindowWallRatio -0.02 -0.06 0.07 0.11 0.02 0.00 0.00 -0.02 -0.01 0.07 -0.01 0.05 0.11 0.19 

FloorHeight 0.06 0.00 0.01 -0.04 0.13 0.00 0.19 0.11 0.12 0.02 0.08 -0.01 0.10 0.15 

PlateDepth 0.05 0.14 -0.05 -0.13 0.03 -0.05 0.08 0.03 -0.11 -0.12 -0.08 -0.02 -0.17 -0.24 

PlateLength -0.13 -0.22 -0.14 -0.09 -0.15 -0.18 -0.16 -0.23 -0.16 -0.15 -0.10 -0.09 0.02 -0.14 

SkinArea -0.47 -0.52 -0.54 -0.51 -0.46 -0.48 -0.39 -0.46 -0.44 -0.44 -0.40 -0.40 -0.43 -0.45 

SkinFloorRatio 0.28 0.25 0.06 0.17 0.21 0.10 0.26 0.17 0.19 0.11 0.20 0.22 0.32 0.02 

GlassArea -0.43 -0.50 -0.47 -0.46 -0.41 -0.45 -0.36 -0.41 -0.40 -0.39 -0.37 -0.34 -0.37 -0.38 

EnvelopeFloorAreaRatio 0.30 0.27 0.08 0.19 0.24 0.13 0.28 0.19 0.21 0.14 0.22 0.25 0.34 0.04 

EnvelopeQuality 0.04 -0.04 0.01 0.01 0.09 0.10 0.13 -0.06 0.13 -0.01 -0.07 -0.04 -0.05 0.06 

LightingPowerDensity -0.18 -0.47 -0.25 -0.37 -0.32 -0.26 -0.17 -0.19 -0.24 -0.27 -0.12 -0.24 -0.25 -0.09 

SetpointSetting -0.14 -0.14 -0.22 -0.12 -0.21 -0.28 -0.18 -0.20 -0.15 -0.17 -0.19 -0.17 -0.14 -0.14 

HVACSetting 0.36 0.27 0.27 0.19 0.21 0.06 0.15 0.11 0.05 0.13 0.09 0.13 0.07 0.10 

SolarDesign -0.02 -0.03 -0.03 -0.02 -0.03 -0.01 -0.02 -0.04 -0.01 -0.03 -0.03 -0.03 -0.03 -0.04 

TotalBuildingRValue 0.00 -0.03 -0.01 -0.01 0.05 0.08 0.12 -0.05 0.11 0.00 -0.07 -0.04 -0.03 0.06 

AvgSkinRValue 0.01 0.06 -0.04 -0.05 -0.06 -0.06 -0.10 0.06 -0.07 -0.04 0.05 -0.01 -0.12 -0.17 

WallRValue 0.01 -0.03 -0.01 -0.01 0.05 0.08 0.13 -0.06 0.12 -0.01 -0.06 -0.05 0.03 0.04 

GlassFrameUValue -0.06 0.05 -0.02 -0.01 -0.09 -0.11 -0.13 0.06 -0.13 0.00 0.07 0.04 0.05 -0.07 

RoofRValue -0.01 -0.03 -0.01 -0.01 0.05 0.08 0.12 -0.04 0.10 0.00 -0.07 -0.04 -0.05 0.06 

TotalBuildingOpaqueRValue 0.00 -0.03 -0.01 -0.01 0.05 0.08 0.12 -0.05 0.11 -0.01 -0.07 -0.04 -0.03 0.06 

 Office_

1A 

Office_

2A 

Office_

2B 

Office_

3A 

Office_

3B 

Office_

3C 

Office_

4A 

Office_

4B 

Office_

4C 

Office_

5A 

Office_

5B 

Office_

6A 

Office_

6B 

Office_

7A 

Height 0.17 0.25 0.16 0.35 0.23 0.15 0.29 0.18 0.28 0.25 0.19 0.36 0.36 0.46 

NumberFloors 0.17 0.24 0.14 0.35 0.23 0.15 0.30 0.18 0.29 0.26 0.18 0.36 0.33 0.43 

TotalArea 0.20 0.19 0.14 0.35 0.18 0.16 0.27 0.10 0.21 0.12 0.12 0.25 0.24 0.32 

WindowWallRatio 0.14 0.11 0.09 0.04 0.05 0.07 0.24 0.18 0.24 0.16 0.08 0.14 0.04 0.18 

FloorHeight -0.01 0.07 0.15 0.03 0.03 0.13 -0.03 0.06 0.08 -0.08 0.03 0.12 0.17 0.14 

PlateDepth -0.12 -0.18 -0.16 -0.08 -0.08 -0.13 -0.27 -0.12 -0.29 -0.16 -0.08 -0.15 -0.08 -0.07 

PlateLength 0.18 0.19 0.17 0.07 0.16 0.11 0.35 0.20 0.35 0.14 0.05 0.19 0.08 0.20 

SkinArea 0.18 0.25 0.15 0.32 0.23 0.13 0.32 0.20 0.29 0.22 0.17 0.36 0.33 0.48 

SkinFloorRatio -0.05 0.15 0.10 0.13 0.10 0.03 0.09 0.18 0.29 0.13 0.16 0.29 0.21 0.35 

GlassArea 0.19 0.26 0.14 0.30 0.21 0.12 0.34 0.23 0.31 0.22 0.16 0.35 0.27 0.46 

EnvelopeFloorAreaRatio -0.06 0.14 0.09 0.10 0.08 0.02 0.08 0.16 0.27 0.12 0.15 0.27 0.20 0.33 

EnvelopeQuality -0.16 -0.05 0.03 -0.23 -0.11 0.00 0.10 0.01 -0.25 -0.28 -0.12 -0.20 -0.25 -0.11 

Note: Solid red indicates positive correlation (close to 1), solid blue indicates negative correlation (close to −1), and white indicates no correlation (close to 0). 
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Table 3. Pearson input variable correlation coefficients to building EUI for building types and climate zones (Hospital omitted for similarity to 

outpatient) (continued) 

 Office_

1A 

Office_

2A 

Office_

2B 

Office_

3A 

Office_

3B 

Office_

3C 

Office_

4A 

Office_

4B 

Office_

4C 

Office_

5A 

Office_

5B 

Office_

6A 

Office_

6B 

Office_

7A 

LightingPowerDensity -0.45 -0.31 -0.32 -0.40 -0.38 -0.43 -0.43 -0.47 -0.40 -0.34 -0.31 -0.24 -0.37 -0.29 

SetpointSetting -0.07 -0.06 -0.11 -0.07 -0.09 -0.05 -0.10 -0.13 -0.09 -0.13 -0.13 -0.12 -0.10 -0.10 

HVACSetting 0.16 0.12 0.14 0.11 0.11 0.03 0.14 0.11 0.09 0.17 0.15 0.19 0.14 0.18 

SolarDesign -0.03 -0.02 -0.03 -0.03 -0.03 -0.02 -0.05 -0.09 -0.02 -0.05 -0.05 -0.06 -0.06 -0.06 

TotalBuildingRValue -0.16 -0.03 0.02 -0.24 -0.07 0.00 0.04 -0.01 -0.24 -0.28 -0.12 -0.19 -0.25 -0.09 

AvgSkinRValue 0.07 -0.05 -0.06 0.16 0.02 -0.02 -0.23 -0.14 -0.03 0.02 0.01 -0.10 0.08 -0.16 

WallRValue -0.16 -0.03 0.02 -0.24 -0.07 0.00 0.07 0.00 -0.25 -0.30 -0.13 -0.12 -0.24 -0.04 

GlassFrameUValue 0.15 0.05 -0.03 0.22 0.12 0.00 -0.09 -0.01 0.25 0.27 0.12 0.21 0.25 0.13 

RoofRValue -0.16 -0.03 0.02 -0.24 -0.07 0.00 0.02 -0.01 -0.24 -0.28 -0.12 -0.21 -0.25 -0.10 

TotalBuildingOpaqueRValue -0.16 -0.03 0.02 -0.24 -0.07 0.00 0.03 -0.01 -0.24 -0.28 -0.12 -0.19 -0.25 -0.09 

Note: Solid red indicates positive correlation (close to 1), solid blue indicates negative correlation (close to −1), and white indicates no correlation (close to 0). 
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4.3 AI SURROGATE MODEL DEVELOPMENT 

An AI surrogate model was developed for prediction across the design space. Total building EUI was 

selected as the target modeling performance metric and involved all input features from the input table 

consisting of 256,000 rows. Numerical (non-categorical) values were used if multiple variables described 

the same building property. For example, the actual floor area was used instead of the floor area 

description (low, medium, high). Any variables that were categorical were converted to a type suitable for 

ML using one-hot encoding. One-hot encoding is the process of extracting each level of a multilevel 

categorical variable into a separate binary variable to prevent the model from assuming an ordinal 

relationship between the levels of the variable. 

The data were split into 80% training data and 20% testing data. Four different ML models were 

evaluated in predicting building EUI: multiple linear regression, random forest (Ho 1995), gradient 

boosting (Friedman 2001), and multilayer perceptron (Haykin 1994). Multiple linear regression is the 

simplest of these models: it assumes linear relationships between the independent variables and the 

dependent variables. It is also easy to develop, which makes it a good model to use as a baseline to 

evaluate the other three, more complex models. Fivefold cross validation with a grid search was used to 

tune each model’s hyperparameters and evaluate each model’s performance. Table 4 lists the metrics for 

each model. Because the random forest model had the best metrics, it was chosen as the AI 

implementation for this analysis. Then, the best hyperparameter values were selected, and a final model 

was trained to use for UDSE. These hyperparameters are listed in Table 5. 

Table 4. Cross-validation metrics for fivefold, three-repeat cross validation  

Model Mean absolute error in EUI (Btu/ft2) R2 

Random forest 2.37 0.9997 

Gradient boosting 48.56 0.9349 

Multilayer perceptron 7.85 0.9987 

Multiple linear regression 54.57 0.9346 

Table 5. Random forest hyperparameter values were determined from a grid search over the same fivefold, 

three-repeat cross validation 

Hyperparameter Value 

Max features Auto 

Minimum samples per leaf 1 

Minimum samples per split 2 

Number of estimators 300 

4.4 PROTOTYPE APP 

A prototype app was developed that leverages this simulation-trained AI agent for interactive building 

design. This app can be used by designers and engineers to evaluate how their decisions will affect 

building energy use. It enables them to conduct detailed, flexible analysis to make critical design 

decisions without requiring simulation of their project. This capability encourages the design team to 

consider building performance early in the design process when lack of expertise, time, or money would 

typically prevent such considerations. This prototype app features single-design visualization and is a 

fully parametric model with 3D design visualization that allows the user to quickly generate a shoebox 

model while the surrogate AI predicts energy performance as the user interacts through the design space 

in real time. A view of the app’s 3D model visualization is shown in Figure 6. 
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Figure 6. The 3D model visualization within the prototype app. 

The prototype app also provides a scatterplot visualization to help the user understand how a single design 

fits within the broader design space and related energy performance. It also provides the ability to filter 

each of the design parameters to slice the design space. A sample scatterplot is shown in Figure 7. In 

addition to scatterplot visualization, the app provides real-time sensitivity analysis. This analysis helps the 

user clearly determine the sensitivity of EUI to the design features within the user-defined design space. 

A sample sensitivity analysis is shown in Figure 8. 
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Figure 7. The scatterplot visualization within the prototype app.  

 

Figure 8. The real-time sensitivity analysis within the prototype app. 
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4.5 PUBLIC DATA HOSTING 

An important part of this project was to make the full parametric design and related simulation data 

publicly available so they could be used and analyzed by the broader buildings’ community. The data 

were shared to Kaggle, an online community developed by data scientists to find, publish, analyze, and 

model data (McNally, Bass, and Curtis 2021). 
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