
Cold Climate Heat Pump Evaluation

Jeffrey Munk Tony Gehl

December 2022

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service 5285 Port Royal Road

Springfield, VA 22161

Telephone: 703-605-6000 (1-800-553-6847)

TDD: 703-487-4639 **Fax:** 703-605-6900 **E-mail:** info@ntis.gov

Website: http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source:

Office of Scientific and Technical Information

PO Box 62

Oak Ridge, TN 37831 *Telephone:* 865-576-8401 *Fax:* 865-576-5728 *E-mail:* report@osti.gov

Website: http://www.osti.gov

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ORNL/TM-2021/2029

Energy and Transportation Science Division

COLD CLIMATE HEAT PUMP EVALUATION

Jeffrey Munk Tony Gehl

Date Published: December 2022

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, TN 37831-6283
managed by
UT-Battelle, LLC
for the
US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

LIS	ST OF FIGURES	V
LIS	ST OF TABLES	vii
AB	BREVIATIONS	ix
AC	KNOWLEDGEMENTS	1
1.	INTRODUCTION	1
2.	LABORATORY SETUP	1
3.	TEST PLAN	3
4.	SYSTEM TESTING	7
	4.1 Manufacturer A System 1	7
	4.2 Manufacturer B System 2 First Round of Testing	9
	4.3 Manufacturer B System 2 Second Round of Testing	13
	4.4 Manufacturer B System 3	15
	4.5 Manufacturer C System 4	17
	4.6 Manufacturer D System 5	19
	4.7 Manufacturer E System 6	22
	4.8 Manufacturer E System 7a	25
	4.9 Manufacturer E System 7b	26
	4.10 Manufacturer F System 8	29
5.	REFERENCES	33
AP	PENDIX A. PICTURES OF EQUIPMENT SETUPS	A-1

LIST OF FIGURES

1	Screen capture of power plot during the transition from B_1 test to B_{1x} test	7
2	Screen capture of power plot during the transition from $H1_1$ test to $H1_{1x}$ test	8
3	Screen capture of power plot during the transition from B_1 test to B_{1x} test	9
4	Screen capture of ID inlet dry-bulb temperature plot during the transition from B ₁ test to	
	B_{1x} test	11
5	Screen capture of power plot during the transition from $H1_1$ test to $H1_{1x}$ test	11
6	Screen capture of ID inlet dry-bulb temperature plot during the transition from H1 ₁ test to	
	$H1_{1x}$ test	12
7	Photograph of side-by-side ID unit setup and extended ID air temperature sensors	15
8	Screen capture of power plot during the transition from B_1 test to B_{1x} test	19
9	Screen capture of power plot during the transition from $H1_1$ test to $H1_{1x}$ test	21
10	Screen capture of power plot during the transition from $H1_1$ test to $H1_{1x}$ test	22
11	Screen capture of capacity plot during the transition from $H1_1$ test to $H1_{1x}$ test	24
12	Screen capture of power plot during the transition from B_1 test to B_{1x} test	26
13	Screen capture of power plot during the transition from $H1_1$ test to $H1_{1x}$ test	28
14	Recorded data while trying to achieve 0.58 in. w.c. ESP using the system's blower	
	control board	30

LIST OF TABLES

Instrumentation information	2
Test unit information	3
Mini-split test plan	4
Central-ducted test plan	5
Dynamic mode cooling tolerances	6
Dynamic mode heating tolerances	6
System 1 test results	8
System 2 test results: first round	10
System 2 test results: second round per Appendix M (except where noted)	14
System 3 test results	16
System 4 test results	18
System 5 test results	20
System 6 test results	23
System 7a test results	25
System 7b test results	27
Compressor staging based on thermostat inputs	30
System 8 test results	31
System 8 ID fan test results	32
	Test unit information Mini-split test plan Central-ducted test plan Dynamic mode cooling tolerances Dynamic mode heating tolerances System 1 test results System 2 test results: first round System 2 test results: second round per Appendix M (except where noted) System 3 test results System 4 test results System 5 test results System 6 test results System 7a test results System 7b test results System 7b test results System 7b test results System 8 test results System 8 test results

ABBREVIATIONS

Code of Federal Regulations external static pressure CFR

ESP

indoor ID OD outdoor

TXV thermostatic expansion valve

unit under test UUT water column w.c.

ACKNOWLEDGEMENTS

Funding for this research was provided by the US Department of Energy, Office of Energy Efficiency and Renewable Energy. The authors would like to thank John Cymbalsky, manager for the Appliance and Equipment Standards Program, and technology managers, Ashley Armstrong and Tony Bouza, for their support of this work.

1. INTRODUCTION

The use of heat pumps in cold and very cold climates increased by 63% between 2009 and 2015 [1, 2]. This can be attributed to development of heat pumps with higher heating capacity at lower temperatures and increased efficiency. A primary technology driving this trend is the use of variable-speed compressors, which come with an increase in the level of controls in the equipment. Most units with variable-speed compressors also include electronic expansion valves and variable-speed indoor (ID) and outdoor (OD) fans. With the increased complexity of these systems, developing a test procedure that is representative of typical performance and not too burdensome on manufacturers presents a difficult challenge.

This study focuses on collecting laboratory data to help answer several key questions:

- Is load-based testing feasible and does it generate results that differ from the standard rating procedure?
- Does the equipment operate similarly in the standard rating test mode as it does under native controls?
- Does the current optional test point (H4₂) adequately capture the low-temperature performance of existing heat pumps?
- Does moisture uniformity in the OD chamber affect the performance of units with multi-faced OD coils?

2. LABORATORY SETUP

All equipment was tested in environmental chambers (ID and OD). The test setups followed the requirements specified in ASHRAE 37-2009 [3]. The primary capacity measurement for all systems was the ID air enthalpy method. The secondary test method was either the OD air enthalpy method or the refrigerant enthalpy method depending on the location of the cooling mode expansion valve. All the systems tested with the exception of the centrally ducted units had the cooling mode expansion valves in the OD units. This location results in inadequate subcooling in the liquid line required for the refrigerant enthalpy method, so the OD air enthalpy method was used.

Appendix A contains pictures to serve as examples of the equipment setups used during testing, and Table 1 lists the instrumentation used for measurements.

Table 1. Instrumentation information

Measurement	Sensor description	Manufacturer	Model	
	Sensor description			
ID unit power ID unit voltage	Power meter and current	Yokogawa LEM	WT310e IT-200-S Ultrastab	
ID unit frequency	transformers			
OD unit power	Power meter and current	Yokogawa	WT333e	
OD unit voltage	transformers (200:5)	GE	750X133311	
OD unit frequency				
ID inlet dry-bulb temperature (DB) ID inlet wet-bulb temperature (WB)				
ID outlet DB				
ID outlet WB	Platinum resistance	D .	0070N01N00N000AD0	
OD inlet DB	temperature detector (RTD)	Rosemount	0078N01N00N060AB6	
OD inlet WB	(KID)			
OD outlet DB OD outlet WB				
Comp. suction pressure				
Service valve vapor line pressure	Pressure transducer	GE Druck	PTX5072-TA-A2	
ID unit vapor line pressure	0–5000 psi			
Comp. discharge pressure	Pressure transducer			
Service valve liquid line pressure	0–1,00 psi	GE Druck	PTX5072-TA-A2	
ID unit liquid line pressure	•			
ID unit external static pressure	Differential pressure transducer (±2 in. water	Foxboro	IDP10S-T22B01FA-MIL1	
	column [w.c.])			
ID before nozzle pressure	Differential pressure	Foxboro	IDP10S-T22B01FA-MIL1	
	transducer (±5 in. w.c.)	_ ,		
ID nozzle delta pressure	Differential pressure transducer (0–4 in. w.c.)	Foxboro	IDP10S-T22B01FA-MIL1	
Barometric pressure	Pressure transducer	Vaisala	PTB110	
OD unit external static pressure	Differential pressure	Setra	26510R1WB2BT1E	
	transducer (±0.1 in. w.c.)	C - 4	2201005WD1F2C100ND1	
OD nozzle delta pressure	Differential pressure transducer (0–5 in. w.c.)	Setra	2391005WD1F2C109NN	
OD before nozzle pressure	Pressure transducer (800–	Omega	PX2780-800NB5V	
•	1,060 mbar)	- C		
Refrigerant temperatures				
OD inlet grid	m m.i.			
OD outlet grid ID inlet grid	Type T thermocouple		Special limits of error	
ID outlet grid				
Refrigerant mass flow	Coriolis mass flow meter	Emerson	CMF025M314N2GAEZZZ	

3. TEST PLAN

The test plan includes nine systems divided into two major categories of system types: mini-split and central-ducted split systems. A list of the system identifiers, nominal cooling capacity, and system description is provided in Table 2.

Table 2. Test unit information

		Capacity	(Btu/h)	
Manufacturer identifier	System identifier	Cooling	Heating	Description ^a
A	1	22,000	27,000	ND, HW, MS
В	2	33,000	38,000	CM, MS
В	3	18,000	22,000	ND, HW, MS
C	4	34,000	33,000	CD, SS
D	5	22,000	27,000	ND, HW, MS
E	6	22,000	25,200	ND, HW, MS
E	7a	N/R	N/R	ND, HW, MS
E	7b	14,500	18,000	ND, HW, MS
F	8	34,800	34,400	CD, SS

^a ND = non-ducted, CD = central-ducted, CM = ceiling-mount, MS = mini-split, SS = split system, HW = high wall, N/R = not rated

The test plan includes a combination of standard rating tests and non-standard tests. Test names and conditions are listed in Table 3 for mini-split systems and Table 4 for central-ducted systems.

All standard rating tests were conducted according to Appendix M1 to subpart B of 10 CFR (Code of Federal Regulations) 430 unless otherwise noted.

For dynamic tests, denoted with a subscript x, the equipment was operated without any controls override active (i.e., not in test mode). For the A, B, and H1 test conditions, the environmental chambers were operated with fixed cooling or heating output. The fixed heating and cooling output levels were identified by first running the equipment in its ratings test mode for the corresponding test condition. For example, the B_1 test was run immediately before the B_{1x} test, and the ID chamber cooling and heating output were fixed for the B_{1x} test at the levels used during the B_1 test. This results in the unit under test (UUT) responding to the load in the chamber to maintain the desired temperature. In most cases, the UUT set point had to be adjusted to achieve an ID inlet condition close to the target test temperature. If the unit capacity during the dynamic test did not match the capacity of the rating test, the cooling or heating output of the ID chamber was adjusted to try and achieve a match. If a similar capacity could not be achieved without the unit cycling on and off, then data were collected with the unit operating at a capacity as close as possible to the ratings test while running continuously (not cycling). For the dynamic tests at the H4, H5, and H6 test conditions, the ID and OD chambers were operated to control the temperature and humidity to the target values. The heating set point of the UUT was set to the highest possible value to cause it to run at its maximum available capacity.

Dynamic tests were subject to the tolerances shown in Tables 5 and 6 for cooling and heating modes, respectively.

Table 3. Mini-split test plan

Test name	ID inl	et (°F)	OD inlet (°F)		Compressor speed	Notes	Mode
	Dry-bulb	Wet-bulb	Dry-bulb	Wet-bulb			
$A_{2(FA)}$	80.0	67.0	95.0	N/A	Cooling full	Test mode ^a	
A_2	80.0	67.0	95.0	N/A	Cooling full	Test mode	50
$A_{2(CD)}$	80.0	67.0	95.0	N/A	Cooling full	Test mode ^b	Cooling
A_{2x}	80.0	67.0	95.0	N/A	Dynamic		00
B_1	80.0	67.0	82.0	N/A	Cooling minimum	Test mode	0
\mathbf{B}_{1x}	80.0	67.0	82.0	N/A	Dynamic		
H0 ₁	70.0	≤60.0	62.0	56.5	Heating minimum	Test mode	
$H1_N$	70.0	≤60.0	47.0	43.0	Heating full	Test mode ^c	
$H1_{N(CD)}$	70.0	≤60.0	47.0	43.0	Heating full	Test mode ^{b,o}	:
$H1_2$	70.0	≤60.0	47.0	43.0	Heating full	Test mode ^{d, o}	?
$H1_{2x}$	70.0	≤60.0	47.0	43.0	Dynamic		
$H1_1$	70.0	≤60.0	47.0	43.0	Heating minimum	Test mode	
$H1_{1x}$	70.0	≤60.0	47.0	43.0	Dynamic		b 0
$H2_{v}$	70.0	≤60.0	35.0	33.0	Heating intermediate	Test mode	Heating
\mathbf{E}_{Std}	70.0	≤60.0	34.0	32.0	Heating intermediate	Test mode	leat
\mathbf{E}_{Marine}	70.0	≤60.0	34.0	33.0	Heating intermediate	Test mode	프
$H3_2$	70.0	≤60.0	17.0	15.0	Heating full	Test mode	
H4 ₂	70.0	≤60.0	5.0	4.0	Heating full	Test mode	
$H4_2$	70.0	≤60.0	5.0	≤3.0	Heating full	Test mode	
$H4_x$	70.0	≤60.0	5.0	≤3.0	Dynamic	f	
$H5_x$	70.0	≤60.0	-5.0	≤-5.0	Dynamic	f	
$H6_x$	70.0	≤60.0	-15.0	≤-15.0	Dynamic	f	

^a Free air test is run with neither the ID nor OD airflow apparatus connected to the unit.

^b Closed duct test is run with both the ID and OD airflow apparatus connected to the unit.

^c Maximum speed that the system controls would operate the compressor in normal operation at 47°F ambient.

^d Maximum speed that the system controls would operate the compressor in normal operation at 17°F ambient

^e H₁₂ test is not needed if the H_{1N} test uses the same compressor speed.

f Run with heating set point set to maximum value and chambers controlling to target conditions.

Table 4. Central-ducted test plan

Test name	ID inl	et (°F)	OD in	let (°F)	Compressor speed	Notes	Mode
	Dry-bulb	Wet-bulb	Dry-bulb	Wet-bulb			
$\overline{A_2}$	80.0	67.0	95.0	N/A	Cooling full	Test mode	50
A_{2x}	80.0	67.0	95.0	N/A	Dynamic		ling
\mathbf{B}_1	80.0	67.0	82.0	N/A	Cooling minimum	Test mode	Cooling
B_{1x}	80.0	67.0	82.0	N/A	Dynamic		0
$H0_1$	70.0	≤60.0	62.0	56.5	Heating minimum	Test mode	
$H1_N$	70.0	≤60.0	47.0	43.0	Heating full	Test mode ^a	
$H1_2$	70.0	≤60.0	47.0	43.0	Heating full	Test mode ^{b, o}	c
$H1_{2x}$	70.0	≤60.0	47.0	43.0	Dynamic		
$H1_1$	70.0	≤60.0	47.0	43.0	Heating minimum	Test mode	
$H1_{1x}$	70.0	≤60.0	47.0	43.0	Dynamic		
$H2_{v}$	70.0	≤60.0	35.0	33.0	Heating intermediate	Test mode	b 0
$H2_{v}$	70.0	≤60.0	35.0	33.0^{d}	Heating intermediate	Test mode	Heating
$H2_{v}$	70.0	≤60.0	35.0	33.0^{e}	Heating intermediate	Test mode	leal
$H2_{\nu}$	70.0	≤60.0	35.0	33.0^{f}	Heating intermediate	Test mode	Щ
$H3_2$	70.0	≤60.0	17.0	15.0	Heating full	Test mode	
$H4_2$	70.0	≤60.0	5.0	4.0	Heating full	Test mode	
$H4_2$	70.0	≤60.0	5.0	≤3.0	Heating full	Test mode	
$H4_x$	70.0	≤60.0	5.0	≤3.0	Dynamic	g	
$H5_x$	70.0	≤60.0	-5.0	≤-5.0	Dynamic	g	
H6 _x	70.0	≤60.0	-15.0	≤-15.0	Dynamic	g	

^a Maximum speed that the system controls would operate the compressor in normal operation at 47°F ambient.

^b Maximum speed that the system controls would operate the compressor in normal operation at 17°F ambient.

^c H₁₂ test is not needed if the H_{1N} test uses the same compressor speed.

^d Moisture is introduced from one side of the OD coil. Wet-bulb temperature differences between the faces of the OD coil to have no tolerance and the mean average of the wet-bulb sensors shall be $33^{\circ}F \pm 0.3^{\circ}F$.

^e Moisture is introduced from one side of the OD coil. Wet-bulb temperature differences between the faces of the OD coil controlled to $33.0^{\circ}F \pm 1.0^{\circ}F$ and the mean average of the wet-bulb sensors shall be $33^{\circ}F \pm 0.3^{\circ}F$.

^f Moisture is introduced from one side of the OD coil. Wet-bulb temperature differences between the faces of the OD coil controlled to $33.0^{\circ}\text{F} \pm 0.5^{\circ}\text{F}$ and the mean average of the wet-bulb sensors shall be $33^{\circ}\text{F} \pm 0.3^{\circ}\text{F}$.

^g Run with heating set point set to maximum value and chambers controlling to target conditions.

Table 5. Dynamic mode cooling tolerances

	Test operating tolerance	Test condition tolerance
ID entering dry-bulb temperature (°F)	4.0	2.0
ID entering wet-bulb temperature (°F)	2.0	1.0
OD entering dry-bulb temperature (°F)	2.0	0.5
External resistance to airflow (in. water column)	_	0.02^{a}
Airflow nozzle pressure difference (% of reading)	8.0	_
Electrical voltage (% of reading)	2.0	1.5

^a Applies to non-ducted units only

Table 6. Dynamic mode heating tolerances

	Test operating tolerance	Test condition tolerance
ID entering dry-bulb temperature (°F)	4.0	2.0
ID leaving dry-bulb temperature (°F)	4.0	_
ID entering wet-bulb temperature (°F)	2.0	1.0
ID leaving wet-bulb temperature (°F)	2.0	_
OD entering dry-bulb temperature (°F)	2.0	0.5
External resistance to airflow (in. water column)	_	0.02^{a}
Airflow nozzle pressure difference (% of reading)	8.0	_
Electrical voltage (% of reading)	2.0	1.5

^a Applies to non-ducted units only

4. SYSTEM TESTING

4.1 Manufacturer A System 1

System 1 consists of a non-ducted, high-wall-mounted ID unit and OD unit. The test results for system 1 are summarized in Table 7. The system was placed into the test mode using the ID unit remote control. Once in the test mode, the UUT ran at a fixed compressor speed and airflow. Modifying the temperature set point while in test mode caused the unit to leave test mode.

The vertical airflow vane on the ID unit was set to the position closest to horizontal, and the horizontal airflow vane was set to the center for all tests. The system was installed with 25 ft of line set having a 3/8 in. diameter liquid line and 5/8 in. diameter vapor line. When transitioning from the standard rating tests to the dynamic tests, the unit was removed from the test mode by changing the temperature set point on the remote control.

There was not a test mode for the $H4_2$ test, so the $H3_2$ test mode setup was used to try and run the $H4_2$ test. However, the unit would not enter the test mode at the $H4_2$ conditions, so only the dynamic test was run at this condition. For the $H4_x$ and $H5_x$ tests, the temperature set point on the remote control was set to its maximum value and the chamber was controlled to maintain the desired ID conditions. The lowest advertised operating temperature for the system was $-4^{\circ}F$, so the $H5_x$ test was run at this temperature instead of $-5^{\circ}F$, and the $H6_x$ test was omitted.

The airflow for all dynamic tests was set to the high setting, even for the B_{1x} and $H1_{1x}$ tests. During the B_{1x} test, the compressor power and capacity was not stable. At approximately 30 min intervals, the compressor power would spike for about 30 s as shown in Figure 1. Data from both a full 30 min test period and a shorter period capturing more stable data are included in Table 7. The power was also not stable during the $H1_{1x}$ test as seen in Figure 2, and we could not achieve as low of a capacity as that of the $H1_1$ test. During the $H5_x$ test, we could not achieve steady-state data because of frequent defrost cycles. Data were collected, including the defrost cycle, and analyzed like a frost/defrost test.

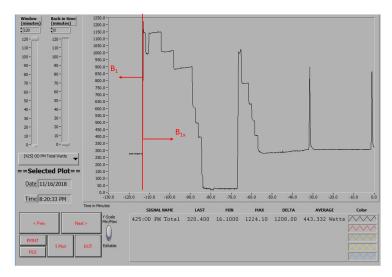


Figure 1. Screen capture of power plot during the transition from B_1 test to B_{1x} test

Table 7. System 1 test results

Test name	Capacity (Btu/h)	Power (W)	EER/COP (Btu/Wh or W/W)	ID airflow (scfm)	Compressor speed (Hz)	Notes
$\overline{A_2}$	22,286	1,710	13.03	891	N/R	
A_{2x}	24,977	2,176	11.48	755	N/R	
\mathbf{B}_1	6,435	276	23.32	896	N/R	
\mathbf{B}_{1x}	6,835	308	22.19	761	N/R	а
\mathbf{B}_{1x}	6,775	306	22.15	760	N/R	a,b
$H0_1$	11,072	653	4.97	488	N/R	
$H1_N$	26,537	2,290	3.40	845	N/R	
$H1_1$	9,969	672	4.35	887	N/R	
$H1_{1x}$	14,720	1,140	3.78	719	N/R	а
$H2_{\nu}$	12,960	1,170	3.25	894	N/R	
\mathbf{E}_{std}	12,773	1,164	3.22	895	N/R	
\mathbf{E}_{marine}	12,100	1,181	3.00	886	N/R	
$H3_2$	17,465	2,026	2.53	880	N/R	
$H4_x$	18,659	2,768	1.98	729	N/R	c
H5 _x	16,154	2,554	1.85	734	N/R	c,d

^a Fan speed was set to high instead of low.

^d Unable to collect 30 min of stable data between defrost cycles, so transient data was collected and analyzed in similar fashion to the frost/defrost tests.

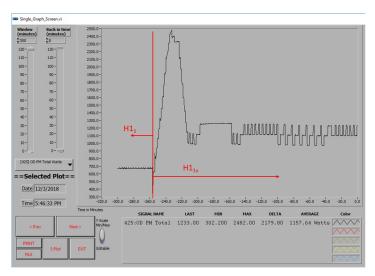


Figure 2. Screen capture of power plot during the transition from $\mathbf{H}\mathbf{1}_1$ test to $\mathbf{H}\mathbf{1}_{1x}$ test

^b Only 25.5 min of steady data was collected for this test.

 $[^]c$ ID remote was set to maximum temperature (88°F) in an attempt to force the unit to run at maximum capacity.

4.2 Manufacturer B System 2 First Round of Testing

The first system from Manufacturer B consists of a ceiling-concealed, horizontal-ducted ID unit and OD unit. The test results for this system are summarized in Table 8. The system was controlled with a wired thermostat that was used to set the appropriate airflow for each test. Minimum compressor speed tests for both cooling and heating tests used the lowest airflow setting, the intermediate compressor speed test used the medium airflow setting, and all other tests used the high airflow setting.

The system was installed with 25 ft of line set having a 3/8 in. diameter liquid line and 5/8 in. diameter vapor line. The ID unit was not installed with an inlet duct because of space constraints in the chamber. To achieve the proper airflow at the Appendix M1 external static pressure, the ID fan pressure setting was changed from the default of 50 Pa to 100 Pa through menu selections on the thermostat. When transitioning from the standard rating tests to the dynamic tests, power had to be removed from the unit. Midway through testing, we learned that the ID controller could be used to query the current compressor speed for the system. This was recorded with the test data when possible.

During the dynamic tests, B_{1x} and H_{1x} , we could not get the unit to run at as low of a capacity as measured during the standard rating tests at those conditions. The unit was cycling on and off, but at a capacity that was higher than the standard rating test. Data were collected at the lowest stable capacity achieved. Plots of the power and ID inlet dry-bulb temperature during the transition from the standard tests to dynamic tests are shown in Figures 3–6. The lowest advertised operating temperature for the system was -13°F, so the H_{6x} test was run at this temperature instead of -15°F.

The $H4_x$ test results appear to disagree with the other test data. Therefore, this test was repeated during the second round of testing on this unit. Although no errors could be identified based on the test log and the data is accurate, we believed that this test was not set up properly to achieve maximum capacity from the unit. This is noted in a footnote in Table 8 and also indicated by struck-through text to ensure it is not overlooked.

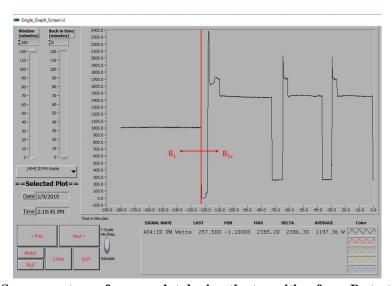


Figure 3. Screen capture of power plot during the transition from B_1 test to B_{1x} test

Table 8. System 2 test results: first round

Test name	Capacity (Btu/h)	Power (W)	EER/COP (Btu/Wh or W/W)	ID airflow (scfm)	Compressor speed (Hz)	Notes
$\overline{A_2}$	32,546	2,604	12.50	1,075	47	
A_{2x}	31,863	2,548	12.51	1,076	N/R	
B_1	16,718	890	18.79	738	20	
\mathbf{B}_{1x}	22,852	1,273	17.95	736	N/R	
$H0_1$	19,875	1,017	5.73	762	23	
$H1_N$	39,697	3,222	3.61	1,120	62	
$H1_{Nx}$	41,479	3,447	3.53	1,107	65	
$H1_1$	16,168	971	4.88	765	23	
$H1_{1x}$	20,058	1,390	4.23	761	N/R	
$H2_{v}$	21,846	1,776	3.61	968	36	
E_{std}	21,844	1,775	3.61	970	36	
\mathbf{E}_{marine}	20,300	1,758	3.38	973	36	
$H3_2$	28,878	3,160	2.68	1,140	62	
$H4_2$	23,189	3,070	2.21	1,147	62	а
$H4_2$	18,713	2,780	1.97	1,138	62	a,b
$H4_{\overline{x}}$	18,774	2,698	2.04	1,137	61	<i>c</i> , <i>d</i> , <i>f</i>
$H5_x$	35,553	5,950	1.75	1,132	105	c
$H6_x$	32,479	5,950	1.60	1,134	107	c, e

^a Test was run in the H3₂ test mode.

^b Test was run with and OD inlet wet-bulb temperature of less than 3°F.

^c ID remote was set to maximum temperature (83°F) in an attempt to force the unit to run at maximum capacity.

^d Average OD wet-bulb temperature for the test was 3.73°F. No frost was visible on the OD coil.

^e Test was run at an OD dry-bulb temperature of -13°F, which was the lowest advertised operating temperature for the system.

^f While the test data is accurate, it is believed that this test was not setup properly to achieve maximum capacity from the unit. As such, the data has been struck through to help ensure that it is not mistakenly used.

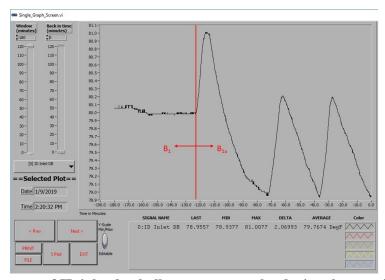


Figure 4. Screen capture of ID inlet dry-bulb temperature plot during the transition from \mathbf{B}_1 test to \mathbf{B}_{1x} test

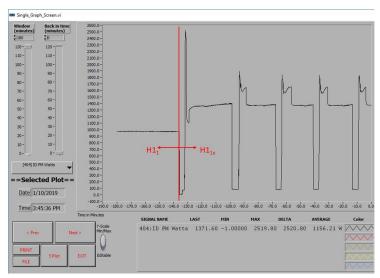


Figure 5. Screen capture of power plot during the transition from $\mathbf{H}\mathbf{1}_1$ test to $\mathbf{H}\mathbf{1}_{1x}$ test

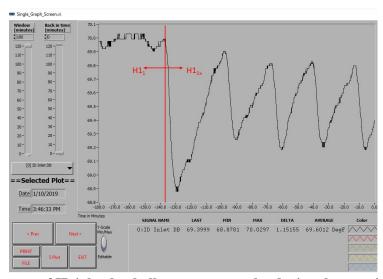


Figure 6. Screen capture of ID inlet dry-bulb temperature plot during the transition from $\mathbf{H}\mathbf{1}_1$ test to $\mathbf{H}\mathbf{1}_{1x}$ test

4.3 Manufacturer B System 2 Second Round of Testing

The second round of testing on this system focused on tests at the Appendix M external static pressure. The ID unit configuration for this test was different from the first round. The unit and code tester were set up in an under/over configuration and oriented differently to allow space for an inlet duct on the ID unit. The results from this round of tests are shown in Table 9.

As with the previous tests, on this unit, we could not achieve matching capacity on the B_{1x} and H_{1x} tests. The unit was cycling on at a higher capacity than the standard tests and then cycling off. The ID chamber heating/cooling supply was adjusted to achieve stable operation at the lowest achievable capacity for these tests.

An additional $H4_x$ test was run at the Appendix M1 external static pressure. This was a repeat of a first-round test on this system because the initial test is believed to have had a setup error that did not allow it to run at maximum capacity. This test is marked in Table 9 with footnote d and should be used in place of the $H4_x$ text that is struck through in Table 8.

Table 9. System 2 test results: second round per Appendix M (except where noted)

Test name	Capacity (Btu/h)	Power (W)	EER/COP (Btu/Wh or W/W)	ID airflow (scfm)	OD fan (rpm)	Compressor speed (Hz)	Notes
A_2	33,500	2,606	12.86	1,143	741	47	
B_1	17,139	880	19.48	793	625	20	
\mathbf{B}_{1x}	23,231	1,260	18.44	739	469	30	
$H0_1$	20,219	990	5.99	847	409	23	
$H1_N$	40,223	3,130	3.77	1,276	705	62	
$H1_{Nx}$	38,362	2,940	3.82	1,242	701	59	
$H1_1$	16,270	946	5.04	849	415	23	
$H1_{1x}$	20,133	1,380	4.28	836	705	30	
$H2_{\nu}$	21,888	1,739	3.69	1,064	705	36	
E_{std}	21,664	1,748	3.63	1,049	704	36	
E_{marine}	20,124	1,720	3.43	1,040	703	36	
$H3_2$	29,031	3,094	2.75	1,262	742	62	
$H4_2$	18,588	2,738	1.99	1,267	745	62	a
$H4_2$	18,609	2,738	1.99	1,262	745	62	a,b
$H4_x$	39,959	5,990	1.96	1,264	720	105	$_{b,c}$
$H4_x$	38,568	5,920	1.91	1,170	722	104	b,c,d
$H5_x$	35,205	5,870	1.76	1,267	721	105	c
$H6_x$	32,620	6,030	1.59	1,251	720	111	c, e

^a Test was run in the H3₂ test mode.

^b Test was run with and OD inlet wet-bulb temperature of less than 3°F.

^c ID remote was set to maximum temperature (83°F) in an attempt to force the unit to run at maximum capacity.

 $[^]d$ Test was run at Appendix M1 external static pressure as a retest for the first round H4 $_x$ test, which did not show the same trend as during the second round of tests.

^e Test was run at an OD dry-bulb temperature of -13°F, which was the lowest advertised operating temperature for the system.

4.4 Manufacturer B System 3

This system consists of two non-ducted, high-wall-mounted ID units and an OD unit. Test results are shown in Table 10.

The two ID units were placed side by side, and a single supply plenum was used to connect them to the airflow measurement apparatus. A photograph of this setup is shown in Figure 7. This setup had the unintended side-effect of isolating the ID air temperature sensor, located on the lower section of the side of the unit, from the ambient air in the chamber. Because the dynamic tests require the unit to respond to changes in the chamber temperature as measured by this sensor, the dynamic tests were initially unsuccessful. To resolve this issue, the UUT temperature sensors were relocated to the return air inlet of the units by extending their wiring, also shown in Figure 7. This improved the response of the system during the dynamic tests, as well as the system's ability to match the chamber load.

The frost/defrost tests for this unit did not exactly follow the testing standard. There was no way to manually initiate a defrost cycle on the unit, and if the unit defrosted automatically, it would switch to running full compressor speed after the defrost cycle instead of intermediate compressor speed. Therefore, the $H2_v$ and E_{std} test data consist of 6 h of operation at stable conditions without a defrost cycle prior to the start of the test data. During the E_{marine} tests, the unit defrosted at just after 2.5 h (and subsequently switched to full compressor speed), so only the 2.5 h of stable data were used in the analysis.

During the $H5_x$ and $H6_x$ tests, the unit defrosted frequently enough that we could not collect 30 min of stable data. Therefore, data were collected from the end of the defrost cycle to the end of the following defrost cycle and analyzed as a frost/defrost test. For comparison, an $H4_x$ test was run in this fashion in addition to the regular $H4_x$ test.

Figure 7. Photograph of side-by-side ID unit setup and extended ID air temperature sensors

Table 10. System 3 test results

Test name	Capacity (Btu/h)	Power (W)	EER/COP (Btu/Wh or W/W)	ID airflow (scfm)	Compressor speed (Hz)	Notes
A_2	18,264	1,244	14.68	725	26	
A_{2x}	17,179	1,143	15.02	739	25.9	
B_1	11,369	649	17.52	328	18	
\mathbf{B}_{1x}	12,232	778	15.73	326	22	
$H0_1$	13,211	893	4.34	332	18	
$H1_N$	23,263	1,603	4.25	686	35	
$H1_{Nx}$	23,725	2,016	3.45	682	36	
$H1_1$	9,719	788	3.61	335	18	
$H1_{1x}$	10,486	1,242	2.47	335	20	
$H2_{\nu}$	13,779	990	4.08	697	24	a,b
\mathbf{E}_{std}	13,447	986	4.00	691	24	a,b
\mathbf{E}_{marine}	13,012	987	3.87	692	24	a
$H3_2$	13,865	1,494	2.72	698	35	
$H4_2$	10,641	1,363	2.29	705	35	c,d
$H4_2$	9,616	1,312	2.15	705	35	c, d , e
$H4_x$	15,737	2,258	2.04	692	56.5	f
$H4_x$	13,397	2,226	1.76	659	61	e,f
$H5_x$	6,466	1,964	0.96	653	67.8	f, g
$H6_x$	5,004	1,869	0.78	660	67.8	f, g , h

^a Test did not begin with a defrost cycle.

^b Unit ran for more than 6 h without defrosting, so no defrost cycle is included in these data.

^c Test was run in the H3₂ test mode.

^d Test was run with and OD inlet wet-bulb temperature of less than 3°F.

^e Test was run as a frost/defrost test with data being collected from the end of a defrost cycle to the end of the next defrost cycle for comparison with the $H5_x$ and $H6_x$ tests.

^f ID remote was set to maximum temperature (88°F) in an attempt to force the unit to run at maximum capacity.

^g Unable to collect 30 min of stable data between defrost cycles, so transient data was collected and analyzed in similar fashion to the frost/defrost tests.

^h Test was run at an OD dry-bulb temperature of -13°F, which was the lowest advertised operating temperature for the system.

4.5 Manufacturer C System 4

System 4 consists of a 36,000 Btu/h, central-ducted, fan-coil ID unit and a 36,000 Btu/h OD. The manufacturer provided a thermostat that allowed for the intermediate compressor speed tests to be run (the standard thermostat has a test mode that only allows minimum and maximum compressor speed tests to be run). The testing on this unit was exploratory and used a prototype inverter board provided by the manufacturer to power the compressor. The inverter board was intended to provide additional ability to "overspeed" the compressor for low ambient heating operation. The manufacturer also provided a hardware interface to connect a computer to the OD unit and software that provided information on the system operation and allowed for the compressor speed to be overridden. For the H4_x, H5_x, and H6_x tests, the compressor speed was manually increased until the inverter began cutting back the compressor speed based on its internal protection limits. These tests reflect the maximum stable compressor speed achieved at each test condition using the non-factory inverter board provided by the manufacturer. The system was installed with 25 ft of line set having a 3/8 in. diameter liquid line and 7/8 in. diameter vapor line. Test results for this system are shown in Table 11.

Several problems were encountered during testing related to refrigerant charge and refrigerant pressure stability. The unit was initially charged in cooling mode at A_2 test conditions. A leak was discovered on one of the pressure transducer lines after the A_2 test was run, so the unit was charged again in heating mode using the manufacturer's instructions. At this charge level, there was no subcooling during the B_1 test, so 26 oz. of refrigerant were added to establish subcooling. At this charge level, the unit would not run at the $H1_2$ test conditions because of high head pressure. To achieve $28^{\circ}F$ subcooling at the $H1_2$ test condition and 400 psig at the liquid line service valve, 14 oz. of refrigerant were removed. After additional issues with the charge at other test conditions, we decided to replace the OD thermostatic expansion valve (TXV). The unit charge was recovered and the TXV was replaced with an adjustable TXV. After being placed under vacuum, the factory charge of 199 plus 10.8 oz. (for additional line set and the refrigerant flow meter) was added. The $H1_2$ test was rerun to check charge and an additional 16 oz. of refrigerant were added. This charge level was used for the remaining tests. During the $H3_2$ test, the system operated without superheat or subcooling. The $H1_2$ test was rerun after the OD TXV was adjusted to provide additional superheat to the compressor ($12^{\circ}F$). The sensing bulb of the OD TXV was also insulated and a copper shim was placed between the line and the bulb to try and dampen its response and reduce pressure oscillations.

An additional set of $H4_x$ test data is included in the table at a lower than maximum compressor speed (90 Hz) for reference. The $H2_v$ tests that examined moisture uniformity around the OD coil were mistakenly run at lower external static pressure (ESP) than required by Appendix M1. This is indicated with a footnote in Table 11.

Table 11. System 4 test results

Test name	Capacity (Btu/h)	Power (W)	EER/COP (Btu/Wh or W/W)	ID airflow (scfm)	Compressor speed (Hz)	Notes
$\overline{A_2}$	33,681	2,641	12.75	1,213	67	а
$H0_1$	11,418	696	4.81	655	22	
$H1_N$	31,682	2,913	3.19	1,159	67	
$H1_2$	33,837	3,169	3.13	1,179	70	
$H1_{2x}$	33,256	2,993	3.26	1,175	70	
$H1_1$	9,540	698	4.01	642	22	
$H1_{1x}$	9,736	720	3.96	641	N/R	b
$H2_{v}$	18,026	1,733	3.05	1,028	51	
$H2_{v}$	17,674	1,707	3.03	1,037	51	c,d
$H2_{v}$	17,915	1,695	3.10	1,036	51	c, e
$H2_{v}$	18,559	1,741	3.12	1,037	51	c,f
$H3_2$	22,115	2,785	2.33	1,190	70	
$H4_2$	18,260	2,624	2.04	1,192	70	
$H4_x$	23,038	3,622	1.86	1,185	90	g
$H4_x$	24,577	3,986	1.81	1,182	96	g
$H5_x$	22,947	4,118	1.63	1,186	111	
$H6_x$	19,299	4,056	1.39	1,192	120	

^a Test was run prior to adjustment of OD TXV. This adjustment is not expected to affect this test.

^b Compressor speed was not recorded during this test.

^c Test was run at lower ESP (~0.26 in. water column) than required (0.37 in. water column).

^d OD inlet dry-bulb and wet-bulb temperatures were measured independently on all four faces of the OD coil. Test was run while trying to minimize the difference between the wet-bulb temperatures on each face.

^e OD inlet dry-bulb and wet-bulb temperatures were measured independently on all four faces of the OD coil. Test was run while trying to maintain a 1°F difference between the wet-bulb temperatures.

^f OD inlet dry-bulb and wet-bulb temperatures were measured independently on all four faces of the OD coil. Test was run while trying to maintain the maximum difference possible between the wet-bulb temperatures. This difference was 1.9°F.

 $[^]g$ Test was run at an OD inlet wet-bulb temperature of ~3.6°F. No significant frost was observed on the OD coil.

4.6 Manufacturer D System 5

System 5 consists of a non-ducted, high-wall-mounted ID unit and OD unit. The test results for this system are summarized in Table 12. The system was placed into the test mode using the ID unit remote control. Once in the test mode, the UUT ran at a fixed compressor speed and airflow.

The vertical airflow vane on the ID unit was set to the position closest to horizontal, and the horizontal vane was set to the center for all tests. The system was installed with 25 ft of line set having a 3/8 in. diameter liquid line and 5/8 in. diameter vapor line.

The airflow for the B_{1x} test was set to the high setting. The power during the B_{1x} was also not stable. As seen in Figure 8, there were spikes in the power at approximately 30 min intervals. Three versions of the $H1_{1x}$ test were run; one with high airflow, one with low airflow, and one with auto airflow. During the low airflow and auto airflow tests, the unit did not run at a stable power as shown in Figure 9. During the high airflow test, the unit did run at a stable power, but at a higher capacity than the $H1_x$. We could not achieve a lower capacity without the unit cycling off during this test, so data were collected at the lowest stable capacity. There was not a test mode for the $H4_2$ test, so the $H3_2$ test mode setup was used to try and run the $H4_2$ test. However, the unit would not enter the test mode at the $H4_2$ conditions, so only the dynamic test was run. The temperature set point on the remote control was set to its maximum value and the chamber control maintained the desired ID conditions for the $H4_2$, $H5_2$, and $H6_2$ tests. The lowest advertised operating temperature for the system was $-14^{\circ}F$, so the $H6_2$ test was run at this temperature instead of $-15^{\circ}F$. These tests were run during the summer, and the OD chamber could not reach a wet-bulb temperature of $3^{\circ}F$ for the $H4_2$ tests, so data were collected at the lowest achievable wet-bulb temperature. Immediately following the collection of the test data, the OD coil was inspected and no significant frost was visible.

The input frequency to the compressor was measured on this unit by using a multimeter to measure the frequency output of a current transformer attached to one of the three power wires leading to the compressor. These data are included in the table for tests when personnel were available to take this measurement.

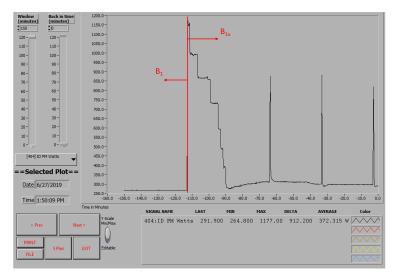


Figure 8. Screen capture of power plot during the transition from B_1 test to B_{1x} test

Table 12. System 5 test results

Test name	Capacity (Btu/h)	Power (W)	EER/COP (Btu/Wh or W/W)	ID airflow (scfm)	Compressor speed (Hz)	Notes
A_2	22,353	1,680	13.31	815	45.2	
A_{2x}	21,182	1,556	13.61	696	N/R	
B_1	6,208	266	23.34	802	10.0	
\mathbf{B}_{1x}	6,920	302	22.91	685	10.0	b
$H0_1$	10,864	680	4.68	402	22.0	
$\mathrm{H1}_N$	26,789	2,290	3.43	769	67.3	
$H1_{Nx}$	27,669	2,652	3.06	599	71.3	
$H1_1$	9,960	656	4.45	783	22.0	
$H1_{1x}$	9,903	774	3.75	404	22.1-27.1	
$H1_{1x}$	10,780	808	3.91	507	22.1-27.1	а
$H1_{1x}$	13,756	1,072	3.76	634	34.5	b
$H2_{v}$	12,634	1,162	3.19	780	37.2	
E_{std}	12,554	1,159	3.17	781	37.2	
\mathbf{E}_{marine}	12,279	1,169	3.08	781	37.2	
$H3_2$	17,875	1,990	2.63	769	67.3	
$H4_x$	18,109	2,688	1.97	626	92.3	c
$H4_x$	19,086	2,760	2.03	624	96.3	c,d
$H5_x$	16,180	2,580	1.84	628	96.3	c, e
$H6_x$	13,225	2,364	1.64	645	96.5	c,f

^a Test was run with auto fan mode selected.
^b Test was run with high fan mode selected.
^c ID remote was set to maximum temperature (88°F) in an attempt to force the unit to run at maximum capacity.

^d Test was run with an OD inlet wet-bulb temperature of 3.6°F.

^e Test was run with an OD inlet dry-bulb temperature of -4.0°F.

^f Test was run with an OD inlet dry-bulb temperature of -14.0°F.

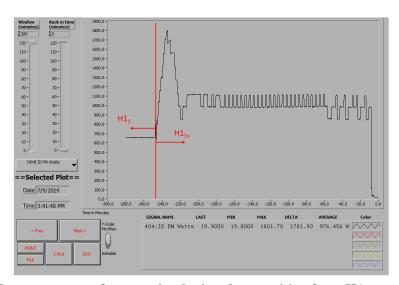


Figure 9. Screen capture of power plot during the transition from $\mathbf{H}\mathbf{1}_1$ test to $\mathbf{H}\mathbf{1}_{1x}$ test

4.7 Manufacturer E System 6

The first system tested from Manufacturer E consists of a 24,000 Btu/h, non-ducted, high-wall-mounted ID unit and a 24,000 Btu/h OD unit. The ID unit remote was used to put the system in test mode. The vertical airflow vane on the ID unit was set to position 3, and the horizontal vane was set to the center prior entering the test mode. However, when entering the test mode, the vertical vanes closed completely and then reopened to approximately position 2 for cooling. This was observed when running the A_2 free-air test. The vane position for the heating test mode was not observed because the ID duct work obstructed the view of the vanes during the tests. The system was installed with 25 ft of line set having a 3/8 in. diameter liquid line and 5/8 in. diameter vapor line.

Test results are summarized in Table 13. The B_{1x} test was run at both high and low airflow settings on the ID unit remote control. During the $H1_{1x}$ tests, the system cycled frequently and did not run at as low of a capacity as the standard $H1_1$ test. This can be seen from the power and capacity plots in Figures 10 and 11. During the $H6_x$ test, steady-state conditions could not be attained between defrost cycles, so data were collected from the end of a defrost cycle to the end of the next defrost cycle. The performance of the system was calculated in the same fashion the frost/defrost tests (e.g., $H2_y$).

Figure 10. Screen capture of power plot during the transition from $H1_1$ test to $H1_{1x}$ test

Table 13. System 6 test results

Test name	Capacity (Btu/h)	Power (W)	EER/COP (Btu/Wh or W/W)	ID airflow (scfm)	Compressor speed (Hz)	Notes
$\overline{A_2}$	21,668	1,708	12.69	587	38.0	
A_{2x}	22,734	1,884	12.07	586	41.3	
B_1	11,124	536	20.75	502	16.1	
\mathbf{B}_{1x}	11,018	586	18.80	482	18.2	a
\mathbf{B}_{1x}	11,528	654	17.63	389	N/R	
$H0_1$	11,654	520	6.57	497	16.1	
$H1_N$	24,239	1,924	3.69	604	43.4	
$H1_{Nx}$	24,728	2,064	3.51	609	46.4	
$H1_1$	9,197	518	5.20	500	16.2	
$H1_{1x}$	10,934	710	4.51	392	20.1	
$H2_{\nu}$	12,255	964	3.73	626	24.2	b
E_{std}	12,133	961	3.70	621	24.2	b
E_{marine}	11,269	950	3.48	625	24.2	
$H3_2$	15,996	1,606	2.92	625	43.4	
$H4_2$	13,174	1,492	2.59	660	43.4	c
$H4_2$	12,992	1,484	2.57	662	43.4	c,d
$H4_x$	22,441	3,466	1.90	549	85.8	d, e
$H5_x$	19,718	3,342	1.73	506	88.2	e
$H6_x$	11,878	2,711	1.28	433	88.3	e,f

^a Fan speed was set to high instead of low.

^b Unit ran for more than 6 h without defrosting, so no defrost cycle is included in these data.

^c Test was run using the H3₂ test mode.

^d Test was run with an OD inlet wet-bulb temperature of less than 3°F.

^e ID remote was set to maximum temperature (88°F) in an attempt to force the unit to run at maximum capacity.

^f Unable to collect 30 min of stable data between defrost cycles, so transient data was collected and analyzed in similar fashion to the frost/defrost tests.

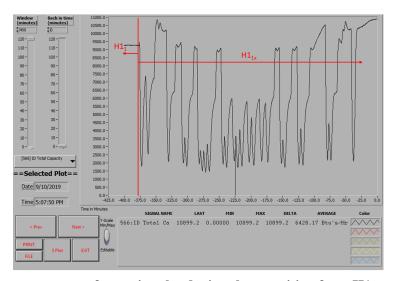


Figure 11. Screen capture of capacity plot during the transition from $\mathbf{H}\mathbf{1}_1$ test to $\mathbf{H}\mathbf{1}_{1x}$ test

4.8 Manufacturer E System 7a

The second system tested from Manufacturer E uses the same 24,000 Btu/h, non-ducted, high-wall-mounted ID unit as the system 6 unit but is paired with a 15,000 Btu/h OD unit. Because this system used the same ID unit as the system in Section 4.7, the process of running the tests was identical. The system was installed with 25 ft of line set having a 3/8 in. diameter liquid line and 5/8 in. diameter vapor line according to the ID unit installation instructions. The OD unit installation instructions did not provide guidance on the line set sizing.

The system was initially tested with the factory charge of 3 lb 1 oz. of refrigerant. The cooling tests and $H1_N$ tests were run with this charge. The measured capacity during the $H1_N$ test was lower than expected, and we believed that the refrigerant charge was low because of the pairing of a larger ID unit and refrigerant lines than what was intended for the OD unit. An additional 12 oz. of refrigerant was added to the system. $H1_N$ capacity was still slightly lower than expected, but the A_2 test indicated very little superheat, indicating near overcharge condition. The majority of the heating tests were run, with the exception of the dynamic tests and frost/defrost tests. The unit would not reliably run the $H1_1$ or $H1_{1x}$ tests because it would often not establish subcooling or superheat and shutdown. Therefore, the matching ID unit was ordered, installed, and tested in place of the existing ID unit.

Test results are summarized for the system in Table 14.

Table 14. System 7a test results

Test name	Capacity (Btu/h)	Power (W)	EER/COP (Btu/Wh or W/W)	ID airflow (scfm)	Compressor speed (Hz)	Notes
$\overline{A_2}$	15,662	1,074	14.59	588	50.1	а
A_{2x}	15,369	1,022	15.04	586	48.4	а
B_1	4,753	162	29.42	413	12.2	а
\mathbf{B}_{1x}	6,687	265	25.21	420	19.2	а
$H1_N$	16,213	1,108	4.29	626	61.5	а
$\overline{A_2}$	15,775	1,146	13.76	573	50.1	b
$H1_N$	17,499	1,150	4.46	624	61.5	b
$H1_1$	3,335	196	4.99	507	12.2	b
$H3_2$	11,300	1,064	3.11	636	61.5	b
$H4_2$	9,196	1,008	2.67	640	61.5	b,c,d
$H4_x$	19,649	2,706	2.13	515	131.4	b,d,e
$H5_x$	16,884	2,446	2.02	525	N/R	b, e , f
$H5_x$	16,279	2,562	1.86	414	131.4	b, e
$H6_x$	13,893	2,310	1.76	426	131.5	b, e

^a Factory charge of 3 lbs. 1 oz.

^b Factory charge plus 12 oz. of refrigerant. Total charge = 3 lbs. 13 oz.

^c Unit was run using the H3₂ test mode.

^d Test was run with an OD inlet wet-bulb temperature of less than 3°F.

^e ID remote was set to maximum temperature (88°F) in an attempt to force the unit to run at maximum capacity.

f Compressor speed was not recorded

4.9 Manufacturer E System 7b

The third system tested from Manufacturer E uses a 15,000 Btu/h, non-ducted, high-wall-mounted ID unit paired with the 15,000 Btu/h OD unit. The test mode was initiated using the ID remote. As with the other system from Manufacturer E, the vertical airflow vane on the ID unit was set to position 3 and the horizontal vane was set to the center. However, when entering the test mode, the vertical vanes closed completely and then reopened to approximately position 2 for cooling. This was observed when running the A_2 free-air test. The vane position for the heating test mode was not observed because the ID duct work obstructed the view of the vanes during the tests. The system was installed with 25 ft of line set having a 1/4 in. diameter liquid line and 1/2 in. diameter vapor line.

Test results are summarized for the system in Table 15. All testing went smoothly with the exception of the E_{marine} test. During this test, the cooling coils for the OD chamber kept frosting over. This reduced the airflow enough that the safety switches for the electric heat and steam generator would trip, causing the conditions in the OD chamber to go out of tolerance. About 3.3 h of data were collected for the E_{marine} test prior to issues with the OD coils, and these were used for the test data. The test was initiated with a defrost cycle but did not terminate with a defrost cycle and did not reach the 6 h limit. During the B_{1x} and H_{1x} tests, we did not achieve as low of a capacity as the corresponding rating test without the unit cycling off and on as seen in Figures 12 and 13. For these tests, the unit was run at lowest achievable stable capacity.

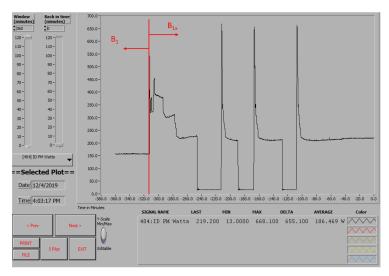


Figure 12. Screen capture of power plot during the transition from B_1 test to B_{1x} test

Table 15. System 7b test results

Test name	Capacity (Btu/h)	Power (W)	EER/COP (Btu/Wh or W/W)	ID airflow (scfm)	Compressor speed (Hz)	Notes
A_2	15,216	1,078	14.11	499	50.1	
A_{2x}	14,797	1,022	14.48	461	48.4	
B_1	4,752	157	30.27	340	12.2	
\mathbf{B}_{1x}	5,832	219	26.65	342	16.1	
$H0_1$	4,311	154	8.22	415	12.2	
$H1_N$	18,278	1,198	4.47	500	61.5	
$H1_{Nx}$	17,815	1,232	4.24	492	63.5	
$H1_1$	3,644	176	6.07	429	12.2	
$H1_{1x}$	5,053	286	5.18	337	16.2	
$H2_{v}$	7,152	498	4.21	513	28.6	а
E_{std}	6,910	498	4.07	520	28.6	а
\mathbf{E}_{marine}	6,369	502	3.71	506	28.6	b
$H3_2$	11,888	1,064	3.27	516	61.5	
$H4_2$	9,750	998	2.86	517	61.5	c
$H4_2$	9,707	996	2.86	520	61.5	c,d
$H4_x$	20,509	2,688	2.24	488	131.4	d, e
$H5_x$	17,776	2,458	2.12	492	131.4	e
$H6_x$	14,656	2,268	1.89	444	131.5	e

^a Unit ran for more than 6 h without defrosting, so no defrost cycle is included in this data.

^b There were issues maintaining the test chamber conditions without the cooling coils frosting over. The data are for \sim 3.3 h of operation after an initial defrost.

^c Test was run using the H3₂ test mode.

^d Test was run with an OD inlet wet-bulb temperature of less than 3°F.

^e ID remote was set to maximum temperature (88°F) in an attempt to force the unit to run at maximum capacity.

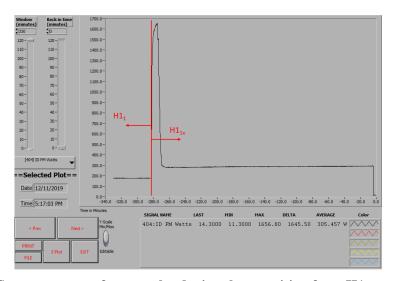


Figure 13. Screen capture of power plot during the transition from $\mathbf{H}\mathbf{1}_1$ test to $\mathbf{H}\mathbf{1}_{1x}$ test

4.10 Manufacturer F System 8

System 8 consists of a 36,000 Btu/h, central-ducted fan coil unit and a 36,000 Btu/h OD unit. The system was installed with 25 ft of refrigerant lines connecting the ID and OD unit with a 3/8 in. diameter liquid line and 7/8 in. diameter vapor line. Although this system uses an variable frequency drive compressor, it is programmed to run at discrete speeds based on inputs from a conventional 2-stage thermostat. The staging is based on thermostat inputs as shown in Table 16.

The control of staging for a specific set of thermostat inputs is based on runtime duration of the current cycle, the stage of the previous cycle, and OD air temperature. If the unit satisfies the call for cooling or heating quickly (in less than 20 min), the unit will stage down for the next cycle. If during a cycle the unit runs for over 45 min in cooling or 30 min in heating, the unit will stage up. If the unit staged up during the prior cycle, the entire next cycle will be at the stage of the prior cycle. With this type of control, the unit had no direct feedback on the ID air temperature or set point; it is only provided with requests for high or low stage operation. Therefore, obtaining near steady-state data during a load-based test is difficult or impossible. As a workaround, the dynamic (x) tests for cooling were run using low or high stage thermostat inputs with the ID and OD chambers controlled to the desired conditions. The unit was cycled off prior to staging up, and this initial cycle was used to precondition the chamber and allow it to stabilize. For cooling, the next cycle was used for data collection with the last 30 min of the 45 min runtime in the desired stage (the unit staged up after 45 min) being used for calculations. Because the stage up time for heating was only 30 min, a different strategy was needed. For the nominal speed test, the Y2 (high stage compressor signal) was briefly de-energized, which reset the 30 min stage-up timer and was brief enough to not significantly affect the steady-state operation of the unit. For the minimum speed test, a method for controlling the unit to provide 30 min of steady-state data was not identified. The data for the H1_{1x} test reflect a shorter data collection interval as noted in Table 17.

When trying to achieve the 0.58 in. water column (w.c.) ESP for the initial A₂ test, the behavior of the ID blower motor made reaching the desired static pressure impossible. As shown in Figure 14, the blower motor apparently changed speeds in response to changes in the system pressure. When the blower motor and code tester were turned on initially, the ESP was too high. As the code tester speed was increased to decrease the ESP, the blower power and airflow increased, indicating a constant speed programming. At approximately data point 140, there is a drastic drop in blower power, ESP, and airflow, indicating that the blower motor changed speed. Because the ESP was near 0 in. w.c., the code tester was slowed to increase the ESP again to try and achieve 0.58 in. w.c. As the code tester speed was decreased, the ESP gradually increased to around 0.26 in. w.c. However, as the code tester speed was decreased further, the ESP, blower power, and airflow began to rise sharply from data point 313 and on. Results were similar with different blower dip switch settings, with the system not being able to run in the middle of the ESP range. To overcome this issue, an external signal generator was used to provide the pulse width modulation signal to the blower motor directly, bypassing the ID units blower control board.

Additional ID fan-only tests were run on this unit to map the fan performance. For these tests, the power measurement was made on the supply power wires running directly to the blower motor. The pulse width modulation control signal was provided by a separate signal generator, so the power use of the onboard control typically used to generate this control signal was not included in the power measurement. Data from these tests are summarized in Table 18.

Table 16. Compressor staging based on thermostat inputs

Thermostat signal	Available compressor stages
Y1 + O	Cooling low
Y1 + O	Cooling intermediate
Y1 + O	Cooling low high
Y1 + Y2 + O	Cooling nominal high
Y1 + Y2 + O	Cooling boost
Y1	Heating low
Y1	Heating intermediate
Y1	Heating low high
Y1 + Y2	Heating nominal high
Y1 + Y2	Heating boost

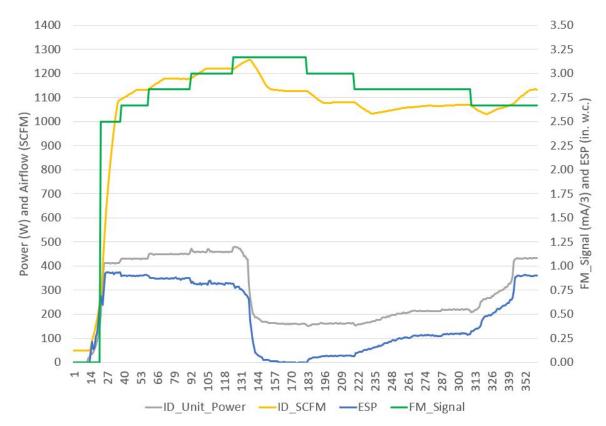


Figure 14. Recorded data while trying to achieve 0.58 in. w.c. ESP using the system's blower control board

Table 17. System 8 test results

Test name	Capacity (Btu/h)	Power (W)	EER/COP (Btu/Wh or W/W)	ID airflow (scfm)	Compressor speed (Hz)	OD fan rpm	ESP a	Notes
	34,984	2,795	12.52	1,203	48.4	1,055	M	11000
A_2	34,516	2,793	11.89	1,205	48.4	1,055	M1	
A_2	•			•		1,055	M1	
A_{2x}	34,235	2,906	11.78	1,211	48.4	,		
E_{ν}	26,365	1,440	18.31	806	33.3	791	M	
E_{ν}	26,219	1,470	17.84	806	33.3	792	M1	b
\mathbf{E}_{v}	26,518	1,511	17.55	999	33.3	792	M	b
\mathbf{E}_{v}	26,286	1,566	16.78	999	33.3	792	M1	υ
\mathbf{B}_2	37,982	2,364	16.07	1,204	48.4	1,055	M	
\mathbf{B}_2	37,438	2,467	15.18	1,207	48.4	1,055	M1	
B_1	21,216	965	21.99	801	25.2	601	M	
B_1	21,088	993	21.24	802	25.2	602	M1	
\mathbf{B}_{1x}	21,019	998	21.06	802	25.2	603	M1	
F_1	23,257	708	32.84	804	25.2	603	M	
F_1	23,122	736	31.42	804	25.2	602	M1	
$H0_1$	21,533	1,067	5.92	801	25.2	607	M	
$H0_1$	21,596	1,098	5.76	801	25.2	607	M1	
$H1_N$	35,326	2,715	3.81	1,200	51.3	1,059	M	
$H1_N$	35,592	2,819	3.70	1,199	51.4	1,059	M1	
$H1_{Nx}$	35,737	2,821	3.71	1,194	51.4	1,058	M1	c
$H1_1$	17,518	1,050	4.89	803	25.2	604	M	
$H1_1$	17,544	1,081	4.76	803	25.2	605	M1	
$H1_{1x}$	17,581	1,075	4.80	810	25.2	605	M1	d
$H2_{\nu}$	18,974	1,498	3.71	812	34.2	791	M	
$H2_{\nu}$	18,800	1,527	3.61	816	34.2	794	M1	
$H2_{\nu}$	18,621	1,485	3.67	1,005	34.2	791	M	b
$H2_{v}$	18,850	1,546	3.57	1,005	34.2	791	M1	b
H3 ₂	22,549	2,385	2.77	1,198	51.4	1,058	M	
$H3_2$	22,902	2,494	2.69	1,197	51.4	1,058	M1	
$H4_2$	18,520	2,257	2.40	1,204	51.4	1,058	M	
$H4_2$	18,818	2,360	2.34	1,204	51.4	1,058	M1	
$H4_x$	21,169	2,695	2.30	1,199	58.4	1,095	M1	e

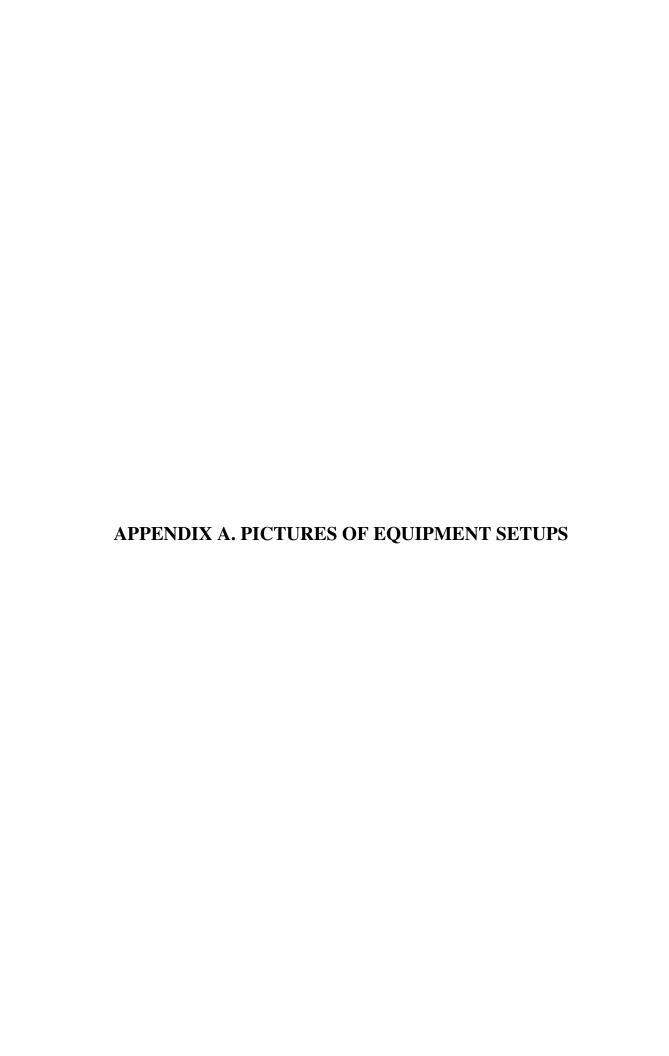
^a Indicates whether the external static pressure was set according to Appendix M or Appendix M1.

^b The system was run at a higher intermediate airflow for these tests. The airflow target was 1,000 scfm instead of 805 scfm.

^c In heating mode, the system stages up from nominal to boost after 30 min of operation. To record 30 min of near steady-state data, the Y2 (high stage compressor) call was briefly de-energized, resetting the 30 min timer but not upsetting the operation of the unit.

^d There was no way to operate the unit so that it stayed in low speed operation for more than 30 min. The data recorded reflects 23.5 min of data at the end of a 30 min cycle.

^e The system was running at "boost" compressor speed for this test.


Table 18. System 8 ID fan test results

Reference ESP (in. w.c.)	Airflow (scfm)	ESP (in. w.c.)	Fan power (W)
0.23	1,202.4	0.231	230.4
	1,003.4	0.161	139.2
	804.8	0.104	75.6
0.38	1,201.9	0.382	274.8
	1,000.8	0.264	163.2
	805.9	0.173	88.8
0.48	1,200.2	0.483	304.8
	1,003.6	0.334	182.4
	807.7	0.218	97.2
0.58	1,199.4	0.583	334.8
	1,000.5	0.404	199.2
	803.2	0.263	104.4

5. REFERENCES

References

- [1] Energy Information Administration. 2009 residential energy consumption survey, 2013.
- [2] Energy Information Administration. 2015 residential energy consumption survey, 2018.
- [3] American Society of Heating, Refrigerating, and Air-Conditioning Engineers. *Standard 37-2009: Methods of Testing for Rating Electrically Driven Unitary Air-Conditioning and Heat Pump Equipment*. ASHRAE, Atlanta, Georgia, 2009.

