
# Disassembly of Capsules after the Irradiation of Prototype Metal and Nanocomposite Specimens in the High Flux Isotope Reactor



Jesse Werden Annabelle Le Coq Kory Linton

January 2021

#### **DOCUMENT AVAILABILITY**

Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect.

Website www.osti.gov

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 *Telephone* 703-605-6000 (1-800-553-6847) *TDD* 703-487-4639 *Fax* 703-605-6900 *E-mail* info@ntis.gov

Website http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source:

Office of Scientific and Technical Information PO Box 62
Oak Ridge, TN 37831 *Telephone* 865-576-8401 *Fax* 865-576-5728 *E-mail* reports@osti.gov *Website* http://www.osti.gov/contact.html

## Nuclear Energy and Fuel Cycle Division

# Disassembly of Capsules after the Irradiation of Prototype Metal and Nanocomposite Specimens in the High Flux Isotope Reactor

Jesse Werden Annabelle Le Coq Kory Linton

Date Published: January 2021

NSUF Work Package #: UF-20OR0211132 Work Package Manager: Kory Linton Milestone #: M3UF-20OR0211132

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, TN 37831-6283
managed by
UT-BATTELLE, LLC
for the
US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

# **CONTENTS**

| LIST OF FIGURES                             | iv  |
|---------------------------------------------|-----|
| LIST OF TABLES                              |     |
| ACKNOWLEDGMENTS                             | V   |
| ACRONYMS                                    | vi  |
| SUMMARY                                     |     |
| 1. INTRODUCTION                             |     |
| 1.1 CAPSULE DESIGN                          |     |
| 1.2 TEST MATRIX                             |     |
| 2. IRRADIATION HISTORY                      | 2   |
| 3. IRRADIATION CAPSULE DISASSEMBLY          | ∠   |
| 4. THERMOMETRY                              |     |
| 5. FUTURE WORK                              |     |
| 6. SUMMARY AND CONCLUSIONS                  | 12  |
| 7. WORKS CITED                              | 13  |
| APPENDIX A: INDIVIDUAL SSJ2 SPECIMEN IMAGES | A-1 |

# LIST OF FIGURES

| Figure 1. Irradiation capsule design for tensile specimens [1].   |  |
|-------------------------------------------------------------------|--|
| Figure 2. Parts layout for GENTEN irradiation capsule JULI04 [1]. |  |
| Figure 3. Three holders removed from the JULI06 capsule.          |  |
| Figure 4. Disassembled JULI01 capsule.                            |  |

# LIST OF TABLES

| Table 1. Irradiation test matrix [1].                                               | 3 |
|-------------------------------------------------------------------------------------|---|
| Table 2. Irradiation history of the JULI capsules                                   |   |
| Table 3. Status of all TMs recovered during the disassembly of JULI capsules.       |   |
| Table 4. TM dilatometry results and estimated temperatures of the tensile specimens |   |
| Table 5. Specimens to be tensile tested.                                            |   |

#### **ACKNOWLEDGMENTS**

This research was sponsored by the Nuclear Science User Facilities Program of the US Department of Energy's (DOE's) Office of Nuclear Energy. Neutron irradiation in the High Flux Isotope Reactor is made possible by the DOE Office of Basic Energy Sciences. The report was authored by UT-Battelle LLC under Contract No. DE-AC05-00OR22725 with DOE. The different materials were provided by the Massachusetts Institute of Technology with the help of Ju Li, Kangpyo So, Rui Gao, So Yeon Kim, Mohammad Hasan Shahin, Myles Stapelberg, and Samuel McAlpine, as well as by Oak Ridge National Laboratory staff members Niyanth and Caleb Massey.

## **ACRONYMS**

DOE US Department of Energy

GENTEN general tensile

HFIR High Flux Isotope Reactor

HT hydraulic tube

IMET Irradiated Materials Examination and Testing Facility

LAMDA Low Activation Materials Development and Analysis Laboratory

MIT Massachusetts Institute of Technology

ORNL Oak Ridge National Laboratory

SiC silicon carbide TM thermometry

TRRH target rod rabbit holder

#### **SUMMARY**

This report summarizes the disassembly, thermometry (TM) analysis, and future post-irradiation examination of irradiation capsules that contain nanodispersion-strengthened materials for the improved neutron irradiation resistance of fuel cladding and reactor core materials. All six capsules were successfully disassembled, and all TM was shipped to the Low Activation Materials Development and Analysis Laboratory for further analysis. The results of this project will support the development of new radiation-resistant materials by helping researchers understand the mechanism of defect evolution at interfaces in nanodispersion-strengthened materials.

#### 1. INTRODUCTION

The Massachusetts Institute of Technology (MIT) is currently studying different fuel cladding and reactor core materials with improved neutron irradiation resistance due to nanodispersions at 0, 1, or 2 dimensions; these values correspond to particles, nanotubes, and sheets, respectively. The purpose of this project is to perform neutron irradiation tests on several nanodispersion-strengthened materials to provide data on defect mechanisms at the nanoscale.

Thirteen nanodispersion-strengthened materials were irradiated in Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR). Six irradiation capsules were assembled and irradiated at a target temperature of  $300 \pm 50^{\circ}$ C with approximate doses of 0.7, 1.4, and 2.1 dpa (two capsules per irradiation condition). This report presents the disassembly of these capsules, thermometry (TM) analysis, and future post-irradiation examination.

#### 1.1 CAPSULE DESIGN

The general tensile (GENTEN) irradiation capsule design comprises three specimen holders stacked axially within the rabbit housing, as shown in Figure 1. Each holder contains 12 SSJ2 tensile specimens and four passive silicon carbide (SiC) TMs. Therefore, each capsule contains 36 tensile specimens and 12 SiC TMs. Chevrons are used as filler pieces to produce a uniform thermal load, and spring pins secure all specimens in place. The holders feature centering tabs to keep them centered inside the housing and thus maintain a constant gas gap between the holder and housing. Compression springs are placed on both ends of the internal assembly to minimize axial heat loss. Six capsules, labeled as JULI01 through JULI06, were assembled. Figure 2 shows an example of the parts layout for one capsule before assembly.

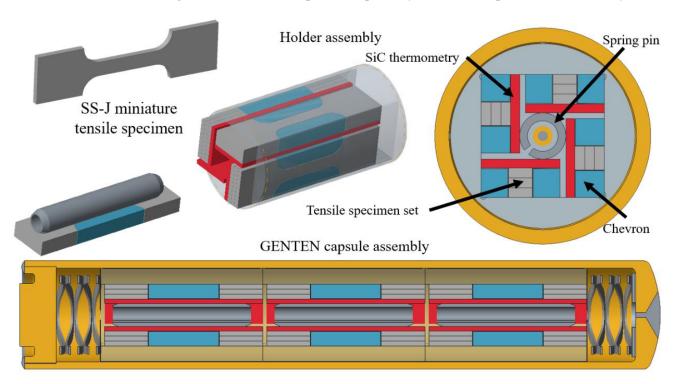



Figure 1. Irradiation capsule design for tensile specimens [1].

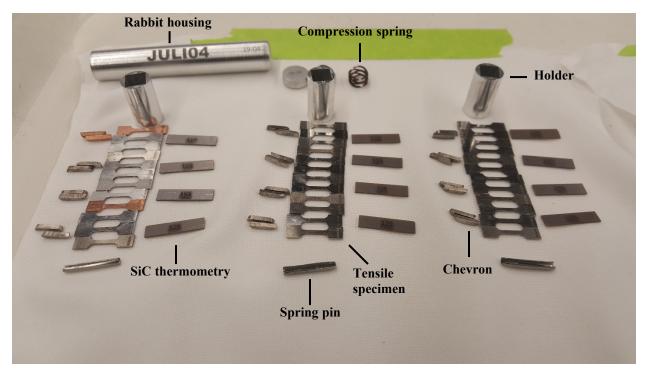



Figure 2. Parts layout for GENTEN irradiation capsule JULI04 [1].

## 1.2 TEST MATRIX

Table 1 summarizes the irradiation test matrix for this project. These six irradiation capsules contain 15 different materials provided by MIT and ORNL. All irradiation design temperatures are  $300 \pm 50^{\circ}$ C with doses of approximately 0.7, 1.4, and 2.1 dpa, and these values correspond to approximately one-half, one, and two HFIR cycles, respectively.

Table 1. Irradiation test matrix [1].

| Capsule ID                | JULI01 | JULI02 | JULI03     | JULI04    | JULI05 | JULI06 |       |
|---------------------------|--------|--------|------------|-----------|--------|--------|-------|
| Dose (dpa)                | 0      | .7     | 1.         | .4        | 2.     | .1     |       |
| Materials                 |        | Nu     | mber of SS | J2 specim | ens    |        | Total |
| Al                        | 3      | 2      | 3          | 2         | 3      | 2      | 15    |
| Al + CNT                  | 3      | 2      | 3          | 2         | 3      | 2      | 15    |
| Cu                        | 3      | 1      | 3          | 1         | 3      | 1      | 12    |
| Cu + graphene             | 3      | 1      | 3          | 1         | 3      | 1      | 12    |
| Fe-16Cr-2Si               | 2      | 3      | 2          | 3         | 2      | 3      | 15    |
| Fe-20Cr-2Si               | 2      | 3      | 2          | 3         | 2      | 3      | 15    |
| Grade 91                  | 3      | 3      | 3          | 3         | 3      | 3      | 18    |
| Ni                        | 2      | 3      | 2          | 3         | 2      | 3      | 15    |
| Ni + CNT                  | 3      | 2      | 3          | 2         | 3      | 2      | 15    |
| OFRAC                     | 0      | 3      | 0          | 3         | 0      | 3      | 9     |
| Single crystal Ni         | 2      | 3      | 2          | 3         | 2      | 3      | 15    |
| Steel 1                   | 3      | 2      | 3          | 2         | 3      | 2      | 15    |
| Steel 1 + oxide/carbide   | 2      | 3      | 2          | 3         | 2      | 3      | 15    |
| Steel 2                   | 2      | 3      | 2          | 3         | 2      | 3      | 15    |
| Steel 2 + oxide/carbide   | 3      | 2      | 3          | 2         | 3      | 2      | 15    |
| Total number of specimens | 36     | 36     | 36         | 36        | 36     | 36     | 216   |

#### 2. IRRADIATION HISTORY

The six JULI capsules were irradiated in HFIR during cycle 485a (December 17–26, 2019), 485b (January 3–19, 2020), and 486 (January 30–February 24, 2020). The hydraulic tube (HT) irradiation facility was used for capsules with an irradiation time of less than one cycle. A target rod rabbit holder (TRRH) irradiation facility allowed the capsule irradiation for one or two full HFIR cycles. One HFIR cycle is approximately 25 days. Table 2 shows the irradiation details for each capsule.

**Beginning** Irradiation Axial Time in the Capsule ID End cycle Location cycle facility position reactor JULI01 485a 485b ΗТ В3 3 12.5 days JULI02 12.5 days 485a 485b ΗТ В3 JULI03 485a 485b **TRRH** G5 1 cycle 6 485b JULI04 485a TRRH E7 6 1 cycle JULI05 485a 486 TRRH Β1 6 2 cycles JULI06 485a 486 TRRH C1 6 2 cycles

Table 2. Irradiation history of the JULI capsules.

#### 3. IRRADIATION CAPSULE DISASSEMBLY

The six GENTEN capsules (JULI01–JULI06) were successfully disassembled in hot cell #6 of ORNL's Irradiated Materials Examination and Testing Facility (IMET). The first step in disassembling the capsules was to cut both ends of the capsule housing by using a double-bladed low-speed saw in which the distance between the blades is set to not harm any of the specimens. The capsule was then moved to a steel tray onto which the contents could be safely extracted. Figure 3 shows the JULI06 capsule as an example in which both sides of the housing were cut and the three holders were extracted. Next, a dental pick was used to push out the spring pin from the center of each holder. Once the spring pin was removed, the tensile specimens and SiC TMs fell out of the holder. Figure 4 shows the parts layout for the completely disassembled JULI01 capsule.



Figure 3. Three holders removed from the JULI06 capsule.



Figure 4. Disassembled JULI01 capsule.

Each tensile specimen was then sorted and placed into individual fiber tubes marked with its specimen ID. Several SiC TMs were broken during disassembly; however, each capsule had enough intact TMs for post-irradiation analysis. All SSJ2 tensile specimens were recovered intact, and images of individual specimens are shown in Appendix A. All TM specimens were shipped to the Low Activation Materials Development and Analysis Laboratory (LAMDA) for dilatometry analysis, and all tensile specimens remained at IMET for tensile testing in hot cell #1.

#### 4. THERMOMETRY

All TMs in each capsule were recovered during disassembly. Table 3 shows the status of the TMs recovered from each capsule. Three TMs per capsule were selected to be analyzed via dilatometry [2] to confirm the irradiation temperature; the results are shown in Table 4. GENTEN design calculations in Piela et al. [1], Le Coq et al. [3], and Howard and Smith [4] show that the TM temperature is on average  $15^{\circ}$ C higher than the specimens temperature. Thus, the experimental specimen temperature was estimated to be  $15^{\circ}$ C lower than the average temperature of the TMs for each capsule. The specimen temperatures obtained by this approach are in agreement with the target irradiation temperature ( $300 \pm 50^{\circ}$ C).

Table 3. Status of all TMs recovered during the disassembly of JULI capsules.

| Capsule<br>ID | Holder | TM<br>ID | Status         | Capsule<br>ID | Holder           | TM ID | Status              |
|---------------|--------|----------|----------------|---------------|------------------|-------|---------------------|
|               |        | 081      | Intact         |               |                  | 118   | Intact              |
| Тор           | Тор    | 082      | Intact         |               | Тор              | 119   | Intact              |
|               | holder | 083      | Intact         |               | holder           | 153   | Intact              |
|               |        | 084      | Intact         |               |                  | 121   | Intact              |
|               |        | 085      | Intact         |               |                  | 122   | Intact              |
| JULI01        | Middle | 086      | Intact         | JULI04        | Middle           | 123   | Intact              |
| JULIUI        | holder | 087      | Intact         | JULI04        | holder           | 124   | Intact              |
|               |        | 088      | Intact         |               |                  | 125   | Intact              |
|               |        | 089      | Intact         |               |                  | 126   | Intact              |
|               | Bottom | 090      | Intact         |               | Bottom           | 127   | Intact              |
|               | holder | 091      | Intact         |               | holder           | 128   | Intact              |
|               |        | 092      | Intact         |               |                  | 129   | Intact              |
|               |        | 093      | Broken in half |               |                  | 130   | Intact              |
|               | Тор    | 094      | Intact         |               | Тор              | 131   | Intact              |
|               | holder | 095      | Intact         |               | holder           | 132   | Intact              |
|               |        | 096      | Intact         |               |                  | 133   | Intact              |
|               |        | 097      | Intact         |               | Middle<br>holder | 105   | Intact              |
|               | Middle | 098      | Intact         |               |                  | 135   | Intact              |
| JULI02        | holder | 099      | Intact         | JULI05        |                  | 136   | Intact              |
|               |        | 100      | Intact         |               |                  | 137   | Intact              |
|               |        | 101      | Intact         |               | Bottom<br>holder | 138   | Two chipped corners |
|               | Bottom | 102      | Intact         |               |                  | 139   | Intact              |
|               | holder | 103      | Intact         |               |                  | 140   | Intact              |
|               |        | 104      | Intact         |               |                  | 141   | Intact              |
|               |        | 106      | Intact         |               |                  | 142   | Broken in half      |
|               | Тор    | 107      | Intact         |               | Top              | 143   | Intact              |
|               | holder | 108      | Intact         |               | holder           | 144   | Intact              |
|               |        | 109      | Intact         |               |                  | 145   | Intact              |
|               |        | 110      | Broken         |               |                  | 146   | Intact              |
| 11 11 102     | Middle | 111      | Chipped edge   | JULI06        | Middle           | 147   | Intact              |
| JULI03        | holder | 112      | Intact         | JOLIOO        | holder           | 148   | Intact              |
|               |        | 113      | Intact         |               |                  | 149   | Intact              |
|               |        | 114      | Broken         |               |                  | 150   | Broken              |
|               | Bottom | 115      | Intact         |               | Bottom           | 151   | Intact              |
|               | holder | 116      | Intact         |               | holder           | 152   | Intact              |
|               |        | 117      | Intact         |               |                  | 154   | Intact              |

Table 4. TM dilatometry results and estimated temperatures of the tensile specimens.

| Capsule<br>ID | TM ID | TM temperature<br>(°C) | TM average temperature (°C) ± σ | Specimen<br>temperature (°C) |  |
|---------------|-------|------------------------|---------------------------------|------------------------------|--|
|               | 081   | 304                    |                                 |                              |  |
| JULI01        | 085   | 398                    | $367 \pm 44$                    | 352                          |  |
|               | 089   | 399                    |                                 |                              |  |
|               | 094   | 297                    |                                 |                              |  |
| JULI02        | 097   | 307                    | $300 \pm 5$                     | 285                          |  |
|               | 101   | 318                    |                                 |                              |  |
|               | 106   | 282                    |                                 |                              |  |
| JULI03        | 107   | 284                    | $295 \pm 16$                    | 280                          |  |
|               | 113   | 291                    |                                 |                              |  |
|               | 118   | 269                    |                                 |                              |  |
| JULI04        | 122   | 322                    | $306 \pm 27$                    | 291                          |  |
|               | 126   | 329                    |                                 |                              |  |
|               | 130   | 331                    |                                 |                              |  |
| JULI05        | 105   | 331                    | $347\pm24$                      | 332                          |  |
|               | 138   | 381                    |                                 |                              |  |
|               | 143   | 327                    |                                 |                              |  |
| JULI06        | 146   | 343                    | 328 ±12                         | 313                          |  |
|               | 151   | 314                    |                                 |                              |  |

#### 5. FUTURE WORK

MIT specimen tensile testing will be performed in IMET cell #1. Two or three specimens per material per irradiation condition will be tested. Additionally, unirradiated specimens of the same materials will be tested. The MIT tensile test matrix will follow ASTM E8a with a strain rate of 0.018 mm/min to determine material yield strengths. Table 5 lists the specimens that will be tensile tested.

Table 5. Specimens to be tensile tested.

| Dpa | Capsule<br>ID | Material          | Specimen ID |
|-----|---------------|-------------------|-------------|
|     |               | Al                | M1A 17      |
|     |               | Al                | M1A 18      |
|     |               | Al                | M1A 19      |
|     |               | Al + CNT          | M2A 04      |
|     |               | Al + CNT          | M2A 06      |
|     |               | Al + CNT          | M2A 14      |
|     |               | Fe-16Cr-2Si       | M3S 16      |
|     |               | Fe-16Cr-2Si       | M3S 17      |
|     |               | Fe-16Cr-2Si       | M3S 18      |
|     |               | Fe-20Cr-2Si       | M4S 16      |
|     |               | Fe-20Cr-2Si       | M4S 17      |
|     |               | Fe-20Cr-2Si       | M4S 18      |
|     |               | Cu                | M5C 13      |
|     |               | Cu                | M5C 14      |
|     |               | Cu                | M5C 15      |
|     |               | Cu + CNT          | M6C 06      |
|     | 27/4          | Cu + CNT          | M6C 11      |
| 0   | N/A           | Cu + CNT          | M6C 15      |
|     |               | Single crystal Ni | M7N 16      |
|     |               | Steel 1           | M8S 08      |
|     |               | Steel 1           | M8S 09      |
|     |               | Steel 1           | M8S 11      |
|     |               | Steel 2           | M9S01       |
|     |               | Steel 2           | M9S02       |
|     |               | Steel 2           | M9S03       |
|     |               | Steel 1 + OC      | M10S 17     |
|     |               | Steel 1 + OC      | M10S 18     |
|     |               | Steel 1 + OC      | M10S 19     |
|     |               | Steel 2 + OC      | M11S 01     |
|     |               | Steel 2 + OC      | M11S 02     |
|     |               | Steel 2 + OC      | M11S 03     |
|     |               | Ni                | M12N 11     |
|     |               | Ni                | M12N 16     |
|     |               | Ni                | M12N 19     |
|     |               | Ni + CNT          | M13N 14     |
|     |               | Ni + CNT          | M13N 16     |
| 0.7 | II II 101     | Ni + CNT          | M13N 17     |
| 0.7 | JULI01        | Cu                | M5C 02      |
|     |               | Al                | M1A 01      |
|     |               | Al                | M1A 02      |

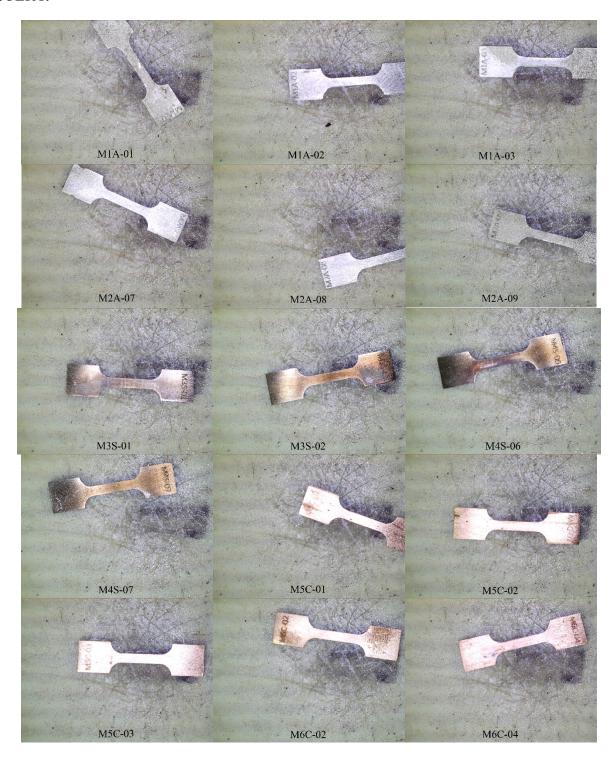
|     |        |                   | T       |
|-----|--------|-------------------|---------|
|     |        | Cu + CNT          | M6C 04  |
|     |        | Al + CNT          | M2A 09  |
|     |        | Cu + CNT          | M6C 05  |
|     |        | Al                | M1A 03  |
|     |        | Ni + CNT          | M13N 10 |
|     |        | Steel 1           | M8S 01  |
|     |        | Steel 2           | M9S08   |
|     |        | Ni + CNT          | M13N 11 |
|     |        | Steel 1 + OC      | M10S 01 |
|     |        | Steel 2 + OC      | M11S 08 |
|     |        | Single crystal Ni | M7N 01  |
|     |        | Fe-16Cr-2Si       | M3S 01  |
|     |        | Fe-20Cr-2Si       | M4S 06  |
|     |        | Ni                | M12N 01 |
|     |        | Steel 2 + OC      | M11S 09 |
|     |        | Steel 1           | M8S 02  |
|     |        | Ni + CNT          | M13N 12 |
|     |        | Steel 2           | M9S09   |
|     |        | Steel 1 + OC      | M10S 02 |
|     |        | Ni                | M12N 12 |
|     |        | Steel 2 + OC      | M11S 10 |
|     |        | Steel 1           | M8S 03  |
|     |        | Single crystal Ni | M7N 02  |
|     |        | Fe-20Cr-2Si       | M4S 07  |
|     |        | Fe-16Cr-2Si       | M3S 02  |
|     |        | Fe-16Cr-2Si       | M3S 03  |
|     |        | Fe-20Cr-2Si       | M4S 08  |
|     | JULI02 | Single crystal Ni | M7N 03  |
|     |        | Steel 1 + OC      | M10S 03 |
|     |        | Ni                | M12N 03 |
|     |        | Steel 2           | M9S11   |
|     |        | Cu                | M5C 05  |
|     |        | Al + CNT          | M2A 12  |
|     |        | Al + CNT          | M2A13   |
|     |        | Cu                | M5C 06  |
|     |        | Al                | M1A 06  |
|     | HH 102 | Al                | M1A 07  |
| 1.4 | JULI03 | Cu + CNT          | M6C 03  |
|     |        | Cu                | M5C 07  |
|     |        | Al + CNT          | M2A 15  |
|     |        | Cu + CNT          | M6C 07  |
|     |        | Cu + CNT          | M6C 08  |
|     |        | Al                | M1A 16  |
|     |        |                   |         |

|     |          | Steel 1                | M8S 06   |
|-----|----------|------------------------|----------|
|     |          | Steel 2                | M9S13    |
|     |          | Steel 1 + OC           | M10S 06  |
|     |          | Steel 2 + OC           | M10S 00  |
|     |          | Fe-16Cr-2Si            | M3S 06   |
|     |          | Fe-10Cr-2Si            | M4S 11   |
|     |          | Ni                     | M12N 06  |
|     |          | Steel 2 + OC           |          |
|     |          |                        | M11S 13  |
|     |          | Steel 1                | M8S 07   |
|     |          | Ni + CNT               | M13N 03  |
|     |          | Steel 2                | M9S14    |
|     |          | Steel 1 + OC           | M10S 07  |
|     |          | Ni                     | M12N 07  |
|     |          | Steel 2 + OC           | M11S 14  |
|     |          | Steel 1                | M8S 10   |
|     |          | Fe-20Cr-2Si            | M4S 12   |
|     |          | Fe-16Cr-2Si            | M3S 07   |
|     |          | Ni + CNT               | M13N 13  |
|     |          | Fe-16Cr-2Si            | M3S 08   |
|     | JULI04   | Fe-20Cr-2Si            | M4S 13   |
|     |          | Single crystal Ni      | M7N 08   |
|     |          | Steel 1 + OC           | M10S 16  |
|     |          | Steel 2                | M9S15    |
|     |          | Ni + CNT               | M13N 20  |
|     |          | Ni                     | M12N 08  |
|     |          | Single crystal Ni      | M7N 09   |
|     |          | Single crystal Ni      | M7N 10   |
|     |          | Cu                     | M5C 09   |
|     |          | Al + CNT               | M2A 01   |
|     |          | Al + CNT               | M2A 02   |
|     |          | Cu                     | M5C 10   |
|     |          | Al                     | M1A 11   |
|     |          | Al                     | M1A 12   |
|     |          | Cu + CNT               | M6C 10   |
| 2.1 | H II 105 | Cu                     | M5C 11   |
| 2.1 | JULI05   | Al + CNT               | M2A 03   |
|     |          | Cu + CNT               | M6C 12   |
|     |          | Cu + CNT               | M6C 13   |
|     |          | Al                     | M1A 13   |
|     |          | Steel 1                | M8S 15   |
|     |          | Steel 2                | M9S18    |
|     |          | Steel 1 + OC           | M10S 11  |
|     |          | Single crystal Ni      | M7N 11   |
|     |          | - Singit tij buit i (i | 2,2,1,11 |

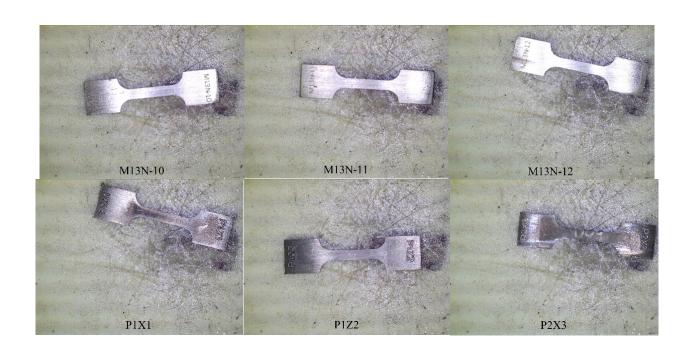
|  |        | Fe-16Cr-2Si       | M3S 11  |
|--|--------|-------------------|---------|
|  |        | Fe-20Cr-2Si       | M4S 01  |
|  |        | Ni                | M12N 17 |
|  |        | Steel 2 + OC      | M11S 04 |
|  |        | Steel 1           | M8S 16  |
|  |        | Ni + CNT          | M13N 07 |
|  |        | Steel 2           | M9S19   |
|  |        | Steel 1 + OC      | M10S 12 |
|  |        | Ni                | M12N 18 |
|  |        | Steel 2 + OC      | M11S 05 |
|  |        | Steel 1           | M8S 17  |
|  |        | Single crystal Ni | M7N 12  |
|  |        | Fe-20Cr-2Si       | M4S 02  |
|  |        | Fe-16Cr-2Si       | M3S 12  |
|  |        | Ni + CNT          | M13N 08 |
|  |        | Fe-16Cr-2Si       | M3S 13  |
|  |        | Fe-20Cr-2Si       | M4S 03  |
|  |        | Single crystal Ni | M7N 13  |
|  | JULI06 | Steel 1 + OC      | M10S 13 |
|  |        | Steel 2           | M9S20   |
|  |        | Ni + CNT          | M13N 09 |
|  |        | Steel 2 + OC      | M11S 06 |
|  |        | Ni                | M12N 13 |
|  |        |                   |         |

## 6. SUMMARY AND CONCLUSIONS

This report summarizes the disassembly, TM analysis, and future post-irradiation examination of irradiation capsules that contain nanodispersion-strengthened materials for the improved neutron irradiation resistance of fuel cladding and reactor core materials. All six capsules were successfully disassembled, and all TM specimens were shipped to LAMDA for further analysis. The results of this project will support the development of new radiation-resistant materials by helping researchers understand the mechanism of defect evolution at interfaces in nanodispersion-strengthened materials.


#### 7. WORKS CITED

- [1] S. Piela, R. Howard, A. Le Coq, K. Linton, and J. Li, *Design and Assembly of Rabbit Capsules for Irradiation of Prototype Metal and Nanocomposite Specimens in the High Flux Isotope Reactor*, ORNL/SPR-2019/1306, Oak Ridge, Tennessee (2019).
- [2] K. G. Field, J. L. McDuffee, J. W. Geringer, C. M. Petrie, and Y. Katoh, "Evaluation of the Continuous Dilatometer Method of Silicon Carbide Thermometry for Passive Irradiation Temperature Determination," *Nuclear Inst. and Methods in Physics Research B* 445 (2019): 46–56.
- [3] A. Le Coq et al., Design and Thermal Analysis for Irradiation of Tensile Specimens from Wrought, Powder Metallurgy, and Additive Processed Alloys in the HFIR, ORNL/SPR-2018/959, Oak Ridge, Tennessee (2018).
- [4] R. Howard and K. Smith, *Development of a Flexible Design for Irradiation of Miniature Tensile and Charpy Test Specimens in the High Flux Isotope Reactor*, ORNL/TM-2018/872, Oak Ridge, Tennessee (2018).


APPENDIX A: INDIVIDUAL SSJ2 SPECIMEN IMAGES

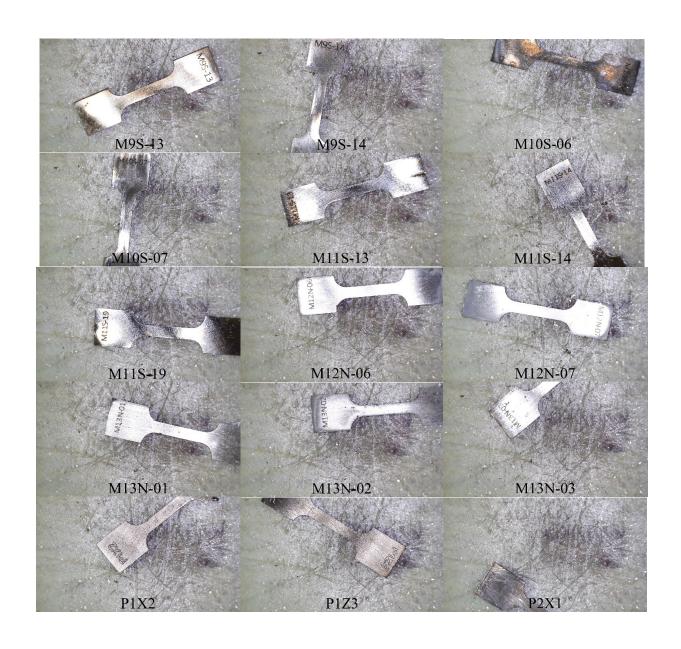
# APPENDIX A: INDIVIDUAL SSJ2 SPECIMEN IMAGES

# JULI01:








## JULI02:

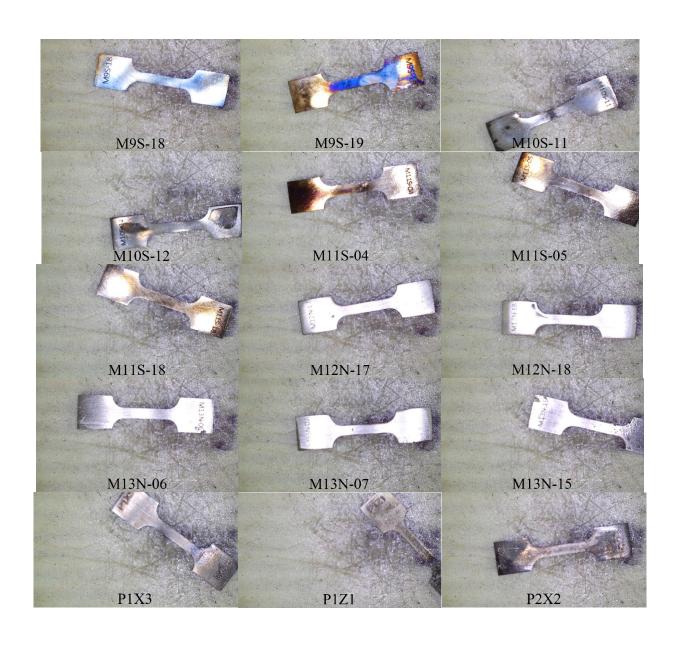




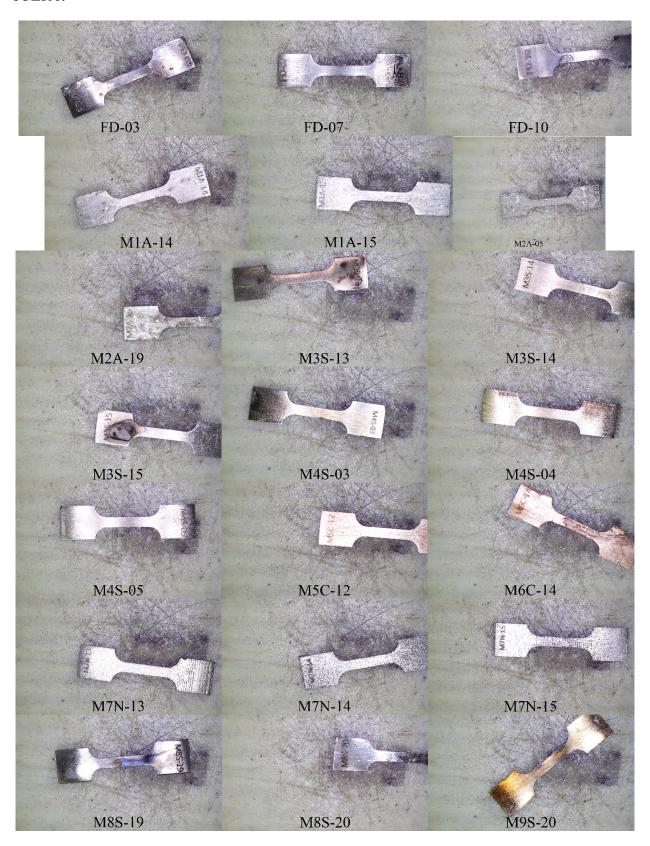
## JULI03:

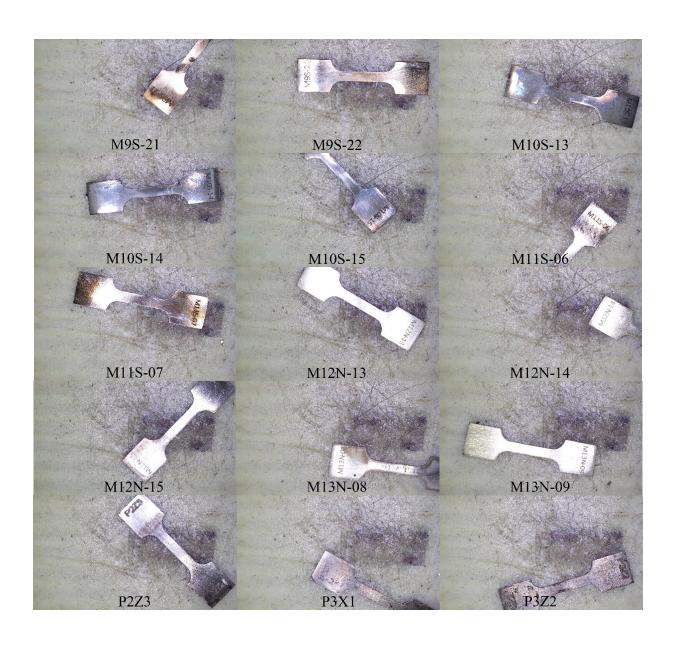





## JULI04:







## JULI05:





# JULI06:



