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EXECUTIVE SUMMARY 

Hydropower is a renewable energy resource that produces electricity from flowing water under pressure. 

Engineered hydropower structures, such as dams, are used to create a hydraulic head, enabling a turbine-

generator unit to convert pressurized flow into electricity. While hydropower has been a source of 

renewable energy since antiquity, new development in the United States has slowed in recent decades. 

Based on recent resource assessments, the largest opportunity to expand hydropower in the United States 

is from new stream-reach development (i.e., new hydropower development along stream-reaches that do 

not currently have hydroelectric facilities or other forms of infrastructure, such as dams). Roughly 75% of 

identified new stream-reach development potential is from low-head sites (less than 30 ft of head), which 

typically suffer from smaller power densities and higher normalized costs, given economies of scale. 

Hydropower developers and other stakeholders are thus interested in strategies to reduce initial capital 

costs while practicing sustainable development to maximize environmental compatibility with minimal 

disruption to natural aquatic life, sediment, and water flows.  

Historically, civil works have represented a significant cost driver for new hydropower development, with 

the foundation system representing a major cost component and source of uncertainty. The foundation 

system is the collection of engineered structural features (e.g. cutoff trenches, walls, grouting, anchors) 

constructed at or below the preconstruction ground surface that interfaces between the overlying 

structures (superstructures) and the bed material below (subsurface). Development of a hydropower 

foundation system must consider the various characteristics of the surrounding stream environment and 

subsurface while adhering to the engineering requirements of the superstructure that it supports. The care 

of water, excavation, and other construction activities are important features of foundation design and 

construction. The design and construction cost of the foundation system is largely dependent on the site 

geology and riverbed composition and is influenced by the level of geotechnical assessment required and 

conducted. Thus, a hydropower facility’s geotechnical foundation is often highly site-specific, with 

proper site selection and assessment being important to project success. 

The foundation system is designed to provide structural stability (of the foundation and dam), limit 

seepage, ensure public safety, and maintain functionality for the project life, during both construction and 

facility operations. Inadequate foundation or dam design can result in dam failure and the uncontrolled 

release of significant volumes of water, which could cause a high number of casualties and extensive 

property damage downstream of the failure. According to the Association of State Dam Safety Officials, 

approximately 30% of all historical dam failures in the United States are attributed to foundation or 

abutment defects, and another 20% are attributed to piping or seepage through the embankment, 

foundation, or abutment. To ameliorate these safety considerations, foundations often require massive 

amounts of construction material (e.g., grout, concrete, engineered dam fill) and long construction times.  

Foundation design also requires significant analysis prior to construction because the initial in-stream and 

abutment subsurface conditions are site-specific, and sufficient data for them often are lacking. Current 

practice requires on-site assessment, using expensive drilling and invasive and non-invasive investigation 

methods, to determine the expected cost of foundation material and treatment. Additionally, foundation 

construction often requires site dewatering (and other care of water activities), which involves 

constructing temporary diversion structures upstream and often downstream, called cofferdams, and water 

diversion systems that route water around the construction site. Cofferdams and water diversion systems 

can drastically increase construction costs and contribute to environmental disruption, including 

modification of flow patterns and benthic habitats.  

 

Given the technical, economic, and environmental challenges associated with hydropower foundations, 

opportunities exist to improve the current state of practice and to develop new and innovative solutions to 
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challenges frequently encountered with traditional approaches. With this understanding, it is critically 

important to understand and document the current state of practice for hydropower geotechnical 

foundations, identify key challenges, and define opportunities for innovative solutions. 

To this end, this report1 documents the current state of practice across the three main phases of 

geotechnical foundation development: (1) geotechnical site assessment, (2) design, and (3) construction 

for hydropower systems. It also describes the major challenges with conventional approaches and 

identifies opportunities for innovation to reduce hydropower foundations costs, timelines, and risks.  

Key takeaways from this report include the following: 

• Approximately 80% of available low-head sites are expected to have foundations on soil beds rather 

than rock beds, suggesting that rockfill and earthfill dams may be the most cost-effective 

conventional dam type for new projects. 

• Geotechnical and geologic investigation activities are time-consuming and expensive but are essential 

to define the parameters and criteria needed for foundation design. 

• Certain riverbed soil and bedrock types present significant technical challenges or require expensive 

foundation construction, which can prove financially prohibitive for low-head project development. 

• Modular hydropower design and prefabricated modular foundations represent a promising but 

unproven paradigm for new hydropower development. Design and construction approaches using 

optimized and highly repeatable, reliable components would benefit project cost, time, and risk but 

require additional research and development. 

• Temporary construction features for foundations, including cofferdams, water diversion, and water 

control systems, can prove costly and have inherent construction risk.  

• For economically viable development, hydropower geotechnical foundations should be limited to 4 to 

15% of the project’s total initial capital costs. Many proposed projects have experienced cost overruns 

attributable to foundation difficulties or surprises during construction. These overruns may have been 

due to inadequate investigations, lack of adequate engineering effort to tailor the structures to site 

geology and topography, and/or contractual terms, among other considerations. 

• Challenges for hydropower foundations and opportunities for innovative technology solutions are 

identified in the following areas (consistent with the three main phases of foundation development): 

o Geotechnical site assessment  

o Foundation design and materials 

o Construction methods and technology 

Ultimately, this report aims to provide information about geotechnical foundations for low-head 

hydropower and to motivate transformative technologies to support hydropower growth. 

 
1 Foundation-related site conditions and considerations are highly site-specific. The information presented herein is 

not intended to replace the professional site evaluations and geotechnical assessments necessary for accurate site 

characterization prior to hydropower development. The contents of this report are intended to provide concise 

information, rather than guidance. 
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1. INTRODUCTION 

Over the past century, hydropower has been the world’s leading source of renewable energy generation, 

comprising nearly 7% of total utility-scale generation. It generates 80 GW of installed capacity in the 

United States.2 In addition to providing a flexible, low-cost source of renewable electricity, hydropower 

systems often provide non-power benefits including flood control, irrigation, water supply, navigation, 

and recreational opportunities (DOE, 2016). With strong growth in the 20th century through the 1970s, 

hydropower additions have declined in recent decades, primarily owing to economic and environmental 

challenges facing new development (Uria-Martinez, Johnson, and O’Connor, 2018). Unlike costs for 

other energy resources such as coal and natural gas, fuel costs for hydropower are not a significant cost 

driver;3 instead, project feasibility largely depends on the developmental costs and timelines associated 

with the design and construction phases (Fang, 1991; O’Connor et al., 2015).  

At the center of these key relationships is the foundation system, defined as the collection of engineered 

structural features constructed at or below the preconstruction ground surface that interfaces between the 

overlying structures and the bed material below. The foundation design process encompasses extensive 

geotechnical investigations into the site’s subsurface conditions, or the engineering properties (e.g., 

strength, deformability, and permeability) of the underlying rocks and soils (Fang, 1991; Gulliver and 

Arndt, 1991; Day, 2010). The results of these investigations inform the extent and type of construction 

materials necessary for the associated foundation and superstructure (e.g., the dam in conventional 

hydropower facilities). The planned structure, bed material, seismic stability, and many other factors 

inform the types of foundation treatments that should be employed. Foundation construction can include 

various water control activities (e.g., dewatering, diversion, coffer damming), excavation, grouting, cutoff 

walls, and many other features or processes that vary depending on the subsurface characteristics and 

superstructure design. 

Historically, many hydropower development projects have experienced cost overruns attributable to 

foundation difficulties or unexpected challenges (i.e., changed conditions) experienced during 

construction, some of which could be avoided through earlier and more thorough assessment and design 

considerations. Foundation construction costs and timelines become more challenging for low-head new 

stream-reach development (NSD; i.e., new hydropower development along stream-reaches that do not 

currently have hydroelectric facilities or other forms of infrastructure, such as dams), where low-head is 

defined as up to 30 ft of hydraulic head (i.e., the difference in elevation between upstream and 

downstream water levels) or roughly 50 ft of structural height (i.e., the distance between the top-of-dam 

and its foundation base).4 Unlike other forms of hydropower development (e.g., non-powered dam [NPD] 

or canal/conduit development) that may leverage existing engineered foundations, NSD requires 

integration into a natural stream environment, where the geotechnical conditions may be highly uncertain.  

Because properly designed foundations (including abutments) are key to ensuring dam safety and can 

present cost and timeline challenges during design and construction, the Department of Energy’s (DOE) 

Water Power Technologies Office (WPTO) has sponsored a study focused on geotechnical site 

assessment5, design, and construction for hydropower geotechnical foundations. The study, presented in 

 
2 Available from https://www.eia.gov/energyexplained/hydropower/where-hydropower-is-generated.php (accessed 

August 10, 2020). 
3 Available from https://www.eia.gov/todayinenergy/detail.php?id=410 (accessed August 10, 2020). 
4 Example visual representations of hydraulic head, structural height, and dam height are provided in Figure 1. 

These terms are also defined in APPENDIX A. 
5 The term “geotechnical site assessment” is used extensively throughout this report to refer to both (1) general 

hydropower foundation-related siting considerations and activities related to a site’s stream and terrain 

characteristics, and (2) geotechnical site assessments, such as subsurface characterization, investigation, and testing. 

https://www.eia.gov/energyexplained/hydropower/where-hydropower-is-generated.php
https://www.eia.gov/todayinenergy/detail.php?id=410
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this report and led by Oak Ridge National Laboratory (ORNL) and Knight Piésold Consulting, (1) 

documents the current state of practice in hydropower foundation development in the United States and 

(2) identifies key challenges and innovation opportunities for hydropower foundations, with a focus on 

low-head NSD project development cost, timeline, and risk. Through this report, DOE WPTO aims to 

provide information about geotechnical foundations for low-head hydropower and motivate 

transformative technologies and methods needed to support future hydropower growth through cost, 

timeline, and risk reduction. 

Although geotechnical foundations are required to construct a variety of hydropower system structures, 

this report focuses primarily on geotechnical foundations interfacing with conventional, low-head dam 

types (Section 3.4.1.1), because dams present the primary technoeconomic challenge for hydropower 

foundations owing to their size, external loads, and weight requirements. In addition, foundations for less-

conventional modular superstructures (Section 3.4.1.2) are considered for their potential cost and timeline 

reductions. Given the current lack of prototype deployment, modular superstructures are not described in 

detail herein. Information about spillways and powerhouses is also provided in less detail. Thus, 

geotechnical foundations related to conventional hydropower are the main focus of this study. 

 

The report is organized as follows: 

• Section 2 gives a background overview of hydropower, including its benefits, typical conventional 

facility layout (Section 2.1), and US development (Section 2.2). It also presents a conceptual hierarchy 

of hydropower foundation systems used to frame the remainder of the report (Section 2.3). 

• Section 3 describes various characteristics relevant to hydropower foundations for undeveloped US 

streams, including watershed and stream characteristics (Section 3.1) and subsurface and geologic 

characteristics (Section 3.2). Using available data on select stream and subsurface characteristics, an 

analysis of low-head NSD opportunities along undeveloped US streams is provided (Section 3.3). 

Finally, high-level superstructure characteristics and the suitability of conventional low-head dam 

types are presented (Section 0).  

• Section 4 presents the current state of practice in foundation development across three main 

foundation development phases: geotechnical site assessment (Section 4.1), foundation design 

(Section 4.2), and foundation construction (Section 4.3). 

• Section 5 provides a representative assessment of conventional hydropower foundation costs (Section 

5.5) and timelines (Section 5.6). 

Study Scope and Focus 

• Geotechnical foundations related to conventional hydropower. 

• Geotechnical foundations for low-head application (30 ft or less of head; 50 ft or 

less structural height). 

• Hydropower development in new stream-reaches that do not currently have 

hydroelectric facilities or other forms of infrastructure (e.g., dams). 

• Challenges and innovation opportunities related to foundation geotechnical site 

assessment, design, and construction. 
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• Section 6 addresses key challenges facing conventional hydropower foundations, aligned to the three 

main foundation development phases presented in Section 4. 

• Section 7 presents opportunity areas and example opportunities for innovative hydropower foundation 

technologies across the three main foundation development phases presented in Section 4 and 

highlights some advances in non-hydropower industries. 

• Multiple appendixes are included to provide supporting information.  
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2. BACKGROUND 

In addition to the renewable energy produced, hydropower can provide a multitude of ancillary grid 

services—generation flexibility, frequency response and regulation, spinning and non-spinning reserves, 

and black start capabilities—that are crucial to safe, reliable, and economical power system operation 

(DOE, 2016). However, new hydropower facilities commonly face a long, expensive development 

process owing to unique site conditions (O’Connor et al., 2015; DOE, 2016; Uria-Martinez, Johnson, and 

O’Connor, 2018). In general, facility costs are site-specific, with NSD development being the most 

expensive class of hydropower development (DOE, 2016). To this end, DOE (2016) identifies technology 

innovation as a key cost reduction strategy to improve new hydropower cost competitiveness while 

meeting the need for environmental sustainability. 

This section establishes the background of US hydropower and is organized into three sections: 

• Section 2.1 illustrates how a typical conventional hydropower facility is composed and operated. 

• Section 2.2 describes the current state of hydropower development in the United States. 

• Section 2.3 presents a hydropower foundation system conceptual hierarchy to provide context and to 

distinguish among a hydropower facility subsurface, foundation, and superstructure. 

2.1 HYDROPOWER FACILITY LAYOUT 

The most common type of hydropower facility is impoundment (also referred to as conventional or 

traditional hydropower); others are diversion (or run-of-river) and pumped storage.6 For a conventional 

facility, the resulting headwater (or reservoir) can offer significant non-power benefits, such as flood 

control, environmental services, navigation, storage for irrigation, storage for public water supply, and 

recreation. Although most hydropower facilities are unique (i.e., site-specific) to some degree, they share 

common features. Conventional hydropower development involves damming a flowing water source to 

amass potential energy (i.e., hydraulic head) for power generation. A penstock typically conveys the 

water from the upstream reservoir around or through the dam to a powerhouse before releasing it 

downstream to the tailwater (i.e., tailrace). In the powerhouse, the flowing water spins one or more 

turbine-generator units (i.e., a turbine with a shaft attached to a generator) to generate electricity through 

mechanical-to-electrical energy conversion. Hydropower facilities typically include one or more 

spillways and/or other outlet structures to release additional flows or draw down the headwater elevation 

when necessary. These flows can be used to pass debris, allow fish migration, maintain environmental 

flows, or pass flood water, among other purposes.  

Like most other civil works, hydropower facilities require engineered foundations upon which the dam, 

spillway, powerhouse, and other structures sit to transfer loads between the superstructure (i.e., anything 

above the foundation interface constituting the facility’s components) and subsurface (i.e., anything 

below the foundation-subsurface interface), facilitate relief of pore pressure, and control seepage and 

draining functions. Figure 1 shows an example schematic of a typical conventional hydropower facility (a 

concrete dam is shown). Foundation-related characteristics, along with scoping definitions for subsurface, 

foundation, and superstructure, are further described in Section 3. Additional information on hydropower 

foundation practices is provided in Section 4. 

 
6 Available from https://www.energy.gov/eere/water/types-hydropower-plants (accessed August 10, 2020). 

https://www.energy.gov/eere/water/types-hydropower-plants
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Figure 1. Typical conventional concrete-dam hydropower facility with important components indicated. 

Source: ORNL. Some facility components (e.g., abutments) are not illustrated. Not to scale.  

2.2 STATE OF HYDROPOWER DEVELOPMENT IN THE UNITED STATES 

The US hydropower fleet has roughly 80 GW of generating capacity across nearly 2,300 facilities (Uria-

Martinez, Johnson, and O’Connor, 2018). Recent hydropower projects have come in the form of upgrades 

to existing facilities or refurbishments at NPDs or conduits, most of which were small (<10 MW); there 

have been few NSD sites (Uria-Martinez, Johnson, and O’Connor, 2018). These development trends 

strongly correlate with recent federal initiatives to bolster development in the hydropower industry. The 

Federal Energy Regulatory Commission (FERC), the primary power regulatory authority in the United 

States, recognized that the conventional hydropower licensing process is lengthy and complex, lasting 

multiple years. These issues, coupled with high initial capital costs (ICC) and extensive environmental 

concerns, lead to high project attrition rates in the project development pipeline (Uria-Martinez, Johnson, 

and O’Connor, 2018). Accordingly, exemptions were created for two types of development: <10 MW 

projects on nonfederal NPDs built before 2005, and <40 MW projects on man-made, non-powered 

conduits.7  

For most types of new hydropower development (including NSDs), projects must strongly mitigate their 

impact on the surrounding aquatic, riparian, and terrestrial ecosystems while balancing public water 

resource and energy needs (DOE, 2016). Resource assessments sponsored by DOE WPTO in the past 

decade show untapped energy potential available at both NPD and NSD sites across the United States: 

total resource capacity estimated at nearly 12 GW and 66 GW, respectively (Hadjerioua, Wei, and Kao, 

2012; Kao et al., 2014). With NSD opportunities representing the largest remaining potential for 

additional hydropower generation capacity, federal and private research and development (R&D) 

investments targeting hydropower technology are needed (DOE, 2016). Given the relatively small 

hydropower growth from NSD and the importance of maintaining environmental compatibility, 

 
7 Available from https://www.ferc.gov/industries-data/hydropower/licensing/exemptions-licensing (accessed August 

10, 2020). 

https://www.ferc.gov/industries-data/hydropower/licensing/exemptions-licensing
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successful NSD projects are likely to be small, run-of-river applications that emphasize stream and 

environmental functionality rather than employing reservoir impoundments.  

2.3 HYDROPOWER FOUNDATION SYSTEM HIERARCHY 

For the purposes of this report, an in-stream hydropower facility is modeled as a system of three 

interconnected components: subsurface, foundation system, and superstructure, which are described in the 

following points. Although these definitions may differ from standard industry usage, they provide a clear 

scope to consistently frame the remainder this report. Figure 2 illustrates these components and some of 

their major characteristics.  

• The local subsurface describes the site conditions prior to development. It is highly site-specific and 

comprises the soil and geologic formations below the dam site and other facilities associated with the 

project. With the subsurface representing natural conditions at the site, subsequent design of the 

superstructure and foundation system must consider the conditions present. Thus, the design of both 

the superstructure and foundation system are dependent upon subsurface conditions, the characteristics 

of which can be modified (to some degree) by foundation treatment to meet engineered design 

specifications. 

• The foundation system is a collection of engineered structural features constructed at or below the 

preconstruction ground surface that interfaces with the superstructure and subsurface between (and 

including) abutments (i.e., the sides of a valley against which a dam is constructed). The primary 

purposes of the foundation system are to provide structural stability and support, and to control 

seepage. The foundation system also includes the subsurface resulting from engineered treatment 

methods such as excavation, grouting, anchoring, and trenching, and could include modular 

foundation technologies, which are described in Section 3.4.1.2. Various construction activities (e.g., 

cofferdams, dewatering, excavation, and erosion and scour protection) are often required to enable 

engineered treatment. Design components that may be considered for a dam foundation include cutoff 

trenches, trenches, walls, and anchors (typically for concrete gravity dams). As shown in Figure 2, 

various innovative technologies could be used to develop a hydropower foundation. 

• The superstructure8 comprises the facility features above the foundation that provide the functions 

necessary for a hydropower facility, such as blocking and passing water, housing generation 

equipment, and providing maintenance access. Superstructures include dams, spillways, and 

powerhouses; modular superstructures providing generation or passage functions (e.g., fish, recreation, 

sediment, or water passage) are also plausible (Section 3.4.1.2). Dam subcomponents considered part 

of the superstructure include the dam core, filters and drains, and geotextile membranes/blankets. 

As shown in Figure 2, information about the stream environment (Section 3.1) and subsurface (Section 

3.2) is used to perform geotechnical site assessment (Section 4.1) and inform foundation design (Section 

4.2) and construction (Section 4.3) through an iterative process, described in more detail in Section 4. 

Dam designers conventionally include both the treated subsurface and the foundation system (as defined 

in this report) when they use the term “foundation”; the same meaning is used in describing the 

foundation throughout this report. The way in which the foundation interface is designed and constructed 

depends on characteristics of both the superstructure and the subsurface (as indicated by the two-way 

arrows on the right of the diagram), with engineering and environmental characteristics (Section 4) as 

well as technoeconomic considerations (Section 5) influencing the development process. 

 
8 Throughout this report, the term “superstructure’ is primarily used to refer to the dam, since the dam represents the 

primary challenge for hydropower foundations because of its size, external loads, and weight requirements. 
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Figure 2. Hierarchy of hydropower foundation system within the context of a stream environment and 

engineering practice. Note that ellipses represent additional information beyond what is shown in the diagram. 

Section numbers identify where each topic is generally covered within this report. 
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3. FOUNDATION-RELATED CHARACTERISTICS FOR UNDEVELOPED US STREAMS 

This section introduces the major concepts and characteristics relevant to hydropower foundations. To 

provide a high-level discussion, the authors focus on the major classes of subsurface conditions and 

superstructures, as well as consideration of the surrounding watershed and stream environment. However, 

hydropower development site conditions are highly specific, and the information presented herein is not 

intended to replace the professional site evaluations and geotechnical assessments necessary for accurate 

site characterization prior to hydropower development. The discussion is organized as follows: 

• Section 3.1 describes key features, processes, and characteristics of watersheds and stream 

environments that influence subsurface conditions, as supplemented by APPENDIX B.  

• Section 3.2 characterizes the major classes of subsurface conditions in the United States and the 

features that are important for foundation design and superstructure selection, as supplemented by 

APPENDIX C.  

• Section 3.3 presents a high-level analysis of available low-head hydropower sites based on available 

national data. The estimates of likely subsurface presence are intended to help characterize common 

low-head NSD opportunities; the results are uncertain given the lack of site-specific assessments 

available for national-scale assessment and the assumptions made. 

• Section 0 discusses high-level superstructure characteristics (described in more detail in Section 4) and 

presents results of a suitability assessment for conventional dam types among low-head NSD 

opportunities.  

3.1 WATERSHED AND STREAM CHARACTERISTICS  

At a given site, the characteristics of the upstream watershed and stream largely determine the riverbed 

composition and hydraulic conditions, shaped predominantly by geology, vegetation, soil type and 

thickness, erosion, runoff, and sediment transport processes. Surface runoff from rainfall carries eroded 

sediment from the surface of the catchment into the stream, and its hydraulic forces then carry the 

sediments downstream. Combined, these processes determine the amount of sediment entering the stream 

(sediment yield and stream turbidity), the deposition or buildup of the sediment, and the material 

characteristics of sediment (e.g., grain-size, sorting) in the stream (USBR, 2006b). These properties, in 

conjunction with regional and site geology, largely dictate design requirements for the foundation system 

and superstructure. For example, if the rate of sediment erosion is higher than the rate of deposition, the 

stream will likely have a fairly exposed or shallow bedrock channel. That is because sediment carried into 

the channel from adjacent slopes and upstream reaches is continuously transported downstream, further 

exposing and eroding the underlying bedrock. Additional information on relevant features, processes, and 

characteristics of watersheds and streams is presented in APPENDIX B. 

A river system can be simplified into three primary zones based on the rates of sediment production, 

transfer, and deposition (e.g., Schumm, 1977):  

• Zone 1: the headwaters reach, which is generally characterized by steeper surface slopes; faster 

erosion rates; incised bedrock channels; and large angular sediments such as gravel, cobbles, and 

boulders. 

• Zone 2: the transitional reach, in which sediment transport (usually of moderate-sized sediments such 

as silt, sand, and gravel) is the dominant behavior but erosion still occurs and typical streams occupy 

areas of lower average topographic relief relative to the headwaters. 
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• Zone 3: the depositional or tailwaters reach, in which energy in the water column (proportional to the 

slope of the channel) generally drops to a point at which sediment transport occurs slowly, allowing 

sediment deposition, which is usually of finer materials (e.g., clays, silts, and sands), to be the 

dominant behavior.  

These characteristic watershed reaches are depicted in Figure 3. This representation is idealized, as 

sediments can be eroded, mobilized, transported, and deposited along the stream system and can vary 

over time as hydrologic conditions and geomorphic processes evolve. The watershed’s geologic and 

hydrologic history also greatly controls the type, size, and distribution of sediments transported in any 

given area.  

The three primary zones are also generally associated with mountainous (Zone 1), hilly (Zone 2), or valley 

(Zone 3) “terrain classes,” with streams in mountainous terrain generally having higher gradients (i.e., 

slopes) and streams in valley terrain having lower gradients. These terrain classes are used in Section 3.3 

to characterize stream-reaches and in Section 5 to frame foundation classes used in the representative cost 

and timeline assessments in Section 5.  

 

Figure 3. Coarse representation of a watershed’s terrain classes in terms of sediment transport processes. 

Source: Trista L. Thornberry-Ehrlich, Colorado State University; redrafted from Miller, G. T. 1990. Living in the 

Environment: An Introduction to Environmental Science. Wadsworth Publishing, 60 pp.  



 

10 

3.2 SUBSURFACE AND GEOLOGIC CHARACTERISTICS  

Dam designers must understand the underlying characteristics9 of the rock and soil at a proposed site to 

inform foundation and superstructure designs. A geotechnical site assessment that is well planned, 

executed, and documented will reduce the risk of structural failure, and mitigate the potential for 

unanticipated costs during subsequent foundation design and construction. As project development 

progresses, developers gain increasingly refined information about the subsurface and geologic conditions 

at a site, as described in Section 4. As part of the geotechnical site assessment, subsurface conditions 

should be classified to inform foundation design. Although no single classification system is universally 

applied to dam projects, Figure 4 shows a classification system adopted from Fell et al. (2014) that 

includes most subsurface conditions commonly encountered and on which the analysis in Section 3.3 was 

framed. Section 4.1 provides additional information regarding the investigations needed to answer key 

questions related to each foundation type. A more detailed classification system by the US Geological 

Survey (USGS) (shown in Figure C.1 in APPENDIX C) provides a more granular basis for classifying 

sites beyond the hierarchy shown in Figure 4. 

 

Figure 4. High-level hierarchy of subsurface classes. Source: Modified from Fell et al. (2014). 

The local subsurface at a proposed site can usually be distinguished by whether it is primarily composed 

of soil or rock. The site subsurface can be further classified based on rock type and soil depositional 

environment (third and fourth levels in Figure 4). According to the US Army Corps of Engineers 

(USACE) National Inventory of Dams (NID) 2018 data10 for the 25,836 reported low-head (less than 30-

ft head) dams, 85% were built on soil and 5% on rock, with the remaining 10% built on sites comprising 

 
9 APPENDIX C defines technical terms used in dam foundation design, including words in this section that are 

italicized. 
10 Available from https://nid.sec.usace.army.mil/ords/f?p=105:1:::::: (accessed August 10, 2020). 

https://nid.sec.usace.army.mil/ords/f?p=105:1::::::
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both rock and soil materials. From an engineering perspective, a key difference is that the mechanical 

behavior of rock is generally governed by discontinuities (e.g., joints and faults) and mechanical 

properties, whereas mechanical behavior of soil is largely governed by the properties of the soil mass as a 

whole. Therefore, rock and soil beds require distinct design and economic considerations, as discussed in 

Sections 3.3 and 4.2.1.  

The following sections present additional details regarding the characteristics of rock (including 

identification of subsurface classes and a summary of important properties for foundation design) 

(Section 3.2.1) and soil (Section 3.2.2) subsurface layers, including key (high-level) information practical 

from both the geologic and geotechnical engineering views. The authors acknowledge that terminology 

use varies depending on practice, and alternate and varying terminology may exist in the literature. Some 

subsurface characteristics presented apply to both rock and soil, and the reader is encouraged to consult 

additional resources for more detailed descriptions of key characteristics; the information presented herein 

offers an overview of relevant characteristics. 

The USGS11 and US Department of Agriculture (including Part 631 of the National Engineering 

Handbook12) literature, among others, are recommended for further information and cover rock and soil 

characteristics to a greater level of detail than is presented in this report. 

3.2.1 Rock Characteristics 

Rocks (any naturally occurring solid mass or aggregate of minerals or mineraloid matter) can be classified 

into three major categories based on their formation process: igneous, sedimentary, or metamorphic (see 

Figure 4). When rock is at the surface (or the soil cover is thin), it can provide direct support for a dam’s 

foundation. Most competent (non-weathered) to moderately weathered rocks have adequate mechanical 

properties (e.g., hydraulic conductivity; hardness; shear, tensile, and compressive strength) to safely 

support a low-head dam and associated infrastructure. However, many rock formations have defects or 

discontinuities that require treatment, as described below.  

The extent of faulting, jointing, other discontinuities, and weathering has a major impact on rock mass 

strength and watertightness, which are important for foundation applications. The rock mass is “the 

total in situ medium containing bedding planes, faults, joints, folds and other structural features. Rock 

masses are discontinuous and often have heterogeneous and anisotropic engineering properties”(Brady 

and Brown 2004). When necessary, the properties of a rock mass can often be improved to a suitable 

level with various treatment methods; however, in some cases, improvement can prove too costly. For 

instance, a weathered rock foundation may be treated with consolidation grouting to provide predictable 

and somewhat uniform design parameters, particularly reduced hydraulic conductivity and improved 

shear resistance along the rock to concrete contact. Additionally, highly jointed and fractured areas of the 

foundation can be treated with rock replacement concrete or consolidation grouting.  

Although certain rock types generally have better properties than others, site-specific features are also 

extremely important. Rock properties can vary over short distances and can be non-uniform within the 

same rock formation. In situ tests can study larger volumes of material and less disturbed samples than 

laboratory tests, but they still do not thoroughly characterize full-scale formation response. Back-

calculation from large-scale performance data may significantly improve confidence in predictions of 

behavior, but such information is rarely available during foundation design. Engineering judgement is 

 
11 USGS publications are available from: https://www.usgs.gov/products/publications/official-usgs-publications 

(accessed August 10, 2020). 
12 Available from https://directives.sc.egov.usda.gov/viewerFS.aspx?id=3848 (accessed August 10, 2020). 

https://www.usgs.gov/products/publications/official-usgs-publications
https://directives.sc.egov.usda.gov/viewerFS.aspx?id=3848
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often necessary to account for scale effects. (Section 4.1 provides additional information on geotechnical 

site assessment).  

More information about rock characteristics and their importance in geotechnical assessments is covered 

in Section 4.1 and APPENDIX C. Figure 5 visualizes the general lithology of the contiguous United 

States. 

 

Figure 5. Map of generalized geologic units in the contiguous United States. Source: ORNL, based primarily on 

data from the USGS State Geological Map Compilation (Horton, San Juan, and Stoeser, 2017). 

3.2.2 Soil Characteristics 

Nearly all stream bed types contain some soil deposit, although it can be localized and thin, especially in 

mountainous terrain. (surface material composed of varying degrees of organic and mineral constituents, 

primarily resulting from the decay of plants and/or weathering of rock). Soil presence and characteristics 

are highly dependent on many factors, including a site’s geology, climatology, and hydrogeological 

depositional environment. A general understanding of soil material classes will help inform superstructure 

selection and other engineering considerations for hydropower foundations. Figure 4 classifies the four 

major soil depositional environments that dam developers will encounter: alluvial, colluvial, residual 

(lateritic), and glacial soils.  

Another important classification system is based on the engineering behaviors of the soil formations. 

Several soil taxonomies and classification systems exist, including the NRCS Soil Taxonomy, the 
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American Association of State Highway and Transportation Officials (AASHTO) Soil Classification 

System, and the Unified Soil Classification System (USCS). In these systems, materials with more than 

50% sand and gravel sizes are designated as coarse grain, whereas materials with more than 50% silt and 

clay sizes are designated as fine grain. Organic soils such as peat are another class; but they are 

undesirable for dam foundations because they are highly deformable, and they should be completely 

removed from a dam foundation.  

A site will contain a variety of soil formations along the streamwise, vertical, and lateral directions. Each 

formation will also contain specific compositions of each soil type. Properties of interest include intrinsic 

particle properties, bulk properties, and soil mechanical properties, as described in more detail in 

APPENDIX C. Therefore, in-person site assessments are crucial for identifying the rock and soil 

conditions. Soil properties of concern to dam designers can often be preliminarily estimated using 

published correlations with USCS soil type. However, more accurate information characterizing these 

properties is gathered through field and laboratory measurements; a list of common geotechnical 

laboratory tests for soils is provided in Table D.3 in APPENDIX D. Therefore, in-person site assessments 

are crucial for identifying the rock and soil conditions. Properties of interest include intrinsic particle 

properties, bulk properties, and soil mechanical properties.  

For coarse soils, gradation is particularly important because it impacts permeability and other engineering 

properties. Without fine material to fill in gaps, poorly graded coarse material can allow water through 

(seepage), which represents an economic loss and can threaten the stability of the foundation or 

embankment if particles are mobilized or high piezometric levels develop in the downstream embankment 

or foundation.  

Gravel foundations are generally suitable for earthfill or rockfill dams, but they require seepage control 

measures. Seepage control measures and other considerations are further described in Section 4. 

Coarse-grain soils (cobbles, gravels, or sands) are typically permeable; seepage within a foundation can 

result in internal erosion (piping) or excessive loss of water (leakage) from the reservoir. Therefore, 

foundation and abutment seepage control is usually a key consideration during the design of dams 

founded on coarse materials. Additionally, saturated or nearly saturated loose sands, gravels, and some 

silts can liquefy either in response to seismic loading or through a complicated phenomenon known as 

static liquefaction. Settlement of sands is also a key consideration for the design of structural foundations 

and is a concern for earthfill and rockfill dams. Sand foundation settlement generally occurs as the dam 

structure is constructed, and non-uniform settlement is a significant concern.  

Fine-grain soils (silts and clays) often present design challenges and may result in an uneconomical site 

for low-head hydropower. Soils generally become less permeable and soil moisture has a larger influence 

on the engineering properties as the percentage of silt and clay size particle size increases. Silts are often 

primarily non-plastic fines that can be difficult to compact, susceptible to liquefaction, and vulnerable to 

internal erosion. The behavior of clay soils depends significantly on the clay mineralogy; smectites are 

particularly problematic. The behavior of clayey soils is also strongly influenced by the stress and strain 

history of the deposit. Although clays are firm when dry, they are weak and compressible if deposited 

over relatively short geologic timescales or if they have been submerged and never heavily loaded. Clays 

are useful construction materials because their low permeability makes them an excellent seepage barrier 

if they are not dispersive (easily suspended in water because of their mineralogical characteristics). 

However, low strength, compressibility, and consolidation may create concerns. Clayey soils may also 

shrink or expand when the moisture content changes, which is particularly concerning for building and 

equipment foundations. The use of dispersive clays should be avoided. Specialized treatment such as the 

addition of lime is possible but would rarely be cost-effective for low-head hydropower projects. 
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Engineering properties of soils used for dam and foundation construction are sensitive to compaction 

moisture content, especially for silts and clays. Compacting soils that are either too dry or too wet may 

result in poor engineering characteristics. Borrow sites often have variable stratigraphy, and excavation 

can disturb soil structure and moisture content; consequently, engineers must be careful to monitor soil 

properties throughout the borrow, processing, placement,  and compaction process. Compaction control is 

an important but complex consideration for foundation design. For more information about the intricacies 

of compaction and various control strategies, refer to the US Bureau of Reclamation (USBR) Earth 

Manual ( USBR 1998a) and Design of Small Dams (USBR 2006). 

More information about soil characteristics and their importance in geotechnical assessments is covered 

in Section 4.1 and APPENDIX C. Figure 6 illustrates the surface lithology for the contiguous United 

States with a 1:5,000,000 resolution. 

 

Figure 6. Map of surface lithology classes in the contiguous United States. Source: ORNL, based 

primarily on data from Cress et al. (2010). 

3.3 ANALYSIS OF UNDEVELOPED LOW-HEAD US STREAM-REACHES 

This section aims to provide insight into the distribution of available NSD sites among the subsurface 

classes described in Figure 4 and present other relevant information about NSD foundation-related site 

characteristics. The estimates of subsurface class presence and dam type suitability presented herein are 

uncertain, given the lack of site-specific assessments available for national-scale analysis and the 
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assumptions made. However, these estimates are intended to help characterize (from a high level) 

common characteristics among NSD opportunities. 

The NSD resource assessment (Kao et al., 2014) identified 8,891 low-head sites (less than 30 ft of 

estimated hydraulic head) with at least 1 MW of power capacity, which represent the sample for this 

analysis. These sites have a total cumulative potential of 37.2 GW. Because comprehensive and reliable 

data are not available for instream subsurface characteristics, subsurface classes were determined based 

on the best available land-based measurements. For example, the USGS Surficial Lithology Map and the 

USGS State Geological Map Compilation geodatabase were used for the soil and bedrock classifications 

(Horton, San Juan, and Stoeser, 2017). These data sets extrapolate field measurements, remote sensing 

analyses, and other relevant data sets into maps representing general subsurface formations. These 

measurements are limited in depth of study and spatial resolution. Additionally, although land-based 

measurements of the local depositional environment and bedrock character likely correlate with the 

instream characteristics, the instream conditions may differ significantly from those of the surrounding 

catchment because of the erosive force of water. Therefore, these classifications do not directly identify 

the thickness of the stream bed material or the exact subsurface composition of the NSD sites. The data 

for each NSD site are first presented with no distinctions between bedrock or soil foundations to provide 

an unbiased representation of the data. At the end of the section, a simplified method for distinguishing 

between likely rock and soil subsurface is used to provide a high-level classification of the NSD sites.  

As discussed in Section 3.1, the depth of overburden is determined by local sediment transport processes, 

but it generally correlates with stream gradient, stream confinement, and terrain. Streams with higher 

slopes and narrower channels will have faster velocities for a given flow compared with streams that are 

broader and have fewer steep banks. Faster water velocities lead to higher erosive forces, which can 

mobilize larger sediment particles. By extension, rivers in mountainous terrain, which are likely to have 

higher stream slopes, are more likely to have exposed bedrock or large gravels/cobbles/boulders as bed 

material because the smaller particles are transported downstream.  

The first step in the analysis was to determine the terrain classes for each NSD site. Given the available 

data, stream gradient was selected as a proxy to differentiate between mountainous, hilly, and valley 

terrains at a national scale. Using stream gradient alone ignores several other topographic factors that 

signify terrain; however, more detailed geospatial analysis is needed, which is outside the scope of this 

report. In the literature, the definition of steep vs. shallow stream gradients depends on the research 

context (Comiti and Mao, 2012, and references therein); the classification shown in Figure 7 was selected 

based on a general stream classification system developed at ORNL (McManamay and DeRolph, 2019). 

Of the 8,981 NSD sites, only 24 sites had high gradients (defined as >4%), which make up 43 MW. As 

shown in Figure 7, the vast majority of NSD sites fall under the low-gradient classification (defined as 

<0.5%). 

As a second step, the NSD sites were classified as either confined, moderately confined, or unconfined 

based on the methodology from McManamay and DeRolph (2019). The valley confinement describes the 

control of the surrounding physical environment on the lateral migration of a river, thus indicating the 

strength of the interaction between the river and its floodplain. For instance, if a river is unconfined, it 

likely flows through erodible alluvium and is thus freer to migrate laterally. According to the analysis by 

McManamay and DeRolph (2019), rivers are determined to be unconfined if the valley bottom width is at 

least four times that of the river width along over half of the stream reach. Streams are moderately 

confined if they have a valley to river width ratio above 4 along 25–50% of the stream reach length, or if 

they have valley-to-river width ratios between 2 and 4 along more than 50% of the stream reach. All other 

streams are classified as confined, with relatively narrower valleys. The confinement characteristic is used 

hereinafter as one of the conditions to determine whether an NSD site is likely to have a soil substrate. 

Valley confinement can also inform the dam type selection and thus be relevant for foundation design. 
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Overall, low-head NSD sites are distributed relatively equally among the three confinement classes, with 

43% of sites classified as unconfined, 25% as moderately confined, and 32% as confined. The predicted 

subsurface class results (Figure 11; located at the end of Section 3.3) were only minimally affected when 

the selected valley confinement criterion was included. 

 

Figure 7. Distribution of stream gradients for low-head NSD sites by expected terrain class. Source: ORNL, 

using data based on NHDPlusV213 dataset (McKay et al. 2012) and stream gradient categories based on 

McManamay and DeRolph (2019). 

 

In the third step, the expected soil deposition class for each site was determined using publicly available 

data. Figure 8 describes the distribution of the NSD population among soil classes by number of sites 

(i.e., count) and by cumulative power capacity. These data, adapted from the USGS Surficial Lithology 

maps (Cress et al. 2010), reflect the soil deposition environment at a relatively coarse scale surrounding a 

site. Although limited, these are the best available data to describe the potential instream soil 

environment. Most NSD sites contain alluvial or residual soils, which likely contain a mixture of well-

graded silts, sands, clays, and gravels. Residual soils are likely to have different soil properties from 

alluvial soils because of the chemistry of lateritic soils; however, data concerning the site-specific soil 

composition are not available. 

 
13 https://www.epa.gov/waterdata/learn-more (accessed August 10, 2020). 
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Figure 8. Distribution of low-head NSD sites among soil classes. Source: ORNL, based primarily  

on data from (Cress et al. 2010). 

In the fourth step, the expected bedrock class for each site was determined using publicly available data. 

Figure 9 describes the distribution of the NSD sites in each bedrock class. Each site is classified based on 

the USGS State Geological Map Compilation (Horton, San Juan, and Stoeser, 2017), which is used here 

to describe the bulk lithology at a relatively coarse scale surrounding a site. Notably, bedrock formations 

are site-specific and may contain multiple rock types vertically or laterally. About half of the sites are 

classified as unconsolidated, meaning either that the bedrock is composed of broken or loose rock 

particles, or that the study was not deep enough to find bedrock, so the unconsolidated material represents 

soil.  

Although these classes have distinct properties, various types of bedrock exist within each class, so 

considering engineering features in addition to these classes is important. Figure 10 describes the 

distribution of bedrock mean uniaxial compressive strength (UCS) in the catchment for the NSD 

population. According to the US Society of Dams (USSD) (2011), strengths above 70 MPa are considered 

high and strengths below 17 MPa are considered low. Given these thresholds, approximately 53% of sites 

have strong bedrock, whereas 24% have weak bedrock. Although compressive strength influences the 

competency of rock foundations, it is neither a sole nor a necessary determinant of foundation 

competency for low-head hydropower projects. A competent foundation could be provided by relatively 

weak rocks that are minimally weathered and lack unfavorable discontinuities. Conversely, a rock mass 

with high compressive strength but unfavorable discontinuities may not provide a competent foundation. 
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Figure 9. Distribution of low-head NSD sites among bedrock classes. Source: ORNL, based primarily 

on data from (Horton, San Juan, and Stoeser 2017). 

 

Figure 10. Distribution of bedrock compressive strength for low-head NSD sites. Source: ORNL, based 

primarily on data from(Hill et al. (2016). Compressive strength categories are based on USSD (2011).  

Finally, the NSD sites were classified as either rock or soil beds to pair sites to the expected rock or soil 

class. Combining the aforementioned characteristics into a comprehensive classification of NSD sites 

requires numerous assumptions that can be verified only by nationwide site assessments. However, the 

following analysis is helpful for providing a high-level first look at the subsurface characteristics of the 

NSD population. Based on the available data and generalized sediment transport theory, the following 

conditions were selected to indicate where streams are more likely have a layer of overburden. 
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A site was classified as soil if any one of the following conditions was met: 

• The site was located in a valley (i.e., stream slope less than 0.5%). 

• (Or) the site was unconfined (4:1 valley-to-river width ratio along over half of the stream reach). 

• (Or) the site’s primary lithology was unconsolidated material. 

Otherwise, the site was classified as rock. 

The results of this classification are shown in Figure 11. These conditions imply that bedrock sites have 

medium to high stream gradients, at least moderate confinement, and shallow consolidated bedrock 

formations. Once identified, the sites were further classified by assigning the rock or soil class of the local 

catchment. Based on these results, 81% of low-head NSD developers will face a layer of alluvial, 

residual, or glacial soil overburden. These results agree with the data distribution available in the USACE 

NID 2018 data set,10 which showed that 80% of low-head dam sites were built on soil foundations (15% 

rock and soil, 5% rock). The implications of these soil layers for foundation design and cost are discussed 

in Section 5.  

As stated previously in Section 2.3, the designs of both the superstructure and foundation system are 

dependent upon subsurface conditions, the characteristics of which can be modified (to some degree) by 

foundation treatment to meet engineered design specifications. In addition, the way in which the 

foundation interface is designed and constructed depends on characteristics of both the superstructure and 

the subsurface. Thus, based on a site’s subsurface conditions, the range of suitable superstructure classes 

can be determined. With this in mind, Section 0 presents additional information on superstructure 

characteristics and extends the analysis results presented in Figure 11 to approximate the suitability of 

various dam classes among low-head NSD sites based on subsurface class distribution. 

 

Figure 11. Distribution of low-head NSD site subsurface classes. 
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3.4 SUPERSTRUCTURE CHARACTERISTICS AND SUITABILITY ASSESSMENT 

Superstructures may include dams, spillways, powerhouses, modular technologies, and other necessary 

civil works; as stated previously, among different hydropower facility superstructures, dams represent the 

primary challenge for hydropower foundations because of their size, external loads, and weight 

requirements. Consideration of the full superstructure system is important to foundation design because it 

determines the buoyant weight, live and dead loads, water action, and integration challenges for the 

foundation. 

This section introduces conventional dam types, as well as modular technology for hydropower. 

Additional information on powerhouses and spillways is also provided. A suitability assessment is 

performed to identify which conventional dam construction types are most suitable among the low-head 

NSD sites, based on the subsurface classes identified in Section 3.3. The information in this section is 

presented at a high level; Section 4 further describes the engineering considerations among conventional 

dam types.  

3.4.1 Dam Construction Types  

A dam, defined by the Federal Emergency Management Agency (FEMA) (2004) as “an artificial barrier 

that has the ability to impound water, wastewater, or any liquid-borne material, for the purpose of storage 

or control of water,” can serve single or multiple purposes.  FEMA (2004) defines a multipurpose project 

as  

a project designed for irrigation, power, flood control, municipal and industrial, 

recreation, and fish and wildlife benefits, in any combinations of two or more. Contrasted 

to single-purpose projects serving only one need.  

Given their role in providing water retention and control, and the significant socioeconomic consequences 

should they fail, dams represent critical infrastructure. Hydropower dams serve an additional critical 

infrastructure role given their role in ensuring energy security.  

Unlike most other civil infrastructure requiring a geotechnical foundation design, dams must maintain 

equilibrium under numerous static and dynamic hydraulic forces imparted by the upper and lower water 

bodies and any uplift pressure beneath the dam (Figure 12). Therefore, engineering design must carefully 

consider the full range of operational conditions expected (and regulated by responsible dam safety 

authorities) throughout the dam’s expected life (DeNeale et al., 2019). The complicated nature of 

hydropower foundation engineering analysis, relative to other geotechnical applications, is further 

complicated by the complexity of geologic materials and how they perform when saturated or exposed to 

water. Regardless of whether a hydropower facility design incorporates a conventional dam type (Section 

3.4.1.1) or modular superstructure (Section 3.4.1.2), adequate foundation design and construction 

(covered in more detail in Section 4) is required to maintain functionality throughout all expected 

operational conditions.  
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Figure 12. Common vertical and horizontal loads on a concrete gravity dam and foundation. Red triangles (not 

to scale) represent vertical and horizontal load distributions impacting the dam. [Source: (Smith et al. ,2017); 

adapted from the European Small Hydropower Association (ESHA, 2004)] 

3.4.1.1 Conventional Dam Types 

Dams are classified by construction material and general shape for engineering purposes, as shown in 

Figure 13. The primary classifications for existing dams are earthfill, rockfill, and concrete; a smaller 

number of the existing dam population are made of materials such as timber or masonry. Some dams use 

more than one construction material, depending on engineering and economic considerations. Most low-

head dams are constructed as embankment, roller-compacted concrete (RCC), or concrete gravity dams.  

Earthfill and rockfill dams are considered embankment dams, which use excavated natural materials (soil 

or rock) or man-made materials (e.g., geomembrane, concrete, or steel) to provide water retention. These 

dams use local materials to decrease transportation and material costs. Thus, the choice of material is 

primarily based on the availability and composition of borrow areas and on site subsurface conditions. 

However, multiple material types may be needed to form various layers of the embankment. Typically, 

embankment dams have a core zone that acts as an impervious barrier to limit water flow through the 

dam, and one or more filter zones to prevent piping of fine particles out of the dam core. Filters may also 

be necessary at the base of rip-rap used to mitigate erosion from wave action. A major disadvantage of 

embankment dams is that overtopping (flow over the dam) can erode the fill material and can lead to 

failure. Therefore, embankment dams must have adequate spillway capacity. In addition, flow through an 

embankment dam can result in piping, as discussed previously. Seepage control measures such as low-

permeability zones and filters must be included in the design to mitigate this risk. 
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Figure 13. High-level hierarchy of conventional dam types by material type. 

Embankment dams are classified as rockfill, as opposed to earthfill, when over half of the material in the 

maximum cross section consists of rock (Gulliver and Arndt 1991). Earthfill dams are the most common 

dam type in the United States, with about 90% of all dams in the USACE NID database being earthfill 

(Figure 14). Earthfill dams are often selected because they can be significantly cheaper to construct than 

concrete dams for low-head sites and can use a variety of available site soil types (DeNeale et al., 2019). 

Rockfill dams, on the other hand, are selected in locations with abundant sources of good rock and where 

long rainy seasons make construction difficult for finer soils. To account for the larger grain size, rockfill 

dams use an impervious liner to prevent seepage. To keep the membrane intact, dam designers must avoid 

foundation types that are pervious or subject to settlement.  

Concrete dams, the other major class of construction, use reinforced or unreinforced concrete to create a 

barrier. These dams are typically more expensive to build than the others but can be designed with 

overflow spillways and other integrated outlet works. Designers may use sand and gravel from local 

borrow areas as concrete aggregate, so material availability is still an important consideration. These 

dams often require clean, stable rock foundations, so all alluvial overburden must be removed and the 

bedrock must be treated. RCC dams use lean concrete of a no-slump consistency that is compacted using 

vibratory rollers. The selection of mass concrete vs. RCC depends on the trade-offs between material and 

construction costs, structure size, and stability. 

 



 

23 

 

Figure 14. US existing low-head dam primary construction type. Source: ORNL, based on the  

USACE 2018 NID data set. 

Concrete dams can be further classified as gravity, arch, and buttress types based on the support 

structures. Concrete gravity dams use their own weight for stability. Although rock foundations are 

preferable, small concrete gravity dams can be built on alluvium foundations if foundation treatment and 

cutoffs are designed to avoid overturning and seepage. Concrete arch dams use a curved face to transfer 

loads from the dam to the rock abutments. Thus, arch dams are preferable for narrow river valleys that 

have steep, competent rock abutments. Stiff soil, gravel, or cobblestone foundations prohibit the use of 

arch dams for structural reasons. Buttress dams use a series of buttresses, or counterforts, on the 

downstream side to stabilize the upstream wall of the dam. The buttresses can significantly decrease the 

amount of concrete required, at the expense of increased steel reinforcement and formwork costs. Arch 

and buttress dams are typically used for high-head sites (>30 ft), which are outside the scope of this 

analysis.  

For low-head hydropower applications, earthfill, rockfill, and RCC dams are likely to be the most cost 

effective. In terms of engineering design, earthfill and rockfill dams may be thought of as flexible 

structures (more prone to consolidation, deformation, gradual motion, and seepage), whereas concrete 

dams may be thought of as rigid structures (definitive shape and structure acting as a solid body). The 

general engineering properties of different dam types are explored more in Section 4. 

3.4.1.2 Standard Modular Hydropower Concepts 

Beyond conventional dam construction types, modular hydropower design represents a promising but 

largely unproven paradigm for new hydropower development. The Standard Modular Hydropower 

(SMH) project,14 led by ORNL with funding from DOE WPTO, aims to foster the development of 

environmentally compatible, cost-effective hydropower through modularization (i.e., the division of 

system components into distinct, readily transferable modules) and standardization (i.e., the development 

of universal details, guidelines, and specifications to maximize module replication and compatibility 

across multiple sites). In the SMH framework, standardized modules provide specific functions 

 
14 Available from https://smh.ornl.gov/ (accessed August 10, 2020). 
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(foundation, generation, passage) and can be combined to form a hydropower facility while sustaining 

stream functionality (Smith et al., 2017). As illustrated in Figure 15, the module types include 

• Generation modules, which transform incoming water flow into an energy output and outgoing water 

flow 

• Passage modules, which transfer water, fish, sediment, or boats safely through a facility 

• Foundation modules, which provide a stable platform that enables the foundation and other modules to 

maintain location, orientation, and stability  

 

Figure 15. Conceptual schematic of an SMH facility consisting of functional passage, generation, and 

foundation modules.  

Modularity enables economies of scale and is expected to reduce construction costs. For example, 

generation modules can be mass-produced at reduced costs and deployed across multiple projects that can 

scale generation by laterally stacking modules. Similarly, prefabricated modules can reduce costs by 

decreasing the need for custom-designed structures and accelerating construction timelines. Witt et al. 

(2017) details the various requirements and design specifications for successful implementation of SMH 

modules and facilities. To advance the SMH research concept, DOE WPTO has recently funded industry 

efforts to develop SMH innovative facility design concepts15 and modular technologies for low-head 

hydropower applications.16 The outcomes of these and other R&D efforts aim to motivate the types of 

transformative technologies and methods needed to support further hydropower growth.  

 
15 Available from https://www.energy.gov/eere/articles/funding-selections-announced-innovative-design-concepts-

standard-modular-hydropower (accessed August 10, 2020). 
16 Available from https://www.energy.gov/articles/doe-announces-249-million-funding-selections-advance-

hydropower-and-water-technologies (accessed August 10, 2020). 

https://www.energy.gov/eere/articles/funding-selections-announced-innovative-design-concepts-standard-modular-hydropower
https://www.energy.gov/eere/articles/funding-selections-announced-innovative-design-concepts-standard-modular-hydropower
https://www.energy.gov/articles/doe-announces-249-million-funding-selections-advance-hydropower-and-water-technologies
https://www.energy.gov/articles/doe-announces-249-million-funding-selections-advance-hydropower-and-water-technologies
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Although all modules provide essential functions needed for the successful construction and operation of 

a hydropower facility, the foundation module is critical because it serves as the structural interface that 

anchors the generation module and passage modules to the stream bed. The role of the foundation module 

within the SMH concept is similar to that of the foundations of conventional hydropower facilities, 

whereas the design and construction processes require radical innovation to minimize costs and 

environmental disturbances associated with civil works and to economically justify the feasibility of a 

new hydropower project (Witt et al. 2017).  

Modular superstructures are likely to be rigid structures that perform similarly to a concrete dam with 

respect to stability and watertightness. Engineering requirements for anchoring modular superstructures 

via foundation modules vary depending on subsurface and superstructure characteristics. In a truly 

modular facility, the generation and passage modules can be replaced throughout the life of the project. 

Therefore, foundation modules must also be able to adaptively connect and disconnect with the overlying 

modules. Although modular foundations are critical to modular facility design, previous R&D activities in 

this area are limited and such designs have not been deployed. Given this gap, modular foundation 

technologies and installation techniques represent a significant innovation opportunity, as discussed in 

Section 7. 

3.4.2 Other Hydropower Facility Structures 

Dams are often costly and difficult to design because they are constructed within the stream, and flowing 

water must be controlled and diverted while the dam is constructed. The foundations required for 

ancillary superstructures such as spillways and powerhouses have similar construction requirements. 

These structures enable proper operation of the hydropower facility and must be designed for normal 

(dry) operation, potential flooding, and seismic activity. The following sections describe the functionality 

and design requirements for both powerhouses and spillways. Proper grading and surface treatment is also 

needed for nearby structures such as switchyards, control rooms, parking lots, and recreational areas, but 

these structures are outside the scope of this report.  

3.4.2.1 Powerhouse 

The United States is home to more than 90,000 dams, approximately 2,500 of which are hydropower 

facilities (Hadjerioua, Wei, and Kao, 2012). Compared with NPDs, a hydropower project has an 

additional structure called a powerhouse, where powertrain (turbine-generator) and other equipment are 

housed. A powerhouses is located either at the toe of a dam (i.e., dam-toe scheme) or at the downstream 

end of the power conduit (for diversion facilities; DeNeale et al., 2019). For low-head facilities, the 

powerhouse may be constructed as part of the dam, so that the intake is integral with the powerhouse. 

Such powerhouses are conventionally constructed of concrete and have their own foundations integrated 

with the dam foundations. Similar to the dam, the integral intake powerhouse superstructure must be 

stable and watertight to form part of the reservoir impoundment. 

A powerhouse enables the project to generate electricity, with the design flow limited to the operational 

characteristics of the installed generating equipment. Therefore, spillways are required to pass design 

flood flows in which significant volumes of water must be passed through the facility; other forms of 

bypasses (e.g., sluiceways) may also be installed to meet facility operational requirements. Besides the 

static gravitational forces of the powerhouse structure, operational conditions induce additional loads on 

the dam and foundation structures due to the movement of pressurized water flowing through the dam to 

the powerhouse. 
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3.4.2.2 Spillway 

All dams, regardless of type, have some sort of spillway or bypass structure to transport stream or 

reservoir flows over, around, or through the impoundment structure. These flows can serve a variety of 

purposes, including flood control, navigation, recreation, water supply, and environmental conservation. 

The location and type of spillway or bypass can vary across sites, but they are commonly made from 

concrete or other non-erodible materials, or founded on rock to prevent weakening of the structure from 

relatively constant large flows (DeNeale et al., 2019). For instance, a spillway can be part of the dam or 

located on top of it, releasing water directly over the top; it can alternatively divert flow from the top of 

the dam via a bypass to release water further downstream. Typically, a spillways can draw water from a 

specific portion of the reservoir (i.e., usually the topmost layer), creating a consistent load on the dam and 

foundation structures when in use. Spillways can be divided into three main categories dependent on their 

usage—service, auxiliary, and emergency: 

• Service spillways are regularly used to provide continuous or frequent releases. Accordingly, they are 

made from extremely damage-resistant materials. Examples include gated, morning glory, and stepped 

spillways (DeNeale et al., 2019). 

• Auxiliary spillways are used in a secondary capacity to provide infrequent releases (e.g., to increase 

spilling capacity in flood events) and thus may be made of less damage-resistant materials than service 

spillways. Examples include cast-in-place reinforced concrete, riprap channel protection, and 

unarmored excavated channels (DeNeale et al., 2019).  

• Emergency spillways are used in extreme circumstances to provide additional spilling capacity (e.g., 

when the service or auxiliary spillways are inoperable or in major flood events). Therefore, they 

consist of much lower-cost materials (e.g., some types of concrete, riprap, and unarmored materials) 

and will incur erosion damage if used frequently (DeNeale et al., 2019).  

Across all three categories, spillways can be further defined by the types of flows they release, either 

controlled or uncontrolled. Controlled spillways can release precise volumes of water for specified 

periods of time using control systems such as gates, bulkheads, or stoplogs. Uncontrolled spillways do not 

have any of these control systems in place and therefore release water only when the upstream reservoir 

reaches a certain minimum elevation (DeNeale et al., 2019).  

In addition to a dam, an impoundment includes the reservoir and other hydropower facility structures such 

as spillways and integral intake powerhouses. An overflow spillway can occupy a significant area in the 

center of a valley, and its foundation suitability would mirror that of a concrete dam. Service spillways or 

integral intakes generally occupy relatively small lengths across the development. Although these smaller 

structures must meet safety and performance requirements, their foundations are designed to be 

compatible with the more costly dam foundation. 

3.4.3 Suitability Assessment for Conventional Dam Types 

For stability and economic reasons, subsurface classes can preclude certain dam types. For example, 

building concrete dams on weak, compressible colluvial soils is difficult because of significant 

consolidation and low shear strength. Table 1 describes the feasibility relationships between the 

subsurface classes and the common, conventional dam types. Many other site-specific factors (discussed 

in Section 4.2) affect the selection of dam type, so Table 1 provides only high-level insights. 

By combining the NSD subsurface classes shown in Figure 11 and the feasibility matrix shown in Table 

1, the suitability of common dam types for the population of low-head NSD sites can be extrapolated. 
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Figure 16 presents the results for the three common dam types (earthfill, rockfill, and concrete gravity). 

Based on these results, rockfill and earthfill dams are likely suitable for more than half of the NSD sites, 

whereas concrete gravity dams are likely suitable for only 15% of the NSD sites.  

Table 1. Suitability matrix for subsurface classes and dam types. 

Foundation 

geology 

Suitable dam type 

Design considerations17 Concrete 

gravity 
Rockfill Earthfill 

Igneous or 

metamorphic rock 
Well-suited Well-suited Well-suited 

Primary foundation design issue is 

often seepage through joints and 

fractures. Volcanic deposits 

sometimes are so permeable that they 

are not suitable 

Sedimentary rock Likely suitable Likely suitable Likely suitable 
Suitability depends on rock type and 

discontinuity characteristics 

Alluvial soil 
Limited 

applicability 

Requires careful 

study 

Requires careful 

study 

Issues include thickness, seepage 

susceptibility, and liquefaction 

Colluvial soil Not suited Not suited 
Requires careful 

study 

Often contains weak compressible 

layers or landslide deposits 

Glacial soil 
Limited 

applicability 
Likely suitable Likely suitable 

Foundation strength may control 

rockfill slopes; glacio-lacustrine clays 

may be a fatal flaw 

Residual soil 
Requires careful 

study 
Likely suitable Likely suitable 

Depth and nature of weathering are 

key issues; may pose fatal flaw if 

parent rock weathers to unfavorable 

clay mineral (e.g., smectite) 

 

 

 
17 The subsurface classes presented are high-level, and specific conditions may present fatal flaws for foundation 

engineering. For example, pyroclastic and airfall volcanic deposits (igneous) are less suitable for dam construction 

because they may contain highly variable material, be excessively permeable, or contain clays with unfavorable 

mineralogy. Specific conditions require additional site-specific geotechnical assessment beyond that in this report. 
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Figure 16. Suitability of common dam types for specific low-head NSD subsurface classes. 
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4. CURRENT STATE OF PRACTICE IN HYDROPOWER FOUNDATIONS  

Hydropower foundation engineering practice involves three main development phases: geotechnical site 

assessment (described in Section 4.1), foundation design (described in Section 4.2), and foundation 

construction (described in Section 4.3). For the purposes of this report, geotechnical site assessment5 is 

defined as activities performed to obtain information needed to design and construct a foundation system. 

Foundation design is defined as the process of using information from the site assessment to perform 

analyses and develop a cost-effective foundation system that meets the project design criteria. Foundation 

construction is defined as activities performed by the contractor, from mobilization through project 

commissioning, to fully develop the foundation system. These activities must integrate with overall 

project planning activities.  

Geotechnical site assessment and foundation design are concurrent rather than sequential tasks, 

representing an iterative process to advance overall project design. Although projects may be organized in 

various ways, the common approach consists of three design stages—conceptual design, feasibility study, 

and detailed design. These stages are illustrated in Figure 17, which also indicates the approximate 

percentage of design completion reached at the end of each stage. Figure 18 also indicates the relative 

typical scheduling of a small hydropower project. Site assessment and foundation design are discussed in 

Sections 4.1 and 4.2, respectively, with this concept of project organization; the concepts are readily 

adopted to other forms of project organization as needed. 

 

Figure 17. Typical staged approach to project design, showing the approximate percentage of design 

completion at the end of each stage.  

Conventional hydropower foundations primarily support the structures that form the reservoir. These 

structures include, as a minimum, the dam, spillway, and power intake (independent or integral with the 

powerhouse). Additional structures such as fish passage facilities and low-level outlets may also be 

incorporated into the development. The dam is generally the largest and most complex structure, and its 

foundation requirements dominate the engineering activities. The foundations for the other structures are 

further developed to conform to the site conditions and the dam foundation. In this report, the terms “dam 

site” and “dam axis” refer collectively to the dam and appurtenant structures that form the reservoir. 

Foundation and abutment design for dams and appurtenant structures is an engineering and scientific 

discipline process directed toward achieving an understanding of the stream bed (bedrock or soil). The 

stream bed includes the characterization of the subsurface conditions, identification of potential failure 

modes and risks, engineering analyses (e.g., slope stability, consolidation and settlement analyses, seismic 

performance), and consideration of treatment methods specific to each dam and appurtenant structure 

alternative considered based on site-specific requirements. Cost estimates, a risk register, and construction 

schedules are prepared at each phase of conceptual, feasibility, and detailed design. The project elements 

identified in conceptual design are optimized and further refined during each subsequent design phase. 

The primary geotechnical deliverable during detailed design is construction plans and specifications; a 

report is also typically prepared documenting previous site assessments and analyses performed before 

and during the detailed design phase. Key geotechnical assessments and activities are systematically 

conducted as a project advances through the conceptual design, feasibility study, and detailed design 

phases:  
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• Key results for conceptual design include selecting a site or sites that appear favorable, eliminating 

sites that have “fatal flaws” and are thus unsuitable, and selecting the type of dam most likely to be 

suitable for the project. Note that the term “fatal flaws” as used herein can indicate aspects of a site 

that would render a proposed project commercially unviable. Most of the work in this phase involves 

desktop studies that use existing data; however, field reconnaissance by experienced geotechnical 

engineers is invaluable to confirm that conditions visually apparent at the site are consistent with 

information developed from desktop studies.  

• Once a site (and perhaps one or two alternate locations) has been identified, more detailed 

investigation and analyses are typically performed during the feasibility study phase to establish a 

practical geotechnical design as the basis for cost estimates, risk register, and project scheduling. The 

cost estimation is necessary to developers for gaining project approval from regulators and financial 

backers. At this stage, many engineering parameters needed for analyses may be estimated using 

experience or published data, and a site investigation determines site properties considered critical to 

project engineering and design (e.g., the thickness, density, and permeability of alluvial materials 

beneath the proposed dam).  

• Finally, a detailed design phase study is conducted to enable construction, including preparation of 

plans and specifications. 

During foundation construction (discussed in Section 4.3), additional site assessment may be necessary if 

conditions are encountered that appear inconsistent with design assumptions or previous geotechnical 

investigations (Fookes 1967). Depending on the evaluation of investigation results during construction, 

the design may need to be altered, in which case the design engineer should be involved. Such design and 

construction decisions are made based on technoeconomic analysis. They must (at a minimum) ensure up-

to-date dam safety measures are applied to reduce risk to as low as reasonably practicable and to defend 

against potential foundation defects, stability failures or slides, overtopping dam or abutment erosion, 

piping, seepage, and other failure mechanisms. 

The interrelation of and general timelines for the geotechnical site assessment, foundation design, and 

foundation construction are shown in Figure 18. The integral nature of these activities is represented by 

two-way arrows between site assessment and design/construction, and the shading of the site assessment 

box gradually fades from left to right, reflecting the relatively decreased activities needed to support 

foundation development as overall progress is made. Important reference materials describing design 

considerations and methodology include USBR (2006a; 2012); USACE (2004); Day (2010); Duncan, 

Wright, and Brandon (2014); and Fell et al. (2014). FERC’s Engineering Guidelines for the Evaluation of 

Hydropower Projects18 is a valuable resource containing 14 chapters that are updated by FERC, some as 

recently as 2018. Another source of reference material is numerous bulletins published by the 

International Commission on Large Dams.19 Although focused on large dams that are higher than those 

within the scope of this document, the bulletins also provide necessary guidance applying to dams less 

than 50 ft tall. 

 
18 Available from https://www.ferc.gov/industries-data/hydropower/dam-safety-and-inspections/eng-guidelines 

(accessed August 10, 2020). 
19 Available from https://www.icold-cigb.org/GB/publications/bulletins.asp (accessed August 10, 2020). 

https://www.ferc.gov/industries-data/hydropower/dam-safety-and-inspections/eng-guidelines
https://www.icold-cigb.org/GB/publications/bulletins.asp
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Figure 18. Representative sequence of principal phases for geotechnical site assessment, design, 

construction, and commissioning of small hydropower development.  

4.1 GEOTECHNICAL SITE ASSESSMENT 

As defined previously, geotechnical site assessment consists of the activities performed to obtain 

information needed to design and construct a foundation system. Some of the important watershed, 

stream, rock, and soil characteristics applicable to geotechnical site assessment are presented in 

Sections 3.1 and 3.2. The need to collect and evaluate these site-specific stream and subsurface 

characteristics forms the basis for collecting geotechnical site assessment information and conducting the 

requisite activities. Use of this geotechnical information is further combined with hydropower 

engineering design (of the superstructure and appurtenant works) to inform foundation design (described 

in Section 4.2). 

Key objectives of geotechnical site assessment are to establish baseline information and a model of the 

subsurface geologic and hydrologic conditions and to evaluate engineering characteristics of subsurface 

materials. Activities typically completed to accomplish these objectives are 

• Desktop geotechnical assessment of published information for the site  

• Site reconnaissance and geologic mapping 

• Subsurface investigation (including in situ testing)  

• Laboratory testing 

• Reporting (including geotechnical interpretation) 

These activities should be planned to (1) obtain the information needed to identify whether potential fatal 

flaws exist in the foundation geology and (2) evaluate and develop designs that mitigate the risks of key 

geotechnical failure modes for dams (e.g., piping) and foundation or dam instability. These potential 

geotechnical failure modes are common to all dams and appurtenant structures, with varying degrees of 

likelihood. However, the conditions and events contributing to a potential failure differ significantly 

depending on site structure selection, site geology, and intensity of postulated site events resulting from 

seismic activity or floods. 

Once the likely foundation conditions have been established, the site assessment can be planned to focus 

on gaining knowledge and documentation of expected hazards, soil or rock defects, or shortcomings, and 

on characterizing sources of local borrow material for construction. Various foundation investigation data 

are required to establish sources of construction materials for the design of embankments, concrete dams, 

and appurtenant structures, as discussed in detail in USBR (2006a; 1998; 2001; 2012).  
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Table D.2 in APPENDIX D provides key questions for each type of foundation that needs to be evaluated 

during the planning and design process and broadly describes the likely characteristics related to strength 

and watertightness. Although strength and watertightness characteristics are site-specific, understanding 

the site geology also provides important information needed to identify geologic and geotechnical hazards 

at a site Thus, during the conceptual evaluation, the likely site foundation conditions should be identified 

using published information and site reconnaissance.  

Some geologic environments are more likely than others to result in high costs during foundation 

development. During each stage (as presented in Figure 18), the assessment of site foundation conditions 

must evaluate whether possible fatal flaws and significant development risks might exist, such as 

• Karst topography 

• Clay lenses 

• Active or highly sheared faults 

• Permeable volcanic deposits (e.g., lava tubes, columnar basalts) 

• Liquefiable sands and gravels 

• Thick openwork gravels 

• Active or dormant landslides 

• Collapsible soils (e.g., loess, mudflow deposits in arid environments)  

In particular, foundations on clays frequently require expensive design measures to address low strength 

and compressibility and thus pose a significant development risk and potential fatal flaw. These 

challenges are particularly likely when the clay is highly plastic (often indicating clay minerals in the 

smectite family) or has a high water content and soft to medium-stiff consistency. Geologic environments 

where clays may occur include 

• Altered pyroclastic environments and tuff 

• Colluvial deposits 

• Low-energy alluvial deposits (e.g., overbank and oxbow deposits) 

• Some residual soils (depending on weathering of parent rock mineralogy) 

• Glacio-lacustrine deposits 

• Highly plastic clay shales (typically Cretaceous-era deposits in the United States) 

• Fault gouge  

• Lacustrine, estuarine, and marine deposits (not often encountered at suitable dam sites) 

Because each site is unique and project objectives vary, the selection, planning, and implementation of a 

geotechnical site assessment requires both a well-trained and experienced geotechnical engineer and a 

geologist. The remainder of this section provides an overview of the process so that non-geotechnical 

engineers can interact effectively with these professionals. 

4.1.1 Desktop Geotechnical Assessment 

A desktop geotechnical assessment of subsurface conditions is the first step in the geotechnical 

conceptual design process. This desktop assessment involves evaluating existing information, including 

topographic, geologic, hydrologic, climatic, and seismic data. USBR (2006a) provides a useful list of 

potential information sources, which include topographic maps, regional geologic maps and studies, aerial 

photos, and agricultural soil maps. These data products are available through federal agencies such as 
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USGS, the National Oceanic and Atmospheric Administration, and the US Department of Agriculture, as 

well as state and local agencies. Google Earth provides a tool for preliminary assessment of potential sites 

using aerial imagery, although in some cases its topographic resolution is coarse or the imagery quality is 

low. 

4.1.2 Site Reconnaissance and Geologic Mapping 

As discussed previously, the design of dams and appurtenant structures is dependent on geologic 

conditions at the project site. Field reconnaissance is necessary to confirm topographic and geologic 

conditions at the site established during the desktop assessment. Published geologic maps are often 

unavailable, incorrect, or lacking resolution; in such cases, an experienced geologist is needed to produce 

a geologic map with geologic units, contacts, and locations of geologic features such as faults, shear 

zones, joints, and bedding. Foundation conditions can be studied through visual inspection of the geology 

in the site vicinity at locations such as rock outcrops, highway cuts, or erosional features. Detailed 

information about the fracture fabric (e.g., joint spacing, orientation) and compressive strength of the rock 

are all useful for an engineering characterization of a rock mass, which can be confirmed during site 

reconnaissance. Remote sensing techniques and data products derived from sources such as LiDAR,20 

photogrammetry, sonar, and SAR/InSAR21 are increasingly used to supplement site knowledge and 

augment visual observations. 

4.1.3 Subsurface Investigation 

Although published information provides a useful starting point for conceptual design, site-specific 

information obtained through field investigation is almost always advisable and typically is essential for a 

feasibility-level study to establish whether a structure can be safely and economically built at the 

proposed site. The conceptual design may include a limited number of borings and test pits, as well as a 

focused geophysical study. During the feasibility phase, a more detailed investigation program is typically 

undertaken. Site-specific subsurface investigations may include geophysical exploration, subsurface 

exploration using test-pits and drill holes, and in situ testing. A site conceptual model is commonly 

developed and refined throughout an iterative process during the investigation phase. More than one 

drilling campaign may be needed to constrain uncertainties regarding site conditions. 

4.1.3.1 Geophysical Exploration 

Geophysical exploration is often used as one component of a field investigation of a dam site. It requires 

interaction between the geotechnical engineer and the geophysical professional; geophysical professionals 

are often specialized in a subset of available methods, so selecting an appropriate technique often requires 

consulting multiple geophysicists. Fell et al. (2014) provides a modern summary of geophysical 

exploration for dam design and identifies the following methods that may be useful, depending on site-

specific issues: 

• Seismic refraction 

• Multi-channel analysis of surface waves 

• Self-potential profiling  

• Seismic selection 

• Electromagnetic conductivity profiling (time-domain electromagnetics) 

 
20 LiDAR—laser imaging, detection, and ranging 
21 SAR—synthetic aperture radar; InSAR— interferometric synthetic aperture radar 
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• Magnetic  

• Microgravity measurements 

• Ground-penetrating radar  

These methods are useful because they obtain information along a two-dimensional (2D) plane, and 

sometimes in three-dimensional (3D) space, whereas drill holes provide information only along a vertical 

line. A network of boreholes (as discussed in more detail in Section 4.1.3.2) can be used to develop a 3D 

geologic model, but interpolation among boreholes may miss important site characteristics. As indicated 

by Fell et al. (2014), geophysical results may sometimes be misleading because of limitations and 

ambiguities in their ability to resolve certain features, or because of their interpretation. For example, they 

are not reliable for detecting and locating thin, weak seams that could pose significant failure risks for any 

dam type, especially concrete gravity dams. Geophysical interpretations should be confirmed using bore 

holes with continuous core sampling or test pits.  

USACE (1995) provides greater detail regarding geophysical testing. However, the document is not 

recent, and geophysical technology is continuously progressing and improving; experts in the area must 

stay aware of new developments. 

4.1.3.2 Subsurface Exploration and In Situ Testing 

Subsurface exploration is required to characterize subsurface material (i.e., the bedrock and soils), 

identify potential anomalies or discontinuities in the subsurface, determine the depth to bedrock at the 

site, and collect samples for field and laboratory tests. An experienced geotechnical engineer should plan, 

manage, and interpret these investigative exploration measures. The Naval Facilities Engineering 

Command (NAVFAC, 1986) and USACE (2001) provide more information on common field 

investigation methods.  

Trenches are useful for shallow subsurface exploration of the dam site to characterize the uppermost 

material, and for paleoseismic studies of potentially weak or active faults that may impact the study site 

because they either pass through the planned dam footprint or are in close proximity to the site. Test pits 

can reveal subsurface conditions and allow visual inspection, logging, sampling, and testing of 

foundational and embankment construction material, as well as potential borrow material sources. 

Excavations to depths of up to 30 ft may be achieved, depending on the foundation soil strength and 

available equipment. Safe work procedures must be established by qualified personnel. 

To collect information on subsurface material below the depth limits of trenches and test pits, additional 

exploration measures may be needed. Common methods include drilling and cone penetrometers. Other, 

less frequently used methods, such as self-boring pressure meters, are not discussed in this report. 

Borehole drilling is performed using methods such as augers, rotary wash, percussive drilling, or coring; 

several methods allow samples to be obtained. Relatively undisturbed soil samples of cohesive deposits 

can be obtained using Shelby tubes or piston samplers, but samples must be handled with care to 

minimize disturbance. For claystones and tills, a vibratory (sonic) rig may be needed; this method 

provides continuous samples through materials that may be extremely difficult to penetrate using 

traditional rotary auger methods. Rock samples can be obtained with wire-line coring. Soil samples 

(disturbed and undisturbed) should be collected and visually classified in the field according to the USCS 

(ASTM, 2017), a standardized method of describing and classifying soils. As a rule of thumb, boreholes 

are located along the proposed dam axis with a depth at least equal to the proposed dam height (although 

some states require more), and along at least one section perpendicular to the dam axis (more than one 

may be required if the valley is wide or the geology varies substantially). To better understand seepage 

and pore pressure regimes, the depth to groundwater should be determined at a number of times 
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throughout the year. The hydraulic conductivity of the subsurface materials should be measured via 

packer testing, or through aquifer tests such as a pump-out test. 

In situ testing is often performed to measure properties when sample disturbance is a significant concern. 

For example, the density and strength of cohesionless deposits cannot be routinely measured except using 

in situ tests such as the standard penetration test (SPT) or the cone penetration test (CPT). The SPT is a 

relatively crude but extremely common in situ test, performed by measuring blows of a standard weighted 

hammer required to drive a standard sampler to a depth of 12 inches; a significantly disturbed sample is 

also obtained that can be visually classified. The CPT uses an electronically instrumented probe; it is 

generally more repeatable than the SPT and can be correlated to a variety of soil behaviors. However, it 

does not provide samples for visual classification or laboratory testing and will not penetrate gravelly 

layers or rock. 

For rock foundations, wire-line coring is the most common form of subsurface exploration. Drill cores 

should be logged for geotechnical characteristics according to the rock mass rating criteria presented in 

Bieniawski (1989) or the Hoek–Brown failure criterion (Hoek and Brown, 1980). These criteria include 

an assessment of the overall rock mass characteristics, including 

• UCS 

• Rock quality designation  

• Joint condition rating  

• Fracture spacing 

• Groundwater condition 

The UCS of the rock mass can be assessed through on-site point load testing (PLT) and direct laboratory 

testing of the UCS. Samples of intact cores should be subjected to PLT at the core rig during drilling on a 

target frequency of one PLT per core run (typically 5 ft) to obtain a semicontinuous log of rock strength. 

Core samples should be collected during drilling operations and carefully transported to the laboratory for 

testing according to ASTM (2014), as discussed in Section 4.1.4.  

Core drilling in rock foundations should also include an assessment of the orientations of discontinuities 

within the rock mass. The orientations of geologic discontinuities can be measured using core orientation 

techniques, such as the Reflex ACT core orientation tool (the preferred method for core analysis), or via 

downhole measurements of discontinuity orientation, such as an optical and/or acoustic televiewer survey 

(or similar). Other techniques for assessing the orientations and qualities of discontinuities exist, and 

should also be considered, but are outside the scope of this document.  

4.1.3.3 Pore Pressure Evaluation and Permeability Testing  

Both rock coring and soil boring approaches should include instrumentation for measuring pore pressures 

in the dam foundation. This is typically accomplished by installing vibrating wire piezometers or open 

standpipe piezometers upon completion of the corehole or borehole. Grouted-in vibrating wire 

piezometers are the preferred method for evaluating pore pressures within the dam foundation footprint, 

but they do not allow for groundwater sampling. 

Downhole permeability testing should be considered if the permeability of the embankment foundation 

material is a key design consideration. This testing can be performed using packer testing or falling head 

testing depending on materials present (rock or soils, respectively). Packer testing is the preferred method 

of assessing the permeability of dam foundations and for grouting design.  
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4.1.4 Laboratory Testing 

Soil laboratory testing is necessary to confirm classification; identify undesirable properties such as 

dispersivity or corrosivity; and establish engineering properties such as strength, volumetric and shear 

stress-strain relationships, stress history, and hydraulic conductivity. Common laboratory tests used to 

characterize geotechnical properties (e.g., structural, dynamic, and compacted soil properties) of a soil are 

listed below. Additional information is available from NAVFAC (1986) or USACE (1991) and is 

summarized in Table D.3 in APPENDIX D. Soil properties (some of which were introduced in 

Section 3.2.2) measured through common laboratory testing include the following. 

• Natural moisture content and natural density 

• Specific gravity 

• Atterberg limits (liquid limit and plastic limit)  

• Particle size distributions (sieve analysis and hydrometer analysis) 

• Corrosivity (pH, sulfate, and electroconductivity) 

• Flexible-wall permeability test 

• Consolidation 

• Swell/collapse potential 

• Shear strength 

• Compaction (vibratory, or standard or modified Proctor test) 

Rock laboratory testing is typically conducted to evaluate the shear strength and compressibility 

characteristics of the rock mass. Testing should include an assessment of intact rock strength as well as 

the shear strength of rock discontinuities. Intact rock strength is typically measured using UCS testing 

according to ASTM (2014). The laboratory UCS testing should also include elastic properties 

measurements (Young’s modulus and Poisson’s ratio) for use in foundation compressibility and 

settlement analyses. The shear strength characteristics of rock discontinuities are typically tested using 

small-scale direct shear testing according to ASTM (2016). Selection of normal stresses during small-

scale direct shear testing is an important consideration and should be based on the range of normal 

stresses expected within the dam foundation. Other tests may also be appropriate depending on the rock 

encountered and the conceptual design of the dam 

4.1.5 Reporting 

The key outputs from the site assessment activities are a geologic model for the site and the engineering 

characteristics of the site. One approach to documenting these outputs is to (1) prepare a report describing 

the geologic model developed during the conceptual study phase, which is updated based on results of the 

site investigation, and (2) prepare a data report during the feasibility study that provides information 

needed to perform analyses and prepare construction drawings and specifications. Maps, diagrams, and 

borehole logs from all exploration investigations should be included, as well as the results of field and 

laboratory tests. Geotechnical professionals should interpret the field findings and testing results. 

4.2 FOUNDATION DESIGN AND TECHNOLOGY 

This section summarizes foundation design for hydropower dams and appurtenant works that form the 

impoundment (Section 4.2.1) and other civil infrastructure (Section 4.2.2). Although commonalities exist 

in the design for these elements, the differences are important to consider, so they are covered in separate 

sections. 
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4.2.1 Foundation Design of Dams and Appurtenant Works 

Each site has unique characteristics that the designer must consider in developing a design solution. 

Foundations are designed to be compatible with the structures they support. Technical performance 

requirements for the principal structures (modules) include the following. 

• All principal structures (modules) forming the impoundment must hold back the impounded water 

and/or pass water downstream in accordance with operational and safety requirements. 

• Concrete structures must be essentially impermeable and (1) be safe against overturning, sliding, and 

uplift; (2) resist imposed loads under normal and extraordinary operating conditions, including floods 

and earthquakes; and (3) experience negligible or minimum settlement. 

• Earthfill and rockfill structures generally are permeable and incorporate an internal core or drain to 

minimize or control the phreatic surface through the structure. An exception is a concrete-face rockfill 

dam (CFRD), which incorporates an upstream impermeable layer to eliminate the phreatic surface in 

the rockfill.  

• Seepage must be controlled to address the risk of internal erosion and so that high pore pressures do 

not induce foundation or embankment instability. 

• Earthfill and rockfill structures must have stable slopes under normal and extraordinary operating 

conditions, including flood, earthquake, and reservoir drawdown. The strength of both the foundation 

and the embankment must be considered in analyzing stability and sliding. 

• Settlement of the structure must be within specified design tolerances during and after construction. 

The primary objective of the foundation design is to satisfy these listed technical performance 

requirements. Doing so requires evaluation and assessment of foundation conditions using site 

investigations, laboratory testing, and geotechnical analyses. Depending upon the geotechnical conditions 

encountered, the foundation design may include special treatments such as grouting and cutoff trenches to 

address identified potential subsurface defects. Shear and compressive strength and compressibility 

characteristics of the foundation materials must be determined to understand the foundation response to 

applied loading during and after construction. The permeability of the dam and foundation is evaluated to 

understand and estimate pore pressure in the dam and its foundation. Pore pressure is a key consideration 

for overall structure stability and sliding resistance. Strain compatibility between the various foundation 

elements is also an important consideration. 

Key outcomes of the foundation design process are 

• Site selection and characterization  

• Selection of dam type and arrangement of appurtenant works along the dam axis 

• Identification of potential failure modes and possible fatal flaws based on the site geotechnical 

characterization and selected dam type 

• Listing of perceived risks into a risk register 

• Identification and analyses of foundation treatment measures to reduce risks associated with the 

identified potential failure modes 
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• A plan for instrumentation, monitoring, and surveillance of the dam to manage remaining residual risk 

• Construction drawings, specifications, and quality assurance and control plans 

Interactions among the dam superstructure, the constructed foundation elements, and the subsurface must 

be considered. As an example of the importance of this consideration, the existence of open fractures in 

the foundation of Teton Dam and the use of a highly erodible silt embankment material were both factors 

contributing to the dam’s catastrophic and tragic failure in 1976. 

4.2.1.1 Site Characterization and Selection 

Geologic and geotechnical characterization of a potential project site according to the approaches outlined 

in Section 4.1 is an important activity in the dam site selection activity process. Geologic considerations 

during site selection are summarized in Table D.2 in APPENDIX D and include the following. 

• Minimally weathered igneous and metamorphic rock usually have high bearing capacity and 

negligible permeability and thus are preferred foundations that readily support dams with a structural 

height of 50 ft or less, because treatment requirements are often minimal and the risk of unanticipated 

construction costs is lower than for more challenging geologic environments. Measures to limit 

foundation seepage may be considered. Some volcanic deposits are an exception, as they may be 

highly permeable or include weak clay deposits. 

• Moderately weathered igneous and metamorphic rock and many sedimentary rocks are also suitable 

for structures less than 50 ft tall, but they are less desirable than minimally weathered igneous and 

metamorphic rock because foundation treatment is usually more extensive.  

• A soil foundation is suitable for many projects, but fatal flaws are more prevalent, development risks 

can be significant, and treatment costs are higher on average than for bedrock sites. For example, 

organic deposits (e.g., peat) and soft-to-medium stiff or high-plastic clays are considered unsuitable 

foundations as they have low resistance to shear forces and may experience excessive settlement.  

• Sand and gravel with low fines content (USCS Soil Classification GW, GP, SP, and SW22) often 

provide suitable foundations because of their predictable settlement behavior and ability to resist shear 

forces, but they must be treated to control seepage. Such soil foundations can generally support 

earthfill and rockfill embankment dams less than 50 ft tall. 

• Soils comprising sand with silt (USCS Soil Classification SM23) are usually more compressible than 

clean coarse-grain soils but can often support low structures, provided that adequate and possibly 

costly foundation treatment measures are implemented. 

• Sites where aerial photographs and topographic maps indicate evidence of significant slope failure in 

valley walls are less desirable.  

• Sites upstream of a waterfall can be attractive for hydropower development. High-velocity flows 

upstream of the falls frequently scour the stream bed to bedrock, where it is partially exposed during 

low-flow season. A small concrete overflow dam with a hydraulic height of less than 30 ft is often 

suitable. The dam site should be located far enough upstream of the falls to avoid a possible 

foundation instability. Where falls are present, fish passage facilities are typically unnecessary, and 

 
22 GW—well-graded gravel; GP—poorly-graded gravel; SP—poorly-graded sand; SW—well-graded sand. (ASTM, 

2017) 
23 SM—silty sand. (ASTM, 2017) 
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falls naturally preclude recreational boating. The power intake at the dam can convey water to a 

penstock extending below the falls, allowing for a larger hydraulic head to generate increased power 

and energy, improving project economics.  

Non-geotechnical issues that may impact site selection (but are not addressed in this section) include the 

following. 

• Valley topography—narrow valleys are preferred because dam volumes are smaller than for wide 

valleys. Wide U-shape valleys often have thick permeable alluvial deposits that require foundation 

treatment, rendering the project uneconomical.  

• Site access for construction, operation, and power transmission. 

• Environmental impacts. 

• Cultural resources and issues. 

• Regulatory environment. 

4.2.1.2 Selection of Dam Type and Appurtenant Structures 

The selection of dam type is influenced by site topography, geology, availability and quality of 

construction materials, spillway design flood considerations, and the arrangement of the passage modules, 

including an integral intake and powerhouse or separate power intake. Foundation geology often varies 

across a valley or along a dam axis. Initial selection of a dam type, and the general arrangement of the 

impounding structures, require geologic and geotechnical judgements related to the foundation, including 

rock and soil type and depth to rock. For low-head application, earthfill, rockfill, and concrete gravity 

dams may be suitable. 

The selection of the spillway arrangement is undertaken concurrently with selection of the dam type. A 

concrete dam normally has a concrete overflow spillway. A CFRD could have an overflow spillway 

section. Earthfill and rockfill dams more frequently have an overflow spillway located in an abutment. 

Spillways, whether gated and ungated, are sized to pass the design flood and conform to the site 

topographic and geologic conditions. The width of the spillway along the dam axis is selected based on an 

economic comparison of spillway surcharge level vs. cost, including the cost of the dam (non-overflow 

sections). Additionally, consideration can be given to designing for dam overtopping without dam failure. 

Table 2 describes common dam types based on characteristics of the structure material and compatible 

foundation material. Figure D.1, Figure D.2, and Figure D.3 in APPENDIX D provide graphical 

illustrations of these dam types, showing conventional foundation measures used to control seepage or 

enhance watertightness. Both gated and ungated concrete spillways are also shown in Table 2. 

Concrete gravity and rockfill dams can be considered for rock foundations, and for dense sand and gravel 

foundations where practical foundation seepage control measures (such as cutoff trenches) are feasible. 

The selection between concrete and rockfill is often a cost-based decision; concrete is more expensive per 

unit of volume than rockfill but requires less total volume. Soil embankment dams may be preferable 

where offsite sources of concrete are distant and limited, or where no rock is locally available. Filter sand 

and drain gravel typically are high-cost elements of embankment dams. For sites where foundation 

conditions dictate relatively flat slopes, the choice between soil and rockfill is often determined based on 

availability and cost. Concrete gravity and rockfill dams can be designed for overtopping, while 

embankment dams cannot. Thus, where design storms require passing very large flows, the former two 

dam types offer advantages for spillway design. 
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Table 2. Common foundation designs based on dam type and foundation material.  

Primary 

construction 
ID Dam type Foundation material 

Earthfill 

E1 Homogeneous earthfill with internal drain  Impervious soil  

E2 Central or inclined core, zoned earthfill  Impervious rock  

E3 Homogeneous earthfill with internal drain  
Pervious soil (or highly weathered 

rock or regolith)  

E4 Central core, zoned earthfill  
Pervious soil (or highly weathered 

rock or regolith)  

E5 Zoned earthfill with upstream impervious zone  
Pervious soil (or highly weathered 

rock or regolith)  

Rockfill 
R1 Rockfill with central or inclined core  

Sound rock, treated as necessary for 

low permeability below core  

R2 Rockfill with upstream membrane (assumed CFRD)  Sound, impervious rock  

Concrete 

Gravity 

C1 
Concrete hydraulic structure (e.g., non-overflow 

section, overflow section, power intake)  
Sound, impervious rock  

C2 
Concrete hydraulic structure (e.g., non-overflow 

section, overflow section, power intake)  

Pervious competent soil (or highly 

weathered rock or regolith)  

 

Overflow spillways for concrete dams are designed similarly to the concrete dam but with additional 

loading cases associated with flood passage. Concrete overflow spillways located in abutments, retaining 

walls, side walls, and their foundations must meet the structural stability and foundation hydraulic 

conductivity requirements. For low dams in permeable foundations, concrete spillways would require 

measures to elongate the seepage path to avoid internal erosion of the foundation, as shown in Table 2. 

Other passage and generation modules also fit into the general arrangement across the valley. These 

generally are concrete structures that comply with the technical performance requirements outlined in 

Section 4.2.1 and have foundation treatment measures as shown in Table 2. 

In summary, across the dam axis, the structures are compatible with their specific foundation. The dam 

and appurtenant works and their foundations are analyzed in three dimensions to demonstrate that they 

meet all technical performance requirements. Special attention is given to contact surfaces between 

different structures and/or different material zones.  

The selection of dam type is the most important element to be considered and greatly influences the 

arrangement of structures across the valley. The dam site selection is closely followed by the selection of 

the spillway and other appurtenant works. A flow chart conceptually showing the process for selecting 

dam types most suitable for a site is shown in Figure 19; the applicable dam type (shown in gray boxes) is 

consistent with the identification code (labeled as ID) provided in Table 2. The decision process shown 

begins by appropriately characterizing the geologic environment. Next, the likely strength and seepage 

characteristics of the foundation are determined based on the geologic environment. A foundation with 

low compressibility and relatively high shear strength is necessary if a concrete dam is to be considered. 

The seepage characteristics influence the selection of foundation treatment technology and the geometry 

of earthfill and rockfill dams. Site-specific information may be needed for these characteristics to be 

established with reasonable confidence. The economics of dam construction material must then be 

evaluated. Again, this is likely to be site-specific and dependent on such factors as locally available 

material and costs to either purchase or produce concrete. Although outside the scope of foundation 
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design, the availability or scarcity of low-permeability borrow material, filter sand, and drain material or 

construction of the core of a rockfill or earthfill dam often influences the selection of dam type. 

 

Figure 19. Conceptual dam type selection process flow diagram. 

4.2.1.3 Risk Assessment and Management 

Geotechnical engineering differs from many other engineering disciplines in that it involves geologic 

materials (soil and rock) created by natural processes with ranges of material and mechanical properties, 

rather than engineered materials with predictable pre-engineered properties. In many disciplines, an 

engineer can establish the engineering properties of a metal or plastic accurately by specifying the type 

and grade of material (e.g., ASTM A36 steel). An engineer can specify the shape (geometry) of a metal or 

plastic component for the purposes of design. However, with geologic and soil materials, geologic 

characteristics, distribution, and the properties of the soil or rock must be determined rather than 

specified. This uncertainty is further increased by the complexity of geologic materials and how they 

perform when saturated or exposed to water, which can vary as a result of prior geologic events including 

stress history and exposure to weathering and groundwater seepage.  

A geotechnical engineer must address inherently larger material property uncertainty than do engineers in 

other disciplines. Although the application of formal and quantitative probabilistic analysis has 

progressed, the results of such analyses are limited when predicting observed behavior. Tools used to 

assess risk are summarized in Section 4.2. A modern document describing current best practices for dam 

risk management has been prepared jointly by the USBR and the USACE (USBR and USACE, 2019), 

although the level of effort to fully implement the method described may not be appropriate for low-head 

hydro projects. Nevertheless, it remains necessary for the geotechnical engineer to use judgment in 
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developing design criteria and managing the associated risk and uncertainty. Industrial practice and 

related judgment is developed based on knowledge and on experience with previous dam designs in 

similar geologic settings. In short, the effective and well-managed development of dam design criteria 

requires specialized training and experience. 

One strategy the project developer can employ to manage geologic and soil risk is to perform high-quality 

investigation and analyses to reduce uncertainty; Silva, Lambe, and Marr (2008) provide an example for 

slope stability. In their example, the engineer identifies engineering characteristics and shows that “state 

of the practice” design may reduce the probability of failure by two orders of magnitude compared with 

projects designed with the same criteria but using “routine” investigation and design methods. Although 

the additional cost associated with more thorough design and investigation may not be justified for some 

projects, the public risk and nature of the consequences of a dam failure is such that the design must 

reduce perceived risk to low levels to meet societal expectations. Selecting an appropriate scope level for 

site investigation and analyses is necessary to understand and reduce project risks. 

Throughout the design process, two approaches exist for dealing with geotechnical uncertainty. The first 

is to make conservative assumptions throughout the design process (e.g., choosing reasonable lower 

bounds from laboratory strength test results). However, this approach may result in a costly design. A 

second is to use Terzaghi’s observational method. Peck (1969) describes the process as follows: 

(a) Exploration sufficient to establish at least the general nature, pattern and properties 

of the deposits, but not necessarily in detail.  

(b) Assessment of the most probable conditions and the most unfavorable conceivable 

deviations from these conditions. In this assessment geology often plays a major role. 

(c) Establishment of the design based on the working hypothesis of behavior anticipated 

under the most probable conditions.  

(d) Selection of quantities to be observed as construction proceeds and calculation of 

their anticipated values on the basis of the working hypothesis.  

(e) Calculation of values of the same quantities under the most unfavorable conditions 

compatible with the available data concerning the subsurface conditions.  

(f) Selection in advance of a course of action or modification of design for every 

foreseeable significant deviation of the observational findings from those predicted on 

the basis of the working hypothesis.  

(g) Measurement of quantities to be observed and evaluation of actual conditions.  

(h) Modification of design to suit actual conditions. 

The observational method typically requires more performance monitoring and more involvement of the 

design engineer during construction, but it often reduces overall earthwork costs. However, the method is 

not applicable for all (sudden) failure modes.  

Once the dam site subsurface has been characterized, a potential failure modes analysis (PFMA) should 

be performed to identify and plan for the mitigation of risks inherent to the dam and its foundation 

(USBR and USACE, 2019). A formal PFMA is typically required and used in the dam design process. A 

PFMA often consists of a workshop ranging in duration from a half day to several days attended by 
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experts in the design, construction, and operation of dams. The purpose is to identify the potential failure 

modes for the dam structure of interest. The probability of possible failure events occurring is determined. 

Expert elicitation is used for a PMFA. This process involves disciplines outside the expertise of the 

designer and facilitates “cold-eyes” review. Where risk (defined by the probability of a series of events 

and the consequence if the events occur) is not tolerable, the design might be altered, monitoring and 

mitigation strategies may be identified, or rarely, the project could be abandoned.  

4.2.1.4 Foundation System Design 

Once one or more viable options for dam type have been identified the geotechnical engineer must next 

• Identify potential failure modes.  

• Choose design features and criteria so that the probability of identified potential failure modes is 

acceptably low.  

• Plan an investigation to gather data necessary to assess and analyze the failure modes, and select 

engineering parameters to analyze proposed design features.  

• Perform the analyses and modify the design if needed to meet criteria. 

• Identify residual risks associated with the design, concepts for mitigation that could be implemented if 

adverse performance is observed, and a monitoring program.  

Geotechnical engineering during the design process is focused on developing defenses against probable 

dam failure modes. Of historical failure modes, as shown in Figure 20, the fundamental concerns of a 

geotechnical engineer are (1) foundation defects (or subsurface defects, using the terminology of this 

report); (2) slides (which may or may not extend through the superstructure into the subsurface); and 

(3) piping or seepage. Whereas Figure 20 indicates foundation defects and slides are responsible for 10% 

of dam failures internationally, the Association Society of State Dam Safety Officials (ASDSO)24 reports 

them to be a cause of 30% of dam failures in the United States. Similarly, Figure 20 reports piping and 

seepage as the cause of 40% of international dam failures, while ASDSO indicates them as a cause of 

20% of dam failures in the United States. (The differences are in part explainable by different definitions.) 

Seismic loading and surface erosion also often require consideration during design. Susceptibility of 

earthen spillways to erosion is another design issue that requires geotechnical input on some projects. 

Other important but non-geotechnical modes are overtopping and structural failure of control structures 

(e.g., gates and spillways). 

Once potential failure modes have been characterized, each identified mode is analyzed to determine 

whether foundation treatment is necessary to mitigate the risk and select appropriate foundation 

treatments. Foundations for water retaining structures must be designed and built to incorporate measures 

to minimize or effectively manage foundation seepage (also called “underseepage”). As the various 

structures are arranged across the valley, each must incorporate a foundation that considers foundation 

seepage measures that are compatible with the structure that it supports. Foundations of granular material 

and highly jointed or fractured rock are highly permeable and require treatment of the foundation. 

Conventional foundation treatment measures to achieve these design objectives have been extensively 

documented by the USBR (2006a; 2012).  

 
24 Available from https://damsafety.org/dam-failures (accessed August 10, 2020). 

https://damsafety.org/dam-failures


 

44 

 

Figure 20. Approximate fraction of international dam failures by proximate cause. Piping or seepage  

along with foundation defects and slides are highlighted as potentially foundation-related failure modes. Source: 

After DeNeale et al. (2019), as modified from Baecher, Paté, and de Neufville (1980).  

Treatments that may be applied for a dam foundation are listed in Table 3, with additional information on 

procedure provided in Table D.5 in APPENDIX D. Such treatments also apply to spillways and other 

appurtenant works and include 

• Excavation of weak or permeable material 

• Placement of dental concrete or low-permeability material on the foundation surface 

• Anchors (typically for concrete gravity dams, spillways, and stilling basins) 

• Cutoff trenches, such as these:  

o A clay-filled cutoff trench, for an earth and rockfill dam with central clay core, where the clay core 

is extended to a rock foundation 

o A cement slurry trench—a trench is excavated to a required depth and backfilled with a cement 

slurry 

• Grout curtains 

• Grout blankets 

• Walls (e.g., slurry, sheet pile, or concrete) 

• Relief wells 

• Any combination of the above to respond to the conditions encountered in the field 

Upstream impermeable blankets, comprising clay blankets, geotextiles, or concrete aprons. Elements that 

are part of the superstructure (and thus are not considered part of the foundation) include 

• Filters and drains 

• Geotextile membranes/blankets 

• Embankment and concrete dam structures 

• Core 
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Typical design measures to improve performance of the superstructure include 

• Flattening slopes  

• Constructing berms  

• Excavating shear keys 

• Adding drainage elements in the embankment to lower the phreatic surface within the embankment  

• Employing granular drains and filters as a key defense to piping (internal erosion)  

Table 3. Applicability of common dam foundation treatments by dam and foundation type. Source: Modified 

from Fell et al. (2014). Green check boxes indicate applicability; red ×’s indicate non-applicability. 

Treatment Foundation type 

Applicability 

Concrete dam 
Rockfill 

dam 

Earthfill 

dam 

General foundation excavation 
Rock ✅ ✅ ✅ 

Soil ✅ ✅ ✅ 

Foundation cutoff excavation  
Rock ✅ ✅ ✅ 

Soil ✅ ✅ ✅ 

Cutoff foundation wall 
Rock ✅ ✅ ✅ 

Soil ✅ ✅ ✅ 

Curtain grouting  
Rock ✅ ✅ ✅ 

Soil    

Consolidation grouting, also called blanket or stitch 

grouting  

Rock ✅ ✅ ✅ 

Soil    

Rock anchors25 
Rock ✅   

Soil    

Ground improvement 
Rock    

Soil ✅ ✅ ✅ 

Relief wells 
Rock    

Soil ✅ ✅ ✅ 

Upstream impermeable blanket or concrete apron 
Rock    

Soil ✅ ✅ ✅ 

 

Common watertightness considerations for foundation treatment are listed in Table D.4 in APPENDIX D 

for specific dam and spillway types, with references to the typical sections shown in Figure D.1, 

Figure D.2, and Figure D.3 in APPENDIX D. Once a preliminary design is established, the embankment 

and foundation are evaluated to check stability and analyze seepage, and to compare the predicted level of 

performance if more than one dam type is under consideration. Typical calculations that are useful in 

foundation design include settlement and consolidation analysis, seepage analysis, and stability analysis 

(see Figure 12), as summarized in Table 4. Formal training is necessary to perform the work. Results from 

these geotechnical calculations will guide the selection of both foundation treatment and specific dam 

components such as zones, trenches, and the core. 

 
25 Rock anchors are often used for spillways and stilling basins, regardless of dam type. 
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Table 4. Typical calculations for design of dams and appurtenant works. 

Analyses Purpose Description 

Elastic settlement 

and consolidation 

analyses 

Determine immediate and time-

dependent vertical deformation due 

to loads from embankments and 

structures 

Standard one-dimensional consolidation analyses 

using elastic stress distributions as described by 

numerous fundamental geotechnical textbooks. 

When needed, 2D or 3D analyses are performed 

using finite element analysis 

Seepage analysis 

Calculate location of phreatic 

surface, pore pressure distribution, 

and seepage quantities 

Typically performed using finite element analyses 

Stability analysis 

Confirm that proposed design has an 

adequate factor of safety for the 

structure and foundation. 

Usually performed with software implementing 

limit equilibrium analyses—see Duncan, Wright, 

and Brandon (2014). Numerical methods (e.g., 

finite element or finite difference analyses) also 

employed when deformation prediction is important 

 

4.2.1.5 Foundation Design for Construction and Operation 

An important task for the designer is to develop a monitoring plan to be implemented during construction 

and operation. Adhering to best practices for dam design will result in an acceptably low probability of 

failure, although residual risk remains during construction because of the following possibilities: 

• Important subsurface conditions may be discovered during construction even after a well-planned 

design investigation. 

• Errors may occur during design that are not detected in the review process. 

• Mistakes or changes may occur during construction. 

• The dam and appurtenant structures may not be commissioned, operated, or maintained properly.  

• Unforeseen loads may act on the structure (updates in seismic or hydrologic loading). 

• An unknown condition may exist that could adversely impact dam performance. 

For this reason, best practice is to implement a construction and operations surveillance and monitoring 

program using both documented visual inspections and geotechnical instrumentation. Designers are well-

suited to developing such a program. Within the United States, nonfederal dam projects frequently rely on 

requirements provided by FERC for these types of programs (FERC, 2017). Typical instrumentation 

could include monitors for water level wells, water and earth pressure, temperature, internal and surface 

movements, joint/crack displacement, strain in concrete structures, relative motions of benchmarks, and 

motion from earthquake shaking. 

Small dams generally do not have inspection galleries that house extensive instrumentation and facilitate 

internal visual inspection. Small dams in undeveloped reaches in rural areas would generally be classified 

as low-hazard dams, and their instrumentation requirements are usually guided by state dam safety 

regulations. Larger dams and small dams with a significant-/high-hazard classification require 

instrumentation to monitor the structure and the foundation system. 
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Instrumentation for foundations is generally directed at specific issues or concerns such as foundation 

seepage, weak foundation zones, confirmation of foundation design parameters, and response to seismic 

loadings. Table 5 presents typical types of foundation instrumentation. 

Table 5. Instrumentation for foundation systems. 

Problem, concern, or issue Typical instrumentation for the foundation system 

Foundation seepage under the 

dam or through the abutments 
• Collection channels and measurement weirs, possibly with a float and 

continuous recorder 

• Open standpipe piezometers screened at specific depths in the downstream 

areas 

Foundation seepage in the 

abutment areas 
• Collection channel and measurement weir, possibly with a float and 

continuous recorder 

• Open standpipe piezometers screened at specific depths in the downstream 

areas 

• Groundwater observation wells downstream from the abutments 

Uplift pressure and pore pressure 

in the foundation  
• Vibrating wire piezometers 

Foundation deformation or 

settlement 
• Piezometers, inclinometers and extensometers 

Seismic loadings in high risk 

zones 
• Seismograph (accelerograph) 

 

4.2.2 Civil Infrastructure Foundation Design 

Other hydropower project structures are associated with project development but can fall outside of the 

foundation footprint of the dam and appurtenant works, including 

• Aqueducts (e.g., canals, penstocks) 

• Powerhouses (not integral with the dam) 

• Retaining walls 

• Transmission towers 

Infrastructure foundations are typically classified either as shallow (e.g., spread or strip footings and mat 

foundations) or deep (pile foundations). Experience has shown that deep foundations, mats, and shallow 

foundations on rock are less susceptible to construction defects and locally variable soil conditions than 

are shallow foundations on soil. Many designers avoid shallow foundations on soil for expensive or 

critical structures for which high reliability is essential. Many types of deep foundations are available; 

selection depends upon capacity required, local availability of materials and contractors, and installation 

considerations (e.g., presence of large cobbles and boulders). 

The objective of civil infrastructure foundation design is to establish the foundation type (e.g., spread 

footings or piles) and dimensions for infrastructure that will safely and adequately transfer loads from a 

structure to the ground (soil, rock, or both) and undergo post-construction settlement of the foundation 

units within tolerable limits. The fundamentals of design methodology applicable for low-head 

hydropower projects are contained within numerous geotechnical textbooks. AASHTO (2010) provides 

relatively recent design standards using the Load Resistance and Factored Design (LRFD) method, which 

may be applicable for hydropower foundations. Many other useful publications providing specialized 
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foundation design procedures that are generally applicable for hydropower projects in addition to 

transportation infrastructure are available from the Federal Highway Works Administration’s online 

library.26 Selected relevant USACE design manuals are listed in Table 6. The Canadian Foundation 

Engineering Manual provides another relatively recent and comprehensive guide to foundation design for 

infrastructure. 

Table 6. Selected USACE foundation design manuals. 

Pub number 27 Title  Pub date  Citation 

EM 1110-1-1904  Settlement Analysis 9/30/1990 USACE (1990) 

EM 1110-1-1905  Bearing Capacity of Soils 10/30/1992 USACE (1992) 

EM 1110-1-2908  Rock Foundations 11/30/1994 USACE (1994b) 

EM 1110-2-2504  Design of Sheet Pile Walls 3/31/1994 USACE (1994a) 

EM 1110-2-2906  Design of Pile Foundations 1/15/1991 USACE (1991) 

 

Becker (1996a; 1996b) summarizes the components of the civil infrastructure foundation design process, 

which are also appropriate for dam civil infrastructure. The following are important considerations for the 

process: 

• Other types of infrastructure foundations (besides dams and appurtenant structures) included in the 

development are much less likely to pose a fatal design flaw or result in large cost overruns than are 

the dam and appurtenant structure foundation. 

• A primary purpose of analyses is to confirm adequate bearing capacity and acceptable settlements. 

• Infrastructure design relies more heavily on code of practice (including building codes) than does dam 

design. 

• Establishing design criteria requires effective interaction between geotechnical and structural 

engineers; design criteria should be established based on realistic performance requirements rather 

than arbitrary standards (e.g., less than 1 inch of settlement) to avoid unnecessary conservatism in the 

design. 

• The importance of site investigation and establishing an appropriate geologic model for the site is 

similar to the importance of design of dam and appurtenant structure foundations. 

In most instances, foundation loads associated with other infrastructure are smaller and less complex than 

those imposed by a dam. Dam designs must address seepage, a wider variety of geologic environments 

and soil conditions, rock bearing and sliding capacity, and foundation potential settlement. Special 

conditions such as liquefiable sands and gravels, soft to medium-stiff or expansive clays, and karst 

topography are examples of dam foundation conditions that may result in excessively high construction 

costs or may be considered fatal flaws. 

 
26 Available from https://www.fhwa.dot.gov/engineering/geotech/library_listing.cfm (accessed August 10, 2020). 
27 Available from https://www.publications.usace.army.mil/USACE-Publications/Engineer-

Manuals/u43544q/666F756E646174696F6E/?udt_43544_param_orderby=Pub_x0020_Number&udt_43544_param

_direction=descending (accessed August 10, 2020). 

https://www.publications.usace.army.mil/USACE-Publications/Engineer-Manuals/u43544q/666F756E646174696F6E/?udt_43544_param_orderby=Pub_x0020_Number&udt_43544_param_direction=descending
https://www.publications.usace.army.mil/USACE-Publications/Engineer-Manuals/u43544q/666F756E646174696F6E/?udt_43544_param_orderby=Title&udt_43544_param_direction=ascending
https://www.publications.usace.army.mil/USACE-Publications/Engineer-Manuals/u43544q/666F756E646174696F6E/?udt_43544_param_orderby=Pub_x0020_Date_UDT_Value&udt_43544_param_direction=ascending
https://www.publications.usace.army.mil/LinkClick.aspx?fileticket=xVP7BK4QXg4%3d&tabid=16439&portalid=76&mid=43544
https://www.publications.usace.army.mil/LinkClick.aspx?fileticket=kimCg3CBBHc%3d&tabid=16439&portalid=76&mid=43544
https://www.publications.usace.army.mil/LinkClick.aspx?fileticket=pbjLK_2Lj4Y%3d&tabid=16439&portalid=76&mid=43544
https://www.publications.usace.army.mil/LinkClick.aspx?fileticket=735At6azWcM%3d&tabid=16439&portalid=76&mid=43544
https://www.publications.usace.army.mil/LinkClick.aspx?fileticket=kZWzBgjM87E%3d&tabid=16439&portalid=76&mid=43544
https://www.fhwa.dot.gov/engineering/geotech/library_listing.cfm
https://www.publications.usace.army.mil/USACE-Publications/Engineer-Manuals/u43544q/666F756E646174696F6E/?udt_43544_param_orderby=Pub_x0020_Number&udt_43544_param_direction=descending
https://www.publications.usace.army.mil/USACE-Publications/Engineer-Manuals/u43544q/666F756E646174696F6E/?udt_43544_param_orderby=Pub_x0020_Number&udt_43544_param_direction=descending
https://www.publications.usace.army.mil/USACE-Publications/Engineer-Manuals/u43544q/666F756E646174696F6E/?udt_43544_param_orderby=Pub_x0020_Number&udt_43544_param_direction=descending


 

49 

4.3 FOUNDATION CONSTRUCTION 

This section summarizes foundation construction considerations, including pre-excavation activities, 

excavation activities, and foundation treatments. 

4.3.1 Pre-Excavation Activities 

4.3.1.1 Contractor’s General Obligations 

The entity contracted to construct the dam and appurtenant structures and their foundations must comply 

with the applicable codes, permits, laws and regulations from any applicable state, regional, or federal 

authorities. During foundation construction, the contractor is obligated to incorporate measures related to 

environmental protection (e.g., general environmental best management practices [BMPs]), fish and 

wildlife protection (e.g., prohibition of hunting and fishing), erosion control (e.g., implementation of 

riprap), preservation of archeological resources (e.g., stop work and recover artifacts, if found), public 

safety (e.g., signage and limits to site access), and worker safety (e.g., personal protection equipment and 

safety plan).  

4.3.1.2 General Mobilization and Site Preparation 

The foundation contractor will mobilize the required construction equipment. This could include trucks 

(haul and water), excavators, bulldozers, motor graders, cranes, pile drivers, trench diggers, vibrating 

rollers, mobile compressors, diesel generators, and drilling and grouting equipment.  

Site preparation includes execution of provisions for the equipment yard, fuel depot, construction access 

roads, and designation of areas for placement of excavated material. Initially, the foundation surface is 

exposed after the area is cleared and grubbed of vegetation and the topsoil is removed. Excavated topsoil 

is often stored for later site restoration efforts. 

4.3.1.3 River Diversion and Care of Water 

Dam and appurtenant structure foundations are constructed “in the dry.” The contractor executes a river 

diversion to provide relatively dry work areas to allow operation of construction equipment and 

implementation of foundation treatment measures. Care-of-water and river diversion works can be 

incorporated as permanent features. 

Most river diversion works are initiated at the beginning of the dry season and typically include 

cofferdams, canals, culverts, and pipes to pass flows around a work front. The work area is often 

protected from high flows (typically a 10- or 20-year flood) by dikes, cofferdams, or sandbag walls. 

Figure 21 shows an example of construction activities occurring within a protected foundation work site. 

In deep excavations, groundwater may be present and can flood excavated areas. To maintain a dry work 

area, the contractor can pump seepage water within the excavation area. The contractor may also 

implement measures to limit groundwater infiltration. Such measures include driving sheet piles or 

grouting around the perimeter of the work area. Additionally, to lower the local groundwater table, the 

contractor may establish a perimeter well point system. Such care-of-water measures can be expensive 

considering that they frequently extend throughout the construction period. 
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Figure 21. Chickamauga Lock replacement project28 in Chattanooga, Tennessee, showing foundation 

excavation and treatment within the dewatered/coffer dammed work site. Image courtesy of Scott DeNeale. 

4.3.1.4 Environmental Best Management Practices 

The contractor will adhere to environmental BMPs, which will ultimately have cost and schedule impacts. 

With regard to small hydropower development, BMPs pertain to work conducted in-river or in riparian 

environments. This includes test pits dug during site investigations as well as river diversion and flood 

management during construction.  

BMPs include structural, vegetative, or managerial practices used to treat, prevent, or reduce water 

pollution. Structural BMPs use structures to control flooding and flow diversion. Vegetative BMPs use 

landscaping practices, such as grassed swales, to reduce erosion. Managerial practices include regular 

maintenance of structural and vegetative BMPs, spill prevention, and waste reduction practices. 

Many BMPs remove pollutants from the water. Some of the water quality benefits are reduced soil 

erosion, lower contaminant loadings, and cleaner bottom sediments. Another benefit of BMPs is 

reduction of flooding. Temporarily detaining a large portion of runoff volume and releasing it at a slow 

rate limits flooding. 

4.3.2 Excavation Activities Including Care of Water 

The principal structures (dam, spillway, powerhouse, fish passage, and low-level outlets) are sited to 

conform to the topographic and geologic conditions at the site. The design establishes foundation levels of 

the proposed structures based on the engineering interpretations and judgements of the expected 

subsurface conditions. The contractor executes the works in accordance with the engineer’s drawings for 

construction and specifications. Foundation excavation and subsequent dam construction are planned and 

executed in close coordination with diversion and care of water. 

Final excavation levels are normally established, assessed, and treated in the field. The foundation levels 

and treatment measures may vary from those shown on the construction drawings. The construction 

 
28 For recent information about the Chickamauga Lock replacement project, see 

https://www.waterwaysjournal.net/2020/05/01/new-chickamauga-lock-could-open-as-soon-as-2023/ (accessed 

August 10, 2020). 

https://www.waterwaysjournal.net/2020/05/01/new-chickamauga-lock-could-open-as-soon-as-2023/
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contract generally includes language pertaining to the liberties afforded to the contractor, such as 

proceeding with placing fill, concrete, or other material with the approval of the resident engineer. The 

resident engineer may require further excavation or other measures. Field tests may be required to 

confirm compliance with the anticipated foundation conditions. 

4.3.2.1 Excavation and Surface Preparation of Soil Foundations 

Soil in the dam foundation that is unsuitable or is needed as processing sand and aggregate for concrete 

production is readily excavated and hauled away by excavators and haul trucks. Material is hauled to 

spoil areas or staging areas for processing. In situ soil in riverine areas is generally well compacted. Once 

excavated, the soil exhibits a bulk-up, over the original in situ volume, on the order of 10% to 20% 

depending upon the soil type.  

Before soil, rock, or concrete is placed over a soil foundation, the surface is prepared to achieve the 

desired foundation requirements between the foundation and the structure that it supports. Such surface 

treatments may include 

• Adding a thin layer of selected gravel, mixing the gravel into the underlying material using a tilling 

machine, and compacting the soil using a vibratory roller 

• An application of a layer soil-cement 

• Using a vibratory roller to prepare the surface and adding gravel, as necessary, to achieve a reasonably 

flat working area for placing the initial layer of concrete or fill 

If any over-excavation in the field occurs, the contractor is required to backfill such areas with structural 

fill, as approved by the resident engineer.  

4.3.2.2 Excavation and Surface Preparation of Rock Foundations 

Rock excavation is readily accomplished by a variety of construction methods, such as 

• Employing bulldozers to rip the rock and a front-end loader to load the material into the haul trucks. 

• Employing excavators and haul trucks. 

• For confined excavation, such as a deep setting of a draft tube, employing drill and blast or mechanical 

methods. Rock debris is removed by an excavator with haul trucks. 

Material is hauled to spoil areas or to staging areas for processing. Excavated rock exhibits a bulk-up over 

the original in situ volume, on the order of 25% to 40%. 

When a cutoff trench for an earth and rockfill dam with a clay core is used, it is generally founded on rock 

to limit seepage. Before clay or concrete is placed over a rock foundation, the surface is prepared to 

achieve the desired foundation shape and the bond between the foundation and the structure that it 

supports. Such surface treatments may include 

• Shape and trim exposed rock surfaces that may give rise to localized stress fractures in a concrete 

structure.  

• Remove loose rock and soil material that is present in rock joints or fractures. Backfill such areas with 

rock-replacement concrete. 
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• Perform shallow consolidation grouting or stitch grouting to enhance the consistency and competency 

of the rock foundation. 

• Before placing the first layer of clay or concrete, clean the foundation with water jets and apply 

broom-swept slush grout to the rock surface.  

These treatment measures can be costly, and it may be preferable to deepen the overall excavation to 

reduce surface treatment requirements. If any over-excavation of rock due to uncontrolled blasting occurs, 

the contractor would be required to fill such areas with backfill lean concrete, as approved by the resident 

engineer. 

4.3.3 Foundation Treatment Below the Excavated Level 

Foundation treatment below the excavated foundation can be performed on the in situ rock and soils to, 

most frequently, minimize or reduce foundation seepage. This foundation treatment requires specialized 

construction equipment. 

In rock foundations, pressure grouting is performed to fill the deeper joints, cracks, and crevices that are 

not treated by the shallow consolidation grouting. Pressure grouting involves drilling grout holes and 

pumping a grout mixture that fills rock voids. Water pressure testing is frequently performed to confirm 

that the desired hydraulic conductivity is achieved. Grout curtains are employed under most embankment 

dams, rockfill dams with central cores, and concrete-faced rockfill dams. They are also employed under 

most concrete dams. 

In soil foundations, treatment measures are performed to reduce hydraulic conductivity or elongate the 

seepage path. Pressure grouting is infrequently performed, as the soil foundation has high permeability 

and would “take” excessive quantities of grout. To provide a largely impermeable wall within the soil, the 

contractor could drive sheet piles or construct a concrete cutoff wall that reaches the desired depth into 

the soil foundation. 
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5. REPRESENTATIVE COSTS AND TIMELINES FOR HYDROPOWER FOUNDATIONS  

This section assesses representative costs and timelines of foundation geotechnical site assessment, 

design, and construction for conventional, low-head hydropower facilities. These foundation costs and 

timelines inherently incorporate the evaluation of risks at every stage along the development process. This 

section builds on information presented previously in Sections 3 and 4, including the representative 

structures, their compatible foundations, and conventional foundation treatment measures. References are 

noted herein from the USBR, USACE, USSD, Association for the Advancement of Cost Engineering 

(AACE), and others. Cost and timeline information is primarily derived from a wide range of prior project 

experience.  

5.1 ANALYSIS FRAMEWORK  

In the process of estimating costs and timelines for a hydropower project foundation, the dam type and 

general arrangement of the spillway and other structures (modules) must be initially established. Figures 

D.1, D.2, and D.3 in APPENDIX D introduce six typical earthfill dams, three typical rockfill dams, and 

six typical sections for concrete dams and spillways, respectively. Table D.4 presents characteristics of 

the structural material, compatible foundation material, and conventional measures to enhance 

watertightness. This analysis considers the foundation footprint along the dam axis including appurtenant 

structures. 

The analysis considers a maximum structural height of 50 ft (refer to Figure 1) and a minimum of 15 ft 

for NSD sites. This range is selected as representative of most low-head hydropower developments in the 

United States that are likely to be economical. Little economy of scale, either in time or cost, exists over 

this range of structural heights.  

For purposes of estimating foundation timelines and costs, the general terrain at the dam site, type of 

foundation, and type of dam and appurtenant structures are considered. General terrain is classified in 

three types: mountain, hill, and valley, as initially presented in Section 3.1. Table 7 presents the suitability 

of the dam structures and their foundations to each terrain; the information covers the four principal dam 

types (and their corresponding foundations) that are judged likely to be prevalent in future hydropower 

development. The four dam types are previously introduced in Section 4 along with other dams that are 

variations of these four types. Conventional concrete hydraulic structures, both overflow and non-

overflow structures that assist the dam in impounding the reservoir, are also included in Table 7. As 

shown, suitability is classified as either “conventional” or “special situation,” indicating whether a 

particular dam type is likely to be suitable or require more detailed consideration, respectively, based on 

the terrain class. 

Drainage basin areas (catchments) are larger in the valley than in the mountains. Hydropower 

developments in the mountains would allow exploitation of the higher hydraulic head available, but less 

water would be available for hydropower generation. The opposite applies to a development in the valley, 

where more water is available, but with less exploitable hydraulic head. In a hilly terrain, there may be a 

balance between exploitable water and hydraulic head. 

The depth of excavation required to achieve a suitable foundation level is a key parameter for 

consideration of costs and timelines. Typical ranges of required excavations are highly variable and 

would vary across the dam axis. The ranges indicated in Table 7 may be suitable for a small hydropower 

development. If required excavation depths significantly exceed the upper value of the ranges shown, the 

development may be considered uneconomical.  
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Table 7. Suitability of dam types and foundation based on terrain class. 

 Terrain class 

 Mountain Hill Valley 

Typical cost-effective range of excavation depth (ft) 2 to 6 3 to 10 6 to 15 

Type of dam and 

associated foundation 

Homogeneous earthfill on impermeable 

foundation (soil or rock) 

Special 

situation 
Conventional Conventional 

Zoned earthfill and rockfill dam on 

permeable soil (or highly weathered 

rock or regolith) foundation 

Special 

situation 
Conventional Conventional 

CFRD with plinth on impermeable rock 

foundation and rockfill on permeable 

soil (or highly weathered soil or 

regolith) or impermeable rock 

foundation 

Conventional Conventional 
Special 

situation 

Concrete gravity dam non-overflow 

section on impermeable rock 

foundation 

Conventional Conventional 
Special 

situation 

Type of spillway/ 

impounding structure 

and associated 

foundation 

Concrete overflow or non-overflow 

impounding structure on an 

impermeable rock foundation 

Conventional Conventional Conventional 

Concrete overflow or non-overflow 

impounding structure on a permeable 

soil foundation 

Special 

situation 
Conventional Conventional 

 

For each dam type or spillway/impounding structure and compatible foundation, there is an indication of 

their suitability in different terrains, along the lines presented in Table 1 of Section 3. The designation of 

“Conventional” in Table 7 indicates that such development would be considered within current industry 

practice. The designation of “Special Situation” indicates that the development would be outside of 

current industry practice and thus generally considered cost-prohibitive.  

5.2 STANDARDS FOR COST ESTIMATION  

Standards for cost estimating are promulgated by various institutions, including ASTM International 

(ASTM, 2019), AACE International (AACE, 2019), USACE (USACE, 2016), USSD (USSD, 2012), and 

USBR.29 The ASTM standard and the AACE standard are nearly identical. USSD (2012) specifically 

addresses dams and spillways and presents detailed templates for cost estimation, including foundation 

costs. Such templates are detailed for an embankment dam and a concrete gravity dam (RCC placement 

method).  

The AACE provides for five classes of estimates (AACE, 2019), as shown in Table 8. The AACE classes 

refer to the level of project definition, its end use, typical estimating methodology, and expected range of 

contingency. 

 

 
29 Available from https://www.usbr.gov/tsc/techreferences/cost.html (accessed August 10, 2020). 

https://www.usbr.gov/tsc/techreferences/cost.html
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Table 8. AACE classification of cost estimates. Source: Modified from AACE, 2019. 

Estimate 

class 

Primary 

characteristic 
Secondary characteristic 

Maturity level of 

project definition 

deliverables 

Expressed as % of 

complete definition 

End use: Typical 

purpose of 

estimate 

Methodology: Typical 

estimating method 

*Expected accuracy 

range: Typical 

variation in low and 

high ranges 

Class 5 0% to 2% 
Concept  

screening 

Capacity factored, 

parametric models,  

judgement, or analogy 

L:  −20% to −50% 

H:  +30% to +100% 

Class 4 1% to 15% 
Study of  

feasibility 

Equipment factored or  

parametric models 

L:  −15% to −30% 

H:  +20% to +50% 

Class 3 10% to 40% 

Budget  

authorization or  

control 

Semi-detailed unit costs 

with assembly level line  

items 

L:  −10% to −20% 

H:  +10% to +30% 

Class 2 30% to 75% 
Control or  

bid/tender 

Detailed unit cost with 

forced detailed take-off 

L:  −5% to −15% 

H:  +5% to +20% 

Class 1 65% to 100% 
Check estimate  

or bid/tender 

Detailed unit cost with 

detailed take-off 

L:  −3% to −10% 

H:  +3% to +15% 

*The state of process technology, availability of applicable reference cost data, and many other risks affect the range markedly. 

The ± value represents typical percentage variation of actual costs from the cost estimate after application of contingency (typically 

at 50% level of confidence) for given scope. 

Class 2 to 5 estimates are generally prepared by engineering consultants who are participating in the 

geotechnical engineering, including preparation of bid documents. Contractors generally provide Class 1 

and 2 estimates as budgetary or firm offers to execute construction. As shown in Table 8, the 

contingencies are very high for Classes 3 to 5, reflecting the lack of project definition.  

The estimate of costs is from the standpoint of the owner. In general terms, the cost of construction is also 

the price offered by the construction contractor. The owner has other costs associated with the project 

such as permitting, engineering, management, and environmental mitigation. 

5.3 WORK BREAKDOWN STRUCTURE 

Defining the scope of the foundation system is fundamental to providing useful cost and timeline 

representations. The work breakdown structure (WBS) divides the foundation system into preconstruction 

(geotechnical site assessment and design) and construction activities that foster construction planning and 

sequencing (PMI 2017). Table 9 presents the WBS for the foundation component of hydropower projects 

for a variety of subsurface conditions. This breakdown essentially represents a generalized version of the 

USSD guidelines (USSD, 2012).  

Foundation system costs are those costs associated with the nine major items presented in Table 9. Items 

100 and 200 refer to the site assessment and design efforts prior to construction, whereas items 300–900 

refer to the construction.  
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Table 9. Typical foundation work breakdown structure. 

Activity area 
WBS 

Dictionary 
Work item description 

Site assessment 100 Field investigations and testing 

101 Initial and preliminary investigations 

102 Feasibility investigations 

103 Final design for construction (detailed design) 

Design 200 Planning and design 

201 Desktop study, screening, and preliminary study  

202 Feasibility study and basic design 

203 Final design, specifications, and drawings for construction 

Construction 300 Owner’s quality assurance oversight during construction 

301 Owner’s quality assurance oversight 

400 Excavation and care of water 

401 Clearing and grubbing, including removal of trees 

402 Stripping and stockpiling of organic soil layer 

403 Diversion works and care of water for foundation construction 

404 Excavation of granular soil, highly weathered rock, or regolith (transport to fill, 

aggregate plant, stockpile or spoil area) 

405 Excavation of rippable rock by machine (transport to fill, rock crusher, stockpile or 

spoil area)  

406 Excavation of rock using controlled blasting (transport to fill, rock crusher, 

stockpile or spoil area) 

500 Surface treatment of soil foundations for embankment fill 

501 Surface shaping and preparation of permeable soil foundation, including tilling and 

compaction 

502 Surface shaping and preparation of impermeable soil foundation 

600 Surface treatment of a rock foundation for embankment fill 

601 Surface shaping and preparation 

602 Shallow consolidation grouting or stich grouting 

603 Foundation cleaning and placement of broomed slush grout (for clay core only) 

700 Surface treatment of rock foundations for concrete structures 

701 Remove highly jointed and fractured rock and backfill with dental concrete  

702 Shaping rock surface using dental concrete or shallow consolidation grouting 

703 Foundation cleaning and placement of broomed slush grout 

800 Subsurface treatment measures for the excavated foundation for permeable 

foundations (may be combined with piles) 

801 Slurry trench 

802 Sheet pile cutoff wall 

803 Concrete cutoff wall 

900 Subsurface treatment measures for the excavated foundation for impervious 

rock foundations 

901 Grouting 
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5.4 OVERVIEW OF FOUNDATION TIMELINES, COSTS, AND RISKS 

Timelines, costs, and risks are highly interdependent in all phases of project development. The phasing of 

the project development is established to arrive at decision points regarding whether the proposed 

development merits further site investigation and design. In the early planning stages, readily available 

maps, imagery, and published information are gathered and evaluated. Initial efforts may include a site 

reconnaissance visit focused on identifying potential fatal flaws in the seismic and geologic setting. Such 

fatal flaws may include active faults, unfavorable terrain features, high variability and solubility in local 

geology, instability in valley side slopes, and the expectation of a need for excessively deep excavations 

or other costly foundation treatment measures. The existence of such unfavorable characteristics would 

likely produce increased costs, timelines, and risks, thereby eliminating the project from further 

consideration.  

Table 10 presents the timeline, cost, and risk breakdown of the previously identified structures, each with 

its assumed compatible foundation system. The compatible foundation system refers to the as-built 

foundation excavation level with required surface and subsurface treatment. 
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Table 10. Foundation system timeline, cost, and risk breakdown. Based on unpublished work performed by Knight Piésold Consulting. 

Category 

Structural 

material and 

assumed 

foundation system 

Typical cost-

effective depth 

of overburden 

removal for 

<30 ft of 

hydraulic head 

(ft) 

Relative cost 

of 

foundation 

system 

Relative 

time 

duration 

Relative risk of 

changed 

geologic 

conditions 

during 

construction 

Foundation-

related 

constraints to 

successful 

development 

Principal cost 

drivers 

Principal 

work 

breakdown 

makeup 

Earthfill or 

rockfill dam 

Homogeneous 

earthfill on 

impermeable soil 

foundation 

<5 Low Moderate Low 

Terrain, soil 

strength, and 

liquefaction 

potential, depth of 

required excavation 

Local geology, 

foundation 

footprint 

Excavation 

volume, 

foundation 

surface 

preparation 

Homogeneous 

earthfill on 

impermeable rock 

foundation  

<5 to 8 Low Moderate Low 

Terrain, rock 

quality, depth of 

required excavation 

Local geology, 

foundation 

footprint, degree 

of rock 

fracturing 

Excavation 

volume, 

foundation 

surface 

preparation, 

grouting 

Zoned earthfill and 

rockfill dam on 

permeable soil 

foundation 

<5 to 8 for dam 

shoulders and 

<15 for plinths 

(upstream toe 

slab) 

High Long Moderate 

Terrain, soil 

strength, and 

liquefaction 

potential, depth of 

required 

excavation, 

groundwater level 

Local geology, 

dewatering and 

care of water, 

foundation level 

and footprint 

Excavation 

volume, 

foundation 

surface 

preparation, 

grouting 

CFRD with plinth 

on impermeable 

rock foundation 

and rockfill on 

permeable soil or 

impermeable rock 

foundation 

<5 for dam 

should and <10 

to 15 for plinths 

(upstream toe 

slab) 

High Long Moderate 

Terrain, soil 

strength, and 

liquefaction 

potential, rock 

quality, depth of 

required 

excavation, 

groundwater level, 

soil permeability 

Local geology, 

depth of plinth 

foundation 

Excavation 

and foundation 

treatment of 

plinth 
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Table 10. Foundation system timeline, cost, and risk breakdown (continued). Based on unpublished work performed by Knight Piésold Consulting. 

Category 

Structural 

material and 

assumed 

foundation system 

Typical cost-

effective depth 

of overburden 

removal for 

<30 ft of 

hydraulic head 

(ft) 

Relative cost 

of 

foundation 

system 

Relative 

time 

duration 

Relative risk of 

changed 

geologic 

conditions 

during 

construction 

Foundation-

related 

constraints to 

successful 

development 

Principal cost 

drivers 

Principal 

work 

breakdown 

makeup 

Concrete 

structure 

(overflow or 

non-overflow) 

Concrete gravity 

dam, non-overflow 

section on 

impermeable rock 

foundation 

<5 to 8 Low Moderate Low 

Terrain, rock 

quality, depth of 

required excavation 

Foundation 

footprint and 

degree of rock 

fracturing 

Foundation 

grouting and 

surface 

preparation 

Concrete overflow 

or non-overflow 

impounding 

structure on 

impermeable rock 

foundation 

<5 to 8 Low Moderate Low 

Terrain, rock 

quality, depth of 

required excavation 

Foundation 

grouting and 

surface 

preparation 

Foundation 

grouting and 

surface 

preparation 

Concrete overflow 

or non-overflow 

impounding 

structure on 

permeable soil 

foundation 

<8 to 10 (or use 

piles) 
High Long Low 

Terrain, soil 

strength and 

liquefaction 

potential, depth of 

required 

excavation, 

groundwater level, 

soil permeability 

Dewatering and 

care of water, 

cutoff trenches 

and walls 

Excavation 

volume and 

cutoff walls 

Investigation All N/A Low Short Low 

Local studies and 

subsurface geology 

complexity or 

unsuitability 

Foundation 

footprint, depth 

of boreholes, 

number of 

laboratory and 

field tests 

Field 

exploration 

progress, 

laboratory 

testing, 

reporting 
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Table 10. Foundation system timeline, cost, and risk breakdown (continued). Based on unpublished work performed by Knight Piésold Consulting. 

Category 

Structural 

material and 

assumed 

foundation system 

Typical cost-

effective depth 

of overburden 

removal for 

<30 ft of 

hydraulic head 

(ft) 

Relative cost 

of 

foundation 

system 

Relative 

time 

duration 

Relative risk of 

changed 

geologic 

conditions 

during 

construction 

Foundation-

related 

constraints to 

successful 

development 

Principal cost 

drivers 

Principal 

work 

breakdown 

makeup 

Engineering All N/A Low Short Low 

Local studies and 

subsurface geology 

complexity or 

unsuitability 

Types of 

structures and 

their 

foundations, 

complexity of 

design, special 

situations, 

modeling 

Foundation 

planning and 

design, 

reporting 
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5.5 FOUNDATION SYSTEM COSTS 

Foundation site assessment, design, and construction are specific to the dam site. The foundation type and 

required treatment are planned in conjunction with the type and arrangement of the dam and appurtenant 

structures. The generalized foundation system costing information presented herein is intended to inform 

DOE and hydropower stakeholders about typical foundation cost considerations, including cost drivers 

and challenges associated with the development process.  

The level and detail of the cost estimating coincide with the data available and the stage of development 

of the potential hydropower project. Section 5.5.1 presents representative cost breakdowns of foundation 

system costs. Further insight into the cost drivers and risks associated with foundation engineering and 

river diversion are presented in Sections 5.5.2 and 5.5.3, respectively.  

Foundation system costs are specific to the site conditions. Costs are correlated to the quality of the 

subsurface foundation material within the initial 2 to 8 ft below the surface (assumed final excavation 

level along the development profile). Material quality for foundation systems is broadly represented by 

shear strength and hydraulic conductivity, with a preference for high shear strength and low hydraulic 

conductivity. Figure 22 shows the relative increase in foundation system costs over a range of materials 

from competent rock to weak soils or karst formations. 

 

Figure 22. Qualitative relative foundation costs. Based on unpublished work performed  

by Knight Piésold Consulting. 

5.5.1 Representative Cost Breakdown of Foundation System Costs 

As presented in Section 5.3, nine principal cost categories are used for a foundation system (Table 9). The 

magnitude and distribution of these costs depend upon the cost drivers shown in Table 10, which are 

highly dependent on (a) site geology and its complexity and (b) the types of structures that form the 

impoundment and their general arrangement.  

To illustrate general cost breakdowns, three representative project types (rock foundation in mountain 

terrain, rock and permeable soil foundation in hilly terrain, and permeable soil foundation in valley 

terrain) were considered as characterized in Table 11; the information is applicable for low-head (15 to 30 

ft of head) new hydropower development. Main cost drivers are the size of the foundation footprint, the 

depth of excavation, and the extent of subsurface treatments. The cost drivers are minimized for a rock 
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foundation in mountain terrain. The size of the foundation footprint and depth of excavation are 

significantly larger for hill and valley terrains. Additionally, a main cost driver for soil foundations in 

valley terrain is the extensive measures to control underseepage, such as upstream impermeable blankets 

and cutoff walls. 

Table 11. Reference foundation characteristics for representative project types. Based on standard industry 

practices complied from multiple sources (e.g., USBR and USACE). 

Feature 

Reference foundation characteristic  

Rock foundation in 

mountain terrain 

Rock and permeable soil 

foundation in hilly 

terrain 

Permeable soil 

foundation in valley 

terrain 

Principal dam type and 

spillway 

Concrete gravity dam and 

overflow spillway 

Zoned earth and rockfill 

dam and concrete overflow 

spillway 

Gated concrete barrage 

Other structures forming 

the impoundment 

Power intake, sediment 

passage, and so on 

Power intake, sediment 

passage, and so on 

Earthfill dikes, integral 

intake powerplant, fish 

passage 

Relative maximum height 

of the non-overflow section 
High Medium to high Low 

Relative depth of 

excavation to final 

elevation  

Low 

High for clay core; 

low for dam shoulders and 

concrete structures 

Medium 

Relative size of foundation 

system footprint 
Small Medium Large 

Surface preparation 

measures at the excavated 

foundation level (in 

addition to cleaning) 

Stich grouting, dental 

concrete 

Compaction on soil 

foundations and stitch 

grouting and dental 

concrete on rock 

foundation  

Compaction 

Subsurface treatment 

below the excavated 

foundation level 

Minimal pressure grouting 

in highly fractured areas 

Grouting under clay core 

and concrete structures 

Slurry trench, sheet-pile or 

concrete foundation cutoff 

wall 

 

Representative foundation system component cost breakdowns are provided in Table 12 and are shown as 

a percentage of total foundation system costs; representative foundation system costs (as a percentage of 

total ICC) are also provided in Table 12. The breakdowns indicate the following: 

• Mountainous terrains have lower total foundation system costs than hill or valley terrains. 

• Site assessment costs are lowest for mountainous terrain, as the foundation footprint is relatively 

small. 

• Excavation, surface treatment, engineering, and owner’s quality assurance oversight costs are 

proportionally higher for mountainous terrain, because the total foundation system cost is very low. 

• Subsurface treatment is particularly costly in valley terrains, where there may be additional 

challenges associated with controlling underseepage in soil foundations. 

Graphical representations of the information from Table 12 are provided in Figure 23. 
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Table 12. Typical foundation system component cost breakdown for representative project types. Based on 

actual industry project experience (unpublished). 

Development 

phase 

Cost component  

(WBS no.) 

Component cost (% of total foundation system cost) for 

predominant terrain and typical foundation system 

Rock foundation 

in mountain 

terrain 

Rock and permeable 

soil foundation in 

hilly terrain 

Permeable soil 

foundation in 

valley terrain 

Site assessment 

Initial and preliminary 

investigations (101) 
2% 2% 2% 

Feasibility investigation (102) 8% 8% 8% 

Detailed design (103) 5% 10% 10% 

Design Desktop study, screening, and 

preliminary study (201) 
3% 3% 3% 

Feasibility study and basic 

design (202) 
7% 7% 7% 

Final design (203) 20% 15% 10% 

Construction Owner’s quality assurance 

oversight (301) 
20% 15% 15% 

Excavation and care of water 

(400) 
20% 15% 10% 

Surface treatment of 

excavated foundation (500, 

600, and 700) 

5% 10% 5% 

Subsurface treatment below 

the excavated foundation level 

(800 and 900) 

10% 15% 30% 

TOTAL  100% 100% 100% 

Representative foundation system cost  

(as % of total ICC) 
4 to 8% 6 to 10% 8 to 15% 

 

Small hydropower developments are economically viable only when the total cost of the foundation 

system makes up a relatively small portion of the total project cost (also referred to as ICC). For purposes 

of this report, the ICC represents the costs to perform the site assessment, design, and construction of a 

small hydropower project. The costs of the impoundment structures, water conductors, powerhouse, and 

generating equipment are necessarily a large majority of the ICC. The total foundation system costs, for 

an economical small hydropower project, would likely range from 4 to 15% of ICC, as indicated in Table 

12 for the three representative projects. The lower value corresponds to rock foundations in mountain 

terrain, whereas the higher value corresponds to pervious foundations in valley terrain. 

Care-of-water precautions, including river diversion works, are integral to the foundation system and are 

included in the cost breakdown shown in Figure 23 as related to excavation activities. Economically 

viable small hydropower developments require cost-effective measures for and sequencing of river 

diversion and care of water. The representative total cost allocation for river diversion would vary from 2 

to 5% of ICC. The lower value would correspond to impervious rock foundations in mountain terrain with 

a relatively small foundation footprint and lower construction-period floods. The upper value would 

correspond to permeable foundations in valley terrain with a relatively large footprint and higher 

construction-period floods. These issues are further discussed in Section 5.5.3. 
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Figure 23. Representative foundation system cost breakdown by project type. Based on actual industry project 

experience (unpublished). 

Many projects have experienced cost overruns attributable to foundation difficulties or surprises during 

construction. These overruns may have been due to inadequate investigations, lack of adequate 

engineering effort to tailor the structures to the site geology and topography, and/or contractual terms, 

among other considerations. 

Based on industry practitioners’ prior experience with challenging foundation conditions and associated 

cost overruns, foundation costs are often viewed as very high. However, this perception of high cost 

largely stems from a lack of knowledge of the site-specific subsurface. Section 4 addresses the planning 

process to balance initial investigation and engineering efforts so as to screen and pursue only the most 

attractive opportunities for development. Early identification of fatal flaws is paramount in the 

development process. Combining sound site selection processes with innovation (Section 7) shows 

promise in identifying many potential small hydropower developments. 
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5.5.2 Overview of Relative Costs, Timelines, and Risks of Investigations and Engineering 

Previous report sections have addressed the roles of investigations and engineering in the development 

process, along with cost and timeline perspectives. Project structures require engineered foundation 

systems that meet safety and performance requirements, including stability and controlled or negligible 

underseepage. Investigations vary according to both the type of structure the foundation will support and 

the foundation material below the final excavated level. Costs of foundation investigations are dependent 

on the size of the foundation footprint, depth of the subsurface to be explored, types of investigations, and 

number of tests. 

Consideration of a potential site begins with an appreciation of the surface features, with respect to 

topography, geology, and vegetative cover. Excavation of the surface materials, to a suitable foundation 

level, is an important cost component within the foundation system. Cost trade-offs can be evaluated by 

comparing the cost of excavation vs. treatment of the subsurface materials, along with impacts on the 

timeline and risks. The types and properties of the surface and subsurface materials require investigation, 

in both the field and laboratory. 

Table 13 presents the relative cost and complexity of the development phase and foundation system 

material. The extent of geotechnical testing and engineering required is lowest for rock foundations and 

increases as foundation materials become progressively weaker.  

Table 13. Relative cost and complexity of development phase by foundation material type. Based on a 

combination of published and unpublished information (synthesized). Proprietary industry knowledge. 

Foundation 

material 
Concept Feasibility Design Construction  

Dispersive/weak 

clays 
Low Med/high Med/high High 

In
cr

e
a

si
n

g
 

T
es

ts
 →

 

Compacted 

granular soils 
Low Med Med/high Med/high 

Rock Low Med* Med Med/high 

 Increasing risk →  

*Heightened cost due to requirements for continuous core sampling 

Along the development phases, geotechnical engineering and evaluations of rock mechanics proceed in 

response to the increase in data and the results from the expansion of field and laboratory investigations. 

Engineering studies are undertaken to arrive at a detailed design for the foundation system and its 

compatibility with the structures it supports. Table 14 presents the relative time required, relative cost, 

implied risk, and constraints of the various project phases/studies. 

Table 14. Relative time, cost, and risk for geotechnical foundation activities. Based on a combination of 

published and unpublished information (synthesized). Proprietary industry knowledge. 

Project phase 
Time 

required 

Relative 

cost 

Risk 

implication 
Constraints 

Conceptual siting Low Low Low Data availability 

Desktop study 

(geologic 

background) 

Low Low Low Data availability 

Field 

reconnaissance 
Low Low Med Site access, skilled/experienced field personnel 
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Table 14. Relative time, cost, and risk for geotechnical foundation activities (continued). Based on a 

combination of published and unpublished information (synthesized). Proprietary industry knowledge. 

Project phase 
Time 

required 

Relative 

cost 

Risk 

implication 
Constraints 

Geotechnical 

study design 
Low Low Med-high 

Skilled/experienced field personnel, scheduling, 

access design, sufficient for regulatory 

requirements 

Geotechnical field 

campaign 
Med-high Med-high High 

Site access, skilled/experienced field personnel, 

scheduling, sufficient for regulatory 

requirements 

Hydrogeological 

in situ testing 
Low* Low* High 

Site access, skilled/experienced field personnel, 

scheduling, sufficient for regulatory 

requirements 

Geotechnical lab 

testing 
Low-med Low-med High 

Trusted lab, number of samples and test types 

sufficient for regulatory requirements and design 

engineers 

Hazards study 

(seismic/slopes) 
Low Low High 

Data quality/availability, skilled/experienced 

field personnel, sufficient for regulatory 

requirements and design engineers 

Foundation type 

determination 
High** High** High 

Sufficient high-quality data, trust in 

geologic/hydrologic model 

Construction High High Critical 

Includes every previous item plus funding, 

quality assurance/quality control, 

communication 

*Time and cost shared with geotechnical field campaign (these are concurrent activities). 

**Every previous item is required for competent foundation type determinations; “High” expresses the cumulative time and cost. 

5.5.3 Cost Drivers and Flood Risk for Care of Water Including River Diversion 

River diversion was introduced in Section 4.3. The construction timeline is highly dependent on how the 

contractor manages the river during the construction period. The timelines for river diversion are 

addressed in Section 5.6. 

River diversion is frequently the sole responsibility of the contractor. The considerations associated with 

balancing the risk between the contactor and owner is addressed in Section 4 and Section 6. 

River diversion works are generally considered temporary works, including excavated channels, bypass 

culverts/pipes, and cofferdams. Sometimes, permanent facilities are incorporated into the river diversion 

plan. A river diversion plan is usually developed in detail during the feasibility study. The costs of these 

temporary works are included in the construction costs and financial analyses. The river diversion plan is 

unique to the river and site and considers the following: 

• Owner’s, state, or federal guidelines and lender’s requirements for acceptable flood risk 

• River flood hydrology and seasonal flows 

• River hydraulics and flood levels (preconstruction and during construction)  

• Construction period flood risk, including seasonal considerations  

• Site topography and geology 

• Proposed structures and foundation systems 
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• Protection of work fronts and partly completed structures. Overall target schedule and assumed 

calendar month or quarter to initiate the river diversion works 

Small hydropower projects are challenged by economy of scale. For economic viability, a project would 

typically exclude deep foundation excavations and long construction periods. Deep foundations expose 

the contractor to groundwater intrusion in the excavated foundation and require a longer construction 

period. Longer construction periods also expose the contractor to multiple flood seasons. An 

extraordinary construction-period flood could overtop a cofferdam and require reconstruction of 

permanent works and the cofferdam. Such risks are assessed by the contractor and included in its risk 

premium, as previously outlined in Section 4.3. 

As discussed in Section 5.1, the cost-effective maximum depth of overburden removal is between 5 and 

15 ft for a wide variety of foundation types. If the foundation overburden is over 15 ft, the project is likely 

to be cost prohibitive. If the cofferdam is over 15 ft high, the project is likely to be cost prohibitive. 

Hence, excavation depths are relatively shallow, and overall project construction periods are relatively 

short, on the order of 2 to 3 years. Rivers normally have one main flood period per calendar year, and 

their durations are influenced by rainfall periods and, in northern latitudes, snowmelt. The foundation 

construction would generally be exposed to floods only over one or two main flood periods. Table 15 

presents relative costs, project construction times, and relative risks, depending on the terrain. 

Table 15. Relative costs for river diversion during construction. Based on a combination of published and 

unpublished information (synthesized). Proprietary industry knowledge. 

Terrain 

No. of flood 

periods exposed 

to damage to 

the foundation 

system 

Construction period length 

and susceptibility to 

damage from construction 

period floods 

Relative cost of river 

diversion works 

Cost drivers for river 

diversion works 

Mountain 1 Low Low Return period of 

construction period flood, 

size of foundation footprint, 

cofferdam height 

Hill 1 or 2 Med Med-high 

Valley 1 or 2 Med Med-high 

5.6 FOUNDATION SYSTEM TIMELINES 

Duration is a major cost driver in the execution of geotechnical site assessment, design, and construction 

for hydropower foundation systems. The initial timeline is generally established before estimating costs. 

In the execution of services, including construction services, adhering to the timeline is paramount to 

meeting the cost objectives. 

Reasonable timelines foster a balance in resource allocation, including labor, equipment, and materials. 

Overly aggressive timelines can lead to over-allocation of resources, downtime, and/or inefficient 

sequencing of work activities, which may increase the risk of having to redo work. In economic analyses 

of small hydropower developments, the target timeline must reflect a balance between timeline-sensitive 

costs and the date of commissioning.  

Table 10 includes a general overview of the relative time durations of site assessment, design, and 

construction of foundations for a wide variety of earthfill and rockfill and concrete structures. 

Section 5.5.2 and Section 5.5.3 also include information on cost and timeline drivers related to 

(a) investigations and engineering and (b) river diversion works. 
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Cost drivers include the care of water, foundation footprint size, subsurface characteristics (in particular, 

foundation material strength, site geologic complexity, hydraulic conductivity), excavation depth, and 

foundation treatment extent. As previously outlined, mountain terrains are likely to allow rock 

foundations, whereas valley terrains are likely to allow only soil foundations. Hilly terrain could present 

both rock and soil foundations. Rock foundations have greater strength, less required excavation, less 

hydraulic conductivity, and smaller footprints than soil foundations. 

Foundation system timelines are presented in two parts: 

• Investigations and engineering of foundation systems 

• Foundation system construction, including river diversion 

5.6.1 Timelines for Investigations and Engineering of Foundation Systems 

Investigations and engineering are undertaken concurrently and generally comprise three distinct phases: 

initial studies, feasibility studies, and detailed design. Figure 24 presents a typical timeline for 

investigations and engineering for each of the three phases and three terrains. 

The timeline shows representative durations for the principal activities within each phase. The timeline 

varies from 12 to 18 months for mountain terrain and valley terrain, respectively. Three “hold” periods 

are shown, which represent the time allotted for the developer to commit to a prefeasibility study, 

feasibility study, and detailed design. The hold periods are for an as yet undetermined duration in which 

the developer is considering other aspects of the development, including financing, permitting, and 

environmental mitigation. Essentially, the developer decides whether the project and site under 

consideration are sufficiently attractive to continue with development. The durations of the hold periods 

will depend on the policies of the developer, the quality and quantity of information, and the internal risk 

assessments. 

 

Figure 24. Representative schedule for geotechnical engineering (site assessment and design) of foundation 

systems. Based on a combination of published and unpublished information (synthesized). Proprietary industry 

knowledge. 
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5.6.2 Timelines for Foundation System Construction Including Care of Water 

Foundation system construction is undertaken concurrently with river diversion. Initial activities of the 

contractor are dominated by the forecasted river flows and water levels and how they affect the work 

fronts within the riverine area, including the management and control of water and sediments to comply 

with federal and state regulations. 

The principal considerations in planning river diversion (outlined in Section 5.5.3, Care of Water), 

including river diversion cost drivers, present similar challenges for the construction timeline. The 

contractor generally views river diversion as risky, as rainfall and snowmelt are highly variable. Also, in 

higher altitudes or latitudes, the contractor may not be able to execute river diversion or foundation 

system works under cold weather conditions. Contractors place a high priority on meeting river diversion 

milestones. 

A representative timeline of foundation system construction (green activity boxes) with river diversion 

(blue activity boxes) is shown in Figure 25. The timeline corresponds to a concrete dam on a rock 

foundation in mountain terrain and indicates the subsequent impoundment structure construction activities 

(gray activity boxes) that follow foundation construction. 

 

Figure 25. Representative schedule for foundation system construction, including care of water (river 

diversion), for a rock foundation in mountainous terrain. Based on a combination of published and unpublished 

information (synthesized). Proprietary industry knowledge. 

As shown in Figure 25, the care of water, inclusive of river diversion works, is managed in two stages: 

1. Stage 1 includes using a cofferdam to isolate one-half of the riverine area within the foundation 

footprint. This area is dewatered by pumping. The foundation is excavated. The foundation surface is 

prepared for concrete placement. A diversion culvert is constructed, along with the lower portion of 

the dam to the specified Stage 2 flood level. The diversion culvert is equipped with a closure 

bulkhead gate, dogged in position for deployment to initiate reservoir filling. 

2. Stage 2 includes removing the Stage 1 cofferdam and diverting the flows through the diversion 

culvert. The Stage 2 cofferdam is placed to isolate the other half of the riverine area. This area is 

dewatered by pumping. The remainder of the works are completed to form the impoundment.  
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Foundation systems and river diversion are minimal for sites with rock foundations. Footprints and 

construction-period floods are generally smaller for rock foundations because of the smaller drainage 

basin. Figure 25 indicates that under such favorable conditions, Stages 1 and 2 and the foundation system 

can be completed within 3 months. 

Under ideal conditions (as shown in Figure 25), the works would be exposed to only one flood season. 

Water diversion and cofferdams are expensive and risky. Developments in hilly or valley terrains could 

be exposed to more than one flood season, as footprints are larger there and diversion and foundation 

works would likely require more time. A construction timeline that encompasses three flood seasons 

might be a fatal flaw, as diversion and foundation costs could amount to 20% or more of the ICC. 
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6. KEY CHALLENGES FOR HYDROPOWER FOUNDATIONS 

Each project phase of hydropower foundation development has key challenges that can affect either the 

cost of the project, the time required to complete the project, and/or the associated risks. These three 

metrics (cost, time, risk) are all closely related and are dependent on one another. Reducing risk 

frequently requires spending more time during design and construction phases, and therefore raises the 

overall project cost. Costs may be reduced by selecting cheaper construction materials or by rushing 

certain phases of project development, which in turn may increase long-term project risk. Particular 

challenges related to specific phases of project development may appear to be most closely related to one 

of the three project performance metrics, but ultimately they are related to all three.  

Desirable goals to reduce project performance metrics (cost, time, risk) include 

• Reduce construction costs (i.e., time and materials). One possibility for doing so is to consider 

cost/scale relationships for certain solutions (i.e., feasible at a small but not large scale, or vice versa) 

• Reduce overall construction times, perhaps by increasing the efficiency and applicability of 

foundation construction or by installing standard modular designs. 

• Reduce uncertainty related to foundation treatment costs, structure stability, and risk of failure.  

• Minimize ground excavation. Methods of minimizing the excavation needs include prioritizing sites 

where excavation is minimal or creating systems that require less excavation to avoid seepage, such as 

grout curtains, lined reservoirs, and low-head systems. 

• Minimize disturbances in river connectivity during installation, operation, and maintenance. Where 

feasible, the use of cofferdams could be avoided by using channel restriction, installing passage and 

fish-ladder modules first, working during only low-flow conditions, and reducing installation times. 

The SMH approach of designing and constructing individual, interchangeable modules represents a 

significant leap forward in efforts to optimize project performance. Using optimized and highly 

repeatable, reliable components would benefit any project with respect to the three metrics of cost, time, 

and risk. However, the modular, repeatable, “one-size-fits-all” approach lacks broad adoption among the 

hydropower community and remains unproven, given the lack of prototype deployment. Certain standard 

approaches and recognized construction methods are suitable for some river and stream settings and 

unsuitable for others. However, every hydropower facility foundation has a site-specific geologic setting 

and geotechnical requirements related to the soil materials present and project designs being 

implemented. This in itself is a challenge in developing standard or modular foundation solutions that 

perform well. A better understanding of the general challenges and opportunities associated with 

foundation development will ultimately benefit the creation of a flexible approach to hydropower project 

development. 

The following sections provide a summary of key challenges related to the three specific phases of project 

development, presented in terms of the metrics of cost, time, and risk. The development of hydropower 

projects is divided into two primary phases: feasibility and construction. Feasibility can be further 

subdivided into two subphases: planning and investigation, with planning occurring iteratively before, 

during, and after investigation to inform optimal project construction.  
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6.1 KEY CHALLENGES FOR HYDROPOWER GEOTECHNICAL SITE ASSESSMENT  

At a high level, the greatest challenge associated with geotechnical site assessment is balancing the need 

to collect usable and accurate site data with the high investment costs. Time and costs related to 

geotechnical site assessment make strategic assessment a necessity. Good judgement based on experience 

and data interpretation and interpolation is required to reach a conclusion about the site conditions and the 

design information required. The risk of undercharacterizing a site (e.g., potentially missing a fatal flaw) 

could be grave, so a reasonable and thorough investigation must be completed. Likewise, a point exists at 

which additional boreholes are unlikely to provide any more vital data necessary for the design. The 

following are some key challenges for foundation geotechnical site assessment: 

• Site access difficulties, particularly for drilling equipment, can be costly, especially in early project 

stages when roads are poor or nonexistent. Drilling to obtain samples for geotechnical assessment is of 

utmost importance; so if access is an issue at a given site, specialized machinery (e.g., helicopters, all-

terrain vehicles or track rigs with stabilizers, or even animal or hand-carried sampling rigs) must be 

used, or an access road must be built prior to sampling. Either of these options will impose higher 

costs on the sampling exercise. Choosing to undersample a site because access is difficult also brings 

inherent risks. 

• Regulatory approval timelines needed to obtain required permits (typically required for test pits and 

drilling performed in riparian zones) may not be trivial and should be considered in project scheduling. 

In some cases access to sites is seasonally limited, which can effectively push a project schedule back 

for as much as a year if a narrow investigation window is missed. 

• High-resolution satellite and/or aerial imagery (via remote sensing) is often not available. A lack of 

the useful information they can provide decreases the quality of remote mapping of potential or 

probable site conditions (e.g., photolineament analysis, landslide identification) during the pre-

feasibility phase, thus increasing the costs of assessing multiple sites. Satellite imagery and digital 

topography coverage within the United States is highly variable in terms of quality. Depending on 

where a potential site is located, the available satellite or high-altitude aerial imagery or digital 

topography may not be of sufficient resolution or recent enough to be useful. Drone imagery has 

recently become a viable option for acquiring imagery and associated data. Although these initial 

assessments require confirmation with boreholes, they expedite site selection and reduce total 

exploration costs. 

• Geophysical exploration limitations exist at some sites; and although the results of traditional methods 

such as seismic refraction profiles typically provide information along a 2D section rather than at a single 

point, they are not always definitive. Their interpretation may require calibration or confirmation with 

boreholes. Depending on site conditions, surveys such as seismic refraction may be costly and difficult to 

complete. However, where large areas need to be assessed quickly and boreholes are either too costly or 

too time-consuming to cover the area, these surveys can save time and provide rapid results to refine the 

selection of an area for detailed investigation if multiple areas are under consideration.  

• Soil and rock sampling reliability challenges exist. Physical disturbance of field samples and 

limitations of laboratory testing methods may create discrepancies between behavior measured in the 

lab and actual field performance. This risk should be minimized by methods designed to minimally 

disturb samples and/or by in situ testing of mechanical properties where possible (which requires 

specialized equipment in some cases). In addition, rock discontinuities can only be measured either in 

surface exposures or from borehole core-samples, limiting the ability to reliably identify important 

subsurface features. Hydraulic properties of rock masses can be assessed via in situ testing (which 

requires special equipment), but values associated with these properties can vary spatially and in some 
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cases over time. Care in interpreting and extrapolating these values must be taken, and possible 

discrepancies or scaling effects between field and laboratory testing results should be considered. 

• Rock joint strength is difficult to reliably measure in situ because of the various types of strength 

metrics (e.g., shear vs. tensile) that may play a role in engineering decisions. Because of the 

complicated nature of establishing these parameters in situ, these types of measurements (e.g., via 

geophysical testing or subsurface exploration methods) may be difficult to justify in terms of time and 

cost, especially for moderate-size projects typical of low-head hydropower. 

• Site material erosion by high-velocity flows poses a serious risk to dam foundations and abutments 

(and spillways), particularly those impoundment structures sited on soil foundations or those that 

employ overflow structures constructed with natural materials. Surficial erosion (in the case of 

overtopping or high-velocity spillway flows, which may occur on or near critical abutment structures) 

can result and historically has resulted in the catastrophic failure of impoundment structures. 

Similarly, internal erosion (e.g., piping)—which results from high seepage velocities related to 

improperly designed foundations, improperly characterized ground conditions in the area of structural 

foundations, or improperly constructed impoundments—can result and historically has resulted in the 

catastrophic failure of impoundment structures. Care must be exercised during the site assessment 

phase to appropriately evaluate the susceptibility of site materials to both surficial and internal erosion, 

and to evaluate the structural stability of foundation and abutment materials in response to conditions 

that may lead to surficial and/or internal erosion. 

• Modeling limitations relate to the uncertainty associated with subsurface properties and 

characteristics. Hydropower geotechnical investigations could be improved through better 3D geologic 

models that convey subsurface data and uncertainty, or numerical models to predict performance, 

among other objectives. Current practice is currently limited to characterizing relatively small sections 

of the overall foundation footprint, which leaves openings for unexpected conditions to remain 

unidentified even as the foundation is being constructed and completed. Unexpected geologic and 

subsurface conditions present significant risks to hydropower project development. 

6.2 KEY CHALLENGES FOR HYDROPOWER FOUNDATION DESIGN 

At a high level, the greatest challenge in hydropower foundation design is the risk associated with 

imperfect knowledge of subsurface conditions. Overestimating the ability of subsurface materials to resist 

the applied loads, or to act as a barrier to seepage, can result in a number of adverse outcomes, including 

shortened service life, structural damage, loss of reservoir capacity, or even failure of the dam. Other 

possible consequences of incomplete or inadequate subsurface condition assessments include significant 

costs accrued before abandoning a site, unexpected construction costs, and contract disputes over changed 

conditions. Risk mitigation strategies are used to decrease risk, cost, and time in the conventional design 

process. The following are some key challenges for foundation design:  

• Unexpected site conditions can be encountered. Thus, careful site selection is necessary to reduce the 

potential that adverse or fatal flaw conditions will be discovered only during design and construction. 

In addition, site investigations should be conducted thoroughly to reduce (but not eliminate) the 

potential for that unanticipated conditions or behavior will be revealed during construction or 

operation. Communication between the designers and the geotechnical engineers should occur early 

during the site selection process, and throughout the geotechnical investigation, to maximize the 

likelihood that the data necessary for design will be collected. 

• Structural stability, strength, and seepage calculations (e.g., grouting, cutoff trenches) are 

important and challenging steps in the design process. These calculations are performed based on 
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geotechnical characterizations, and they require detailed engineering across the foundation–

superstructure system to ensure the facility’s mechanical properties and safe operations. Although 

these calculations are difficult (and sometimes uncertain) for conventional designs, the design and 

engineering calculations required for modular superstructures present an even greater challenge, given 

the relative lack of in situ modular design demonstrations and deployment. 

6.3 KEY CHALLENGES FOR HYDROPOWER FOUNDATION CONSTRUCTION 

Construction challenges include the cost and risk drivers related to the logistics of construction, and the 

physical processes during construction. Geologic and geotechnical risks are inherent in construction of the 

foundation. As the site is excavated, developers may discover “changed geologic conditions,” which include 

geologic features not identified during site assessments and which may significantly increase costs or 

timelines. As described in Section 4, foundation construction is executed based on a contract between an 

owner/developer and a contractor. A key challenge for hydropower projects during the construction phase is 

balancing the risks between the owner/developer and contractor. When presenting a bid, the contractor aims 

to keep its total bid low, while carefully assessing or seeking to share the foundation risks involved in 

executing the project, and assigning a risk premium to the bid. Risk sharing is a technique often employed 

by developers and contractors as a way of controlling or lowering cost and limiting contingency. During the 

construction phase, the contractor attempts to minimize its costs and risk while complying with its 

contractual obligations. Key challenges for foundation construction include the following:  

• Risk quantification and communication between the contractor and the developer are important in 

arriving at an acceptable, contracted construction cost. The developer must share all available geologic 

data, results of investigations, and engineering judgements. This information allows the contractor to 

confidently include the appropriate level of risk in its pricing. In certain situations in which a gap 

exists in subsurface conditions, the contractor and developer can arrive at an equitable cost-sharing 

arrangement. In the tunneling industry, the use of geotechnical baseline reports has proved useful in 

anticipating and mitigating contract risks (USACE 2007). 

• Unexpected geologic and subsurface conditions can lead to significant cost and schedule overruns 

and require adaptive solutions. Changed geologic conditions may include a previously unrecognized 

need for deep foundation excavation, deep-seated geologic instabilities close to or within the footprint 

of the foundation, excessive grout take (which indicates the likely presence of voids, karst, or highly 

transmissive fracture networks), higher than expected porosities in permeable foundations, and high 

groundwater levels. 

• Construction scheduling delays can occur as a result of the unpredictable timelines associated with 

project development, including licensing and other activities.  

• Water diversion system (dewatering and cofferdam) installation costs and mitigation can present 

significant cost challenges for construction. Water diversion during construction determines river 

connectivity, which includes the disruption of natural sediment flows and turbidity, fish passage, and 

hydrologic regime. These patterns additionally impact the health of the habitat and wildlife in the 

surrounding ecosystem.  

• Performance monitoring availability, using both visual surveillance and geotechnical 

instrumentation, is essential for detecting unanticipated behavior or conditions during construction and 

operation. 

The key challenges for hydropower foundation presented in this section are further explored as areas of 

opportunity in Section 7.   
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7. OPPORTUNITIES FOR INNOVATIVE HYDROPOWER FOUNDATION 

TECHNOLOGIES 

As discussed throughout this report, foundations play a central role in hydropower site assessment, 

design, and construction; therefore, innovations in hydropower foundation technologies can be useful for 

future development. To improve the cost, time, and risk performance of future projects, opportunity areas 

are identified that are likely to benefit from new and emerging technologies. Investment in these areas 

could improve hydropower performance, feasibility, and safety. In searching for technological and 

logistical solutions to these challenges, other industries across the inland and aquatic spheres can 

potentially offer relevant insights. Section 7.1 (and the literature review summarized in APPENDIX E) 

provides a review of recent advancements in non-hydropower industries, and Section 7.2 outlines the 

major opportunity areas with examples.  

7.1 ADVANCES IN NON-HYDROPOWER INDUSTRIES 

Hydropower foundations experience unique conditions unlike those associated with other aquatic and 

inland industries, which are typically driven by isostatic conditions. The conditions include resisting and 

supporting loads imposed by the surrounding hydrologic environment and operating under dynamic 

hydraulic conditions and pressure gradients throughout the entire structure. Accordingly, hydropower 

developers are typically concerned with structural stability and seepage control in designing and 

constructing foundations, whereas non-hydropower industries are primarily interested in structural 

stability, with an interest in the performance aspects of foundations in relation to various superstructures. 

Foundation site assessment, design, and construction technologies and methodologies used in other 

industries (including the transportation, offshore wind energy, marine and hydrokinetic [MHK] energy, 

and residential/commercial building industries) may have some relevance in advancing the structural 

stability and performance aspects of hydropower foundations. Innovations in these other industries could 

offer transferability and help guide hydropower R&D efforts. Additionally, technologies such as 

instrumentation and autonomous equipment used in the mining industry could have relevance to 

hydropower technology R&D and advancement.  

Based on literature reviews of various non-hydropower foundation and supporting technologies, a key 

advancement across multiple industries (e.g., offshore wind, MHK, commercial and residential building) 

has been the use of prefabrication (i.e., modularization and standardization). For example, certain types of 

offshore wind turbine foundations can be grouped into a few key components to simplify the 

manufacturing, transportation, and construction aspects of development and thus reduce timelines and 

costs. Additionally, improvements in overall construction logistics help increase time and cost efficiency, 

as they maximize the amount of work that can be performed at any one time. Moreover, advancements in 

materials that increase strength, ductility, and other structural properties may make them more 

economical, sustainable, and robust than traditional concretes and steels. Other supporting technologies 

that may prove beneficial to hydropower foundation design and construction are autonomous equipment, 

instrumentation (e.g., sensors and analytical software), and scouring protection. Reducing the need for 

human labor makes operation safer and more economical; and sensors could be useful in detecting early 

signs of damage to the foundation from seismic activity, extreme weather events, or regular wear and tear 

to prevent future dam/facility failure. Although not necessarily centric to the foundation, scouring 

protection is useful for structures such as facility spillways and tailraces that are prone to hydraulic 

stresses which, if left untreated, could lead to future facility failure. 

A literature review of foundation technologies and methods used in other non-hydropower industries is 

provided in APPENDIX E. 
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7.2 OPPORTUNITY AREAS FOR HYDROPOWER GEOTECHNICAL FOUNDATIONS 

Because geotechnical foundations represent a major cost driver for many hydropower projects (Fang, 

1991; O’Connor et al., 2015a), technology innovations and other opportunities have the potential to 

improve overall hydropower project feasibility with respect to via risk, cost, and/or timeline reductions. 

The uncertainties and hazards associated with subsurface conditions with respect to siting, exploration, 

and design are significant; and improvements in those processes could help reduce risk and construction 

timelines. DOE initiatives to improve construction costs and overall construction times could advance the 

use of techniques and technologies focused on the major aspects of foundation development.  

These challenges range from the early stages of planning and reconnaissance to the final stages of 

construction. As discussed in Section 6, the interdependency among cost, time, and risk plays a critical 

role within a project and is typically associated with the level of uncertainty regarding conditions 

associated with each stage of a foundation project.  

Uncertainty affects many aspects of the site assessment, design, and construction processes (McMahon, 

1989). It is related primarily to the extent to which site conditions can be accurately characterized and 

understood, and to the ability to predict and respond to changing and unexpected conditions as a project 

progresses. The varying levels of uncertainty are reconciled through trade-offs among cost, time, and risk 

of the project, as agreed upon between the owner and the contractor.  

Based on the key challenges presented in Section 6, areas that offer unique opportunities to address cost, 

time, and risk are site investigation/assessment, planning/design, and the expectations and logistics of the 

construction phase. Therefore, the distinctive opportunity areas for improvement lie in (1) geotechnical 

site assessment, (2) foundation design and materials, and (3) construction methods and technology.  

Given the co-dependency among these areas (e.g., any knowledge gaps, uncertainties, or other 

complexities involving geotechnical site assessments and foundation design could carry weight 

throughout the foundation development phases), it is misleading to prioritize one over the other. For 

example, the capital costs associated with construction are the largest among the representative, direct 

foundation-related costs, as presented in Section 5.5.1. However, many hydropower development projects 

have experienced cost overruns attributable to uncertainties experienced during construction, which might 

have been reduced through earlier and more thorough assessment and design considerations 

These three opportunity areas are described in the following sections. Opportunity subcategories are also 

presented for each opportunity area, with examples (for demonstration purposes only) provided in Table 

16, Table 17, and Table 18. Notably, innovation opportunities may not be limited to a single area, given 

the integral and often reciprocal nature of site assessment, foundation design, and construction. 

Opportunity areas are not mutually exclusive but are presented to reflect key domains for innovation. 

7.2.1 Opportunity Area 1: Geotechnical Site Assessment 

Geotechnical site assessment focuses on advancements in both physical on-site and offsite assessment. 

Example opportunities (Table 16) generally include geophysical methods of data acquisition and 

processing, recognition and analysis techniques to improve certainty in characterizing subsurface 

conditions, identification and prediction of potential failure mechanisms, and refinement of testing area 

selection.  

The practice of gathering geophysical data for subsurface investigations is well developed. Geophysical 

investigations are focused around both passive and active condition measurements, whereby sensitive 

instruments measure either steady-state conditions (e.g., gravity) or induced conditions and/or responses 
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to external inputs (e.g., electrical resistivity, seismic refraction, ground-penetrating radar). Currently, 

there appears to be little room for innovation in the practice of active source generation (i.e., investigators 

have already used all currently known and readily measurable types and wavelengths of acoustic, 

gravimetric, radiometric, and electromagnetic energies to gather information about material properties of 

earth materials).  

Table 16. Example opportunities for hydropower geotechnical site assessment.  

Offsite (desktop) geotechnical assessment 

Improved remote and/or aerial imaging, sensing, and collection technologies (e.g., LiDAR, sonar, 

SAR/InSAR, photogrammetry)  

Advancement of geophysical methods and data processing techniques and methods (including AI) to 

improve efficiency of surface and subsurface characterizations  

More accurate desktop assessments to quantity takeoffs for borrow areas, site access, and excavation  

Development, incorporation, and use of extensive database of existing dams and construction techniques, 

paired with on-site characterization serving as a predictive and/or guidance tool for improved siting 

Advanced techniques for testing area selection, which could include automatic recognition of fractures, 

ground-penetrating radar, processing of data using decision-based AI techniques based on neural network 

applications of historical projects, and improved data visualization. Such solutions could be related to (1) 

data mining of existing data sets, (2) novel data acquisition techniques such as remote sensing/geophysics 

or improved sensors, and (3) data processing using AI or other technological approaches like traditional 

remote sensing analyses, among others. 

On-site geotechnical assessment 

Advancements in the use of condition monitoring and control systems for real-time dam foundation 

hazard monitoring and longer-range forecasting and mitigation 

Nascent technologies for minimally invasive subsurface site investigation (includes minimization or 

replacement of boring/drilling studies applications, accurate determination of the depths to competent 

rock, nondestructive analysis or other possible approaches to appropriately characterize and improve 

confidence in bearing strength of foundation materials and identification of potential failure mechanisms) 

 

New advances in the fields of remote sensing and analysis are trending toward novel techniques in data 

processing, resolution, and pattern recognition. Advanced methods of signal processing and/or automated 

pattern recognition and feature extraction are at the forefront of mathematical and artificial intelligence 

(AI) research fields today. Improved resolution of feature detail from both active and passive source 

remote sensing has been achieved across the fields of microscopy, astrophysics, biology, and geophysics; 

and this work will continue to provide improved resolution of difficult-to-access (e.g., subsurface) targets. 

Automated feature recognition via AI approaches (including machine learning or deep learning, among 

others), in particular, stands to contribute to projects focusing on the built world. It will eventually be 

broadly extended to interpretations of the natural world. Already, private industry ventures and academic 

institutions are developing and using these approaches to automatically identify, quantitatively assess, and 

catalog fractures in concrete and steel infrastructure from 3D photogrammetric models created from drone 

and/or manually acquired imagery. Extending such methods to high-resolution imagery of potential dam 

sites could drastically improve the remote assessment of potential hydropower sites (particularly in 

bedrock-dominated areas) by providing information about bedrock fracture network density, and 

potentially tying it to foundation seepage conditions at potential sites at the desktop study level.  

Consideration of advances in data acquisition and processing methods may greatly benefit remote studies, 

reconnaissance-level studies, and geophysical surveys of potential development sites, depending on site 

conditions and settings. More work in developing these methods and applying them to remote sensing and 

geophysical surveys is needed.  
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7.2.2 Opportunity Area 2: Foundation Design and Materials 

This opportunity area focuses on innovations for foundation design and materials. Examples of design-

related opportunities are briefly listed in Table 17. Notably, this opportunity area includes modular 

foundation structures, which could be a significant innovation in this field, and material and treatment 

technologies to improve strength and reduce seepage.  

Table 17. Example opportunities for hydropower foundation design and materials.  

Foundation design 

Integration and use of prefabricated and modular applications (e.g., foundation components, drainage 

components, concrete forms) 

Innovations that incorporate typically temporary structures (e.g., cofferdams, forms, scaffolding) for 

permanent use and subsequent function for the hydropower facility 

Custom foundation design based on existing site terrain and stream features (facilitated by advanced 

sonar, underwater LiDAR, or other surveying techniques)  

Approaches for adaptively modifying design on-site based on in situ conditions and configurations  

Materials 

Improvements in concrete-to-rock bonding agents, slurries, and other materials that improve seepage 

control performance or facilitate adequate and safe drainage 

Development of geotextile materials for subsurface stabilization and seepage applications 

Improved and cost-effective applications of high-flow grout and environmentally friendly compounds for 

treatment of seepage 

Use of ultrahigh–performance concrete  

 

The use of advanced composite materials should be considered for both foundation and modular unit 

treatments, as well as potentially for reservoir lining treatments for projects sufficiently small in size. 

Geotextiles have frequently been employed in special foundation systems to stabilize slopes and control 

or filter seepage. Composite geotextiles comprise strong, lightweight fabrics treated with sprayable water-

impermeable coatings to provide high–tensile-strength waterproof linings for a variety of earth-stabilizing 

and water-handling issues. These types of practices may eventually be extended to treatments of 

subsurface settings necessary to control sub-foundation seepage or reservoir stability in certain settings. 

Improvements in material engineering, manufacturing processes, and specifications have led to many 

applications. Use of geotextiles can shorten project construction timelines and lessen environmental 

impacts. For example, using a geotextile membrane in zoned-embankment construction can reduce the 

construction schedule and mitigate the impact to the environment associated with the exploitation of 

natural construction materials. It remains a challenge to advance geomembrane improvements, enhance 

standardization, and broaden their acceptability within the dam design–construction sectors. 

Grouting has been employed in special foundation systems to enhance watertightness. Conventional grout 

mixes include water, cement, sand, and admixtures. Admixtures have been improved in recent decades, 

which has led to the use of specialized chemical grouts with non-shrink, strong, and lubricating 

properties. Additional advancements in admixtures and pressurized delivery have been made recently in 

the oil and gas industry, particularly in applications involving hydrofracturing. In certain settings, 

traditional grout curtains or methods of cutoff wall excavation may be cost-prohibitive in small 

hydropower applications; the use of novel formulations of high-flow grout or other novel environmentally 

safe water-impermeable compounds to treat foundation seepage may benefit these types of projects. The 

challenge remains to cost-effectively incorporate the advances into the dam design–construction sectors. 
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Potential concepts for standard, modular design include the use of large-scale 3D printing stages. If this 

technology proves to be sufficient for these types of projects, advanced materials and design techniques 

could be prioritized to decrease material and time requirements in the field. Currently, several 

organizations are developing large-scale stage and central-pivot 3D cement “printers” to construct small 

buildings within 24 hours. Development of large-scale additive metal printing technologies and/or the use 

of advanced materials such as ultrahigh-performance concrete, especially within a single hybrid printing 

unit, could greatly improve design and production aspects of small hydropower project development.  

Although hydropower foundations must be customized to individual site conditions, the use of advanced 

manufacturing technology to accurately measure, and perhaps custom-print, a foundation section to be 

bonded or installed into a precut section of footing material, might be considered. Currently, 

advancements in underwater LiDAR applications allow for high-precision 3D surveys of ocean floor 

conditions for the deep-water hydrocarbon production industry. These types of surveys might be suitable 

for certain rock-foundation applications in which a custom-printed foundation module could be printed to 

precisely fit into place (with the use of suitable anchors and seepage treatments). 

7.2.3 Opportunity Area 3: Construction Methods and Technology 

This opportunity area focuses on novel and improved construction methods and technology, some of 

which could support examples identified in the prior opportunity areas. Examples of construction-related 

opportunities are briefly listed in Table 18. Strategies for reducing owner and developer risk, methods of 

incorporating knowledge-based results for better-defined and less conservative agreements (i.e., using 

improved certainty regarding unknown conditions to decrease risks), and communication techniques for 

describing and quantifying risk are introduced as key challenges in Section 6. These contractual-related 

items, though important, are nontechnical and are not the focus of this section. 

Table 18. Example opportunities for hydropower foundation construction methods and technology.  

Construction methods 

Improved methods for rating geologic complexities to improve communication and shared understanding 

of uncertainties to decrease owner/contractor overall perceived risks and costs 

Improved environmental BMPs and mitigation techniques for foundation site investigation and 

construction, such as minimizing or eliminating the use of cofferdams 

Advanced bedrock anchoring techniques for rigid structures (e.g., concrete or modular components) 

Techniques for the application and use of 3D underwater concrete printing of a foundation component  

Construction technology 

Advanced sensing/monitoring technologies to enable real-time quality control of on-site concrete, 

material, and other placement efforts 

Technologies for underwater equipment applications that may limit need for cofferdams 

Deployment of self-operating equipment in open pit excavations, mixing and placement of mass concrete, 

and placement of embankment fill for continuous 24-hour operation 

Other applications for self-operating, potentially autonomous technologies, such as for excavation, soil 

compaction, or various treatments 

 

The contractor develops its method of construction to provide a constructed product that conforms to the 

construction drawings and specifications, and incorporates measures to facilitate acceptance testing. 

Continued advancements in instrumentation and testing devices, including automation, will allow for 

construction time and cost reductions. 
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Prefabricated concrete elements or pre-engineered steel structures, while not particularly applicable to 

foundations, may have applications in river diversion activities that are closely allied to foundation 

construction. Prefabricated concrete elements are generally heavy; site access, working space, and crane 

lifting capacity may limit their use.  

There are many large construction equipment manufacturers. They produce tailored construction 

equipment that is used in a variety of industrial sectors, including heavy civil works (e.g., tunneling), 

mining, agriculture, power, water supply, and oil and gas. These manufacturers respond to the needs of 

contractors and have developed versatile equipment that allow a contractor to tailor its equipment for 

maximum utility. Areas of customization include size, horsepower, wheels/tracks, operating elements and 

options, lift capacities, dashboard instrumentation, and automation. The manufacturing industry will 

continue to respond to the needs of its customers. 

Contractors frequently improvise during construction. They have engineering departments that design 

their temporary works so that temporary access roads and work fronts are stable, equipment limits are 

respected, and the entire site is a safe working environment. In incorporating small hydropower schemes 

into existing dams, contractors have used barges and floating bulkheads to assist in the placement of 

permanent operating equipment, powerhouse elements, and so on.  

Environmental BMPs, as they relate to foundation site investigation and construction, could also be 

evaluated to understand how their cost and schedule impacts could be further minimized while they meet 

their objectives of minimizing erosion and increasing flood control. In addition, there is interest in 

reducing the costs and timelines associated with river diversion and related environmental protection 

measures, specifically the use of cofferdams. Opportunities exist for the construction industry to develop 

the means and methods necessary to construct a foundation without the use of cofferdams. Such methods 

would require improvised equipment and accessories, for example, a dewatering dome to facilitate 

concrete placement as water flows around the dome. The dome could be equipped for dewatering, surface 

preparation, remote viewing inspection, concrete placement, and rapid concrete hardening. Measures 

would also have to include in situ or laboratory testing of the bond between the rock foundation and the 

first layer of concrete. 
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APPENDIX A. KEY TERMINOLOGY 

Hydropower terminology often varies among sources. This document’s terminology follows FERC 

definitions and guidelines.  However, the terms listed in this appendix are for use in the context of this 

report and may differ somewhat from their use in other available literature. Several terms are original and 

are used to describe concepts developed for this report. Where terms are taken from existing literature, 

proper citation is provided.  

• Foundation system: A collection of engineered structural features constructed at or below the 

preconstruction ground surface that interfaces with the superstructure and subsurface of a dam. The 

primary purpose of the foundation system is to provide structural stability and support and to control 

seepage. The foundation system also includes the subsurface resulting from engineered treatment 

methods such as grouting, anchoring, and trenching, and could include modular foundation 

technologies. Various construction activities (such as dewatering and excavation) are often required to 

enable engineered treatment. Design components that may be considered for a dam foundation include 

anchors (typically for concrete gravity dams), cutoff trenches, trenches, and walls. 

• Subsurface: The site conditions existing at a site before development. The subsurface is highly site-

specific and comprises the soil and geologic formations below the dam site and other facilities 

associated with the project. 

• Soil: Surface material composed of varying degrees of organic and mineral constituents, primarily 

resulting from the decay of plants and/or weathering of rock. 

• Rock: Any naturally occurring solid mass or aggregate of minerals or mineraloid matter.  

• Superstructure: The facility features above the foundation that provide the functions necessary for a 

hydropower facility, such as blocking and passing water, generating electricity, and providing 

maintenance access. Superstructures include dams, spillways, and powerhouses. Dam subcomponents 

considered part of the superstructure include the dam core, filters and drains, and geotextile 

membranes/blankets. 

o Dam: “An artificial barrier that has the ability to impound water, wastewater, or any liquid-borne 

material, for the purpose of storage or control of water” (FEMA, 2004).  

▪ Embankment dam: Dams that uses excavated natural materials (soil or rock) or man-made 

materials to provide water retention. 

▪ Concrete dam: Dams that uses reinforced or unreinforced concrete to create a barrier. 

o Powerhouse: The structure where the powertrain (turbine-generator) and other equipment are 

housed. 

o Spillway: A structure that passes water over, around, or through the impoundment structure for 

non-hydropower purposes. 

▪ Service spillways: Structures regularly used to provide continuous or frequent water releases. 

Accordingly, they are made from extremely damage-resistant materials (DeNeale et al., 2019). 

▪ Auxiliary spillways: Spillways that are used in a secondary capacity to provide infrequent 

releases (e.g., to increase spilling capacity in flood events) and thus may be made of materials 

that are less damage-resistant than those for service spillways (DeNeale et al., 2019).  

▪ Emergency spillways: Spillways used in extreme circumstances to provide additional spilling 

capacity (e.g., when the service or auxiliary spillways are inoperable, or in major flood events) 

(DeNeale et al., 2019). 
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• Geotechnical foundation engineering: Discipline involving the study of soil and rock behavior and 

its application in engineering, specifically for foundation systems. 

o Geotechnical site assessment: Activities performed to obtain information needed to design and 

construct a foundation system . 

o Foundation design: The process of using information from the site assessment to perform 

analyses and develop a cost-effective foundation system that meets the project design criteria. 

o Foundation construction: Activities performed by the contractor, from mobilization through 

project commissioning, to fully develop the foundation system. 

• Hydropower: A renewable energy resource that produces electricity from flowing water under 

pressure. 

o Low-head hydropower: A hydropower project with 30 ft or less of head.  

• New stream-reach development: New hydropower development along stream-reaches that do not 

currently have hydroelectric facilities or other forms of infrastructure, such as dams. 

• Dam height: “The vertical distance between the lowest point on the crest of the dam and the lowest 

point in the original streambed.” (USACE NID Data Dictionary30) 

• Structural height: “The vertical distance from the lowest point of the excavated foundation to the top 

of the dam. The top of the dam refers to the parapet wall and not the crest.” (USACE NID Data 

Dictionary30) 

• Hydraulic head: The difference in elevation between upstream and downstream water levels. 

• Standardization: A framework of universal details, guidelines, and specifications to maximize 

module replication and compatibility across multiple sites. For hydropower specifically, 

standardization includes design, review, regulation, manufacturing, operation, maintenance, and other 

features intended to reduce site specificity and project costs. 

• Modularity: The virtual or physical division of system components into distinct, readily transferable 

functional units known as “modules.” 

• Standard Modular Hydropower: A research project led by Oak Ridge National Laboratory, with 

funding from the Department of Energy Water Power Technologies Office, that aims to foster the 

development of environmentally compatible, cost-effective hydropower through modularization and 

standardization.  

• Module: A discrete functional unit that either independently or in combination with other modules 

achieves a dedicated purpose at a selected site.  

o Generation modules: Dedicated structures that transform incoming water flow into an energy 

output and outgoing water flow. 

o Passage modules: Dedicated structures that transfer water, fish, sediment, or boats safely through 

a facility. 

Foundation modules: Dedicated structures that provide a stable platform and enable the foundation and 

other modules to maintain location, orientation, and stability. 

 
30 Available at https://nid.sec.usace.army.mil/ords/NID_R.downloadFile?InFileName=NID_DataDictionary.pdf 

(accessed August 10, 2020). 

https://nid.sec.usace.army.mil/ords/NID_R.downloadFile?InFileName=NID_DataDictionary.pdf
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APPENDIX B. WATERSHED AND STREAM CHARACTERISTICS 

This appendix provides additional information to supplement that provided in Section 3.1, Watershed and 

Stream Characteristics. The information presented includes additional information and associated 

terminology related to watershed and stream classifications and characteristics. 

B.1 WATERSHED CHARACTERISTICS 

A watershed (also called a drainage basin or catchment) is defined as an area that collects water from 

surface water (including precipitation, snowmelt, and stream flow) and groundwater and conveys it to a 

common outlet (e.g., a river, mouth of a bay, ocean) via a set of channels. For a hydropower site, a 

watershed represents the upstream area contributing runoff and flow to the site. The main components of 

a watershed are 

• Hillslope: undissected elevated areas between valleys 

• Hollows: valleys without channels 

• Channels: concentrated transport of water and sediments between defined banks 

• Floodplain: relatively flat region formed by the rivers during the current climate period and inundated 

during high flows 

The three main phases of water transport in the surface hydrologic cycle are precipitation, runoff, and 

evapotranspiration. Precipitation encompasses any form of water falling from the sky to the ground (e.g., 

rain, hail, snow, or sleet), of which a portion infiltrates into the ground (i.e., groundwater). The remainder 

either (1) is temporarily stored in snow, ice, or an aquifer; or (2) flows above the surface and is referred to 

as “runoff,” representing the percentage of precipitation that directly reaches the stream (also referred to 

as “overland flow”). This percentage is a function of the watershed’s physical characteristics—such as 

soil type, land cover, land use, and vegetation—and the antecedent soil moisture content. 

Evapotranspiration constitutes all water returning to the atmosphere from rivers, reservoirs, oceans, and 

other water bodies as vapor. Evaporated water condenses in the atmosphere and eventually leads to 

precipitation, completing the hydrologic cycle. 

Hydrographs (i.e., graphs showing flow rate over time), particularly their magnitude and duration data, 

are used to aid understanding of how a watershed responds to precipitation by describing the rate of water 

discharge (i.e., runoff) over a specific time period. Engineers use flood hydrographs to design various 

civil infrastructures that interact with water. Infrastructure such as bridges, highways, or culverts is 

designed using specific-frequency hydrographs, in which a particular frequency of occurrence (i.e., the 

probability that a representative flood with a specific magnitude will occur or be exceeded) is statistically 

assigned to a discharge within a specific period (e.g., 50-year or 100-year floods). More properly, such 

events are estimated based on the annual exceedance probability (AEP) that a flow rate (or water level) 

will be equaled or exceeded. For example, a 50-year event is associated with a 0.02 AEP, whereas, a 100-

year flood is associated with a 0.01 AEP. Dams, on the other hand, could cause public safety issues and 

extensive property damage should they fail. Therefore, dams or dam components (e.g., spillways) are 

often designed based on the probable maximum flood hydrograph, representing “the maximum runoff 

condition resulting from the most severe combination of hydrologic and meteorological conditions 

considered reasonably possible for the drainage basin under study” (USBR, 2006a), or based on a 

probabilistic analysis (e.g., 100-year inflow design). In particular, extreme events (e.g., flooding, 

earthquakes) can create deleterious conditions for a dam by inducing overtopping or overstressing of the 

dam crest (DeNeale et al., 2019) and leading to erosion of the dam toe. Dam design considerations 

associated with protecting against these extreme events can involve improvements to the foundation 
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system. Furthermore, variations in river flow throughout the year often dictate the construction schedule 

of the foundation system, dam, and other superstructures, with typical practice targeting the beginning of 

excavation and substrate treatment work during the river’s dry season (Section 4.3.1.3). 

According to the American Society of Civil Engineers (ASCE, 2008), the erosion process can be geologic 

(i.e., occurring by natural processes) or accelerated (i.e., influenced by human-induced activities such as 

agricultural, commercial, and industrial development). These natural geologic processes include tectonic 

activity (e.g., earthquakes), physical weathering (e.g., landslides, glacial scouring, freeze-thaw cycles), 

chemical decomposition, and long-term atmospheric actions. Erosion can be separated into two key types, 

surface and channel:  

• Surface erosion primarily comprises actions that denude and lower the surrounding land surface via 

weathering. 

• Channel erosion refers to the actions that incise or widen a stream channel.  

By volume, surface erosion typically produces most of the sediment carried by streams. Upland surface 

erosion (i.e., erosion occurring in the headwaters) is most frequently caused by combinations of physical 

weathering, rainfall, and runoff. Beyond gravity-driven mass-wasting events, the two basic forms of 

surface erosion are sheet (or interrill) and rill: 

• Sheet erosion refers to the direct impact of raindrops on soil. 

• Rill erosion, which occurs via small channels in the soil, carries runoff and mobilizes sediment from 

the interrill areas and any sediment eroded as a result of runoff within the rill itself. Rill erosion 

increases as the channel slope and length increases, and as the amount of runoff increases, to form a 

concentrated flow.  

The main factors influencing upland erosion are soil types and characteristics, vegetation, topography, 

land use, climate, and time. In particular, the soil type and its physical properties significantly impact its 

resistance to erosion and its mobilization and transport, including water infiltration and runoff. 

Vegetation, on the other hand, increases the soil’s resistance to erosion by serving as a shield or barrier to 

rainfall, and topography affects the severity of runoff and thus rill erosion. The Universal Soil Loss 

Equation, originally developed by Wischmeier and Smith (1965; 1978) combines all these factors to 

estimate the annual soil erosion rates for upland slopes over a wide range of rainfall, soil, slope, cover, 

and management conditions: 

𝐴 = 𝑅 ∙ 𝐾 ∙ 𝐿 ∙ 𝑆 ∙ 𝐶 ∙ 𝑃 , 

where 𝐴 is the spatial and temporal average soil loss per unit of area (expressed in the same units chosen 

for 𝐾 and period selected for 𝑅), 𝑅 is the rainfall-runoff erosivity factor, 𝐾 is the soil erodibility, 𝐿 is the 

slope length factor, 𝑆 is the slope steepness factor, 𝐶 is the cover-management factor, and 𝑃 is the support 

practice factor. More information on the equation and the specific parameters can be found in Wischmeier 

and Smith (1965; 1978); a revised version of the equation was reported by Renard et al. (1997). 

B.2 STREAM CHARACTERISTICS 

Across the watershed system, upland surface erosion is the main source of sediment transport into a 

stream system. The resulting sediment distribution along the reach is primarily governed by the flow 

transport capacity, morphology, and sediment yield of the river. Additional erosion can occur on the 

channel bed and banks within the stream if the flow is extremely high and sediment yield is low (i.e., 
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channel degradation); that process is contrary to channel aggradation, where the flow is low and sediment 

yield is high, allowing deposition to occur. 

In channels with a moderate gradient, sediment transport can be divided into two main categories, 

bedload and suspended load, which together make up the total sediment load.  

• Bedload consists of coarse particles intermittently transported (e.g., rolled, hopped, slid) along the 

channel bottom. The primary mechanism driving this process is shear stress imposed by the water 

flow, which occurs when the shear stress exceeds the critical threshold of motion, which is a specific 

characteristic of the sediments. This granular movement at the bottom of the river is illustrated by the 

migration and evolution of bedforms such as ripples, dunes, antidunes, or bars.  

• Suspended load refers to finer particles suspended in the channel (by turbulence) that move at the 

same velocity as the water flow.  

Although these classifications are useful to illustrate sediment transport, the exact movement of particles 

in a river greatly depends on the local velocity, flow rate, and turbulence level (i.e., coarser particles could 

be a suspended load, depending on flow conditions). Sediment transport is a function of grain size and 

material density; fluid density and viscosity; and flow and turbulence intensity. A variety of formulas 

have been developed to predict sediment transport (ASCE, 2008). Despite some theoretical background, 

most sediment transport formulas are empirical, relying on studies and laboratory data. 

Geologic setting and stream sediment transport characteristics are ultimately responsible for channel 

morphology and evolution (i.e., shape and location). In general, over time, these changes are primarily 

determined by the water flow, geologic conditions, quantity and type of sediment load, characteristics of 

bed and bank material (including vegetation), and topography. Although rivers are dynamic features that 

evolve over time, several classification schemes for channel forms have been proposed. Morphological 

characteristics of a stream are strongly interconnected to fluvial processes; therefore, a channel’s present 

form may offer some insight to its geomorphological evolution. The first level of distinction among 

streams is between alluvial and non-alluvial channels.  

• Alluvial channels are formed in and by sediment transported in the river (alluvium) under its current 

hydrologic and climatologic regime; these channels are self-formed and can change their form and 

location depending on the variation in water flow and sediment load.  

• Non-alluvial channels are not formed via alluvium and therefore may not change dynamically; these 

rivers are usually bounded by bedrock, concrete, or very coarse glacial deposits.  

Many stream classification schemes for channel forms are based on the pioneering study by Leopold and 

Wolman (1957), which used three main categories: straight (rare), multi-thread (braided and 

anastomosed), and single-thread (meandering). The main parameter that controls the transition between 

these types is the channel aspect ratio, also known as the width-to-depth ratio (ratio between the channel 

width and the average water depth).  

• Straight rivers (Figure B.1a) are rare and inherently unstable at width-to-depth ratios greater than 10 

and are often the result of man-made channelization.  

• Multi-thread rivers are classified into braided and anastomosed rivers: 

o Braided rivers (Figure B.1b) are multi-threaded, with water flowing through several sand bars 

(islands) that are constantly forming, eroding and reforming, and are comparable in size to the 

thread width. This type is typically formed by large and shallow channels, with a width-to-depth 
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ratio greater than 50:100. They are characterized by high concentrations of bedload and 

suspended load.  

o Anastomosed rivers are similar to braided, but their islands are typically very stable and large 

compared with the thread width.  

• Meandering rivers (Figure B.1c) are also characterized by high suspended load and bedload but have a 

single dynamic thread, usually confined by vegetation. The channel sinuosity, defined as the ratio of 

the distance measured along the channel (channel length) to the distance measured along the valley 

axis (valley length), is a distinctive parameter for this type of river that is used to describe the degree 

of meandering.  

More recent classifications extend upon the Leopold and Wolman (1957) form classification to include 

geologic characteristics of the watershed, vegetation surrounding the channel, bed and bank material, 

hydrology, sediment concentration, and channel pattern and stability. Among these, one of the most 

widely used among river engineers is the classification by Rosgen (1994). Other practical references 

include the US Bureau of Reclamation Erosion and Sedimentation Manual (USBR, 2006b). 

 

Figure B.1. Different types of rivers: (a) straight (River Rother, East Sussex, Great Britain), (b) braiding 

(Waimakariri River, South Island, New Zealand), and (c) meandering (Nowitna River, Alaska). Source: 

Images are copyrighted by unknown authors and made available under Creative Commons Attribution 3.0 

unported licenses.  
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APPENDIX C. SUPPLEMENTAL INFORMATION ON SUBSURFACE 

CLASSIFICATION AND CHARACTERISTICS 

This appendix provides additional information to supplement that provided in Section 3.2, Subsurface and 

Geologic Characteristics. The information presented includes additional information and associated 

terminology related to subsurface classifications and characteristics. 

The authors acknowledge that terminology use varies depending on practice, and alternate and varying 

terminology may exist in the literature. Some subsurface characteristics presented apply to both rock and 

soil, and the reader is encouraged to consult additional resources for more detailed descriptions of key 

characteristics. 

C.1 SUBSURFACE CLASSIFICATIONS AND GENERAL CHARACTERISTICS 

Section 3.2 presents a hierarchy of subsurface classes (Figure 4) used to inform other parts of the report; 

the hierarchy is an example, and other classification schemes exist in literature. In particular, the USGS 

classification systems are widely used within geology and other fields. Figure C.1 and Figure C.2 

illustrate the US Geological Survey (USGS) lithologic classification of geologic map units, available on 

the USGS website:31 This classification provides an additional level of detail beyond the subsurface 

classification used in the main body of this report (as presented in Figure 4 in Section 3.2) and is 

presented as an additional resource. 

For the purposes of this report, rock is defined as any naturally occurring solid mass or aggregate 

of minerals or mineraloid matter. Rocks are broadly classified by their formation process as follows 

• Igneous rocks are formed the solidification of molten siliceous material, in which the associated silica 

content and conditions of formation (e.g., bulk chemistry, temperature, pressure, and rate of cooling) 

directly determines their particular properties.  

• Sedimentary rocks are formed at or near the Earth’s surface via the accumulation, consolidation, and 

lithification of sediment. 

• Metamorphic rocks arise from existing igneous and/or sedimentary rocks subjected to high 

temperatures and pressures (e.g., when continental plates collide),often producing very hard materials 

(e.g., limestone and sandstone can metamorphose into marble and quartzite, respectively).  

For the purposes of this report, soil is defined as surface material composed of varying degrees of 

organic and mineral constituents, primarily resulting from the decay of plants and/or weathering of 

rock. Common classes of soil depositional environments encountered at dam sites are: 

• Alluvial soils are particles deposited in the streambed or floodplain by flowing water and can include a 

variety of particles from silts and clays to sands and gravels. These soils are transported downstream 

through the processes described in Section 3.1.  

• Colluvial soils are those deposited at the bottom of hillslopes from runoff and gravity action. Colluvial 

soils further consist of scree or talus (larger rock fragment deposits resulting from steep hillslopes), 

slope debris (admixtures of smaller particles; deposited by water erosion and slope creep caused by 

gravity), and landslide debris (highly variable soil mixtures resulting from ash flows or avalanches). 

 
31 Available from https://www2.usgs.gov/science/about/thesaurus-full.php?thcode=5 (accessed August 10, 2020). 

https://en.wikipedia.org/wiki/Mineral
https://en.wikipedia.org/wiki/Mineraloid
https://www2.usgs.gov/science/about/thesaurus-full.php?thcode=4&__ncforminfo=-vy_ah50b-7d4Ea6C6HEi6Wu_XVzrYdyqXafxvR5f4hQXQCP_5QmaM2_06T6MDl76f9umofJq9BRUCp8WYHnP4O0TIqfA_P0UTQ-FaUI7hTf13SQ2z0XShhajjldeZ25FY49ITD6A8SQWfLZhpSFuTAUbzLzzrkOqRaSekMpwMvIcN-gzVFFKnI-9exv2ngkv12ZCOz6SqfmrOpIQVJ14XUaa9dzUITG2EYyBVbbPxk%3D
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Figure C.1. USGS unconsolidated material (soil) classification diagram. Source: Based on USGS Lithologic Classification of Geologic Map Units.31  
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Figure C.2. USGS rock classification diagram. Source: Based on USGS Lithologic Classification of Geologic Map Units.31  
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• Residual soils are those formed from in situ chemical or physical weathering of soils and rocks over 

time. Lateritic soils, a common residual soil type, are created in tropical climates containing high 

concentrations of iron oxide and aluminum oxide, which provide a red coloration. The hardness, 

thickness, and composition of these soils vary based on the parent material, duration of weathering, 

and other environmental conditions.  

• Glacial soils are those deposited by ice action during the Pleistocene and can contain a variety of soil 

types and sizes. Fell et al. (2014) provides more information about these depositional classes and their 

properties. These depositional environments contribute to the lateral and vertical heterogeneity of soils 

and the types of soil present.  

Rock characteristics can be subdivided between those relating to the rock itself (intrinsic rock properties) 

and rock mass properties, including discontinuities. For soil, properties of interest include intrinsic 

particle properties, bulk properties, and soil mechanical properties. The information below describes 

these various characteristics. Some terminology is common to both rock material and soil mass, and 

includes: 

• Color is the visual attribute of the material that can indicate the state of weathering and changes 

between material types. 

• Porosity is the ratio of void volume to total volume of rock or soil 

• Total unit weight is the weight of soil or rock solids and water divided by the total sample volume.  

• Dry unit weight is the weight of soil or rock solids divided by total volume.   

• Submerged unit weight is total unit weight less the unit weight of water.   

• Seismic velocity is the velocity of propagation of seismic waves in a rock mass. Seismic velocity is a 

function of many rock material properties such as temperature, density, porosity, mineral composition, 

and the degree of cementation and consolidation; it is also a function of various rock mass properties, 

including degree of fracturing and degree of weathering. 

• Weathering is the physical or chemical deterioration of the material resulting in an alteration of most 

of the properties listed herein. The effects of weathering can be assessed in the field and they tend to 

diminish with increasing depth, depending on the tectonic history of the site. 

• Soil stress is the gravitational, hydraulic, and geologic forces that act on a unit area of soil. 

• Strain describes deformation in terms of relative displacement in the soil or rock mass 

• Pore water pressure is the water pressure within soil and rock pore spaces (e.g. between grains), 

typically measured in the field using a piezometer and in the laboratory using a pressure transducer 

mounted behind a porous stone. 

• Effective stress is the stress carried by the soil particle structure. Equal to the total stress minus the 

pore water pressure. 

• Hydraulic conductivity is measure of the ability of a fluid to flow through a porous material when 

subjected to a hydraulic gradient and has dimension of length per time. It depends on the porosity of 

the material, the degree of saturation, and the density and viscosity of the fluid. In rock, permeability 

also depends on factors including porosity, the shape and interconnectivity of the pore spaces with a 
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rock mass and spacing and aperture of fractures and joints. In soil, grain size distribution is an 

important determinant. 

• Hydraulic gradient is the change in hydraulic head (pressure) between two or points along a flow path.  

• Flow rate (or more formally, the specific discharge) is calculated as the flow velocity (length per unit 

time) multiplied by the total area (soil plus voids) of flow (length2). It is traditionally estimated based 

on Darcy’s law and is useful for calculating flow quantities 

• Seepage velocity (length per time) is the velocity of water flow in open pore space.  It is always higher 

than the flow rate, and is useful for calculating arrival time of solutes within water 

C.2 ROCK CHARACTERISTICS 

Intrinsic rock properties include the following: 

• Rock type is a simplified geologic classification based on the rock’s formation process (refer to the 

broad classification scheme introduced in Figure 4). 

• Hardness as defined by (ASTM 2011) is a qualitative description of the material’s resistance to 

physical weathering (e.g., impact or abrasion), being largely a function of rock type subject to 

modification by either chemical weathering or tectonic history. It is not the same as mineral 

hardness(Mohs scale),  which refers solely to scratch resistance; however, the Mohs scale and field 

tools (e.g., Schmidt Hammer, pocket knife, geologist hammer) can be used to help assess a material’s 

hardness.  

• Intact Rock Strength is the intrinsic resistance of a rock to an external force, commonly assessed in 

terms of unconfined compressive strength, which is the amount of applied stress a material can 

withstand before failure. Additionally, intact rock strength is function of the formation process and 

other rock material properties (e.g., mineralogical composition, texture, grain shape and size, 

crystallinity), as well as secondary processes such as weathering and cementation. The US Natural 

Resource Conservation Service (NRCS) offers a guide to correlate intact rock strength to hardness12. 

However, due to the influence of discontinuities and defects, the intact rock strength rarely governs the 

behavior of rock foundations for dams.  

• Grain size and texture encompasses the size of individual mineral or detrital particles that compose a 

sedimentary rock, and the crystallinity and granularity of igneous and crystalline metamorphic rocks, 

respectively. These sizes should be consistent with those used for soil. 

Rock mass properties of interest for a dam scale foundation relate to geologic characteristics, including 

discontinuities, joints, fractures, and abrupt changes in lithology. The properties include the following: 

• Consolidation is the process of reduction of void volume over time. In geology, consolidation refers to 

the process by which an unconsolidated deposit becomes sedimentary rock as a result of increasing 

vertical stress due to progressive burial.  

• Shear resistance is the resistance to shear forces. Highly weathered rocks, poorly cemented shales, and 

siltstone may have very low shear resistance. Rock mass discontinuities are important determinants of 

shearing resistance. Adverse dip downstream in the foundation or in an excavation may cause 

instability. 
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• Attitude is the orientation of (planar) faults, strata, and fractures relative to the horizontal plane. 

Attitude is expressed as strike and dip. Strike is the azimuthal direction of the line of intersection of 

the feature with the horizontal plane. Dip is the vertical inclination angle (down from horizontal) of the 

feature, perpendicular to the strike direction.  

• Structure includes any discontinuity in the rock, meaning any distinct interruption in the continuity 

and integrity of the rock mass (e.g., holes, cavities, joints, bedding planes, fractures, cleavage, 

schistosity, lenses, faults, folds). These features can be classified as stratigraphic and structural. 

Stratigraphic discontinuities (called unconformities, of which several types) exist are an interruption of 

a normal stratigraphic sequence caused by an interval of erosion or nondeposition. Structural 

discontinuities are the result of an external or internal (e.g., cooling) stress that acted on the rock mass 

after its initial formation; they can include planes of weakness, faults, joints, shear zones, and other 

features. Structural discontinuities can contribute to water seepage, as well as sliding and slipping 

along the superstructure-foundation interface. More information about discontinuities in rock masses 

can be found in Part 631 of the National Engineering Handbook12. 

C.3 SOIL CHARACTERISTICS 

Intrinsic soil particle properties include the following: 

• Particle size refers to the dimensions of individual particles. ASTM Test Method D422 defines the 

standard geotechnical test procedures used to measure particle size.  Sieving is used for sand sizes and 

larger. A hydrometer test is used to measure silt and clay sizes Note that the maximum particle size 

determined through testing will depend on, and may be limited by, the sampling method. Using Test 

Method D-2487-17 (ASTM International, 2017) soil particles are classified into the following 

categories:  

o Boulders have particle sizes greater than 256 mm 

o Cobbles have particle sizes between 64 and 256 mm 

o Gravel have particle sizes between 4.76 and 64 mm 

o Sand have particle sizes between 0.074 and 4.76 mm 

o Silt have particle sizes between 0.002 and 0.074 mm 

o Clay has particle sizes smaller than 0.002 mm  

• Gradation is the distribution of particles sizes within the bulk material, as measured by a sieve 

analysis or using a hydrometer analysis (used for smaller particle sizes). Well graded soils have an 

even representation of all sizes, whereas poorly graded soils are either uniform (a large majority of the 

particles are all one size) or gap graded (one or more intermittent size fractions are excluded).  

• Shape refers to the geometric shape of the particle surfaces. For soils, grain shape is visually classified 

as rounded, sub-rounded, sub-angular, and angular.  The shape is often determined using visual 

observation, experience, and judgement 
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Bulk soil properties32 include the following: 

• Moisture (water) content is the ratio of the weight of water to the weight of solids for an in situ soil 

sample. Soil moisture content classes include dry, moist, and wet.  

• Degree of saturation is the ratio of the volume of water to the volume of voids a soil sample. 

Soil mechanical properties33 related to geotechnical engineering that can be estimated through field or 

laboratory testing include the following: 

• Plasticity is the property of a soil to deform without cracking and is measured by an Atterberg limits 

test. Clay typically has some degree of plasticity, while clean sand and gravel are non-plastic. Silts 

range from non-plastic to high-plastic depending on factors such as mineralogy, grain size distribution 

and shape. Engineering properties are often correlated with Atterberg limits and other index values to 

estimate engineering parameters used in foundation design. 

• Atterberg limits are the values of water content at which a soil changes between states (solid, semi-

solid, plastic, and liquid), determined through Atterberg limit tests performed using a standard test 

method defined by ASTM. 

o Liquid limit is the water content value that represents the boundary between liquid and plastic 

states. 

o Plastic limit is the water content value that represents the boundary between plastic and semi-

solid states. 

o Plasticity index is a relative measure of the range of water contents over which a soil behaves in a 

plastic state. Plasticity index is equal to the liquid limit minus the plastic limit. 

• Soil stiffness is a measure of a soil’s susceptibility to deformation, as governed by its stress-strain 

relationship. 

• Soil strength is the maximum force (stress) that a soil can withstand without failure, as governed by 

effective stress. The strength of a soil is a very complex topic, and depends on bulk properties and 

mineralogy of the soil, the history of past stresses applied to the soil, the degree of saturation, the 

ability of water in the soil pores to drain in response to stress changes, and relative magnitude and 

direction of the applied forces, to list only some of the many factors that influence a soil’s strength. 

• Maximum shear stress is equivalent to the maximum resistive force (strength) a soil can withstand 

without deforming (failing). Because they typically exhibit high compressive strength and low tensile 

strength, soils generally fail in shear while under compressive loading. 

• Compressibility is the ease with which a soil decreases in volume when acted on by a mechanical load. 

Compressibility is a critical property of soils for foundation design. Compression of larger soil 

 
32 The US Environmental Protection Agency provides multiple online tools for site assessment calculation related to 

soil bulk characteristics, including hydraulic gradient, moisture content, flow rate, and seepage velocity. The tools 

are available at: https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/b0_onsite.html (Accessed August 10, 

2020). 
33 Soil mechanics are highly important to foundation system design and construction to ensure consolidation, 

settlement, seepage, and strength properties, among others, are met. The theoretical and practical information 

presented in (Terzaghi and Peck 1948) and its updated editions is still widely applied in current geotechnical 

engineering practice. 

https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/b0_onsite.html
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particles occurs relatively quickly; whereas, compression of finer particles (i.e., silts and clays) occurs 

more slowly and is referred to as consolidation. 

Other terms often used in geotechnical engineering and related fields include the following: 

• Consolidation34 refers to the process by which silts or clays gradually reduce pore space volume (and 

therefore increase unit weight) in response to a change in pressure. In saturated or nearly saturated 

samples, water must flow to a drainage point before soil pore volume can change. This distance in 

combination with the soil permeability can substantially impact the consolidation rate.  

• Compaction is the process of increasing a soil’s bulk density by reducing void space occupied by air. 

Compaction can occur due to natural processes, such as burial of a sand or partially saturated silt or 

clay.  Soils are also compacted using construction equipment in the field and drop hammers in the 

laboratory. The maximum density that can be achieved depends on the applied energy and the soil 

moisture content. ASTM defines a Standard Proctor or Modified Proctor test method to determine the 

relationship between soil moisture content and maximum dry density. The difference between the two 

tests is the Modified Proctor method applies more energy than the Standard Proctor test. 

• Settlement is the vertical movement of subsurface material, including soils, due to stress and strain 

behavior over time. Settlement in the foundation (or elsewhere in the subsurface) can create 

differential movement of the superstructure that may cause cracking in soil and concrete that leads to 

adverse behavior.

 
34  Note that consolidation refers to similar properties of rock and soil, though addressing consolidation properties 

can help an engineer infer different treatment options for rock (e.g., grouting) vs soil (e.g., compaction). 
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APPENDIX D. SUPPLEMENTAL INFORMATION ON HYDROPOWER 

FOUNDATION ENGINEERING PRACTICE 

Figures and tables are provided in this appendix as supplemental information to that in Section 4, Current 

State of Practice in Hydropower Foundations: 

• Figure D.1. Illustration of common earthfill dam types. 

• Figure D.2. Illustration of common rockfill dam types. 

• Figure D.3. Illustration of common concrete dam types. 

• Table D.1. Summary of potential design issues for relatively common geologic environments for rock 

foundations. 

• Table D.2. Summary of potential design issues for relatively common geologic environments for soil 

foundations. 

• Table D.3. Common geotechnical laboratory tests for soils. 

• Table D.4. Characterization of structures, compatible foundations, and watertightness for common 

dam types.  

• Table D.5. Applicability and procedures for common dam foundation treatments.  
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Figure D.1. Illustration of common earthfill dam types. Source: Modified from (USBR (2006a). 
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Figure D.2. Illustration of common rockfill dam types. Source: Modified from (USBR (2006a). 
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Figure D.3. Illustration of common concrete dam types. 
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Table D.1. Summary of potential design issues for relatively common geologic environments for rock 

foundations. Source: Modified from Fell et al. (2014). 

Foundation 

subcategory 

Typical 

strength 

classification 

Transmissivity 

and seepage 
Potential design issues 

Igneous rock foundations 

Granite Sound 

Occasionally 

requires 

treatment 

• Concealed sheet joints 

• Fresh rock outcrop 

• Chemically altered zones 

• Extremely weathered materials 

Volcanic rocks 

(intrusive and 

flow) 

Sound 
Often requires 

treatment 

• Vesicular zones 

• Clinker or breccia zones 

• Lava tunnels 

• Old weathered profiles 

• High mass permeability 

• Interbedded pyroclastic or sedimentary materials 

• Columnar joint patterns 

• Toppling failure 

• Difficulties in blast hole drilling 

• Poor fragmentation during blasting 

• Irregular joint patterns and pillow structure 

• Alteration effects—secondary materials  

• Very high-plasticity soils, expansive, fissured 

• Unstable slopes 

• Alkali-aggregate reaction 

Metamorphic rock foundations 

Schistose Usually sound 

Sometimes 

requires 

treatment 

• Degree of anisotropy 

• Low durability in exposed faces 

• Particle shapes and strengths inadequate for filter, concrete, 

or pavement materials 

• Suitability for use as rockfill 

• Foliation shears 

• Kink bands 

• Mica-rich layers 

• Unstable slopes 

Sedimentary rock foundations 

Pyroclastics 

and airfall 

volcanics  

Variable 
Usually requires 

treatment 

• Extreme variability 

• Very low in situ densities, collapse type behavior 

• Clays with adverse mineralogy (e.g., smectite) 

• High in situ permeability 

• Brittle in situ and when compacted 

• Highly erodible in situ and when compacted 

• Highly to extremely sensitive zones 

• Complex groundwater distribution 

• Welded rocks: gaping joints 

• Columnar jointed welded rocks: poorly graded rockfill, 

quarrying problems 

• Interbedded lavas? 

• Intrusive dikes, sills, or plugs 

• Alkali-aggregate reaction 

Mudrocks Variable 

Occasionally 

requires 

treatment 

• Slaking or disintegration on exposure 

• Swelling on exposure 

• Valley bulging 

• Soluble minerals in beds or veins 

• Presence of sulfide minerals 

• Slickenside fissures 

• Progressive shear failures 
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Foundation 

subcategory 

Typical 

strength 

classification 

Transmissivity 

and seepage 
Potential design issues 

• Bedding plane surface false or shears 

• Unstable slopes, either shallow or deep seated 

• Possibility of high pore pressures, in layered sequences 

• Suitability for rockfill, random field, earthfill, and haul roads 

Sandstone and 

related 
Often sound 

Often requires 

treatment 

• Relatively high porosity, permeable 

• Gypsum or anhydrite present as cement 

• Quartzites: high quarry and handling costs, difficult to 

compact 

• Rocks of medium or lower strength may not produce freely 

draining rockfill 

• Interbeds of shale or clay stone 

• Betting surface faults at bed boundaries 

• Horizontal beds: open joints and bedding surface crushed 

seams near surface due to stress relief 

• Horizontal beds with shale interbeds: cambering and collapse 

due to removal of support by weathering shale 

• Land sliding in colluvium developed on weathering 

sandstone or shale slopes 

Carbonate 
Depends on 

solution activity 

Often requires 

treatment 

• Geologic age 

• Cavities, air-filled, water-filled, or soil-filled 

• Collapse of cavities 

• Extremely irregular, often pinnacled surface of fresh rock 

• Sharp boundary between residual soils and fresh rock 

• Strong rock around solution tubes and cavities in weak 

porous rocks 

• Solution cavities in altered carbonate rocks or 

metamorphosed impure carbonate rocks 

• Very weak, low-density, irritable weathered materials 

• Extremely high permeability 

• Extreme variations in permeability 

• Possibly deep, major leakage paths out of reservoir 

• Presence of sinkholes, exposed or concealed 

• Composition and pH of the groundwater and reservoir water 

• Presence, amount, and distribution of any sulfide minerals 

• Potential for dangerous ongoing solution in the dam 

foundation 

• Suitability for use as embankment materials 

• Suitability for use in concrete and pavements 

• Alkali carbonate reaction 

• Chert present: alkali silica reaction 

• Shaley (argillaceous) rocks: durability 

• Unstable slopes, where interbeds of mudrocks are present 

Evaporites 
Requires 

investigation 

Depends on 

solution activity 

• Cavities, air-filled, water-filled, or soil-filled 

• Collapse of cavities—subsidence 

• Ground weakening due to ongoing solution 

• Increasing permeability due to ongoing solution 

• Heaving due to growth of gypsum crystals 

• Large-scale heave due to hydration of anhydrite 

• Chemical composition of groundwater and reservoir water 

• Presence of halite—chemical tests 

• Possibility of cementation of filter materials by gypsum 
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Table D.2. Summary of potential design issues for relatively common geologic environments for soil 

foundations. Source: Modified from Fell et al. (2014). 

Foundation 

subcategory 

Typical 

strength 

classification 

Transmissivity 

and seepage 
Potential design issues 

Alluvial soil foundations 

All Often sound 
Usually requires 

treatment 

• Vertical and lateral variability related to deposition 

conditions 

• Lenticular deposits of openwork gravels with extremely 

high permeability 

• Anisotropy due to layering 

• High anisotropy in permeability 

• Oxbow lake deposits, compressible organic soils 

• Cracks, fissures, holes after rotting vegetation or burrowing 

animals, all either open or backfilled 

• Cemented layers 

• Buried timber, rotten or preserved, large voids 

Colluvial soil foundations 

Scree and talus 

Often unsound 
Usually requires 

treatment 

• High permeability and compressibility 

• Timber debris rotted or preserved 

• Potential for instability or debris flow 

Slope wash 

• Tubular voids causing high mass permeability 

• Compressible 

• Erodible 

• Potential for slope instability 

Landslide 

debris 

• Variability in composition and properties: laterally and 

vertically 

• Boulders 

• Large voids 

• Gaping or infilled cracks 

• High compressibility 

Residual soil foundations 

 (Laterites and lateritic weathering profile) 

All Often sound 
Sometimes 

requires treatment 

• Lateral and vertical variability 

• Deeply weathered 

• High in situ density at depth 

• If sinkholes present, their mechanism and effect 

• Fine soils suitable for earth core 

• Gravelly ferricrete or alcrete suitable for pavements 

• Cemented material in crust suitable for rockfill or riprap 

• Silcrete horizon or quartzite bed 

Glacial soil foundations  

(Glacial deposits and landforms) 

All Often sound 
Sometimes 

requires treatment 

• Buried valleys 

• Bedrock surface or boulder 

• Bedrock disrupted near upper surface 

• Wide variety of tilt types 

• Materials unsorted: clay to boulder sizes 

• Slickensides in clay-rich till 

• Variable compaction and cementation 

• High-permeability sands and gravels 

• Loess 

• Landslide deposits 

• Creeping landslides 
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Table D.3. Common geotechnical laboratory tests for soils. Source: Modified from NAVFAC (1986). 

Test Description/purpose 
Parameters 

obtained 
Procedure reference 

Natural moisture 

content and natural 

density 

Obtain moisture content and density of foundation 

soils for geotechnical design based on natural field 

conditions 

Moisture content (w), 

natural density (ρ) 

ASTM D2216 

(moisture), ASTM 

D2166 (density) 

Specific gravity Obtain specific gravity of soils, which is used to 

infer weight-volume relationships of soil. Can be 

used to estimate drainage and strength 

characteristics  

Specific gravity (Gs) ASTM D854 

Atterberg limits 

(liquid limit and 

plastic limit)  

Liquid limit: water content at which soil begins 

behaving like a liquid. Plastic limit: water content 

at which soil begins behaving like a semi-solid (i.e., 

at which soil will stop deforming and will break). 

Atterberg limits are used to quantify the plasticity 

of a soil, which can be used to estimate liquefaction 

potential, shear strength, consolidation, soil 

classification, and so on  

Plastic limit (PL), 

liquid limit (LL), 

plasticity index (PI) 

ASTM D4318 

Particle size 

distributions (sieve 

analysis and 

hydrometer 

analysis) 

Used to classify soils per USCS. Sieve analysis 

used to determine % gravels, % sands, and % fines 

(clay and silt). Hydrometer analysis used to 

determine % clay and % silt. Soil classification is 

useful in predicting soil behavior  

Soil classification per 

USCS 

ASTM D6913 (All 

Sieves), ASTM D7928 

(including. hydrometer) 

Corrosivity (pH, 

sulphate and 

electro-

conductivity [EC]) 

EC test results provide an indication of soil chloride 

content. High pH, sulphate, or chloride content may 

require Type V cement and other design measures 

to mitigate corrosive attack 

pH, ppm sulfate, 

milliSiemens per 

meter (EC) 

 AASHTO T-290 

(sulphate) 

ASTM E70 and D497 

(pH) 

ASTM G57 

(resistivity—inverse of 

EC) 

Flexible-wall 

permeability test 

Determine saturated hydraulic conductivity of soils 

at varying confining stresses. Used in seepage 

analysis, which is important for earth dam stability 

and operation 

k20 (permeability at 

temperature 

normalized to 20°C) 

ASTM D5084 

Consolidation Tests performed to determine relationship between 

effective stress and void ratio/strain. These data are 

used to estimate magnitude and rate of differential 

and total settlement for cohesive soils 

Preconsolidation 

pressure (Pc), 

coefficient of 

consolidation (Cv), 

compression index 

(Cc), recompression 

index (Cr) 

ASTM D2435 

Swell/collapse 

potential 

Used to determine collapse/heave potential of a soil 

at varying confining stresses and water contents  

Collapse index, 

swelling index 

ASTM D4546 

Shear strength 

(triaxial 

compression 

undrained) 

Soil specimens are prepared and sheared to estimate 

their effective stress strength parameters. Used for 

slope stability and foundation shear strength 

analysis. Typically applied to cohesionless or 

unsaturated soils 

Effective friction 

angle (φ') and 

cohesion intercept 

(c') 

ASTM D4767 

(consolidated 

undrained)  

D2850 (unconsolidated 

undrained)  

D7181 (consolidated 

drained) 

Shear strength 

(direct simple 

shear) 

Soil specimens are prepared and sheared to estimate 

their undrained strength parameters. Used for slope 

stability and foundation shear strength analysis. 

Typically applied to cohesive and saturated soils 

Undrained strength 

ratio (Su/Sig'v) 

ASTM D6528 

Compaction 

(standard or 

modified proctor) 

Used to determine relationship between molding 

water content and dry unit weight of soils. Results 

are used to provide percent compaction and water 

molding content needed to achieve the required 

engineering properties 

Maximum dry 

density (MDD) and 

optimum moisture 

content (OMC) 

ASTM D698 (standard) 

ASTM D1557 

(modified) 
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Table D.4. Characterization of structures, compatible foundations, and watertightness for common dam 

types. Note: ID refers to the dam types shown in Figures D.1, D.2, and D.3. 

ID  
Structure principal 

material 

Assumed 

compatible 

foundation 

material 

Watertightness considerations 

Phreatic 

water 

surface 

through 

structure? 

Conventional 

measures to 

reduce seepage 

through rock 

foundations 

Conventional 

measures to elongate 

the seepage path 

through a soil (or 

highly weathered 

rock) foundation 

E1  

(a) 

Homogeneous earth 

fill with internal 

drain 

Impervious soil  Yes N/A N/A 

E2  

(b, c) 

Central or inclined 

core, zoned earth 

fill 

Impervious rock Yes 
Foundation 

grouting 
  

E3  

(d) 

Homogeneous earth 

fill with internal 

drain 

Pervious soil (or 

highly weathered 

rock or regolith) 

Yes   

Slurry trench, 

upstream impervious 

blanket 

E4  

(e ) 

Central core, zoned 

earth fill  

Pervious soil (or 

highly weathered 

rock or regolith) 

Yes 

Foundation 

grouting in 

bottom of core 

trench 

  

E5  

(f) 

Zoned earth fill with 

upstream 

impervious zone 

Pervious soil (or 

highly weathered 

rock or regolith) 

Yes   
Upstream 

impervious blanket 

R1  

(a, b) 

Rock fill with 

central or inclined 

core 

Impervious rock 

for clay core and 

pervious soil (or 

highly weathered 

rock or regolith) 

for shoulders 

Yes 

Foundation 

grouting in 

bottom of core 

trench 

  

R2  

(c) 

Rockfill with 

upstream membrane 

(assumed concrete-

faced rockfill dam) 

Impervious rock No 

Foundation 

grouting along 

upstream toe slab 

(plinth) 

  

C1  

(a, 2 

sections) 

Concrete hydraulic 

structure (e.g., non-

overflow section, 

overflow section, 

power intake) 

Impervious rock No 
Foundation 

grouting 
  

C2  

(b, c, d, 

e) 

Concrete hydraulic 

structure (e.g., non-

overflow section, 

overflow section, 

power intake) 

Pervious soil (or 

highly weathered 

rock or regolith) 

No   

Slurry trench, cutoff 

wall (sheet pile or 

concrete), or 

upstream 

impermeable 

concrete apron. 
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Table D.5. Applicability and procedures for common dam foundation treatments. Source: Modified from Fell 

et al. (2014). 

 Treatment 
Foundation 

type 

Applicability 

Procedure reference Concrete 

dam 

Rockfill 

dam 

Earthfill 

dam 

General 

foundation 

excavation 

Rock ✅ ✅ ✅ 
Excavation of compressible and low-strength 

soil and weathered rock as is necessary to 

form a surface sufficiently strong to support 

the dam and to limit settlement to acceptable 

values  
Soil ✅ ✅ ✅ 

Foundation 

cutoff 

excavation  

Rock ✅ ✅ ✅ Excavation below general foundation level to 

remove highly permeable or erodible soil and 

rock, or both Soil ✅ ✅ ✅ 

Cutoff 

foundation wall 

Rock ✅ ✅ ✅ 
Examples are sheet piles and slurry cutoff 

walls 
Soil ✅ ✅ ✅ 

Curtain grouting  

Rock ✅ ✅ ✅ Drilling of holes into the foundation and 

injecting grout (usually cement slurry) under 

pressure to reduce the permeability of the rock  
Soil    

Consolidation 

grouting, also 

called blanket or 

stitch grouting  

Rock ✅ ✅ ✅ Grouting carried out in the upper part of the 

cut-off foundation to reduce permeability of 

the rock  Soil    

Rock anchors35 

Rock ✅   
Post-tensioned tendons installed in drilled 

holes where the entire bond length is located 

in rock. The anchor force is transmitted to the 

rock by bonding between grout placed 

between the tendon and the rock wall of the 

drill hole 
Soil    

Ground 

improvement 

Rock    
Includes a wide range of technology, including 

stone columns, dynamic compaction, 

vibroflotation, and wick drains; see Schaefer 

et al. (2012) for a relatively recent and 

comprehensive overview 
Soil ✅ ✅ ✅ 

Relief wells 

Rock    Construction of wells that will overflow if 

excess groundwater pressure develops, 

relieving pore water pressures in the aquifer 

and improving stability Soil ✅ ✅ ✅ 

Upstream 

impermeable 

blanket or 

concrete apron 

Rock    
Material with low hydraulic conductivity 

placed immediately upstream of dams to 

lengthen the flow path of seepage within the 

dam, thus reducing hydraulic gradients and the 

seepage quantity at the downstream portion of 

the dam 
Soil ✅ ✅ ✅ 

 

 
35 Rock anchors are often used for spillways and stilling basins, regardless of dam type. 
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APPENDIX E. LITERATURE REVIEW OF NON-HYDROPOWER 

FOUNDATIONS 

Although hydropower foundations experience unique conditions (e.g., resisting and supporting loads 

imposed by the surrounding hydrologic environment, especially during extreme weather events, and 

problems with induced subsurface flow), technologies found in other industries could potentially be 

relevant in advancing foundation R&D for hydropower. Foundations are a crucial part of most structures 

across the transportation, offshore wind energy, marine and hydrokinetic (MHK) energy, and 

residential/commercial building industries. Accordingly, many techniques used in these industries may 

share similarities to hydropower foundation site assessment, design, and construction and thereby could 

have crossover applicability. Even non-foundation technologies, such as instrumentation and autonomous 

equipment used in industries such as mining, could have relevance.  

E.1 BRIDGE FOUNDATIONS 

For the greater part of human history, bridges have been used to cross riverine and marine waterways that 

posed difficult barriers to transportation. To accomplish their purpose, bridges typically must rely on 

structures constructed throughout the waterway—piers connect the bridge to the foundation system placed 

in the waterway. These foundations must be able to withstand continuous partial-to-full submergence and 

extreme weather events while supporting the static and dynamic loads of the bridge in and out of 

operation; these demands draw a parallel to some of the conditions of a hydropower foundation, 

especially given that some dams are even used as bridges. Bridge foundations are typically divided into 

two main types (Figure E.1): shallow, structures with a wide base spread across the ground (usually the 

bedrock is within 10 ft of the surface and the loads are lighter), and deep structures that penetrate deep 

into the subsurface, such as piles, drilled shafts, and micropiles/augercast piles (WDOT, 2017).36 For most 

aquatic applications, deep foundations are deployed, owing to their ability to securely support large loads 

for long periods of time. Of these, piles are typically used because they cost less (WDOT, 2017). Similar 

to conventional hydropower construction methods, construction of bridge foundations generally involves 

cofferdam dewatering unless the site is small, in terms of both bridge size and water depth. Battered 

piling also is used, which involves piling multiple beams that are twisted in different directions.37 

 
36 Available from http://madridengineering.com/deep-foundations-and-bridge-construction/ (accessed August 10, 

2020). 
37 Available from https://www.foundationstructures.com/foundation-construction-process-bridges/ (accessed August 

10, 2020). 

http://madridengineering.com/deep-foundations-and-bridge-construction/
https://www.foundationstructures.com/foundation-construction-process-bridges/
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Figure E.1. Depiction of two types of foundations associated with bridge superstructures— 

shallow and deep. Source:  FHWA (2013). 

Because of the high importance of bridges in the transportation network, the technology driving bridge 

foundation design and construction is constantly advancing. Innovations in design-phase load testing by 

engineers working on the new Sakonnet River Bridge project—a major transportation corridor between 

Rhode Island and Massachusetts—allowed for final design adjustments, including testing of new 

technologies, before the start of construction. Such adjustments are typically not possible for the difficult 

subsurface conditions present at such sites (Locsin et al., 2015). One technology that proved successful 

and was included in the final design was the use of an internal, recessed plate to improve the resistance of 

steel-pipe piles (Locsin et al., 2015). Other innovations involved advancements in the materials employed 

in foundation construction, such as cement/concrete, shape-memory alloys, and alternate materials 

(Abhyankar and Subramanian, 2018). New types of concrete are being developed that have increased 

strength, ductility, and other structural properties, which increase their versatility across various 

environments. A key technology currently undergoing laboratory tests is self-healing concrete, which 

contains dormant bacteria and calcium lactate in “pods” that can be activated by water to fill up cracks, 

increasing the longevity of the structure, especially under extreme conditions (Abhyankar and 

Subramanian, 2018). Another advanced technology is shape-memory alloys that have increased elasticity 

(much greater than that of typical concretes and steels) and the ability to revert to their initial shape when 

certain temperature requirements are met (Abhyankar and Subramanian, 2018). Alternate materials, as 

opposed to typical concrete, are also being pursued that have more sustainable production processes, such 

as manufactured sand, iron-copper-steel aggregates, and industrial byproduct–cement mixtures (e.g., fly 

ash, slag cement, silica fume, rice hush ash, and natural pozzolans (Abhyankar and Subramanian, 2018). 

Whether improved design-phase methodologies or innovative materials with increased structural 

properties and performance, bridge-building technologies can potentially be relevant to hydropower 

foundation design and construction, and even other areas of development. 

E.2 OFFSHORE WIND 

Across the world, offshore wind energy is increasingly being pursued because of the existence of 

abundant resources along the coasts of many countries; for instance, the United States has theoretical 
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resources totaling more than 2,000 GW of generation potential (Esteban et al., 2011).38 This boom is 

spearheading extensive innovation across all aspects of development, from foundations to turbine blades 

and rotors, with support from organizations such as the DOE Wind Energy Technologies Office.39 Wind 

developers are also capitalizing on the experiences of the oil and gas industry, which has been extensively 

involved in planning, designing, and constructing semi-permanent offshore structures for many decades.37 

For an offshore wind turbine, the foundation represents approximately 35% of the total cost and signifies 

a critical structure system, much like hydropower foundations (Esteban, López-Gutiérrez, and Negro, 

2019). To date, nearly 80% of worldwide offshore wind turbine foundations are monopiles, or cylinders 

that are drilled into the seafloor upon which the base of the turbine is attached.39 Because of the limited 

versatility of monopiles (i.e., they are mainly constrained to shallow waters with non-rocky soils and 

cannot support large turbines), in addition to the negative environmental impacts associated with their 

installation (e.g., loud noise and ground disturbances that negatively impact marine wildlife), other 

foundation technologies are being used and researched.39 One such technology is four-legged jackets, 

which can support larger turbines, can be installed in deeper waters, and support more weight. A more 

modular version, the “twisted” three-legged jacket, is available as well.39 The modularity of the latter 

results from a streamlined design that reduces the materials and times associated with construction, 

transportation, and installation compared with the traditional jacket.39 Other foundation technologies 

being explored are suction buckets (ideal for soft, sandy soils)39; floating platforms anchored to the 

seafloor (ideal for deep water); and gravity-based structures, which are ideal for rocky or sandy soils and 

shallow or deep water, but only in soils with high bearing capacities (IRENA, 2016; Esteban, López-

Gutiérrez, and Negro, 2019). Figure E.2 illustrates multiple types of offshore wind turbine foundations. 

 

Figure E.2. Illustration of different types of wind turbine foundations (left to right: monopile, jacket, twisted 

jacket, spar-submersible, tension leg platform, spar buoy). Source: Josh Bauer, National Renewable Energy 

Laboratory.40 

 
38 Available from https://www.energy.gov/eere/wind/offshore-wind-research-and-development (accessed August 10, 

2020). 
39 Available from https://www.awea.org/policy-and-issues/u-s-offshore-wind (accessed August 10, 2020). 
40 Available from https://www.energy.gov/eere/articles/us-conditions-drive-innovation-offshore-wind-foundations 

(accessed August 10, 2020). 

https://www.energy.gov/eere/wind/offshore-wind-research-and-development
https://www.awea.org/policy-and-issues/u-s-offshore-wind
https://www.energy.gov/eere/articles/us-conditions-drive-innovation-offshore-wind-foundations
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A major advantage of offshore wind turbine foundations is their modularity—nearly all foundation 

systems are manufactured offsite and then transported to the site and installed with a relatively simple 

procedure that requires no dewatering. For these offshore foundation systems, the riverine environments 

of hydropower development offer different challenges from the marine environments where such 

structures are usually deployed, in terms of corrosion, flow profiles and induced scouring, and depth 

ranges. For instance, the extreme depths and bidirectional tidal currents that offshore foundations face are 

rare occurrences in rivers; rivers, in turn, will have differing effects on scouring of obstructions placed in 

the waterway. Furthermore, offshore deployments typically do not experience induced subsurface flows 

(i.e., seepage) such as are common in riverine environments associated with dams. 

E.3 MARINE HYDROKINETIC 

Some “current energy converter” MHK devices resemble wind turbines in design and function (i.e., both 

convert the kinetic energy of a moving fluid into electricity), and their foundation technologies are similar 

(Chen and Lam, 2014). Although it is not specific to riverine applications, a useful report recently 

released by Sandia National Laboratories and the University of Exeter details the specific requirements 

for MHK foundation systems in ocean environments, including the necessary inputs and tools for the 

design and anchoring of arrays (Heath et al., 2014). Additionally, the report analyzes the key geotechnical 

properties having the greatest impact on foundation system design and the associated environmental 

impacts of deployment, primarily in terms of cyclical loading and sediment response. Even though these 

technologies may not be applicable to the design and construction of hydropower facilities (dams 

specifically), the methodologies and intuition used in accelerating offshore wind and MHK power 

development can prove insightful, especially as some hydropower R&D is exploring more modular 

technologies that can take advantage of foundations designed for smaller structures (refer to 

Section 3.4.1.2 for more information about this hydropower research area). 

E.4 FOUNDATION SCOUR PROTECTION 

A shared design consideration among the MHK, offshore wind, and transportation industries, in addition 

to the hydraulic structures (e.g., spillways), is the challenge of scouring due to the varying flow of water 

in and around underwater structures. Many technologies and techniques have been developed over the 

years to reduce the severity of these problems (e.g., riprap or vegetative covering around the base of the 

structure; alterations of the water channel upstream of the structure). Their effectiveness is increased with 

consistent monitoring and maintenance when appropriate (IHRB, 2006). However, because of the long 

lifespans of most of the structures in these industries, scouring protection technologies and techniques are 

constantly evolving. For instance, DHI and LIC Engineering developed an innovative scouring system 

that combines two steps in the installation process for armoring scour systems on offshore wind turbines 

to reduce construction timelines and costs.41 They created a wide-grade material that encompasses both a 

filler layer of finer material and an armor layer of coarser material.41 Another technology currently being 

researched is the SISProtect system (Self-Installing Scour Protection) for offshore wind farms. It 

revolutionizes the frond mat concept (used in the oil and gas industry) for offshore wind applications by 

creating a deployment system to allow installation of the mats directly alongside the foundation, thereby 

reducing timelines, costs, and environmental impacts.42 Frond mats are beds of artificial seaweed that 

require no ongoing maintenance, use sustainable materials, can be deployed at depths of up to 100 m, and 

have a simple installation process compared with conventional riprap technologies.42 Although these 

technologies may not be applicable to foundations because of their placement in the subsurface, distant 

 
41 Available from https://www.dhigroup.com/global/news/2019/06/innovative-design-lowers-costs-of-offshore-

wind-farm-scour-protection-systems (accessed August 10, 2020). 
42 Available from https://gtr.ukri.org/projects?ref=104364 (accessed August 10, 2020). 

https://www.dhigroup.com/global/news/2019/06/innovative-design-lowers-costs-of-offshore-wind-farm-scour-protection-systems
https://www.dhigroup.com/global/news/2019/06/innovative-design-lowers-costs-of-offshore-wind-farm-scour-protection-systems
https://gtr.ukri.org/projects?ref=104364
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from hydraulic flows, they can potentially be useful in many other superstructure applications (e.g., 

spillways, tailraces). 

E.5 BUILDING CONSTRUCTION 

Although technologies used in other, non-hydropower aquatic industries can have the greatest impact on 

advancing hydropower-specific foundation R&D, inland industries such as residential and commercial 

building construction nonetheless offer good insights because of their widespread adoption (e.g., more 

houses are built per year than hydropower facilities). Foundations used in residential construction are 

typically divided into four categories, mainly based on the residential purpose of the foundation: slab (no 

purpose), basement (residential purposes), crawl space (maintenance purposes), and pier (for more 

challenging environments such as those prone to flooding, expansive or collapsible soils, or 

mountainous/hilly terrain).43 Because of the high demand the residential housing industry has recently 

experienced, and its projected increase across the coming years, prefabrication technologies have been 

explored to reduce timelines and costs; but greater strides have been made in simplifying the design and 

construction of the superstructure compared with the foundation (Teodosio et al., 2018). However, 

advancements in precast concrete foundation walls and floors are being explored, as they eliminate 

weather constraints (poured concrete requires specific weather conditions for optimal forming to avoid 

imperfections), save time, and potentially save costs for labor and materials typical construction produces 

much waste material and has a greater environmental impact).44,45,46 Over the past decade, states have 

been strengthening their housing codes in regard to fire and water resistance in light of recent natural 

disasters (e.g., tornadoes, hurricanes, wildfires); the revised codes play to the strengths of precast concrete 

compared with poured concrete.45,46 Additionally, fluctuations in market conditions have unfavorable 

implications for housing quality and craftsmanship, which modular, precast technologies potentially can 

avoid. The advantages of these technologies and methodologies can also be argued for hydropower 

foundations, and greater hydropower facility construction in general, as any design and construction cost 

and time reductions greatly increase overall project feasibility, especially when they reduce 

environmental impacts (refer to ORNL’s SMH project in Section 3.4.1.2). 

Commercial buildings can also benefit from innovations in modular, precast foundation technologies, but 

such structures must be built to support much greater loads and adhere to stricter regulations than 

residential homes.47 Therefore, technological innovations for commercial construction have larger hurdles 

to overcome, similar to advancements occurring in the hydropower, transportation, offshore wind, and 

MHK industries. However, such challenges provide opportunities for advancements in materials (i.e., 

alternatives to concrete or steel) and design/construction methodologies, especially given the many 

different types of commercial foundations. Similar to bridge systems, commercial building foundations 

can be divided into two main categories based on depth: shallow (the load is distributed across the upper 

subsurface layers; e.g., continuous or spot footings, monolithic slabs, certain types of mats) and deep (the 

load is transferred deeper into the subsurface through the use of piles or mats).48 As these foundation 

types will largely depend on the type of superstructure envisioned, innovation specific to the foundation 

 
43 Available from https://edensstructural.com/a-look-at-the-different-types-of-home-foundations/ (accessed August 

10, 2020). 
44 Available from https://precast.org/2017/06/business-case-engineered-precast-concrete-walls/ (accessed August 10, 

2020). 
45 Available from https://precast.org/2010/05/precast-in-residential-applications/ (accessed August 10, 2020). 
46 Available from https://www.builderonline.com/building/building-science/new-foundation-system-could-

revolutionize-basement-construction_o (accessed April 26, 2020). 
47 Available from https://mwconstructionutah.com/commercial-vs-residential-construction/ (accessed August 10, 

2020). 
48 Available from https://www.matthewswallanchor.com/commercial/commercial-foundation-types/ (accessed 

August 10, 2020). 
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system can also be included, at least partly, in the superstructure. For instance, Smith-Midland’s Sierra 

Wall II is a precast concrete highway sound barrier that has the foundation system included in its design.49 

Although prefabricated foundation-superstructure systems may not be feasible for larger hydropower 

projects, they may be applicable in smaller, more modular systems that follow paradigms such as 

ORNL’s SMH project (refer to Section 3.4.1.2), depending on a site’s geologic and hydraulic conditions. 

Additionally, innovative materials and design/construction methodologies used in these industries can 

have a significant degree of applicability to hydropower foundations and superstructures.  

E.6 MINING, TUNNELING, AND AUTONOMOUS EQUIPMENT 

Beyond innovative foundation technologies across inland industries, the use of autonomous equipment 

and instrumentation has been advancing rapidly across many industries in recent years. One of these 

industries is mining, in which the increasing use of sensors and analytic software allows for more accurate 

planning of maintenance outages and reduces maintenance requirements, thereby lowing costs.50,51 

Additionally, robotics and autonomous equipment are reducing the need for human labor, making 

operations safer and more economical.50 Across the mining industry as a whole—which has experienced 

declines in productivity for a significant part of the past two decades—these technical advancements 

show great promise, especially in times of increasingly stringent environmental constraints and other 

regulations that limit the ability of developers to obtain licenses.50 The hydropower industry faces similar 

hurdles, as conventional developments have an extensive regulatory process that severely hampers project 

feasibility. However, advanced instrumentation and analytic technology could help ensure environmental 

and other types of regulatory compliance throughout the entire construction and operation phases of a 

project, in addition to the potential for autonomous equipment to increase worker safety and reduce 

project costs. For foundation-specific applications, advanced software and sensor technology could be 

useful to detect early signs of damage resulting from seismic activity, extreme weather events, or regular 

wear-and-tear, helping to prevent future dam/facility incidents or failures. Although such technologies 

might not have a significant impact on upfront project costs, they could potentially reduce operation and 

maintenance costs throughout the lifetime of the facility.  

 
49 Available from https://smithmidland.com/images/pdfs/Smith_Midland_Case_Study_one.pdf (accessed August 10, 

2020). 
50 Available from https://www.mckinsey.com/industries/metals-and-mining/our-insights/behind-the-mining-

productivity-upswing-technology-enabled-transformation (accessed August 10, 2020). 
51 Available from https://www.mckinsey.com/industries/metals-and-mining/our-insights/how-digital-innovation-

can-improve-mining-productivity (accessed August 10, 2020). 
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