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FOREWORD

The initial version of this training manual was prepared in 1985 to compliment a series of training 
manuals issued by the International Atomic Energy Agency (IAEA) to provide organized information on 
the major types of facilities in the nuclear fuel cycle. The other training manuals in this series are:

– Fuel Fabrication Plant 
– Research Reactor 
– Critical Assembly 
– Nuclear Power Plant 
– Reprocessing Plant

The information in these training manuals was specifically prepared for private study by new inspectors 
about to undergo training in the Introductory Course on Agency Safeguards (ICAS). The training manuals 
are intended to give prospective ICAS students the necessary background information needed in the 
training course. Financial support for this manual was provided by the Program for Technical Assistance 
to IAEA Safeguards.

Revision 1, ORNL/TM-2005/43, was produced in May 2005 to update current enrichment capacities and 
to reflect current practices. This revision was published in September 2019 to address questions raised 
during US−sponsored training classes for IAEA staff on nuclear material safeguards for uranium 
enrichment plants. 

I would like to thank John Begovich, Brent McGinnis, Joe Dooley, and Russ Johns for their technical 
review, and Diana Tucker, Ann Pederson Kapsimalis, and Natalie McGirl for updating this training 
manual.

J. M. Whitaker, Manager
International Safeguards Group 
Nuclear Nonproliferation Division
Oak Ridge National Laboratory
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1. INTRODUCTION

Objectives

After completing this section, readers should be able to

1. relate the scope and level of the material in this manual to their background and experience,

2. understand the relationship between this manual and the material they will encounter in their training 
program, and

3. understand how to use this manual effectively along with other manuals in this series to supplement 
their prior knowledge.

One of the primary objectives of the International Atomic Energy Agency (IAEA) Safeguards Training 
Program is to help new inspectors gain knowledge and develop skills that will be required for them to 
carry out their duties. The formal instructional program for inspectors within the Agency begins with the 
Introductory Course on Agency Safeguards (ICAS). Time and resource constraints dictate that this course 
is devoted specifically to safeguardsrelated information with the assumption that the students have a 
basic familiarity with nuclear technology. In some cases, a new inspector’s prior experience may have 
been specialized to the extent that he is unfamiliar with the basic technology of some of the types of 
nuclear facilities he will be inspecting. In other cases, a student may find it useful to review the English 
vocabulary for technical terms he may have encountered in another language. A glossary of important 
terms is provided in Appendix A.

This manual and the five others in this series are intended to provide the student with an overview of the 
technology involved in the nuclear facility types most often encountered in safeguards inspections. This 
particular manual addresses uranium enrichment plants and processes. The other manuals consider fuel 
fabrication plants, research reactors, critical assembly facilities, nuclear power plants, and reprocessing 
plants.

The primary objective of this training manual is to familiarize an inspector with the basic principles, 
concepts, structure, and operation of uranium enrichment plants necessary for conducting inspections. 
Although the principal enrichment methods are discussed, this manual focuses on the gas centrifuge 
enrichment method because it is the only type of operating enrichment facility currently under IAEA 
safeguards. Typical plant operating procedures are described and safeguards−relevant features are 
emphasized.

Section 2 of the manual provides a discussion of the fundamentals of uranium enrichment. The function 
of uranium enrichment in the nuclear fuel cycle is discussed, basic isotope separation and cascade theory 
are presented, current uranium enrichment technologies are described, and the concepts of material 
balance and separative work are introduced. This discussion is intended to be introductory rather than 
exhaustive. Example problems are included to illustrate the application of the concepts introduced.

Section 3 of the manual focuses on the gas centrifuge enrichment technique. The gas centrifuge design 
history and background are presented, the components and operating parameters of a modern gas 
centrifuge are described, and the cascade arrangement is explained. Using the fundamental concepts 
introduced in Section 2, equations are developed to compute cascade enrichments and flow rates.
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The general features of a typical gas centrifuge enrichment plant are described in Section 4. The major 
process and support facilities, the process material, the process equipment arrangement, the major on-site 
nuclear material flows, and the materials accounting system are described.

The specific activities and procedures involved in safeguards activities are not considered in this manual. 
These are included in the inspectors’ training activities in the ICAS and in other follow-up courses.
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2. URANIUM ENRICHMENT FUNDAMENTALS

2.1 ENRICHMENT AND THE NUCLEAR FUEL CYCLE

Objectives

After completing this section, the reader should be able to

1. identify the isotopes present in natural uranium,

2. describe the fuel enrichments required in different types of reactors, and

3. understand the function of enrichment in the nuclear fuel cycle.

Isotopes are atoms of the same element that differ from each other only in the number of neutrons 
contained in their nuclei (i.e., same atomic number but different atomic weights). Even though the 
chemical and physical properties of isotopes differ only slightly, they behave quite differently in nuclear 
reactions. Uranium as found in nature is called natural uranium. Natural uranium is comprised of three 
isotopes that have mass numbers of 234, 235, and 238. Table 1 shows the weight percent of each isotope 
present in natural uranium. The isotope 238U, the parent of the uranium series, is present in the amount of 
99.3% and is in equilibrium with its great-granddaughter 234U, which is present in the amount of 
0.0054%. The principal nuclide utilized in the fission process is 235U, which is present in the amount of 
0.71%. 

Table 1. Isotopes present in natural uranium

Isotope Typical concentration 
(wt %)

234U  0.0054
235U  0.71
238U  99.3

Increasing the 235U isotope above its natural concentration of 0.71% is called uranium enrichment. 
Light-water reactor nuclear power plants (e.g., pressurized-water reactors and boiling-water reactors) 
require fuel enriched to 2–5% 235U, and research reactors may require enrichments ranging from natural 
to greater than 90% 235U. Uranium enriched above natural uranium but less than 20% 235U is called low-
enriched uranium (LEU), and uranium enriched to 20% 235U or greater is called highly enriched 
uranium (HEU). Uranium that has 235U content less than natural uranium is called depleted uranium 
(DU). 

Isotopic enrichment of 235U takes place at a uranium enrichment plant. Enrichment, however, is only one 
step in the processing and the use of uranium as a fuel (Figure 1). To provide feed material to an 
enrichment plant, uranium must be mined, milled, and converted to the appropriate chemical form used in 
enrichment operations. In the first step of the fuel cycle, ore containing small quantities of uranium 
compounds (e.g., <0.2 wt %) is mined. In the milling operation, the uranium is extracted from the ore. 
The resulting product is a concentrate of uranium oxide known as yellow cake consisting of 70–90 wt % 
U3O8. In the conversion plant, the yellow cake is converted to uranium hexafluoride (UF6), the feed 
material for most enrichment plants. The yellow cake is first refined to a high purity by solvent extraction 
and calcination, and then it is converted to uranium dioxide (UO2) by reduction with hydrogen gas. The 
UO2 is converted to uranium tetrafluoride (UF4), called green salt, by reaction with hydrogen fluoride 
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(HF); the UF4 is then combined with fluorine gas to produce the compound UF6. This compound is a solid 
at atmospheric pressure and normal ambient temperatures, but it sublimes to the gaseous phase at 
relatively low temperatures.

Figure 1. Nuclear fuel cycle.

At an enrichment plant the 235U concentration of the UF6 is altered. The output streams of an enrichment 
facility are (1) enriched UF6 and (2) depleted UF6. The enriched product stream normally serves as the 
feed material for a fuel fabrication facility, which chemically and mechanically converts the UF6 into 
forms usable in nuclear reactors such as UO2 or uranium carbide (UC). The depleted stream, called tails 
or waste, is normally stored at the enrichment plant. However, it can also be converted and fabricated into 
a form for use as fertile material in a breeder reactor. For use in nuclear power plants, UO2 pellets are 
loaded into alloy tubes, and the tubes are assembled into fuel bundles. These fuel bundles are loaded into 
a power reactor where the 235U is fissioned with the release of energy in the form of heat. The heat is 
transformed into electrical energy through steam generators and turbines.

Spent fuel elements removed from the power reactor contain unfissioned 235U, 238U, heavy-element 
isotopes resulting from neutron irradiation (e.g., plutonium), and a variety of radioactive fission products. 
Following discharge from the reactor, the spent fuel is placed in on-site interim storage for cooling and to 
await further disposition. After a sufficient cooling period, the spent fuel elements can be shipped to a 
spent fuel reprocessing plant, to an off-site interim storage facility, or to a nuclear waste repository. 
During reprocessing, the residual uranium, plutonium, and fission products are chemically separated. The 
uranium recovered during reprocessing may be recycled to the isotope enrichment step and then returned 
to reactor service.

Review Questions for Section 2.1

1. What are the isotopes contained in natural uranium?

2. What is uranium enrichment?

3. What is the 235U enrichment range of the fuel required by most light-water nuclear power plants?

4. What is the typical chemical form of uranium after it has been mined and milled? When it is 
processed in an enrichment plant?
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2.2 BASIC SEPARATION AND CASCADE THEORY

Objectives

After completing this section, the reader should be able to

1. define the separation element of an enrichment plant,

2. describe how material throughput affects the arrangement of the separation equipment, and

3. explain why separation elements are combined in series.

The function of a uranium enrichment plant is to increase the concentration of the 235U isotope in the 
material being processed. Because the chemical and physical properties of isotopes differ only slightly, 
the separation of isotopes cannot be accomplished using the kind of techniques normally used to purify 
substances. Isotopic separation has required development of processes specially designed for this purpose 
that efficiently use the small chemical and physical differences among isotopes.

The basic component of an enrichment plant is the separation 
element. A separation element (Figure 2) is a device that 
separates the incoming feed stream into two outgoing streams: 
an enriched stream, in which the process material is enriched to 
some degree in the desired isotope, and a depleted stream that is 
somewhat depleted in this isotope.1

An important feature of a separation element is the throughput, 
the rate at which feed material can be processed. Some elements 
can process kilograms of material per minute, whereas others 
might process only a few grams per minute. Separation elements 
are connected in parallel to form stages to achieve the necessary 
flow throughput. For separation elements with high throughput 
(such as the gaseous diffusion diffuser), each stage is comprised 
of only one separation element. For separation elements with low throughput (such as the gas centrifuge), 
each stage is comprised of multiple separation elements.

The degree of separation that can be achieved in a given separation element or stage is measured by a 
parameter called the separation factor, . The magnitude of  is determined by process physics and 
engineering and varies widely among separation methods. The separation factor is approximately the ratio 
of the concentration of the enriched stream to the concentration of the depleted stream [Eq. (1)]. (The 
separation factor is more precisely defined in Section 3.3.)

𝛼 =
[% 235𝑈 ÷ (100 ― % 235𝑈)] 𝑓𝑜𝑟 𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 𝑠𝑡𝑟𝑒𝑎𝑚

[% 235𝑈 ÷ (100 ― % 235𝑈)] 𝑓𝑜𝑟 𝑑𝑒𝑝𝑙𝑒𝑡𝑒𝑑 𝑠𝑡𝑟𝑒𝑎𝑚
(1)

To achieve useful enrichments, stages are connected in series to form a cascade (Figure 3). The feed to a 
stage is comprised of the enriched stream from the previous stage and the depleted stream from the next 
stage. The enriched stream withdrawn from the top stage is called the cascade product, and the depleted 
stream withdrawn from the bottom stage is called the cascade tails or waste.

1Note that the separation element does not create material; it partitions the material into two streams.

Figure 2. Basic separation element.
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Figure 3. Stages are connected in a series to multiply the separation effect.

When the separation factor is very small ( ~ l), only a small degree of enrichment is achieved in a stage. 
Therefore, the process material must pass through many stages to multiply the separation effect. When the 
separation factor is larger, fewer stages are required to achieve useful enrichments. Figure 4 shows that if 
the separation factor is 1.004, it takes hundreds of stages to enrich material from 0.71–3% 235U; if the 
separation factor is 1.5, approximately 10 stages are required. In designing an enrichment plant, the 
separation factor and throughput of the selected separation element are used to determine the arrangement 
of the process equipment.

For most enrichment techniques there is a time delay between startup of the cascade and withdrawal of 
enriched product material. The time required for a cascade to reach its steady-state, designed operating 
condition is called its equilibrium time. Initially the entire cascade is filled with feed material at one 
concentration. Cascade withdrawal valves remain closed while the process material is recycled through 
the separation elements to increase the initial product concentration from the feed concentration to the 
desired product concentration (yP). During this time the cascade is said to be operating in total reflux or 
recycle mode.

Figure 5 shows that no product material is withdrawn until the concentration gradient is established at 
time t1. This time depends on the product and feed concentrations, on the time required for material to 
pass through a separating element or stage (i.e., stage holdup time), and on the stage separation factor. 
When the designed product concentration is achieved, the cascade withdrawal valve is opened slightly, 
and a small flow of product is withdrawn. The product withdrawal rate is gradually increased until the 
designed withdrawal rate (P) is achieved at time t3. The cascade is now operating at steady-state. The 
equilibrium time is defined as the time until the product withdrawal rate reaches approximately half of its 
steady-state value (t2). At time t2, the area beneath the curve (area 1) equals the area above the curve (area 
2), and the quantity of product material withdrawn from the cascade during the period from t1 to t3 is 
equal to the amount that could be withdrawn if the cascade were operated at steady-state between t2 and 
t3.
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Figure 4. The number of states required to provide a desired product concentration increases as the 
separation factor decreases. (For illustrative purposes, fractional stages are shown in this figure.)

Figure 5. Cascade equilibrium time.

The total amount of material required to fill the entire cascade is called the in-process inventory. The in-
process inventory is highly dependent on process design including the physical state of the uranium-
bearing material; equipment volume; and, if the material is in the gaseous phase, its pressure and 
temperature.

Review Questions for Section 2.2

1. What is the basic component of an enrichment plant?

2. Why are separation elements connected in series? In parallel?

3. Can material at the desired product enrichment be withdrawn from a cascade immediately after 
startup?

1.0 10  100
PRODUCT 235U CONCENTRATION (wt %)
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2.3 URANIUM ENRICHMENT TECHNOLOGIES

Objectives

After completing this section, the reader should be able to

1. describe uranium enrichment processes that are in commercial use or in advanced degrees of 
development and

2. explain advantages and disadvantages of each uranium enrichment process.

Many techniques for enriching uranium have been investigated. Table 2 lists the uranium enrichment 
processes that are either in commercial use or have been subject to intense research and development for 
possible use in large-scale production facilities. These processes include gaseous diffusion, gas 
centrifugation, nozzle separation, the vortex tube process, chemical exchange, ion exchange, atomic vapor 
laser isotope separation (AVLIS), and molecular laser isotope separation (MLIS). This section provides a 
brief description of each process followed by a comparison of the processes.

Table 2. Uranium enrichment processes

Based on Examples
Diffusion in a pressure gradient Gas centrifuge 

Separation nozzle
Vortex tube

Diffusion principles Gaseous diffusion
Mass diffusion
Thermal diffusion

Phase equilibrium principles Distillation
Chemical equilibrium principles Chemical exchange

Ion exchange
Photo excitation principles Atomic vapor laser isotope separation (AVLIS)

Molecular laser isotope separation (MLIS)
Electromagnetic principles Plasma separation process (PSP)

Electromagnetic isotope separation (EMIS)
Plasma centrifuge

2.3.1 Gas Centrifugation

The gas centrifuge separation process uses the principle of centrifugal force to create a density gradient in 
a gas containing components of different molecular weights. Centrifugal force causes the heavier 
molecules to move closer to the outer wall of the centrifuge than the lighter molecules. The gas centrifuge 
is essentially a hollow, vertical cylinder (i.e., rotor) that is spun about its axis at a high angular velocity 
inside an evacuated casing (Figure 6). Gaseous UF6 is fed into the rotor and accelerates to the angular 
speed of the rotor. Centrifugal force causes the heavier 238UF6 molecules to move closer to the wall of the 
rotor and produces partial separation of the 235U and 238U isotopes. This separative effect is increased by 
an axial countercurrent flow of gas within the centrifuge that moves the enriched and depleted streams to 
opposite ends of the rotor. The introduction of feed gas and the withdrawal of enriched and depleted 
streams are accomplished by means of stationary tubes at the axis of the rotor; stationary scoops at the 
ends of the rotor extend into the rotating gas. The countercurrent circulation may be induced by the 
mechanical action of the unshielded scoop or by temperature differences between the ends of the rotor. 
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The rotor, driven by an electric motor, is supported at the top by a magnetic bearing and at the bottom by 
a needle bearing.

Figure 6. Schematic diagram of a gas centrifuge.

2.3.2 Gaseous Diffusion

The gaseous diffusion separation process depends on the separation effect arising from molecular effusion 
(i.e., the flow of gas through small holes). When a mixture of gas molecules is confined in a vessel and is 
in thermal equilibrium with its surroundings, the average thermal velocity of the lighter molecules is 
greater than that of the heavier molecules. Therefore, the molecules of the lighter gas strike the vessel 
walls more frequently (relative to its concentration) than the molecules of the heavier gas. If the walls of 
the container are porous with holes large enough to permit the escape of individual molecules, but 
sufficiently small so that bulk flow of the gas is prevented, then the lighter molecules escape more readily 
than the heavier ones. The escaped gas is then enriched with respect to the lighter component of the 
mixture, and the remaining gas is depleted.

The basic unit of the gaseous diffusion process is the gaseous diffusion diffuser (commonly known as a 
converter) (Figure 7). Compressed UF6 feed gas is made to flow inside a porous membrane or barrier 
tube. Approximately one-half of the gas passes through the barrier into a region of lower pressure. This 
gas is enriched in the component of lower molecular weight (235U) and is sent to the next higher stage of 
the cascade. The gas that does not pass through the barrier is depleted with respect to 235U and is sent back 
to the previous stage. Upon leaving the diffusion chamber, the enriched and depleted streams are 
recompressed to the barrier high-side pressure to make up for the pressure losses.
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Figure 7. Gaseous diffusion diffuser.

2.3.3 Separation Nozzle

The nozzle process is based on the centrifugal effect 
obtained by pumping a gas containing two 
components of differing molecular weights through 
a nozzle into an evacuated volume bounded by a 
curved surface. To use the separation nozzle process 
for uranium enrichment, a mixture of gaseous UF6 
and hydrogen (H2) is compressed and then directed 
along a curved wall at high velocity (Figure 8). The 
UF6 gas is mixed with lighter H2 gas to achieve the 
high velocities that are required. The heavier 238U-
bearing molecules move to the wall relative to those 
containing 235U. At the end of the deflection, the gas 
jet is split by a knife edge into a light fraction and a 
heavy fraction, which are withdrawn separately. This 
process is referred to as a stationary-wall centrifuge.

2.3.4 Vortex Tube Process

The vortex tube process is an aerodynamic separation method, developed by South Africa, which depends 
upon establishing a pressure gradient, as does the gas centrifuge. This process is also referred to as a 
stationary-wall centrifuge. In the vortex tube process, feed gas (a mixture of 1–2% UF6 and 98–99% H2) 
is compressed and tangentially enters the vortex tube, traveling at a velocity close to the speed of sound, 
through nozzles or holes (Figure 9). This tangential injection of gas results in a spiral or vortex motion 
within the tube, and two streams are withdrawn at opposite ends. In general, the spiral swirling flow 
decays downstream of the feed inlet because of friction of the wall. This particular design shows a tapered 
inside diameter that is intended to reduce the decay in the swirling flow as the gas moves away from the 
tangential inlet stream.

HEAVY
FRACTION
DEPLETED
IN 235UF6 
AND H2

LIGHT 
FRACTION
ENRICHED

IN
235UF6

AND H2

FEED GAS 
UF6 AND H2

Figure 8. Separation nozzle process.
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Figure 9. Vortex tube separation principle, showing a cross section of a tangential end-drive tapered vortex 
tube. (From Wikdahl patent.)

2.3.5 Chemical and Ion Exchange

France has developed a chemical exchange 
enrichment process called “CHEMEX.” The 
process is based on the isotopic effect obtained 
from the equilibrium exchange reaction between 
trivalent uranium (U+3) and tetravalent uranium 
(U+4). Immiscible liquid phases (i.e., aqueous and 
organic) are counter-currently contacted in pulsed 
columns producing the cascading effect of 
thousands of separation stages (Figure 10). In 
these columns the heavier aqueous solution is fed 
in the top of the column, and the lighter organic 
phase is fed into the bottom of the column. A rapid 
reciprocating motion is applied to the contents of 
the column, which leads to efficient and intimate 
contact of the two phases. Separation is achieved 
because 235U prefers the U+4 state (residing in an 
organic phase) and 238U prefers the U+3 state 
(residing in an aqueous phase). After passing 
through the column, the enriched and depleted 
streams must be chemically treated so that they can 
be recirculated through the column (refluxed) or sent 
to another column for additional enrichment.

The Asahi Chemical Industry Company of Japan has developed an analogous process based on uranium 
valence states of U+4 and hexavalent uranium (U+6). The process uses a cylindrical enrichment column 
packed with a fine spherical adsorbent (ion-exchange resin). When an acidic uranium solution flows 
through the adsorbent-packed column, U+6 ions are selectively removed from the solution and retained by 
the adsorbent (as a “fixed phase”), whereas U+4 ions in the solution (as a “moving phase”) flow between 
the adsorbent spheres (Figure 11). The adsorbent must have a very high ion-exchange rate to allow 
achievement of isotope equilibrium within a short time. The isotope exchange equilibria are thus 
established between the fixed phase and the moving phase throughout the enrichment column.

Figure 10. Chemical exchange process.
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Figure 11. Ion exchange process. 

2.3.6 Atomic Vapor Laser Isotope Separation

The AVLIS technique is based on the fact that the electron energy states of the uranium atom are very 
precisely defined and depend on the mass of the nucleus. These energies give rise to light absorption 
characteristics that are unique to each isotope. The process material for AVLIS is uranium vapor. 
Figure 12 is an illustration of how one isotope (235U) can be selected for photoionization and extraction to 
the exclusion of the other (238U) by proper tuning of a laser system. When the laser light illuminates the 
uranium vapor, the 235U vapor absorbs the light, but 238U does not. The now excited 235U ejects an electron 
thus becoming a positively charged atom or ion, which is deflected by an electromagnetic field to the 
product collector. The 238U remains uncharged and passes through the collector section to the tails 
collector.

Figure 12. Atomic vapor laser isotope separation process. 
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2.3.7 Molecular Laser Isotope Separation

Uranium in the UF6 molecule is at the center of an octahedron; the six fluorine atoms are equally spaced 
at the corners (Figure 13). In the MLIS process, the 235UF6 is selectively excited with an infrared laser. 
The absorption of one or more infrared photons by the UF6 results in a broadening and red shift of the 
vibrational absorption spectra. The absorption of many additional infrared photons can cause the excited 
235UF6 molecules to dissociate, yielding 235UF5. Alternatively, an increase in the ultraviolet absorption 
cross section of the excited 235UF6 can result in the preferential dissociation of the excited molecules to 
235UF5 when illuminated with an ultraviolet laser. Once the dissociation of the UF6 takes place, the 235UF5 
can be collected as a powder on a product collector.

Figure 13. Molecular laser isotope separation process.

2.3.8 Comparison of Processes

Major factors important to the selection of a uranium enrichment process include the separation factor 
(how many stages), throughput (how many equipment units per stage), in-process inventory, equilibrium 
time, energy requirement, capital costs, and operating costs. The ideal enrichment process would have a 
very high separation factor, a high throughput, a small in-process inventory, low energy consumption, 
low capital costs, and low operating costs. The perfect process does not exist, however, and tradeoffs 
among these factors must be accepted.

Comparisons of some of the more important parameters of the enrichment processes just described are 
provided in Table 3. The gaseous diffusion process was the first commercial-scale process developed, and 
it remains the standard for comparison. Relative to other enrichment methods, the gaseous diffusion 
process has a very high energy consumption (and consequently high operating costs), a small stage 
separation factor (which implies many stages), a large in-process inventory of UF6, and stage units with 
high throughput. By contrast, the gas centrifuge process has low energy consumption, stage separation 
factors that are moderate to high, a very small in-process inventory of UF6, and equipment units with low 
flow throughput.
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Table 3. Comparison of the enrichment processes

Enrichment process Separation 
factor Throughput

Specific 
inventory 

(kgU/SWU/
year)

Specific energy 
consumption
(kWh/SWU)

Equilibrium
time Capital costs

Gaseous diffusion 1.004 High 0.1–0.3 2400 10–40 days Reference
Gas centrifuge >1.3 Low 0.0005 100 ~1 hour Comparable
Aerodynamic

—Vortex tube 1.03 High 0.003 3500 ~1 day Comparable
—Separation nozzle 1.015 High 0.002 2500–3500 1–2 days Comparable

Chemical exchange 1.0026 High 1.1 360a  >150 days Lower

Ion exchange 1.001 High 0.1–0.4 140a 20–90 days Lower

Laser
—Molecular 2–6 Moderate Low 150 ~1 day Lower
—Atomic vapor 2–6 Moderate Low 150 ~1 day Lower

Electromagnetic 
isotope separation 
(EMIS)

~30 Very low N/A High 5–15 days Much higher

aFor ion and chemical exchange, this is equivalent electrical energy consumption.

As of 2015, the production capacity of the world market is entirely gas centrifuge. As recently as 2012, 
gaseous diffusion had comprised 35% of the world production capacity, but the remaining large diffusion 
plants in France and the United States were shut down in 2012 and 2013, respectively. The locations of 
existing commercial enrichment plants are listed in Table 4. Although the laser isotope separation 
technologies, as well as the chemical and ion-exchange processes, appeared to be very promising and 
were intensely investigated at one time, they have yet to be deployed.
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Table 4. Locations of existing commercial enrichment plants (2015)

Nation or group Plant name/location Enrichment process Completion 
date

Nominal 
Capacity (t 
SWU/year)

Brazil Resende Centrifuge 2009–continuing 100

China National 
Nuclear Corporation 
(CNNC)

CNNC/Shaanxi 
CNNC/Lanzhou
CNNC/Emeishan

Centrifuge
Centrifuge
Centrifuge

1996–continuing
2002–continuing
2013–continuing

2,200
3,500+
1,600

EURODIF Georges Besse II/Tricastin Centrifuge 2011–continuing 7,500
Japan Rokkasho-mura Centrifuge 1992–continuing 1,500
Russia Ural Electrochemical 

Combine/Novouralsk
Angarsk Electrolyzing 

Chemical Combine
Siberian Group of 

Chemical 
Enterprises/Seversk

Electrochemical 
Plant/Zelenogorsk

Centrifuge

Centrifuge

Centrifuge

Centrifuge

1980s–
continuing

1990–continuing

13,800

2,800

4,100

8,200
All increasing

United States URENCO USA National 
Enrichment Facility/
Eunice, NM 

Centrifuge 2010–continuing 4,900

URENCO Almelo/Netherlands
Capenhurst/UK
Gronau/Germany

Centrifuge
Centrifuge
Centrifuge

1980–continuing
1980–continuing
1985–continuing

5,300
4,700
4,000

Note: Continuing completion date denotes that construction or upgrades to the plant continue.

Review Questions for Section 2.3

1. What are some of the uranium enrichment processes that have been developed?

2. What is the most prevalent process used for enriching uranium?

3. What are desirable characteristics of an enrichment process?

4. How does the gas centrifuge enrichment process compare with the other enrichment processes (i.e., 
advantages versus disadvantages)?
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2.4 MATERIAL BALANCE AND SEPARATIVE CAPACITY

Objectives

After completing this section, the reader should be able to

1. describe the material balance concept for the external streams of a cascade,

2. describe the importance of separative work, and

3. calculate material and separative work balances for a cascade.

A simple cascade (or three-stream cascade) divides a 
feed stream into two streams—one enriched and one 
depleted in the desired component with respect to the 
feed composition. Figure 14 shows a schematic 
diagram of a simple cascade and introduces the 
nomenclature. The mass flow rates of the product, 
feed, and waste (tails) streams are identified as P, F, 
and W, respectively. The 235U content, or 
concentration, of each stream is identified as yP, xF, 
and xW, respectively. These concentrations can be 
expressed in terms of the weight (or mass) fraction of 
each component or the atom fraction of each component. 
Because the atomic weights of 235U and 238U are close, for 
practical applications atom fractions and weight fractions 
can be used interchangeably for cascade calculations.

2.4.1 Material Balance

During the enrichment process the total quantity of uranium remains constant even though the 
concentrations of the product and tails streams are different from the feed stream concentration. In other 
words, “what goes in must come out.”2 Thus, the total quantity of uranium [Eq. (2)] and the total quantity 
of each isotope [Eq. (3)] contained in the feed, product, and tails streams must balance. These balance 
equations apply to the separation element, stage, or cascade regardless of the enrichment method used.

𝑈𝑟𝑎𝑛𝑖𝑢𝑚 𝑏𝑎𝑙𝑎𝑛𝑐𝑒: 𝐹 = 𝑃 + 𝑊 (2)

235𝑈 𝑏𝑎𝑙𝑎𝑛𝑐𝑒: 𝐹(𝑥𝐹) = 𝑃(𝑦𝑃) + 𝑊(𝑥𝑊) (3)

These equations can be rearranged and solved to obtain the feed per unit product ratio [Eq. (4)].

𝐹
𝑃 =  

𝑦𝑃 ―  𝑥𝑊

𝑥𝐹 ―  𝑥𝑊
 (4)

2In an actual enriching process, very small quantities of uranium are consumed and do not exit the process (e.g., deposits in the 
process equipment).

Figure 14. Simple cascade.
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Problem 1. Material balance calculation

Problem 1: How much natural uranium is required to produce 1 kg of 3% enriched 
product material if the tails concentration is 0.25%?

Solution: The required mass for the feed stream can be calculated using Eq. (4).

or, 5.98 kg U of natural feed is required.

(Note that the 235U concentrations are always expressed in decimal 
form; e.g., 3% is 0.03.)

In addition, the mass of the tails stream can be calculated using Eq. (2).

5.98 kg U = 1 kg U + W
or, 4.98 kg U of 0.25% tails will be generated.

98.5
0025.00071.0

0025.003.0
Ukg1

F







2.4.2 Separative Capacity

Separative capacity is the best quantitative measure of a separation element, cascade, or plant’s capability 
to enrich uranium. The concept of separative capacity is important because it is a good measure of the 
scale of operations (e.g., number of machines) required to perform a separation task. Many of the design 
parameters of an enrichment plant that affect the initial capital cost are proportional to the plant’s 
separative capacity, and the annual operating costs are proportional to the amount of separative work done 
per year. For example, in a gas centrifuge plant, the number of gas centrifuges (of a particular design) 
required in a plant is proportional to the plant’s separative capacity. In a gaseous diffusion plant, the total 
flow rate, the total compressor capacity, the total power consumption, and the total barrier area are 
proportional to the separative capacity of the facility. 

Separative work is customarily measured in separative work units (SWU). The separative work can be 
calculated in units of kg SWU or, simply, SWU when the product, feed, and tails streams are given in kg 
U (not kg UF6). The separative capacity is the amount of separative work produced in a given time period 
and is computed by constructing a value balance of the input and output streams. Equation (5) is used to 
calculate the separative work (ΔU in units of SWU) required to produce the resulting product and tails 
streams.3 The value function V(x) used in Eq. (5) is described in the next section.

 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑣𝑒 𝑤𝑜𝑟𝑘: ∆𝑈 = 𝑃𝑉(𝑦𝑃) + 𝑊𝑉(𝑥𝑊) ― 𝐹𝑉(𝑥𝑃) (5)

3In this equation, U does not refer to uranium but to a work function.
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2.4.3 Value Function 

The value function was developed in the 1940s and is a function of the 235U concentration, x, in the 
uranium (expressed as a weight or atom fraction, rather than as a percentage). The standard form of the 
value function is given in Eq. (6).

𝑉𝑎𝑙𝑢𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑉(𝑥) = (2𝑥 ― 1)ln ( 𝑥
1 ― 𝑥) (6)

Value is an abstract property of a quantity of uranium that is independent of cost and price. There is no 
physical interpretation to value of uranium. The value of the output streams increases when isotopes are 
separated because work is done to affect the separation. The magnitude of the separation task can be 
characterized by the overall increase in value of the final materials compared with the starting material.

The value function V(x) is plotted in Figure 15. It is nonlinear and has the property that V(0) and V(1) are 
infinite. The value function for any 235U enrichment can be calculated using Eq. (6) by replacing x with 
the 235U enrichment (in decimal form). This figure also demonstrates that value is lost when two samples 
of uranium with unequal concentrations of 235U are mixed. Let a chord (i.e., a straight line) connect the 
V(a) and V(b) of two samples of uranium-bearing concentrations a and b, respectively, in 235U. If the 
amounts of each sample are equal, for example, the concentration of the blend will be at the midpoint of 
the chord. Notice that for any pair of concentrations, a and b, every point on the V(x) curve lies below the 
corresponding point on the chord, indicating that the value has decreased relative to the average value of 
the samples before mixing.

Figure 15. Value function.
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Problem 2. Value function

Problem 2: What is the value function for (a) natural uranium, (b) 3% 235U enriched 
product material, and (c) 0.25% 235U depleted tails material?

Solution: Using Eq. (6), the 235U concentration is substituted (in decimal form) for 
x as follows:

a. V(0.0071) = [2(0.0071) – 1] ln 

b. V(0.03) = [2(0.03) – 1] ln 

c. V(0.0025) = [2(0.0025) – 1] ln 

The significance of value is its usefulness to form balances and 
to compute separative work as demonstrated in Problem 3.

  870.4
0071.01

0071.0




  268.3
03.01

03.0




  959.5
0025.01

0025.0




Now that the value function has been discussed, let us solve a separative work problem, Problem 3.

Problem 3. Separative work 

Problem 3: How much separative work is required to accomplish the separation task 
identified in Problem 1?

Solution: The separative work is calculated using Eq. (5). Substituting the uranium 
masses and enrichments from Problem 1 yields:

ΔU = 1 V(0.03) + 4.98 V(0.0025) – 5.98 V(0.0071)

(Note that the uranium masses are provided in kg U.) Substituting the 
values calculated in Problem 2 yields:

ΔU = 1 (3.268) + 4.98 (5.959) – 5.98 (4.870) = 3.821 SWU .

Thus, 3.821 SWU are required to produce 1 kg U of 3% enriched 
product from 5.98 kg U natural uranium with a tails concentration of 
0.25%.
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Listed below are some rules of thumb regarding separative work. The quantities shown are dependent on 
exact product and tails concentrations.

Based on a 0.25% 235U tails concentration, it takes:

~100,000–150,000 SWU to fuel a 1000-MW light-water reactor for 1 year’s operation,

~4 SWU to produce 1 kg of LEU (3%) from ~6 kg of natural uranium, and 

~200 SWU to produce 1 kg of HEU (90%) from ~200 kg of natural uranium.

~5000 SWU to produce a safeguards significant quantity4 of HEU.

Review Questions for Section 2.4

1. What are the fundamental material balance equations?

2. What are the customary units used to measure separative capacity?

3. Does the value function provide the cost incurred during uranium enrichment?

4The IAEA safeguards glossary defines a significant quantity of HEU as 25 kg 235U.
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3. GAS CENTRIFUGE ENRICHMENT PROCESS

3.1 DESIGN HISTORY AND BACKGROUND

Objectives

After completing this section, the reader should be able to

1. understand the history of isotope separation technology and

2. describe the trend toward commercialization of the gas centrifuge enrichment process.

The general principles on which many of the uranium enrichment methods of current interest are based 
were first recognized in the early parts of the twentieth century. Following the discovery of radioactivity 
at the turn of the century, the existence of isotopes was recognized, and the word “isotope” was coined by 
Soddy (England) in 1913. In 1919 Aston and Lindemann (England) identified four distinct principles on 
which separation of isotopes could be based: distillation, diffusion, density (gravitational or centrifugal 
fields), and electromagnetic methods.

Laboratory experiments on several specific methods of isotope separation were carried out in the 1920s 
and 1930s. This included work on gaseous diffusion by Aston, who separated neon isotopes in a single 
stage in 1920, and later by Hertz (Germany), who used a 24-stage cascade to separate neon isotopes in 
1932 and soon thereafter separated isotopes of hydrogen, nitrogen, and carbon. Laboratory experiments 
on thermal diffusion were conducted in the 1930s, most notably by Clausius and Dickel (Germany), who 
built the first thermal diffusion column in 1938. Thermal diffusion arises when a mixture is subjected to a 
temperature gradient leading to partial separation of the components. Beams (United States) developed 
the first convection-free vacuum gas centrifuge in 1934 and soon thereafter used it to separate chlorine 
isotopes. From the earliest days of work with isotopes, the electromagnetic method of separation and 
detection has been widely used in laboratories (universally). Mass spectrometer instruments developed by 
Thompson, Aston, Dempster, Nier, and others were used for research. By the late 1930s Lawrence 
(United States) had developed the forerunner of the calutron, the cyclotron, a device used for accelerating 
charged particles to high energy for physics research.

Attempts at development of industrial-scale processes did not occur until the rush to build the atomic 
bomb during World War II. The need for large amounts of 235U stimulated intense research and 
development efforts by Germany, England, and the United States on methods suitable for uranium isotope 
separation.

In Germany, initial emphasis was placed on the liquid thermal diffusion process. Beginning in 1941, 
attention centered on the gas centrifuge process. Subsequently, progress was made on centrifuge machine 
design, but the effort was greatly hampered by Allied bombing, and the process was not taken beyond a 
very small pilot scale.

In the United Kingdom, the gaseous diffusion process was being developed for large-scale separation of 
235U under the British Tube Alloys Directorate Project. By the end of 1943, US and British scientists and 
engineers were freely sharing information on the gaseous diffusion process, and the decision to build a 
large-scale plant in the United States had already been made. Early British work on the gas centrifuge had 
been dropped in 1940 in favor of the centrifuge effort under way in the United States.

In the United States, under the Manhattan Project, virtually every possible process known at the time was 
considered and evaluated. Preliminary research was conducted on many processes. Four processes were 
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carried through or beyond the large pilot stage: gaseous diffusion, thermal diffusion, electromagnetic 
separation, and gas centrifugation. Beams first separated uranium isotopes using experimental centrifuge 
machines in 1940. However, a number of technical disadvantages associated with gas centrifuge were 
discovered and, after the gaseous diffusion process proved reliable in 1944, work on the centrifuge 
process was suspended. Nevertheless, the basic theory had been developed.

Development of the gas centrifuge continued after the conclusion of the war, and several major 
breakthroughs in machine size, speed, and efficiency made centrifugation an attractive process for 
uranium enrichment. In the early 1950s, one such development was the novel bearing design, which 
replaced the conventional oil bearings with pivot and magnetic bearings. These bearings hold the rotating 
shaft in suspension and dampen vibrations. In addition, new high-strength, light-weight materials were 
created to handle the severe mechanical stresses generated in the outer wall. These new construction 
materials and bearings allowed the centrifuges to spin at extremely high speeds.

It was not until the 1970s that the gas centrifuge enrichment process began to challenge the dominance of 
gaseous diffusion. Perhaps the most significant difference between these processes is power usage. A 
centrifuge plant requires only about 5% of the power needed for a diffusion plant to perform an 
equivalent separative task. Other advantages that make the gas centrifuge process more competitive than 
gaseous diffusion include smaller floor space requirements, the capability to expand the plant capacity in 
increments, and the flexibility to design and operate a cascade or module of cascades for specified 
product enrichment.

Review Questions for Section 3.1

1. When was the existence of isotopes first recognized?

2. What stimulated worldwide efforts to develop an industrial-scale uranium enrichment
process?

3. What factors make the gas centrifuge enrichment process more attractive than the
gaseous diffusion process?

3.2 MODERN GAS CENTRIFUGE

Objectives

After completing this section, the reader should be able to

1. identify the major components of a gas centrifuge and

2. describe the operating characteristics of a gas centrifuge.

A gas centrifuge is essentially a hollow, vertical cylinder that is spun about its axis at a high angular 
velocity (Figure 16). For the centrifuge detailed in the figure, the enriched stream is withdrawn from the 
top of the rotor, and the depleted stream is withdrawn from the bottom of the rotor. Depending on the 
centrifuge design, the flow may be reversed. 
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A centrifuge includes six principal parts: 

1. Center post and scoops
2. Rotor, baffle, and end caps
3. Molecular pump
4. Top and bottom suspension systems
5. Electric motor
6. Casing

The gaseous UF6 feed, enriched, and 
depleted streams are introduced and 
withdrawn through a stationary center post. 
The post penetrates into the centrifuge 
through an axial hole in the top end cap. The 
feed stream is introduced at a constant rate 
into the rotor through the center post. The 
enriched and depleted fractions are 
withdrawn at opposite ends of the rotor 
through stationary scoops that extend into 
the spinning gas. The scoop tip also 
introduces aerodynamic drag, which induces 
a circulatory countercurrent UF6 gas flow.

The rotating components include the rotor, 
baffle, and end caps (top and bottom). The 
rotor is a thin-walled cylinder that is rotated 
inside the casing. The baffle is disc shaped 
and has holes to allow the gas to leak from 
the main rotor cavity into the area near the 
scoop. A baffle is needed at one end to 
keep the scoop from imposing a 
circulatory flow that would counteract the 
corresponding flow generated by the 
scoop at the other end. The rotor is sealed 
at the top and bottom with disc-shaped end caps. The caps are specially designed to fit the ends of the 
rotor so that the UF6 cannot escape from the rotor.

A molecular pump is used to maintain a low pressure between the rotor and the casing. Trace amounts of 
gas may leak from the interior of the rotor through the small annular gap around the stationary central 
post at the top of the centrifuge. This gas is confined to the cavity above the rotor by a close-fitting, 
spiral-grooved sleeve, which serves as a very efficient pump. 

The top and bottom suspension systems serve several functions: (1) reliably support the rotor at full 
speed, (2) control the rotor at startup and run-down speeds, (3) allow the rotor to rotate about its center of 
mass, and (4) dampen rotor vibrations. The suspension consists of an oil-lubricated pivot and cup bearing 
at the bottom of the rotor and a magnetic bearing at the top of the rotor. The bottom bearing assembly 
includes a mechanism for damping radial and axial rotor vibrations. The magnetic bearing supports and 
centers the top end of the rotor without touching the rotating components. It provides some lift to relieve 
the load on the bottom bearing and dampens vibration by providing radial stabilizing forces.

Figure 16. Modern gas centrifuge.
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The rotor is driven by a rotating magnetic field produced in the stator located at the bottom of the rotor. 
The stator’s magnetic field is fed by a variable frequency electrical power supply operating at a frequency 
synchronous with the rotor speed. 

The outer casing provides a vacuum-tight enclosure for the rotor to minimize the drag on the rotating 
parts. This reduces the power consumption resulting from gas friction when the rotor is spinning. In 
addition, the casing must be leak proof and provide a physical barrier for containment of rotor debris in 
the event of a machine failure. It is important to the operation of the plant that the failure of one machine 
does not injure personnel nor cause the failure of adjacent machines.

3.2.1 Separative Capacity

The separative capacity of a gas centrifuge is greatly influenced by its rotational speed and the length of 
the rotor. Separative capacity is proportional to the rotor length and increases rapidly with rotor speed. 
The basic objective in designing a centrifuge is to produce the fastest and longest rotor possible at the 
lowest price.

The peripheral speed of the rotor is limited by the strength-to-density ratio of the rotor construction 
materials. The very high rotational speed of the centrifuge causes mechanical stresses in the outer wall. 
Aluminum alloys and stainless steels are capable of rotor peripheral speeds in excess of 350 m/s. Even 
higher speeds can be achieved using maraging steels (strong, low-carbon steels that contain up to 25% 
nickel), glass-fiber, and carbon-fiber composites. The choice of materials suitable for centrifuge 
components is limited, however, because the UF6 process gas (described in Section 4.2) is extremely 
corrosive.

The length of the rotor is limited by rotor dynamics. The rotor must be carefully balanced and damped to 
prevent wobbling and vibration. Major factors affecting the rotor dynamics include the straightness of the 
rotor, the uniformity of the wall, and the durability of the bottom bearing. Another concern with 
centrifuges that have a large length-to-diameter ratio is the problem of bringing them to operating speed. 
During acceleration, the rotor must transverse critical speeds at which severe vibrations can occur. Unless 
the vibration can be controlled by the use of damping bearings in the rotor suspension system, a 
centrifuge rotor might destroy itself while passing through the resonant speeds.

The physical size and separative capacity of gas centrifuges vary. Some centrifuges are relatively small 
and have separative capacities in the range of 5–30 SWU/year. Other centrifuges are substantially larger 
and may have separative capacities up to 10 times larger.

Review Questions for Section 3.2

1. What are the major components of a gas centrifuge?

2. What physical parameters greatly influence the separative capacity of a gas centrifuge?
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3.3 GAS CENTRIFUGE CASCADE

Objectives

After completing this section, the reader should be able to

1. describe a centrifuge cascade,

2. compute the number of stages and stage concentrations to achieve a desired concentration span in a 
simple cascade, and

3. compute the material flow rate for each stage of a simple cascade and the number of centrifuges 
required per stage.

The capacity of a single gas centrifuge is limited (in terms both of separation factor and throughput) by 
mechanical considerations and is generally insufficient to produce LEU. Therefore, centrifuges are 
connected in series to achieve the desired concentration change and are connected in parallel to provide 
the desired material flow rate.

Figure 17 illustrates the series and parallel arrangement of centrifuges in a cascade. The stages between 
the points where the feed is introduced and the product is withdrawn are called the “enriching stages” or 
more simply the “enricher.” The stages between the points where the feed is introduced and the depleted 
stream is withdrawn are called the “stripping stages” or the “stripper.”

Figure 17. Centrifuge cascade. 
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3.3.1 Series Connections

The number of stages that are connected in series to form a cascade depends on the desired feed 
concentrate, the 235U concentration of the product and tails streams, and the magnitude of the stage 
separation factor. To illustrate cascade arrangement, let us design a simple gas centrifuge cascade to 
produce nominal 3% product material and 0.25% tails material from natural feed. (These represent typical 
feed, product, and tails 235U concentrations of a uranium enrichment plant supporting light-water reactor 
fuel production.) A separation factor of 1.5 is used for the example cascade.

In defining the separation factor, it is convenient to use the convention of abundance ratio to represent the 
ratio of the desired isotope concentration to the concentration of the non-desired isotope (i.e., the 235U 
concentration divided by the 238U concentration). 

Because 235U and 238U are the dominant isotopes present, the 238U concentration is approximated by 1 
minus the 235U concentration. Using the nomenclature introduced in Section 2.4, the relevant abundance 
ratios are defined as:

𝑅𝑥𝐹 =  
𝑥𝐹

1 ―  𝑥𝐹
 , (7a)

𝑅𝑦𝐹 =  
𝑦𝑃

1 ―  𝑦𝑃
 , (7b)

𝑅𝑥𝑊 =  
𝑥𝑊

1 ―  𝑥𝑊
 . (7c)

In terms of abundance ratios, the stage separation factor () is defined as

 =  
𝑅𝑦𝑃

𝑅𝑥𝑊

, (8a)

which can be expressed as

 =  (𝑅𝑦𝑃

𝑅𝑥𝐹
) (𝑅𝑥𝐹

𝑅𝑥𝑊
) =  (𝛼𝐸) (𝛼𝑆). (8b)

In this form, the first term represents the enriching factor E (the degree of separation between the feed 
and the product) and the second term, the stripping factor S (the degree of separation between the feed 
and the tails). If the product and tails abundance ratios for the two separation factors (E and S) are 
replaced by the relationships from the definitions above, and if the resulting expressions are solved for the 
product and tails concentrations, yP and xW, respectively, the following expressions result.

𝑦𝑃 =  
𝛼𝐸 𝑅𝑥𝐹

(1 +  𝛼𝐸 𝑅𝑥𝐹
) (9a)
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𝑥𝑊 =  
 𝑅𝑥𝐹

(𝛼𝑆 +  𝑅𝑥𝐹
) (9b)

To illustrate the degree of separation that occurs in a single stage, let us calculate the enrichments of the 
product and tails streams of the feed stage in our centrifuge cascade. For calculational purposes, it is 
assumed that the separation is symmetric in an individual centrifuge. That is, the degree of enriching (E) 
is equivalent to the degree of stripping (S). Assuming symmetrical separation and  of 1.5, both E and 
S are (1.5)1/2.

𝑦𝑃 =  

1.5 ( 0.0071
1 ― 0.0071)

1 +  1.5 ( 0.0071
1 ― 0.0071)

= 0.0087

𝑥𝑊 =  
( 0.0071
1 ― 0.0071)

 1.5 + ( 0.0071
1 ― 0.0071)

= 0.0058

Figure 18. Stage enrichments for a gas centrifuge cascade 
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In a single gas centrifuge with a 
separation factor of 1.5, natural feed (with 
a concentration of 0.71%) will be enriched to 0.87% and stripped to 0.58%.

Equation (9a) can be used to calculate the 
product enrichment of each successive 
enriching stage of our cascade, and 
Eq. (9b) can be used to calculate the tails 
concentration of each stripping stage. As shown in Figure 18, 11 stages are required to achieve the desired 
concentration span. Using natural feed material, the product concentration of the cascade is 2.87% 235U, 
and the tails concentration is 0.259% 235U.

Stages are configured in series or “cascaded” so that the enriched stream of a stage is introduced as feed 
material to the next stage, and the depleted stream is introduced as feed material to the previous stage. In 
other words, the feed material to a specific stage is composed of enriched material from the previous stage 
and depleted material from the next stage. With this arrangement, only streams of identical isotopic 
concentrations are blended, which minimizes separative work losses resulting from mixing streams of 
differing concentrations. The enriched stream concentration from a stage matches the feed stream 
concentration to the next stage, and the depleted stream concentration matches the feed stream 
concentration to the previous stage.

3.3.2 Parallel Connections

The number of centrifuges that are connected in parallel in each stage depends on the desired product 
withdrawal rate from the cascade and the throughput of the individual centrifuges. Each centrifuge 
connected in parallel has the same values for the feed stream rate and concentration, enriched stream rate 
and concentration, and depleted stream rate and concentration. A representative throughput for a modern 
gas centrifuge is 0.02 g U/s or 1.728 kg U/day.

The material flow rates (and the number of centrifuges connected in parallel) are different for each stage 
to ensure that the streams between stages match concentrations. The material feed rate to a specific stage 
is dependent on the separation factor, the isotopic concentrations of the streams, and the flow rates of the 
exiting streams. Equations (10a) and (10b) are simplified equations for calculating the feed flow rates in 
the enriching and stripping sections, respectively.

In the enriching section,

𝐹𝑆𝑡𝑎𝑔𝑒 =  𝑃𝑆𝑡𝑎𝑔𝑒 (𝑎𝐸 + 1
𝑎𝐸 ― 1) ( 𝑦𝑃 ―  𝑥𝐹

𝑥𝐹(1 ―  𝑥𝐹)). (10a)

In the stripping section,

𝐹𝑆𝑡𝑎𝑔𝑒 =  𝑊𝑆𝑡𝑎𝑔𝑒 (𝑎𝑆 + 1
𝑎𝑆 ― 1) ( 𝑥𝐹 ―  𝑥𝑤

𝑥𝐹(1 ―  𝑥𝐹)). (10b)

To illustrate the difference in flow rates between stages, let us calculate the flow rate and determine how 
many centrifuges are required for each stage of our example centrifuge cascade. The first step is to 
establish the quantity of material to be withdrawn from the cascade. Let us assume that the desired 
cascade product withdrawal rate is 80 kg U/day. Knowing that the desired product rate for the top stage 

with a separation factor of 1.5.
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(stage 11) is 80 kg U/day and the feed and product concentrations are 2.357% and 2.87%, respectively, 
the required feed flow rate to the top stage can be calculated from Eq. (10a):

𝐹𝑇𝑜𝑝 𝑠𝑡𝑎𝑔𝑒 = 80 kg U/day( 1.5 + 1
1.5 ― 1) ( 0.0287 ― 0.02357

0.02357 (1 ― 0.02357)) = 177 kg U/day.

To achieve a product withdrawal rate of 80 kg U/day, the required feed flow rate for stage 11 is 
177 kg U/day. The number of centrifuges required to be connected in parallel in stage 11 is calculated by 
dividing the desired material flow rate by the centrifuge throughput.

177 kg U/day
1.728 kg U/day/centrifuge = 102 centrifuges 

A total of 102 centrifuges must be connected in parallel in stage 11 to carry a material flow rate of 177 kg 
U/day. Figure 19 shows the basic arrangement of our cascade and Table 5 lists the feed flow rate and 
number of centrifuges required for each stage. The cascade is composed of 7,896 centrifuges arranged in 
11 stages. Because the amount of material fed into each stage is different, the width of each stage (i.e., 
number of centrifuges in parallel) is different. Note that the feed stage to the cascade (stage 5) has the 
largest material flow rate and, therefore, has the greatest number of centrifuges connected in parallel. One 
additional point to note is that all individual centrifuges in a cascade are physically identical. From visual 
observation, one cannot distinguish the isotopic concentrations or flow rate of the process gas contained 
within a centrifuge, stage, or cascade.

Table 5. Basic cascade arrangement

Stage 
number

Feed 
concentration

(% 235U)

Feed
flow rate

(kg U/day)
Number of 
centrifuges

11 2.36 177 102
10 1.93 392 227
9 1.58 654 379
8 1.30 974 564
7 1.06 1,365 790
6 0.87 1,843 1,066
5 0.71 2,428 1,405
4 0.58 2,115 1,224
3 0.47 1,733 1,003
2 0.39 1,266 733
1 0.32 697  403

Total 7,896

Figure 19. Basic cascade arrangement.

The remaining operating parameters of the example cascade can be defined using the material balance 
equations in Section 2.4. The cascade feed and tails flow rates can be calculated using Eqs. (4) and (2), 
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respectively, by substituting the desired product withdrawal rate for the cascade and calculated cascade 
product and tails concentrations:

𝐹𝐶𝑎𝑠𝑐𝑎𝑑𝑒 = 80 kg U/day (0.0287 ― 0.00259
0.0071 ― 0.00259) = 463 kg U/day ,

𝑊𝐶𝑎𝑠𝑐𝑎𝑑𝑒 = 463 kg U/day ― 80 kg U/day = 383 kg U/day .

The separative work is computed using Eq. (5):

∆𝑈 = 80 𝑉(0.0287) + 383 𝑉(0.00259) ― 463 𝑉(0.0071)

= 80 (3.319) + 383 (5.923) ― 463 (4.870)

= 279 SWU/day, or ~ 102,000 SWU/year .

The average separative work of an individual centrifuge is approximated by dividing the separative work 
of the cascade by the number of centrifuges:

102,000 SWU/year
7,896 centrifuges = 12.9

SWU/year
centrifuge .

The equations for flow rates and stage concentrations presented in this section assume a simple three-
stream cascade in which streams of differing isotopic concentration are never mixed together. In practice, 
cascades may have more than one feed point as well as more than one product withdrawal point, and 
some separative work losses due to mixing are sustained. In addition, operating centrifuges differ slightly 
in manufacturing characteristics or operating conditions and therefore may differ slightly in flow rates or 
composition. Great care is taken to minimize differences between centrifuges during the design and 
manufacturing so that the concentrations of the enriched and depleted streams withdrawn from individual 
centrifuges connected in parallel are equal.

A plant designed for the production of 100,000 SWU/year can be arranged as a single high-throughput 
cascade or as multiple low-throughput cascades connected in parallel. The plant, in either arrangement, 
contains the same number of stages to span a desired enrichment range. However, each stage in the single 
high-throughput cascade is comprised of hundreds to thousands of centrifuges. This cascade arrangement 
has the advantage that the random failure of a few centrifuges does not affect the overall cascade 
performance. The disadvantage, however, is that one large cascade does not permit production flexibility. 
In practice, the 100,000-SWU/year plant would be composed of a number of small cascades operating in 
parallel. The individual stages of these small cascades are comprised of tens to hundreds of machines. If 
each small cascade is identical and produces the same product and tails concentrations as the described 
single large cascade, the sum of the outputs from each small cascade is equivalent to the output of the 
single large cascade. The advantages of multiple parallel cascades are easier maintenance (e.g., a single 
cascade can be taken off-stream for repairs) and production flexibility (e.g., a variety of product 
enrichments can be produced). The disadvantage is that the failure of several machines may affect 
cascade performance. In practice, the operational flexibility of a multiple cascade plant far outweighs the 
disadvantage of reduced cascade performance due to failed machines.

Review Questions for Section 3.3

1. Why are centrifuges connected in series to form cascades?
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2. Why are centrifuges connected in parallel to form stages?

3. Are the centrifuges located at the product end of the cascade physically different from those at the 
tails end?

4. What stage in a simple cascade contains the most centrifuges?

5. What are the advantages of using multiple small cascades connected in parallel?
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4. GAS CENTRIFUGE ENRICHMENT PLANT DESCRIPTIONS

4.1 FACILITY FUNCTIONAL LAYOUT

Objectives

After completing this section, the reader should be able to

1. identify the support facilities required for a gas centrifuge enrichment plant,

2. describe the material flows between the process buildings and support facilities of a centrifuge plant, 
and

3. understand the forms and concentrations of the nuclear material flows between process and support 
areas.

The operation of a gas centrifuge enrichment plant requires many process and support facilities and 
involves a variety of nuclear materials flows. Figure 20 is a functional layout of a typical gas centrifuge 
enrichment plant showing the process and support facilities and depicting material flows between these 
areas.

Figure 20. Process and support facilities at a typical gas centrifuge enrichment plant.
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A gas centrifuge enrichment facility includes the following process and support facilities:

– Weighing and sampling
– Cylinder storage areas
– Feed and withdrawal areas
– Cascade halls
– Analytical laboratory
– Decontamination and maintenance areas
– Scrap recovery and waste treatment areas 

These are the major functions supporting an enrichment facility. Details of physical location, size, and 
number of buildings are matters of choice or economics for the builders. Great variability in physical 
layout is possible for the same functionality.

Major nuclear material flows at a gas centrifuge enrichment facility include receipt of UF6 feed material 
on-site, transfer of feed material from UF6 cylinders to the process system, transfer of enriched and 
depleted process gas to product and tails cylinders, and shipment of product cylinders off-site (Figure 21). 
Minor material flows include sample transfers to the analytical laboratory, process equipment transfers for 
decontamination and repair, and waste transfers to the scrap recovery and waste treatment areas (Figures 
22 and 23). Note, not all identified flows or areas will exist at every centrifuge facility.

Figure 21. Major nuclear material flows involving UF6.
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Figure 22. Minor nuclear material flows involving sample containers and contaminated equipment. 

Figure 23. Minor nuclear material flows involving waste transfers. 
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4.1.1 Weighing and Sampling Areas

In the weighing and sampling areas, UF6 cylinders are weighed and sampled to establish nuclear materials 
accountability values and to verify customer product specifications. Full and empty UF6 cylinders are 
weighed before transfer to the cylinder storage areas. Samples are withdrawn from full cylinders 
(generally product and feed) and sent to the analytical laboratory for destructive analysis to determine the 
isotopic composition. Also, the UF6 from several cylinders of varying enrichment may be blended in this 
area to customize the product concentration.

4.1.2 Cylinder Storage Areas

A single centrifuge plant may have multiple storage areas (both indoors and outdoors) for its on-site 
cylinder inventory. The cylinder inventory supporting the major UF6 flows consists of (1) full feed 
cylinders waiting to be fed to the process; (2) empty feed cylinders awaiting shipment off-site; (3) empty 
product and tails cylinders for filling; (4) full product cylinders for further processing (e.g., blending or 
rebatching), storage, or shipment off-site; and (5) full tails cylinders, which generally remain in an 
outdoor cylinder yard at the plant for long-term storage. Full feed, product, and tails cylinders contain 
UF6 in the solid state. The empty product and tails cylinders are usually clean (i.e., contain no residual 
uranium or contaminants). The empty feed cylinders, however, contain a residual amount of UF6 and 
nonvolatile reaction products of uranium called heels. Heels material is present because it is not practical 
to completely empty the UF6 from a cylinder during the feeding process. Heels material usually contains 
uranium decay products and is radioactive. Increasingly, operators are withdrawing the tails stream 
directly into the emptied feed cylinders, which still contains a small heel quantity. 

4.1.3 Feed and Withdrawal Areas

In the feed area, cylinders containing feed material are placed in heating stations where they are heated to 
convert the UF6 from solid to gas. The gaseous UF6 passes through piping to a pressure-reduction station 
and flows into pipes leading into the cascade halls. The pressure-reduction station and the piping leading 
to it are heated to prevent the gaseous UF6 from cooling and solidifying in the pipes and valves. Heating 
is not required downstream from this station because the UF6 is maintained at low pressures and remains 
gaseous at ambient temperatures.

In the withdrawal areas, cylinders are filled with the product and tails material. After the enriched and 
depleted streams leave the cascades, they are collected in desublimers where the gas solidifies. When full, 
the desublimers are heated and the UF6 is transferred, either as a gas or liquid (depending on the system), 
to empty cylinders where it solidifies. At some facilities, a compressor system may be used instead of 
desublimers to collect the product and/or tails material.

4.1.4 Cascade Halls

The cascade halls contain the centrifuge machines arranged in cascades. Each hall may house a number of 
cascades connected in parallel. Feed material is transferred to the cascade halls from the feed stations in 
process header piping. Likewise, enriched and depleted process material is transferred separately from the 
cascades to the desublimer stations in product and tails header piping. Because the process gas remains at 
low pressures in the cascade header piping and centrifuge machines, it is not necessary to heat the cascade 
hall process system to keep the UF6 in the gas-phase. Because a parallel grouping of cascades can be 
operated independently to produce a specific product enrichment, separate product desublimer stations 
may service a single cascade hall.
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4.1.5 Analytical Laboratory

The analytical laboratory provides on-site capability to destructively and nondestructively analyze process 
and waste materials. Standard analyses performed on a sample include: (1) the determination of the 
uranium concentration by the gravimetric method, (2) the determination of the isotopic abundances and 
235U content by gas-phase mass spectrometry, and (3) the determination of impurity content by a variety 
of techniques. Samples that may require analyses include UF6 samples from feed, product, and tails 
cylinders; process gas samples from the cascades; and other uranium-bearing samples from scrap 
materials.

4.1.6 Decontamination and Maintenance Areas

The decontamination and maintenance areas provide facilities where plant equipment that has been in 
contact with UF6 (e.g., containers, pumps, and valves) is stored, disassembled, decontaminated, repaired, 
and tested as needed. Other operational materials that have been in contact with UF6 (e.g., vacuum pump 
oil) may also be decontaminated before further use or disposition. Only small quantities of uranium are 
contained in these areas.

4.1.7 Scrap Recovery and Waste Treatment Area

The scrap recovery and waste treatment areas serve as the collection and processing point for all scrap 
and waste streams. Scrap and waste materials from all areas in the plant are collected and stored until 
recovery or disposal occurs. Typical materials include contaminated burnable and non-burnable wastes; 
alumina and/or sodium fluoride from chemical traps; decontamination solutions, other solutions, oils, and 
sludges from the decontamination and maintenance areas; and samples and analytical wastes from the 
analytical laboratory.

Summarized in Table 6 are the form, containment, and enrichment of the process material contained in 
each of the typical areas described for a gas centrifuge enrichment plant.

Table 6. Process material form, containment, and enrichment

Building or area Form and containment Enrichment
Weighing and sampling Solid, liquid, and gaseous UF6 in 

cylinders
Feed, product, or tails

Cylinder storage Solid UF6 in cylinders Feed, product, or tails
Feed and withdrawal Solid, liquid, and gaseous UF6 in 

desublimers and cylinders
Feed, product, or tails

Cascade halls Gaseous UF6 in process piping All enrichments ranging from tails 
to product

Analytical laboratory Solid and liquid solutions All enrichments ranging from tails 
to product

Decontamination and maintenance Wide variety of solid uranyl 
compounds and solutions

All enrichments ranging from tails 
to product

Scrap recovery and waste 
treatment

Solids and solutions All enrichments ranging from tails 
to product

As noted by the title of this section, these are the major functions supporting an enrichment facility. 
Details of physical location, size, and number of buildings are matters of choice or economics for the 
builders. Great variability in physical layout is possible for the same functionality.
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Review Questions for Section 4.1

1. What process and support facilities would you expect to see at a gas centrifuge enrichment facility?

2. What are the major nuclear material flows at a gas centrifuge enrichment plant? What are typical 
minor nuclear material flows?

3. What is the form of the process material when it is in the cascade hall?

4.2 PROCESS MATERIAL

Objectives

After completing this section, the reader should be able to

1. describe the physical, chemical, and toxic properties of UF6,

2. identify the advantages of using UF6 as a process gas, and

3. understand the safety concerns associated with handling UF6.

As described in Section 2.3, uranium isotope separation using the gas centrifuge enrichment technique 
relies on the difference in the mass of the 235UF6 and 238UF6 molecules that are mixed together in the 
process gas. The advantages of UF6 as a process gas for uranium enrichment are (1) the difference in 
mass between the 235UF6 and 238UF6 molecules is due entirely to the uranium isotopes because fluorine 
has only one natural isotope; (2) UF6 exists in a gaseous form at practical operating temperatures and 
pressures; and (3) UF6 has a single molecular structure so it is easy to produce at high purity levels. The 
disadvantages of UF6 are that it is very reactive chemically and highly corrosive. Its use in uranium 
enrichment requires special materials of construction, entails special operating techniques, and places 
limitations on operating temperatures and pressures.

4.2.1 Physical Properties

At room temperature, UF6 is a white, high-molecular-weight solid with significant vapor pressure. 
Consequently, it is typically transported as a condensed solid contained in a metal or Teflon tube sealed 
by a valve or clamp.

As indicated in the phase diagram of pure UF6 (Figure 24), the sublimation temperature of UF6 is below 
the triple point. The sublimation temperature is the temperature at which the vapor pressure of the solid 
equals atmospheric pressure. When UF6 is in equilibrium at atmospheric pressure, solid UF6 sublimes 
directly to the gaseous state without passing through the liquid state. The triple point is the temperature 
and pressure at which solid, liquid, and vapor exist in equilibrium. To handle UF6 as liquid, the pressure 
must be above 0.15 MPa (1137.5 torr), and the temperature must be above 64°C. Thus, any liquid process 
(e.g., feed cylinder heating, product cylinder liquid filling) will be subject to leakage of the UF6 to the 
atmosphere if equipment is breached. Transfer below 0.15 MPa or below 64°C involves the formation of 
the gas through sublimation and desublimation of the gas to a solid on a cooled surface. The critical point 
is the temperature and pressure above which liquid and vapor are indistinguishable.



38

Figure 24. UF6 phase diagram.

The physical characteristics and phase-change conditions of UF6 are summarized in Table 7. The large 
difference in density between solid and liquid UF6 has implications for filling UF6 cylinders. Sufficient 
space must be maintained in a UF6 container to provide for liquid expansion for the temperature range 
over which the liquid is to be heated. Particular attention must be paid to the fill limits of containers when 
UF6 is desublimed as solid, liquid filled in layers, or liquid filled at lower than normal temperatures. 
When the contents are liquefied for removal, the volume required for liquid UF6 at 100°C is 50% greater 
than the volume of UF6 in the solid state. If this difference in volume is not accounted for, the cylinder 
may rupture when it is heated.

Table 7. Physical characteristics and phase change conditions of UF6.

Physical state Appearance Density
Solid White 5.09 g/cm3 @ 20°C

Liquid Clear 3.40 g/cm3 @ 100°C
Gas Colorless

Sublimation point 56.4°C @ 0.10 MPa (760 torr)
Triple point 64.02°C @ 0.152 MPa (1,137.5 torr)

Critical point 230.2°C @ 4.61 MPa (34,600 torr)
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4.2.2 Chemical Properties

UF6 is a stable chemical if contained in a scrupulously clean system. It is also a mild fluorinating agent 
that reacts vigorously with many chemicals that might be encountered. UF6 reacts chemically with water, 
ether, and alcohol, forming soluble reaction products. It reacts with most organic compounds, glass, 
rubber, and many metals. UF6 does not react with oxygen, nitrogen, hydrogen, or dry air at room 
temperature. UF6 is relatively inert to clean and dry aluminum, copper, nickel, Monel, and Teflon; 
consequently, these materials can be exposed to UF6 without excessive corrosion.

The most common UF6 reaction is with water, which is commonly present in moist air and on the interior 
surfaces of metal containments previously exposed to moist air. UF6 reacts with the water vapor to form 
solid uranyl fluoride (UO2F2) and toxic HF gas. The inner surfaces of metals used to contain UF6 may be 
coated with oxides and hydroxides with which UF6 will react at rates that depend on temperature. UF6 can 
also react with pure metal. Possible reaction products include UF5, U2F9, and UF4. Finally, UF6 reacts 
with many other chemicals that might be encountered during its transport through metal components such 
as grease, organic chemicals introduced during manufacturing, or solvents used to clean the metal.

The chemical reactions of UF6 are a very important aspect of uranium enrichment because these reactions 
lead to the loss of process material. These losses are usually defined as corrosion and consumption losses. 
Corrosion losses are due to the reaction of UF6 with the metal within which it is contained. Materials 
resistant to corrosion include stainless steel, aluminum, aluminum alloys, nickel, and alloys containing 
greater than 60% nickel. Consumption is the term applied to losses that are due to all mechanisms such as 
the reaction of UF6 with surface impurities, water, organic compounds, and inorganic materials, as well as 
metal corrosion. Consumption is affected by several variables including temperature, UF6 pressure, prior 
exposure of the equipment to air or other gases, the environment of this exposure (e.g., dry or wet gas), 
and the interior surface areas.

4.2.3 Toxic Properties

UF6 as a gas is a moderately toxic material, partly because uranium is a heavy-metal poison and partly 
because its reaction with water in the respiratory system produces the irritating and burning hydrofluoric 
acid. When released to the atmosphere, gaseous UF6 quickly reacts with atmospheric moisture to form a 
visible white cloud consisting of HF gas and particulate UO2F2, which tends to settle on surfaces. The 
corrosive properties of UF6 and HF are such that exposure to a severe release can result in skin burns and 
temporary lung impairment. Like most heavy-metal compounds, water-soluble uranium compounds such 
as UO2F2 are toxic to the kidneys when inhaled or ingested in large quantities. Fortunately, uranium has a 
very short biological half-life of ~15 days and is rapidly eliminated from the body by kidney action.

Exposure to UF6 is also a radiological concern because UF6 is an alpha, beta, and gamma-ray emitter. 
Alpha particles resulting from the primary disintegration of uranium present no external radiation 
problem because they do not penetrate the skin. However, the decay products of uranium found in process 
piping and UF6 cylinders include isotopes that emit mildly penetrating beta rays and highly penetrating 
gamma rays. The UF6 cylinders are the greatest radiological concern because they contain a large quantity 
of UF6. In addition, the nonvolatile materials concentrate in the cylinder heels. Ironically, the radiation 
level emanating from a full cylinder may be less than that from an empty cylinder with a heel because the 
decay products are dispersed through the UF6 in a full cylinder and are shielded to some extent. Radiation 
exposures of employees working around UF6 cylinders are easily controlled at very low levels through 
conventional distance-time limitations.
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4.2.4 Safety Guidelines

The implications of the properties of UF6 can be summarized in terms of the following rules:

1. UF6 should not be exposed to moisture; it should be handled in a sealed system (preferably a metal 
system) having vacuum capability to aid in transfers. Liquid transfers are possible in a system that can 
be operated above ~0.152 MPa (1137.5 torr) and 64°C.

2. In the event of a release, UF6 or its reaction products should not be inhaled because they are toxic.

3. It is extremely important that UF6 cylinders not be overfilled because the volume required for liquid 
UF6 is greater than the volume required for solid UF6.

4. UF6 cylinders should not be connected directly to vacuum pumps because of the possibility for 
hydrocarbon oil to contaminate the cylinder. Liquid UF6 and organic materials, other than 
fluoroplastics, can react violently.

UF6 can be handled safely by careful attention to the suggested precautions.

Review Questions for Section 4.2

1. What characteristics make UF6 attractive for use as a process gas?

2. What are the physical characteristics of UF6 in the solid, liquid, and gaseous states?

3. What is the most common UF6 reaction?

4. What are the chemical and radiological concerns with UF6?

5. What safety precautions does an enrichment plant operator follow in handling UF6?
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4.3 CASCADE ENRICHMENT

Objectives

After completing this section, the reader should be able to

1. describe the piping arrangements in a gas centrifuge cascade and cascade hall and

2. describe the typical operations in a cascade hall.

4.3.1 Process Equipment

The actual work of enriching the UF6 gas occurs in the cascade halls of the centrifuge enrichment plant. 
The major process equipment found in every cascade hall includes the centrifuge machines and the 
process piping. Most cascade halls also contain machine-cooling water pipes (to control the temperature 
in the centrifuges), vacuum lines (to evacuate and to maintain the vacuum in the centrifuge casings), and 
plant support systems (e.g., fire water, heating, ventilation, and air conditioning pipes). Some cascade 
halls may contain the vacuum pumps and chemical traps of the centrifuge casing evacuation system and 
sampling lines for an automated process monitoring system.

During facility startup, portable UF6 feed and/or withdrawal carts may be used in the cascade halls to 
evacuate the cascades and to fill the cascades with UF6. This permits the cascade to be operated in the 
recycle mode to achieve its designed product enrichment before UF6 is introduced to the process system 
through the feed and withdrawal system. The portable carts are necessary to respond to severe abnormal 
conditions and for cascade maintenance activities. Note, these carts could potentially be used to operate 
individual cascades independently from the rest of the plant. The equipment on a feed cart includes a 
cylinder heating enclosure, air heater and blower, temperature sensor, vacuum pump, chemical trap, 
pressure sensors, piping, and valving. The equipment on a withdrawal cart includes a cold trap, 
refrigeration unit, evacuation pump, chemical trap, pressure gages, and connectors. The carts are typically 
mounted on wheels and are equipped with interfaces to the building’s electrical and instrument air 
systems.

4.3.2 Cascade Arrangement

In practice, the cascades in a centrifuge plant are arranged to balance performance efficiency and 
operational flexibility. To produce a product flow rate that is practical for withdrawal, several cascades 
with identical arrangements are connected in parallel to form production units. Each cascade of a 
production unit contains a few thousand (or fewer) centrifuges, receives the same feed concentration, and 
produces the same product and tails concentrations. The current commercial centrifuge enrichment plants 
contain multiple production units, each comprised of fewer than 10 cascades. Production units may be 
operated independently to provide a quantity of material at specific product enrichment or in parallel to 
increase the throughput at that product enrichment (Figure 25). 
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Figure 25. Schematic illustrating how production units can be operated independently or in parallel. Each unit 
contains multiple cascades connected in parallel.

The advantages of production units include the capabilities (1) to produce enrichment revenue before the 
entire plant is completely operational, (2) to produce a variety of product enrichments to meet customer 
product specifications, and (3) to enrich recycled material (i.e., UF6 from reprocessed uranium) 
separately. In addition, the size of the plant can be tailored to meet current and future market needs. 

4.3.3 Process Piping

The process gas transferred to the cascades halls from the feed area is contained in primary feed pipes at 
low pressures. Multiple feed pipes may be present to supply material at different concentrations to 
separate production units or set of production units (one pipe may be used to feed all of the production 
units if the feed material is of the same concentration and purity). The unit feed header pipe is connected 
to the cascade feed header pipes for each of the parallel cascades in that production unit. Here the gas 
pressure is further reduced to achieve cascade operating pressure.

The feed gas to the cascade enters the feed stage header and is distributed to each centrifuge in the stage. 
After processing, the enriched gas from each centrifuge in the feed stage enters the stage product header; 
simultaneously, the depleted gas from each feed stage centrifuge enters the stage tails header (Figure 26). 
The stage product header becomes the feed header for the next stage in the cascade; the stage tails header 
becomes the feed header for the previous stage. The gas is similarly processed through the enriching and 
stripping stages to achieve the desired concentration range. The product header of the top stage in the 
cascade is the cascade product header and empties into the unit product header; the tails header of the 
bottom stage is the cascade tails header and empties into the unit tails header.
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Figure 26. Stage header piping in centrifuge cascade.

The material in the unit headers is transferred directly to the withdrawal areas through primary product 
and tails withdrawal pipes. (If the product and tails concentrations for the production units are identical, 
there may be only one primary product pipe and one primary tails pipe.)

Each cascade contains two additional piping-structure components of safeguards interest. First are the 
evacuation and sampling ports. These ports are used to evacuate the process system before operation 
begins, to remove process samples from the cascade while it is operating, and to remove process gas 
before maintenance activities. The cascade feed header port can also be used to fill the cascade with 
process gas. Depending on the design of the cascade, only one port may be present on each header or 
there may be multiple ports throughout the cascade to permit the withdrawal of samples from individual 
stages. Second is the cascade recycling line that joins the cascade product and tails headers to the feed 
header. With proper setting of the header pipe valves, the cascade can run indefinitely on the same 
process gas by continuously recycling it. The recycle mode of operation is generally used to permit a 
cascade to reach the design product and tails concentrations (e.g., initial startup or restart following 
maintenance) before the cascade output is introduced to the process system and when the cascade is in 
standby mode.

4.3.4 Observables in the Cascade Hall

When entering the cascade halls, what would one expect to see? Assuming that the cascade halls are fully 
operational and no maintenance or construction work is occurring one would see parallel rows of 
centrifuges with stage header piping, casing evacuation piping, and utility piping running parallel to the 
rows. Unit header pipes (feed, product, and tails) run perpendicular to the end of each row. If a centrifuge 
casing evacuation system is located in the cascade hall, one would also see vacuum pumps and chemical 
traps at the ends of the rows of centrifuges. If not, evacuation headers would be located with the other unit 
header pipes. One would not expect to see personnel, UF6 cylinders, portable feed and withdrawal carts, 
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or any other process or maintenance equipment. One might also observe failed centrifuges (with crimped 
process piping) that were left in place after failure. No manual operations, except occasional inspections 
and process sampling, are routinely performed in a completed cascade hall.

Review Questions for Section 4.3

1. Describe the flow path of UF6 gas from the moment it enters a production unit feed header until it 
leaves the unit product header.

2. Describe personnel operations performed in a fully operational cascade hall.

3. How many product enrichments can be produced in an enrichment plant composed of 100 cascades 
(assuming product is removed only at the top of the cascade)? How many enrichments can be 
produced if all 100 cascades are connected in parallel?

4.4 UF6 CYLINDER HANDLING

Objectives

After completing this section, the reader should be able to

1. describe the cylinders used to store and transport UF6,

2. explain the typical UF6 operations in an enrichment plant, and

3. understand the techniques and activities involved in feeding and withdrawing UF6 from the process.

The UF6 at a gas centrifuge enrichment plant is contained in internationally standardized UF6 cylinders 
when it is not being processed in the piping or centrifuges of the process system. These cylinders are used 
for on-site long-term storage and to transport the process material to and from the site and between on-site 
facilities. Figure 27 depicts the UF6 handling operations in an enrichment plant. 

Full feed cylinders are brought on-site, weighed, inspected, liquid sampled or nondestructively assayed 
(optional), and placed in a storage area. When it is time for the contents of a full feed cylinder to be fed 
into the process, the cylinder is moved from the storage area to the feed area, placed in a heating station, 
and heated to convert the cylinder contents from solid to gas. The gaseous UF6 is then transferred through 
piping to the cascade halls for processing. Simultaneously, enriched and depleted process gas streams are 
withdrawn from the cascades into separate desublimers where the material solidifies. The desublimers are 
subsequently heated to transfer the material to product and tails UF6 cylinders. The tails cylinders 
containing the depleted material are weighed and then moved to an on-site storage yard for long-term 
storage. A statistical portion of the tails cylinders are sampled for accounting purposes. The product 
cylinders containing the enriched material are weighed, liquid sampled, possibly blended or rebatched, 
and then transferred to a storage area to await shipment off-site.
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Figure 27. UF6 operations in an enrichment plant. 

4.4.1 Cylinder Names

Cylinder sizes and names (i.e., model numbers) are relatively standard across the UF6-handling industry. 
The most commonly used cylinders for UF6 containment and transport in a commercial-scale enrichment 
facility are the 30 in. diam (Model 30B, 2.5 ton) cylinders for low-enriched product, 48 in. diam (Models 
48X and 48Y, 10 and 14 ton) cylinders for natural feed, and 48 in. diam, thin-wall (Model 48G, 14 ton) 
cylinders for long-term tails storage. The Models 48X and 48Y cylinders are sometimes used for on-site 
containment of low-enriched product, although enriched material is usually shipped in Model 30B 
cylinders. General data for these cylinders are provided in Table 8.

Table 8. General data on feed, product, and tails cylinders

Cylinder model
30B 48X 48Y 48G

Basic material of construction Steel Steel Steel Steel
Maximum isotopic content 5.0%a 235U 4.5%a 235U 4.5%a 235U 1.0%a 235U
Nominal diameter: cm (in.) 76.2 (30) 121.9 (48) 121.9 (48) 121.9 (48)
Nominal length: cm (in.) 205.7 (81) 302 (119) 381 (150) 370.8 (146)
Wall thickness: cm (in.) 1.27 (0.5) 1.59 (0.625) 1.59 (0.625) 0.79 (0.31)
Nominal tare weight: kg (lb) 635 (1,400) 2,041 (4,500) 2,359 (5,200) 1,179 (2,600)
Nominal net weight: kg (lb) 2,277 (5,020) 9,539 (21,030) 12,501 (27,560) 12,701 (28,000)
Nominal gross weight: kg (lb) 2,912 (6,420) 11,580 (25,530) 14,860 (32,760) 13,880 (30,600)
a 235U maximum with moderation control
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The basic material of construction for these cylinders is steel. The maximum isotopic content limit for 
30B cylinders is 5% 235U; for 48X and 48Y cylinders, 4.5% 235U; and for 48G cylinders, 1.0% 235U. The 
maximum permissible enrichment levels stated for the 30B, 48X, and 48Y cylinders apply to UF6 with a 
minimum purity of 99.5%, which provides moderation control. The tare weight refers to the weight of an 
empty, clean cylinder; the gross weight is the weight of a cylinder filled with UF6; and the net weight is 
the difference between the gross weight and the tare weight. The net weight is the weight of the UF6 
contained in the cylinder, assuming the cylinder contains only UF6 and the actual weight of the clean, 
empty cylinder matches the stamped tare weight when the cylinder was fabricated.

Problem 4. Net weight calculation

Problem 4a: How much UF6 is contained in a Model 30B cylinder if the gross weight 
is measured to be 2,900 kg and the tare weight stamped on the cylinder’s 
nameplate is 640 kg? 

Solution: The net weight of the cylinder’s contents is calculated by subtracting the 
tare weight from the gross weight.

Net weight = gross weight – tare weight
   = 2,900 kg – 640 kg 
   = 2,260 kg UF6

Problem 4b: How much 235U is contained in a Model 30B cylinder in Problem 4a if the 
average enrichment is 4.25% 235U? 

Solution: The quantity of 235U is calculated by converting the UF6 weight to the 
weight of the uranium and then multiplying by its enrichment. 

235U content = net weight UF6 × purity of UF6 × 235U enrichment
                                                             = 2,260 kg × 0.6761 × 0.0425 kg 235U/kg U
                                                  = 64.94 kg 235U

Model 1S and Model 2S cylinders are the most commonly used cylinders for collecting liquid UF6 
samples and for transporting UF6 samples. General data on these cylinders are provided in Table 9. These 
cylinders are constructed of nickel and are approved to contain a maximum net UF6 weight of 0.45 kg and 
2.2 kg, respectively, at any enrichment level. 

Table 9. General data sample cylinders

Cylinder model
1S 2S

Basic material of construction Nickel Nickel
Maximum isotopic content 100% 235U 100% 235U
Nominal diameter: cm (in.) 3.8 (1.5) 8.9 (3.5)
Nominal length: cm (in.) 27.9 (11) 29.2 (11.5)
Wall thickness: cm (in.) 0.16 (0.063) 0.28 (0.112)
Nominal tare weight: kg (lb) 0.79 (1.75) 1.91 (4.2)
Nominal net weight: kg (lb) 0.45 (1.00) 2.22 (4.9)
Nominal gross weight: kg (lb) 1.25 (2.75) 4.13 (9.1)
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4.4.2 Cylinder Movement and Storage

Cylinders of UF6 are shipped on-site and off-site by rail or by truck. Cylinders containing UF6 enriched to 
greater than 1% 235U must be shipped in protective shipping packages (Figure 28). Centrifuge facilities 
have a variety of on-site cylinder-handling capabilities to unload incoming cylinders and load outgoing 
cylinders as well as for moving cylinders within the facility. These capabilities include forklifts, cranes, 
and specialized cylinder-handling machinery (Figures 29 and 30). 

Figure 28. Truck shipment of five 2.5 ton UF6 cylinders in protective shipping packages.

Figure 29. Urenco on-site feed cylinder 
transporter. 

Figure 30. Overhead double-hook crane moving a 
14 ton cylinder.

Because of the hazards associated with moving cylinders of liquid UF6, movement and operations 
involving large cylinders containing liquid material are kept to a minimum. The UF6 in these cylinders is 
allowed to cool and solidify before the cylinders are placed in storage or shipped off-site. Solidification of 
liquid UF6 under ambient building conditions requires approximately 5 days for a 48 in. cylinder and 
3 days for a 30 in. cylinder.
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The common practice is to store cylinders of natural UF6 horizontally and in a single layer or tier. No 
special storage configuration is required for criticality safety. Spacing of arrays is generally dictated by 
the accessibility of the cylinder-handling equipment. Depending upon the feed source and operating 
philosophy of the enrichment plant operator, the facility will maintain a stockpile of feed cylinders. 
Because tails material remains on-site in long-term storage, tails cylinders are packed in tighter storage 
arrays to conserve space. Sufficient clearance must be provided, however, so that the tails cylinders are 
visually accessible for periodic monitoring of their physical condition as well as for inventory-taking 
purposes (Figure 31). At some facilities, tails cylinders are stacked in the storage yards. Enriched material 
is stored in cylinders of suitable geometry and/or with suitable moderation control.

Figure 31. Long-term tails cylinder storage yard.

To illustrate the number of UF6 cylinders that are received and shipped from a centrifuge plant; consider a 
1 million SWU/year facility. Each year the contents of approximately 200 Model 48Y feed cylinders is 
fed into the process. During the same period, 190 Model 30B product cylinders and 170 Model 48G tails 
cylinders are filled. If cylinder shipments occur weekly, approximately four feed cylinders are brought 
on-site, four product cylinders are shipped off-site, and three tails cylinders are moved to long-term 
storage each week. In addition to these full cylinder movements, shipments of empty feed cylinders and 
receipts of empty product and tails cylinders also occur.

4.4.3 Cylinder Weighing

Accurate measurements of UF6 cylinders are required to account for the quantity of process material 
being fed to and withdrawn from the cascades. These data are important to both materials accounting and 
operations personnel. All UF6 cylinders are weighed (1) when they are received on-site, (2) after being 
filled or emptied, and (3) after they are sampled (or after material is removed for any other reason).

The quantity of UF6 feed material introduced into the process is the difference between the feed cylinder 
weights before and after feeding. The weight of the cylinder after feeding consists of the empty cylinder 
weight and the weight of the remaining heel material. An acceptable heel weight for a 48 in. feed cylinder 
is 23 kg or less. Likewise, the net weight of UF6 product or tails material is the difference between the 
weights of the product or tails cylinder before and after filling. If recycled product cylinders are being 
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filled, they may contain a heel quantity of material remaining from the previous cylinder evacuation. An 
acceptable heel weight for a 30 in. product cylinder is 11 kg or less.

A variety of scales exist for weighing the different types of UF6 cylinders. Load-cell scales or platform 
scales are used to weigh 2.5 ton, 10 ton, and 14 ton cylinders (Figure 32). These scales are capable of 
indicating a difference as small as 1 kg even with loads up to 14,000 kg. The smaller sample cylinders can 
be weighed on laboratory scales, such as an equal-arm balance, with even greater measurement accuracy.

To ensure continuous accuracy of the weight measurements, scale calibration and operating procedures 
are developed and implemented by the facility operator. Operating procedures provide for the proper and 
consistent use of the scales for weighing UF6 cylinders and establish the requirements for control checks 
and scale calibration. Scales are calibrated on a routine basis and at other times as the need arises (e.g., 
when the control checks do not meet established criteria) with standards traceable to a national or 
international standards organization. To ensure that the scales are functioning properly between 
calibrations, check weights that are the same size and weight as the typical empty and full production 
cylinders are weighed.

Figure 32. Platform scale.
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4.4.4 Cylinder Sampling and Blending

Sampling of UF6 cylinders is 
necessary to ascertain the chemical 
purity (i.e., percent uranium) and 
the isotopic concentration (i.e., 
weight percent 235U) of the process 
material. These data are used (1) to 
determine if the material meets the 
feed and product specifications and 
(2) to quantify the nuclear material 
contained in the cylinder for 
materials accounting. To establish 
the quantity of uranium contained 
in a cylinder, the net weight of UF6 
is multiplied by the percent 
uranium; the quantity of 235U is 
determined by multiplying the 
uranium weight by the weight 
percent 235U. UF6 feed cylinders 
may be sampled upon receipt into 
the enrichment plant. Nondestructive assays may also be performed to verify the enrichment level of 235U. 
Product cylinders are sampled after being filled. Tails cylinders are usually not subject to sampling 
because they remain on-site in long-term storage.

The most representative sample of the UF6 in a cylinder is a sample withdrawn from the liquid phase after 
the cylinder contents are completely homogenized. Because impurities concentrate in the vapor, gas-
phase samples cannot be used to determine the chemical purity of the UF6. The UF6 contained in a 
cylinder may be stratified because of cooling of the UF6 between intermittent fillings of the cylinder 
and/or heel material may be present in the cylinder before filling. The cylinder is heated to homogenize 
the contents, which are mixed by thermal action of the liquid. Homogenization requires approximately 
8 hours for a 30 in. cylinder and 12 hours for a 48 in. cylinder. A liquid sample is withdrawn into a 
sample cylinder and is solidified with liquid nitrogen (Figure 33). The sample cylinder is then weighed 
and transferred to the analytical laboratory for subsampling and analysis. The parent cylinder is removed 
from the heating station and placed in a storage area for cooling.

The enrichment requested by the customer cannot always be precisely obtained directly from the 
cascades. To achieve the desired enrichment, two containers with UF6 enriched to different levels are 
heated in autoclaves, and their contents transferred and blended in a third cylinder. Sampling of the new 
product cylinder occurs after the blending operation.

4.4.5 Cylinder Heating

Cylinders are heated to convert their UF6 contents from solid to liquid for sampling or from solid to gas 
for feeding into the process. Before heating a cylinder of UF6, the cylinder is inspected for any physical 
defects, weighed to ensure that it adheres to fill limits, and cold-pressure checked for light gas 
contaminants. The cylinder is then transferred to a containment-type autoclave. A containment autoclave 
is a steam or electrically heated pressure vessel, of sufficient structural strength and with the necessary 
instrumentation, for sensing and confining any inadvertent UF6 release that might occur from a cylinder 
when UF6 is being heated, fed, or transferred.

Figure 33. Pulling an S2 sample at an autoclave.
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Once the cylinder has been placed in the autoclave, it is connected to the feed or sampling system. All 
connections are leak-tested, the cylinder valve is opened, and the containment autoclave is closed and 
locked before the cylinder is heated. When heat in the containment autoclave is applied to a cylinder, the 
cylinder pressure is monitored continuously so that an automatic shutdown can be performed if an 
abnormal sequence or an abnormally high cylinder pressure is observed. Instrumentation is present to 
quickly indicate an inadvertent UF6 release. As additional safety factors, the autoclaves have redundant 
isolation valves, and the amount of water allowed to be present in the autoclave (if steam heated) is 
controlled. 

4.4.6 Cylinder Feeding

The function of the feed system is to convert the solid UF6 in a cylinder to a gas and to transfer the gas to 
the centrifuge cascades for processing. To maintain a continuous feed rate to the cascades, the feed 
system contains a number of autoclaves in parallel (Figure 34). Once the UF6 cylinder has been placed 
and positioned in the containment autoclave, the low-molecular-weight contaminant gases (e.g., HF and 
air) contained in the cylinder are withdrawn through a series of desublimers and chemical traps.

The feed cylinder is heated to convert the UF6 from a solid to a gas. For rapid transfer, the cylinder is 
heated to a temperature greater than the triple point of UF6 so that the solid UF6 melts into a liquid and 
then evaporates into a gas. For slower transfer, the cylinder may be heated to a temperature less than the 
triple point and the solid UF6 sublimes directly into a gas. The UF6 gas, from either transfer technique, is 
fed into a hold-up drum (i.e., surge tank). The hold-up drum serves as a buffer to enable the operator to 
maintain a continuous gas flow during cylinder changeovers and feed system process upsets. After 
leaving the hold-up drum, the gas may flow into a mixing drum that provides the capability of mixing 
UF6 gas from several autoclaves before feeding the gas to the cascade. The gas is fed into the process 
system at the point where the feed concentration matches the cascade concentration. When the cylinder is 
nearing empty, a constant feed rate can no longer be maintained. Alternative evacuation procedures, using 
cold traps, vacuum pumps, or other low-pressure systems, may be used to minimize the residual quantity 
of material that remains in the cylinder.

Figure 34. Steam autoclaves for UF6 feeding.
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4.4.7 Cylinder Filling

The function of the UF6 withdrawal system is to collect the enriched and depleted gaseous UF6 streams 
from the cascades, to remove the light gas impurities, and to transfer the remaining material to product 
and tails cylinders. Product and tails concentrations can be adjusted by varying the withdrawal rates or by 
changing the withdrawal points from the cascade. Two techniques can be used for collecting and 
transferring UF6 gas to the product and tails cylinders: desublimation or compression. 

In the desublimation technique, gaseous UF6 flows through a desublimer where it desublimes (solidifies) 
on the cooled walls and internal elements. To maintain a continuous withdrawal rate, multiple 
desublimers are connected in parallel (Figure 35). When one desublimer is filled, the gas flowing from the 
cascades is diverted to the next empty desublimer. The contents of the full desublimer are then transferred 
to an empty cylinder as either a liquid or a gas. For liquid transfer, the desublimer is heated to a 
temperature greater than the triple point. The solid UF6 melts into a liquid, drains into the cylinder, and 
solidifies. Liquid UF6 in product and tails cylinders requires 3–5 days to solidify at ambient temperatures. 

For a gas transfer system, the desublimer is heated to a temperature less than the triple point. The UF6 
sublimes from a solid to a gas, is transferred to the cylinder that is cooled by air or water, and desublimes 
on the cold walls of the cylinder. In either technique, the product and tails cylinders being filled are 
positioned on scales to prevent overfilling.

Figure 35. Desublimers for UF6 removal.

In the compression technique, the UF6 gas is compressed and cooled by a series of compressors and 
interstage coolers to increase the UF6 pressure and decrease the gas temperature. The gaseous UF6 can be 
compressed to a point below or above the triple point so that the material is collected as either a gas or 
liquid, respectively. For a gas transfer system, the gaseous UF6 is routed to an empty cylinder where the 
gas desublimes on the cold walls of the cylinder, which can be cooled by air or water. If the compressed 
gas is liquefied in the condenser, it is drained through accumulators into empty cylinders where it cools 
and solidifies. The accumulators serve as a buffer and can store UF6 during steady-state flow disruptions 
(e.g., cylinder changes).
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Review Questions for Section 4.4

1. What is the state of UF6 when it is shipped?

2. How much material is contained in typical feed, product, and tails cylinders?

3. What is a containment autoclave used for?

4. What is the function of the feed system?

5. What activities are involved in feeding a cylinder?

6. How are product and tails cylinders filled?

7. What operations are performed on a feed cylinder when it arrives on-site?

8. How do you determine the quantity of process material fed to or withdrawn from the process?
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4.5 MATERIALS ACCOUNTING RECORDS

Objectives

After completing this section, the reader should be able to

1. describe the key elements of facility nuclear materials accounting consisting of record keeping, 
accounting reports, and measurement assurance,

2. explain material balance area (MBA) structure and activities associated with physical inventory 
taking and material balance closure, and

3. identify measurement techniques used by the facility operator for material balance activities.

4.5.1 Nuclear Materials Accountability

A centrifuge enrichment plant operator needs to establish an effective nuclear materials accounting 
system to ensure efficient operation; to satisfy health, safety, and safeguards requirements; and to fulfill 
contractual obligations. Nuclear materials accounting refers to those activities performed to establish (1) 
the quantities of nuclear material present within defined areas and (2) the changes in quantities of nuclear 
material occurring within a defined period of time. Key elements of nuclear materials accounting include 
record keeping (and reporting, as necessary), inventory taking, measurements, verification of the accuracy 
of the accounting data (including auditing and measurement control programs), and evaluation of 
inventory differences.

4.5.2 Material Balance Area Structure

The starting point for a nuclear materials accountability system is the MBA structure and the account 
structure within an MBA. Each facility develops an MBA and account structure that is tailored to its 
organization and facility operations. The generic MBA structure for safeguards at centrifuge enrichment 
facilities is two MBAs: a process MBA and a storage MBA. The MBA structure is chosen so that

1. the quantity of nuclear material in each transfer into or out of each MBA can be determined, and

2. the physical inventory of nuclear material in each MBA can be determined when necessary, in 
accordance with specified procedures.

Following these guidelines, the storage MBA is generally defined to include all UF6 cylinders not 
attached to the process system. The process MBA has been defined to include the process system, UF6 
cylinders attached to the process system, the decontamination and maintenance operations, and the scrap 
recovery and waste treatment operations. The analytical laboratory and the weighing and sampling areas 
may belong to either MBA or may belong to a separate MBA. As stated previously, each facility develops 
an MBA and account structure tailored to meets its specific needs.

The storage MBA inventory is composed of items (i.e., UF6 cylinders). Items residing in this MBA are 
stored, shipped to other facilities, and transferred to the process MBA. Rebatching, blending, and cylinder 
sampling that may be performed in this area would be the only activities that would change the 
accountability records for an item in residence.

The process MBA inventory is composed of process, scrap, and waste materials contained in a variety of 
configurations. The inventory is contained in the process system, decontamination solution containers, 
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chemical traps, removed process equipment, and a variety of containers for scrap and waste materials. 
The magnitude of this inventory is constantly changing. Removals from this MBA are generally limited 
to transfers of UF6 in cylinders to the storage MBA, scrap and waste materials shipped to another facility 
for recovery and/or disposal, and measured discards that are disposed of to the environment.

4.5.3 Records and Reports

Source documentation, records, and reports are generated whenever nuclear material passes through a key 
measurement point. A key measurement point is a location where nuclear material appears in such a form 
that it may be measured to determine material flow or inventory. Key measurement points include, but are 
not limited to, the input and output streams of each MBA (including measured discards) and the storage 
items in each MBA. Flow key measurement points are identified for all nuclear material transfers between 
MBAs and facilities, for nuclear material category changes, and for rebatching and blending operations. 
Inventory key measurement points are identified for all material types on the facility inventory.

The source documents are the data records used to prepare the change and inventory records and reports. 
Source documents include weight tickets, elemental and isotopic concentration reports from the analytical 
laboratory, shipping papers, inventory lists, nuclear material transfer forms, accountability procedures, 
and explanatory reports. The records include nuclear material transaction journals and ledgers. The 
reports include inventory change and material balance reports and physical inventory listings.

4.5.4 Inventory and Material Balance Closure

Material balance closures are performed at most centrifuge enrichment facilities on an annual basis and 
involve the determination of the actual inventory in each MBA and the comparison of this inventory to 
the facility’s book inventory. The result of a material balance closure is a statement of “material 
unaccounted for” (MUF), that is, the difference between the book inventory (beginning inventory + 
receipts − shipments) and the actual inventory. If this difference falls within the calculated uncertainty 
limits for the material balance, the material balance is accepted; if not, the difference requires resolution. 
Most enrichment facilities also perform a less detailed monthly book inventory.

Physical inventories are performed in the storage and process MBAs and involve the use of very different 
techniques. The storage MBA inventory involves the verification of the number of items and the 
verification of the identity of each item. Characteristics of some of the UF6 cylinders (e.g., weight and 
isotopic concentration) may also be verified. Verification of the process MBA inventory is much more 
difficult.

The process system is a continuous operation and cannot be shut down or cleaned out for the inventory. 
Therefore, the process system inventory is reduced as much as possible by minimizing the inventory in 
the desublimers and the attached, partially fed cylinders. This is performed by redirecting the process gas 
flow from on-line desublimers and feed cylinders to empty desublimers and preweighed feed cylinders. 
The desublimers are emptied to withdrawal cylinders that are then removed and inventoried. The 
cylinders are moved from the feed and withdrawal stations and weighed. Samples may be withdrawn 
from the cylinders to determine the uranium and isotopic concentrations. The remaining process system 
inventory consists of the gas-phase inventory and the solids inventory. The gas-phase inventory is 
estimated using volume, temperature, and pressure calculations, and the solids inventory is estimated 
using expected rates of deposition and reaction of UF6 in the process system. The inventory of scrap and 
waste materials (including laboratory sample materials) is usually reduced to the minimum feasible level 
before the physical inventory is performed, and the remainder is measured by the best available 
destructive or nondestructive analysis techniques.



56

Problem 5. Inventory calculation 

Problem 5a: Given a 1-million-SWU/year gas centrifuge plant and assuming a specific 
inventory of 0.0005 kg U/SWU/year (Table 3, Section 2.3), how much 
uranium might be expected to be contained in the gas-phase inventory? 

Solution: The amount of uranium in the gas-phase inventory can be estimated by 
multiplying the enrichment capacity of the gas centrifuge plant by the 
specific inventory. 

 
                  Gas-phase inventory = enrichment capacity × specific inventory

                    = 1,000,000 SWU/year × 0.0005 kg U/SWU/year
                                                    = 500 kg U

Note that this gas-phase inventory would be distributed throughout all the 
processing piping and equipment. 

Problem 5b: Assuming the average enrichment of the gas-phase inventory is 1.0% 235U, 
how much 235U would be contained in the gas-phase inventory? 

Solution: The amount of 235U in the gas-phase inventory is calculated by 
multiplying the U in the gas-phase inventory by the average 235U 
enrichment.

 
                  235U inventory = gas-phase inventory × 235U enrichment
                                          = 500 kg U × 0.01 kg 235U/kg U
                                          = 5 kg 235U

4.5.5 Measurement and Measurement Control Systems

Enrichment facilities essentially handle one type of material (i.e., UF6) of at least three different isotopic 
concentrations (i.e., natural feed, enriched product, and depleted tails). Depending on the plant operation, 
multiple product and tails streams with different isotopic concentrations may be withdrawn. The majority 
of the UF6 is contained in the cylinders described in Sect 4.4. The remaining material is contained in the 
cascades with a small amount contained in unmeasured discards.

All items received into or removed from an MBA are measured to determine the uranium and/or 235U 
content. These measurements are performed on the item or on samples withdrawn from the item. Items 
that were accurately measured in the MBA from which they are received are generally accepted on that 
measured value. All cylinders (feed, product, and tails) received at an enrichment facility are weighed on 
receipt to verify the gross weight or to establish (if an empty cylinder) the cylinder’s tare weight. 
Depending on the operator’s confidence in the quality of the received UF6, each feed cylinder may be 
sampled, accepted on shipper’s values, or sampled on a random basis. Transfers from the storage MBA to 
the process MBA and vice versa are measured in only one of the MBAs. These measurements include 
total weight of contained UF6, uranium concentration (generally by ignition gravimetry), isotopic 
abundances and 235U content (generally by gas source mass spectrometry), and impurity concentrations 
(by assorted techniques). Scrap and waste materials may be measured for the contained uranium and 235U 
contents by an assortment of destructive and nondestructive analysis techniques.
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Approximate measurement uncertainties are provided in Table 10. Using platform scales, 10 and 14 ton 
UF6 cylinders can be weighed very accurately. The relative limit of error (95% confidence level) for the 
net weight of UF6 in these cylinders is less than 0.05%. Depending on the degree of heterogeneity, the 
sampling error for UF6 cylinders is generally less than 0.10% after homogenization. UF6 can be analyzed 
very accurately for uranium and isotopic concentrations by well-established destructive chemical 
methods. At a 95% confidence level, subsampling and analysis for both uranium content and 235U isotopic 
concentration have a relative limit of error that is less than 0.05%. Heterogeneous waste materials from 
which representative samples are difficult to obtain generally can be measured with a measurement 
uncertainty of less than 10%. The in-process inventory is calculated from process system volumes, 
pressures, temperatures, and models of material deposition and holdup. The uncertainty of this inventory 
is approximately 10% of the quantity obtained; of this, the random error component would amount to 
only a few percent.

Table 10. Measurement uncertainties

Measurement Uncertaintya (%)
Weight <0.05
Sampling <0.10
Uranium content <0.05
Isotopic concentration <0.05
In-process inventory ~10
Waste materials <10

aAt 95% confidence level.

Confidence in the measurement results is ensured through the effective application of a measurement 
control program. The program includes (1) the qualification of measurement systems and of the 
measurement personnel that use the systems and (2) the periodic measurement of control samples and 
reference materials to verify that the measurement system meets required accuracy specifications. The 
control programs also include procedures for the calibration and requalification of the measurement 
systems following out-of-control occurrences. The calibration and control procedures utilize certified 
reference materials and ensure traceability of the measurement results to the national system.

Review Questions for Section 4.5

1. What are the MBAs in the standard MBA structure at a centrifuge enrichment plant?

2. How often are material balance closures performed at a centrifuge enrichment plant?

3. How do the inventories of the storage and process MBAs differ?

4. What measurements are made on the UF6 contained in a full product cylinder when it is transferred 
from the process to the storage MBA?
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cascade—Stages of separation elements connected in series to achieve useful enrichments.

compression—Technique where UF6 gas is compressed and cooled by a series of compressors and 
interstage coolers to increase the UF6 pressure and decrease the gas temperature.

consumption—Losses that are due to all mechanisms such as the reaction of UF6 with surface impurities, 
water, organic compounds, and inorganic materials, as well as metal corrosion.

containment autoclave—Steam or electrically heated pressure vessel of sufficient structural strength and 
with the necessary instrumentation for sensing and confining any inadvertent UF6 release that 
might occur from a cylinder when UF6 is being heated, fed, or transferred.

corrosion—Losses due to the reaction of UF6 with the metal within which it is contained.

depleted uranium—Uranium content less than natural uranium.

desublimation—Technique where gaseous UF6 flows through a desublimer where it desublimes 
(solidifies) on the cooled walls and internal elements.

equilibrium time—Time required for a cascade to reach its steady-state, designed operating condition.

gross weight—Weight of a cylinder filled with UF6.

heels—Residual amount of UF6 and nonvolatile reaction products of uranium contained in empty feed 
cylinders.

highly enriched uranium—Enriched uranium above 20% 235U or greater

in-process inventory—Total amount of material required to fill the entire cascade while in process.

key measurement point—Location where nuclear material appears in a form where it may be measured 
to determine material flow or inventory.

low-enriched uranium—Enriched uranium above natural uranium but less than 20% 235U.

natural—Uranium as found in nature.

net weight—Difference between the gross weight and tare weight of all UF6 within a cylinder.

product—Enriched stream withdrawn from the top cascade stage.

separation element—A device that separates the incoming feed stream into two outgoing streams, 
enriched and depleted.

separation factor—Degree of separation that can be achieved in a given separation element or stage 
measured by a parameter.

stages—Separation elements connected in parallel to achieve the necessary flow throughput.

sublimation temperature—Temperature where the vapor pressure of the solid equals atmospheric 
pressure.

tails/waste—Depleted stream withdrawn from the bottom cascade stage.

tare weight—Weight of an empty, clean cylinder.

throughput—Rate feed material can be processed.

total reflux/recycle mode—Time cascade withdrawal valves remain closed while the process material is 
recycled through the separation elements to increase the initial product concentration from the 
feed concentration to the desired product concentration.
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triple point—Temperature and pressure at which solid, liquid, and vapor exist in equilibrium.

value—An abstract property of a quantity of uranium that is independent of cost and price.

uranium enrichment—Increase of 235U isotope above its natural concentration of 0.71%.


