
ORNL/TM-2019/1291

Multi–LDAP Dynamic User Management
Tool Utilizing Oracle Application
Express and PL/SQL

A. Bengston

August 26, 2019

Approved for public release.
Distribution is unlimited.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

Website www.osti.gov

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.gov
Website http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

http://www.osti.gov/
http://classic.ntis.gov/
http://www.osti.gov/contact.html

ORNL/TM-2019/1291

Data System Sciences and Engineering
Center for Infrastructure Security Analysis

Multi–LDAP Dynamic User Management Tool Utilizing
Oracle Application Express and PL/SQL

Adam Bengston

August 26, 2019

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-BATTELLE, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

iii

CONTENTS

CONTENTS ...iii
ACRONYMS..iv
ABSTRACT...v
1. SCOPE ...1
2. INTRODUCTION ...1
3. SOLUTION..1

3.1 PL/SQL ..1
3.2 TABLES...1

3.2.1 LDAP_SERVER_CONFIG..2
3.2.2 APPLICATION_REGISTRY...4

3.3 API ...4
3.3.1 OPS_UM_LDAP ..4
3.3.2 OPS_UM_LDAP_GROUP...5
3.3.3 OPS_UM_LDAP_USER ..5
3.3.4 OUMA_FACADE ..6

3.4 LDAP–SPECIFIC PACKAGES ..7
3.5 UTILIZING THE API IN THE USER MANAGEMENT APPLICATION7

4. CONCLUSION..7
APPENDIX A MULTI–LDAP USER MANAGEMENT TOOL OVERVIEW...8

iv

ACRONYMS

AD Microsoft Active Directory

ADLDS Microsoft Active Directory Lightweight Directory Services

APEX Oracle Application Express

API application programming interface

ID Identifier

CISA Center for Infrastructure Security Analysis

LDAP Lightweight Directory Access Protocol

OID Oracle Internet Directory

OUMA Operational User Management Application

PL/SQL Oracle Procedural Language extension for Structured Query Language

v

ABSTRACT

A Center for Infrastructure Security Analysis (CISA) client system required support of multiple
Lightweight Directory Access Protocol (LDAP) directories for multiple, varied user communities. The
LDAP directories were all based upon different technologies, i.e., Microsoft Active Directory (AD),
Microsoft Active Directory Lightweight Directory Services (ADLDS), and Oracle Internet Directory
(OID), depending on system setup, security requirements, and legacy software. Research revealed that
PL/SQL provided the capability to execute dynamic PL/SQL and SQL blocks. The dynamic capabilities
were utilized along with several configuration tables to provide an object-oriented, polymorphic-like
behavior. This architecture was chosen so that a top-level application programming interface (API) could
be defined for all calls, no matter what type of LDAP was being manipulated, as each LDAP type has
slightly different attributes and requirements. The dynamic nature of the user management system
allowed for easy setup and utilization of any new LDAP directories, minimizing the time and effort
expended on system changes.

1

1. SCOPE

This document is being provided to describe the integration of the following three major technologies at
the Oak Ridge National Laboratory (ORNL) Center for Infrastructure Security Analysis (CISA):
1) Lightweight Directory Access Protocol (LDAP), 2) Oracle Application Express (APEX), and 3) Oracle
Procedural Language extension for Structured Query Language (PL/SQL). This document is not intended
to provide background information on those technologies or to provide an in-depth discussion on any one
of those technologies.

2. INTRODUCTION

A CISA client system required support of multiple LDAP directories for multiple, varied user
communities. The LDAP directories were all based upon different technologies, i.e., Microsoft Active
Directory (AD), Microsoft Active Directory Lightweight Directory Services (ADLDS), and Oracle
Internet Directory (OID), depending on system setup, security requirements, and legacy software (from
which the CISA researchers initially chose not to migrate). With the requirement to support several
different LDAP directories came the need to support user management activities from an application or
applications.

3. SOLUTION

Appendix A provides an overview of the multi–LDAP dynamic user management tool architecture and
the components detailed in this section.

3.1 PL/SQL

The CISA client project is completely Oracle-based, so, from the onset, CISA researchers sought a
solution that involved utilizing Oracle PL/SQL language for writing code within the database. Research
revealed that PL/SQL provided the capability to execute dynamic PL/SQL and SQL blocks. The dynamic
capabilities were utilized along with several configuration tables to provide an object-oriented,
polymorphic-like behavior. This architecture was chosen so that a top-level application programming
interface (API) could be defined for all calls, no matter what type of LDAP was being manipulated, as
each LDAP type has slightly different attributes and requirements.

Oracle also provides a core package, DBMS_LDAP, to interact with LDAP directories. This package was
used at the core of all the PL/SQL that was written for this application.

3.2 TABLES

At the root of this package are a set of configuration tables that were created to store information on the
connected LDAP directories, as well as information identifying the applications that would be utilizing
each LDAP. Sections 3.2.1, LDAP_SERVER_CONFIG, and 3.2.2, APPLICATION_REGISTRY, discuss
the tables created to store the necessary metadata.

2

3.2.1 LDAP_SERVER_CONFIG

The LDAP_SERVER_CONFIG table contains metadata for each LDAP the user management tool was
required to support. This information includes the following:

1. ldap_server_id – Unique identifier for each LDAP entered into the system.

2. name – Text name for the LDAP to be displayed within the application.

3. host – Server that hosts the LDAP.

4. port – Port used to communicate with the LDAP on the host.

5. admin_user_name – Login of the administrative user used to execute commands within the
LDAP.

6. admin_user_password – Encrypted password for the administrative user; keys stored elsewhere.

7. auth_base – Path utilized to authenticate the administrative user.

8. full_base – Root path.

9. user_base – Path used to access the users.

10. group_base – Path used to access the groups with which users are associated.

11. is_active – Flag indicating whether or not the LDAP should be listed within the application.

12. package_prefix – PL/SQL package prefix used within the dynamic PL/SQL code to determine
which LDAP implementation code to utilize.

13. view_prefix – Prefix for the three distinct views that are built for each LDAP entered into the
system.

14. replicate_to – Indicates a slave LDAP to which a parent LDAP is replicating. This requires the
parent LDAP ID be set to an LDAP to which replication is not already being performed.

15. parent_ldap_id – LDAP that has user and group information that is being replicated to another
LDAP.

Once parameters have been entered for an LDAP directory server, the user must then create the necessary
views for the LDAP. Each LDAP registered within the user management application must have a User
View, Group View, and User Group Junction View (labelled *_user, *_group, and *_junc_user_group)
created for it. These views are used for querying data from the LDAP directory while operations are being
run against the LDAP. These views also are used within the user management application for display
purposes.

3

Depending upon the LDAP type being used (i.e., AD, ADLDS, or OID), a function can be used to create
each view. Following are examples of the query used for each of the following three views:

User View

create or replace view oss_ad_user as
 select
 user_id
 ,cn
 ,is_enabled
 ,sn
 ,givenname
 ,mail
 ,rdn
 ,parentdn
 ,state
 ,access_list as state_access
 ,create_date
 ,last_login
 ,is_locked
 ,pwd_last_set
 from
 table
 (
 select cast (get_ad_users (LDAP_SERVER_ID) as ldap_user_table)
 from dual
)
 where user_id is not null;

Group View

create or replace view oss_ad_group as
 select
 group_name
 ,rdn
 ,parentdn
 from
 table (select cast(get_ad_groups(LDAP_SERVER_ID) as ldap_group_table) from dual)
 where
 group_name is not null;

User Group Junction View

create or replace view oss_ad_junc_user_group as
 select
 group_name,
 user_name
 from
 table (select cast(get_ad_junctions(LDAP_SERVER_ID) as ldap_junc_table) from
dual)
 where
 group_name is not null;

In the aforementioned sample views, several functions are utilized to retrieve results from the LDAPs
using specifically tailored functions for each type of LDAP.

4

3.2.2 APPLICATION_REGISTRY

The APPLICATION_REGISTRY table contains a list of applications and the corresponding LDAP that
should be used for authentication and authorization. This information includes the following:

1. application_registry_id – Unique identifier (ID) for the record.

2. application_id – Oracle APEX or other identified ID representing the application when making
calls to the top level API.

3. application_name – Text name of the application to display within the application.

4. ldap_server_id – Foreign key to the LDAP_SERVER_CONFIG table used to identify which
LDAP the application should utilize for authentication and authorization.

3.3 API

Using native dynamic PL/SQL capabilities and the configuration tables discussed in Sections 3.2.1 and
3.2.2, CISA researchers developed a common top-level API with PL/SQL packages to which applications
can make calls. The generic application API functions using a specific application ID that is tied to an
LDAP via the APPLICATION_REGISTRY table. A package also was developed for the user
management application API so that it could function using a specific LDAP ID instead of an application
ID. These packages are described in Sections 3.3.1 through 3.3.4.

3.3.1 OPS_UM_LDAP

OPS_UM_LDAP is the base package utilized for retrieving LDAP metadata, as well as for establishing
connections to an LDAP. This package provides the following procedures:

1. get_admin_session – Establishes an administrative LDAP session for manipulating the LDAP or
retrieving user or group information for the given application.

2. get_user_session – Establishes an LDAP session as a specific user for a given application. Can be
used to authenticate a user as well.

3. close_session – Closes a given LDAP session.

4. get_ldap_server – Retrieves the LDAP Server ID associated with a given Application ID.

5. get_ldap_host – Retrieves the LDAP host for a given LDAP ID.

6. get_ldap_port – Retrieves the LDAP port for a given LDAP ID.

7. get_ldap_auth_base – Retrieves the authentication path for the administrative user for a given
LDAP ID.

8. get_ldap_full_base – Retrieves the root path for a given LDAP ID.

9. get_ldap_user_base – Retrieves the path to the users for a given LDAP ID.

10. get_ldap_group_base – Retrieves the path to the groups for a given LDAP ID.

11. get_ldap_package_prefix – Retrieves the package prefix used to determine which implementation
to execute for a given LDAP ID.

5

12. get_ldap_view_prefix – Retrieves the view prefix used to query users and groups for a given
LDAP ID.

13. get_real_login – Retrieves the exact login name for each user in cases where the common name
(CN) differs from the user’s login name, such as when the user CN returned is not the ID utilized
to manipulate the user in Microsoft AD.

3.3.2 OPS_UM_LDAP_GROUP

The OPS_UM_LDAP_GROUP package is used to administer groups within an LDAP based on
interaction with a specific application ID that is listed in the APPLICATION_REGISTRY table. This
package provides the following procedures:

1. add_user_to_group – Adds the given user to the given group for a given application.

2. remove_user_from_group – Removes the given user from the given group for a given application.

3. create_group – Creates a new group with the given name and description for a given application.

4. delete_group – Removes a group identified by the passed-in string.

3.3.3 OPS_UM_LDAP_USER

The OPS_UM_LDAP_USER package is used to administer users within an LDAP, based upon
interaction with a specific application ID that is listed in the APPLICATION_REGISTRY table. This
package provides the following procedures:

1. authenticate_user – Attempts to authenticate the given user with the given password against the
given application.

2. get_user_attribute – Retrieves the specified user attribute for a given user from the given
application.

3. get_user_email – Retrieves the mail attribute for the given user from the given application.

4. create_user – Creates a user with the specified attributes for a given application.

5. reset_user_password – Uses a password generator to create a random password and resets the
user’s account attributes as necessary for the given application.

6. change_user_password – Allows users to change their password for a given application.

7. modify_user – Sets the given attribute to the given value for a given user for a given application.
There are overloaded versions of this procedure for text and numeric attributes.

8. clear_user_attribute – Resets/clears a given attribute for a given user for a given application.

9. enable_user – Enables a user for the given application.

10. disable_user – Disables a user for the given application.

11. unlock_user – Unlocks a user for the given application.

12. check_group_membership – Checks to see if the given user is a member of the given group for
the given application.

13. is_locked – Indicates if the given user account is locked for the given application.

6

14. is_password_expired – Indicates if the given user account has an expired password for the given
application.

15. get_password_expiration_days – Retrieves the number of days until the given user account
password expires for the given application.

3.3.4 OUMA_FACADE

The OUMA_FACADE package is utilized by the user management application as its interface to an
LDAP directory by specifying an LDAP ID instead of an application ID.

1. get_admin_session – Establishes an administrative session for manipulating the given LDAP.

2. add_user_to_group – Adds a given user to the given group in the given LDAP.

3. remove_user_from_group – Removes the given user from the given group in the given LDAP.

4. create_group – Creates a group with the given name and description in the given LDAP.

5. delete_group – Deletes the given group from the given LDAP.

6. authenticate_user – Attempts to authenticate the given user against the given LDAP.

7. get_user_attribute – Retrieves the specified attribute for the given user from the given LDAP.

8. get_user_email – Retrieves the mail attribute for the given user from the given LDAP.

9. get_user_attrs – Retrieves a set of attributes for the given user from the given LDAP.

10. does_user_exist – Indicates if the given user exists in the given LDAP.

11. create_user – Creates a user with the specified information in the given LDAP.

12. reset_user_password – Resets a user password, and sends the user an email with the “forgot
password” link for the application menu associated with the given LDAP.

13. change_user_password – Changes a user’s password for the given LDAP.

14. modify_user – Updates the given attribute with the given value for the given user in the given
LDAP.

15. clear_user_attribute – Resets/clears the given attribute for the given user in the given LDAP.

16. enable_user – Enables the given user in the given LDAP.

17. disable_user – Disables the given user in the given LDAP.

18. check_group_membership – Indicates if the given user is a member of the given group in the
given LDAP.

19. unlock_user – Unlocks the given user account in the given LDAP.

20. is_locked – Indicates if the given user’s account is locked in the given LDAP.

21. is_enabled – Indicates if the given user’s account is enabled in the given LDAP.

22. is_password_expired – Indicates if the given user’s account has an expired password in the given
LDAP.

23. delete_user – Deletes the given user account from the given LDAP.

7

3.4 LDAP–SPECIFIC PACKAGES

Below the top-level API, packages that are specific to each LDAP directory technology supported are
provided. CISA researchers utilized the object-oriented, polymorphic-like behavior of dynamic PL/SQL,
along with the configuration data stored in the database, to call these specific LDAP implementations. For
each LDAP implementation, three packages (i.e., user, group, and session management packages) are
provided. Each of these packages must implement the top-level interface defined by the
OPS_UM_LDAP_* API packages.

Currently, CISA researchers have implemented packages to support the following technologies:

 Microsoft Active Directory

 Microsoft Active Directory Lightweight Directory Services

 Oracle Internet Directory

 Weblogic Lightweight Directory Access Protocol

 Amazon Simple Active Directory

Each of these implementations can be utilized by entering configuration data into the
LDAP_SERVER_CONFIG data.

3.5 UTILIZING THE API IN THE USER MANAGEMENT APPLICATION

The user management application was developed in Oracle’s Application Express (APEX) platform and
was built on the OUMA_FACADE API. Leveraging APEX, CISA researchers were able to tightly
integrate the application to the API. The interface provides user management functionalities, such as
creating users and groups, modifying existing users, managing group membership, and an administrative
area. The administrative area is used to view logs and to manage application and LDAP configuration
data.

The key component to making this a flexible application is an LDAP selection utility that allows the
application to manage the selected LDAP simply by applying the selected LDAP parameters to the
application’s metadata. With this capability, application users can efficiently maneuver between the
LDAPs required by the client system.

The inclusion of the management utilities to the application also allows a user with administrative
privileges to add additional LDAP servers to the configuration. If the client requirements change, or if a
new technology is utilized, the additional LDAP servers can be added and managed by this single
application.

4. CONCLUSION

The Oracle PL/SQL programming language provides a flexible platform for developing core application
logic that CISA researchers were able to utilize to create an application used by the client for more than
10 years. Over the years, CISA has added new LDAP directory configurations to the production
environment as client requirements and resources have changed. The dynamic nature of the user
management system allowed for easy setup and utilization of any new LDAP directories, minimizing the
time and effort expended on system changes.

8

APPENDIX A
MULTI–LDAP USER MANAGEMENT TOOL OVERVIEW

