
Molten Salt Reactor Initiating Event and Licensing Basis Event Workshop Summary

David E. Holcomb Alex Huning Askin G. Yigitoglu Michael D. Muhlheim W. P. Poore George F. Flanagan

July 2019

Approved for public release. Distribution is unlimited.

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect.

Website www.osti.gov

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 *Telephone* 703-605-6000 (1-800-553-6847) *TDD* 703-487-4639 *Fax* 703-605-6900 *E-mail* info@ntis.gov

Website http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source:

Office of Scientific and Technical Information PO Box 62
Oak Ridge, TN 37831 *Telephone* 865-576-8401 *Fax* 865-576-5728 *E-mail* reports@osti.gov

Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Reactors and Nuclear Systems Division

MOLTEN SALT REACTOR INITIATING EVENT AND LICENSING BASIS EVENT WORKSHOP SUMMARY

David E. Holcomb Alex Huning Askin G. Yigitoglu Michael D. Muhlheim W. P. Poore George F. Flanagan

July 2019

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, TN 37831-6283
managed by
UT-BATTELLE, LLC
for the
US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

1.	WORKSHOP OVERVIEW	1
2.	EVALUATION PROCESS AND RESULTS	3
	FREQUENCY AND CONSEQUENCE ESTIMATES	
	CONCLUSIONS AND NEXT STEPS	

1. WORKSHOP OVERVIEW

Oak Ridge National Laboratory (ORNL) hosted a workshop on identifying potential initiating events for radioactive releases as precursors to licensing basis events for a generic liquid-fuel molten salt reactor (MSR). The workshop was held on May 21 and 22, 2019. Participants included representatives from seven prospective reactor vendors, industry bodies, US and Canadian regulators, US and Canadian national laboratories, and the academic community.

Accident sequence evaluation is central to deterministic and risk-informed performance-based reactor safety evaluation processes, and initiating events begin the accident sequence evaluation process. The workshop focused on how MSR initiating events feed into the risk-informed, performance-based reactor safety evaluation process described in DG-1353. This report describes the workshop activities and results, provides a generic list of initiating events involving selected systems, and presents the estimation of the relative frequency and consequences of accident sequences for a few important, high-level initiating events.

The workshop results are intended to support the following:

- 1. **Reactor designers** by (a) identifying a set of generic initiating events that may help define licensing basis events that need to be prevented or mitigated, and (b) demonstrating a process designers can use to develop a complete set of initiating events for their plants
- 2. **Regulators** by (a) providing confidence in the ability to implement a systematic, expert evaluation process to establish MSR initiating events, and (b) providing representative initiating events that regulators should expect applicants to address
- 3. The DOE-NE MSR R&D campaign by supporting the planning process to determine the most critical topics for future research

The workshop employed a systematic process to elicit potential initiating events from a broad spectrum of MSR and reactor safety evaluation experts:

Participants were provided with background information on MSR characteristics and accident evaluation methods prior to the workshop to maximize productivity. The recommended reading list is provided below.

- 1. NRC Draft Regulatory Guide 1353, Guidance for a Technology-Inclusive, Risk-Informed, and Performance-Based Approach to Inform the Content of Applications for Licenses, Certifications, and Approvals for Non-Light-Water Reactors.
- 2. EPRI TR-3002011801, Program on Technology Innovation: Early Integration of Safety Assessment into Advanced Reactor Design.
- 3. Vanderbilt University, EPRI, Southern Company Services, *Application of a Method to Estimate Risk in Advanced Nuclear Reactors*.
- 4. EPRI, Program on Technology Innovation: EPRI Workshop on Process Hazard Analysis to Probabilistic Risk Assessment for Advanced Reactors Proceedings.
- 5. ORNL-4541, Conceptual Design Study of a Single-Fluid Molten-Salt Breeder Reactor.
- 6. ORNL-TM-3532, Design Studies of a Molten-Salt Reactor Demonstration Plant.

¹ US Nuclear Regulatory Commission (NRC), "Guidance for a Technology-Inclusive, Risk-Informed, and Performance-Based Methodology to Inform the Licensing Basis and Content of Applications for Licenses, Certifications, and Approvals for Non-Light Water Reactors," ML18325A214, 2019.

1

- 7. ORNL-TM-732, MSRE Design and Operations Report: Part V, Reactor Safety Analysis Report
- 8. ORNL/CF-61-2-46, Molten-Salt Reactor Experiment Preliminary Hazards Report, Addendum 2.
- 9. NEI-18-04, Risk-Informed Performance-Based Guidance for Non-Light Water Reactor Licensing Basis Development, Draft, Revision N.
- 10. Oklo-2018-RIO-P, Rev. 0, DG-1353 Pilot, Submittal to Support NRC Development and Implementation of DG-1353, Guidance to Risk-Inform Application Development and Contents Including Event Selection and SSC Classification.
- 11. SC-29980-201, Modernization of Technical Requirements for Licensing of Advanced Non-Light Water Reactors PRISM Sodium Fast Reactor Licensing Modernization Project Demonstration.
- 12. SC-29980-200, Modernization of Technical Requirements for Licensing of Advanced Non-Light Water Reactors High Temperature, Gas-Cooled Pebble Bed Reactor Licensing Modernization Project Demonstration.
- 13. ORNL-TM-2013-513, Identification of Initiating Events for aSMRs.

The workshop began with a series of talks describing how initiating events (IEs) and licensing basis events (LBEs) are employed in the reactor safety evaluation process. LBEs consist of an IE, the event progression that represents the plant's repose to the IE, and a well-defined end state. Identification of LBEs is described as Task 1 in NEI 18-04, which is endorsed in NRC DG 1353 as one of the methodologies for "determining an appropriate level of information for parts of preliminary or final safety analysis reports for non-LWRs."

The workshop included talks on the uses and roles of multiple safety evaluation methods: process hazards assessment (PHA), failure modes and effects analysis (FMEA), master logic diagraming (MLD), and hazards and operability studies (HAZOPS). A presentation on a recent process hazards assessment of ORNL's molten salt reactor experiment (MSRE) ^{2,3} was provided.

ORNL's Molten Salt Demonstration Reactor (MSDR) ^{4,5} was used as a template to structure the initiating event selection process. The workshop evaluated a limited number of systems that were intended to represent liquid-fueled MSRs. It did not attempt to be comprehensive or delve into the specifics of any particular design currently under development by reactor vendors.

On Day 1, workshop participants identified IEs for radioactive releases through (1) a system-by-system guided discussion forum, and (2) an online submittal process.

On Day 2, the discussion centered around estimating the frequency and consequences of the event sequences resulting from the IEs identified on Day 1.

A key workshop goal was to support development of a risk-informed, performance-based regulatory process for MSRs. Development of a representative set of MSR IEs supports this goal by providing a technical basis to align the event selection and evaluation process with MSR characteristics. It is otherwise unsuitable for MSR event selection to rely on the significant experience with large light-water cooled reactors (LWRs) that is embodied in the current regulatory process. The workshop demonstrated the capability of a system-by-system evaluation process to generate representative IEs for MSRs.

2

² S. Beall and R. Guymon, MSRE Design and Operations Report: Part VI, Operating Safety Limits for the Molten-Salt Reactor Experiment. ORNL-TM-733, Rev. 2, 1966.

³ S. Beall et al., MSRE Design and Operations Report: Part V, Reactor Safety Analysis Report. ORNL-TM-732, 1964.

⁴ E. S. Bettis, L. G. Alexander, and H. L. Watts, *Design Studies of a Molten-Salt Reactor Demonstration Plant*, ORNL-TM-3832, 1972

⁵ M. S. Greenwood et al., "Demonstration of the Advanced Dynamic System Modeling Tool TRANSFORM in a Molten Salt Reactor Application via a Model of the Molten Salt Demonstration Reactor," *Nuclear Technology* (In Review).

2. EVALUATION PROCESS AND RESULTS

The discussion forum focused on specific high-level MSR systems. The choice of systems to focus on was motivated by the need to identify MSR-specific events and to spotlight issues with systems, structures, and components (SSCs) not generally present with other reactor technologies. This focus was designed to assist MSR designers who would consider these events, as well as the generically applicable IEs associated with other technologies, as part of their safety assessments if similar systems are employed.

Based on the open-literature MSR designs presented, a high-level reactor and fuel salt system was considered, along with the following generic subsystems: (1) a drain tank and decay heat removal system(s), (2) an off-gas system, (3) a fuel processing system, and (4) a reactor building.

Representative MSR drawings of these high-level systems for the MSRE, MSDR, and the molten salt breeder reactor (MSBR) were presented to the participants. Critical components, sources of radioactive material, flow paths, and other key features of the system were discussed. The question "What can go wrong?" was asked of the group for each system. Group members discussed potential IEs associated with the high-level systems, and the proposed IEs were recorded. Only a few events outside the current discussion scope were dismissed.

After each high-level system was discussed, other IEs missed during the identification session, those associated with systems not discussed, or more general MSR-related IEs were proposed by the group. It should be noted that there were many similar IEs proposed by the group. Detailed categorization of the IEs was beyond the scope of this workshop since this process was used generically and was not design specific. A moderate attempt was made to eliminate identical IEs. However, it was the intent of the workshop to report a list as close as possible to the originally developed list and to not obscure or inadvertently miss an IE that may be useful to an MSR technology stakeholder.

The list of IEs is not intended to be fully encompassing for any specific liquid fueled MSR. The MSR designer must determine which representative IEs are applicable to the design and identify any additionally IEs needed. The generated IE list is intended to support the IE identification process for any MSR design and to aid in the identification of IEs that are less easily perceived.

The table below presents the workshop-generated list of IEs grouped by high-level system.

Date: May 21, 2019

Session title: Roundtable Discussions of Identification of IEs

Session lead(s): Alex Huning, ORNL, Askin Guler Yigitoglu, ORNL

System	System name: Reactor and Primary Fuel Salt System description: Contains the fuel salt, generates power, major source of radionuclides				
IE ID	IE for radioactive releases	Critical discussion notes			
001	Spectrum of fuel salt boundary breach sizes and locations: • Breaches with gas release only • Breaches with gas and fuel salt release	Consider all locations along the primary fuel salt boundary and sizes, including potential multiple simultaneous breaches (e.g., due to a seismic event or other event)			
002	Actuation of dump system with or without pre-existing leak in dump tank coolant boundary	Could be a planned dump system activation; IE is a leak in the dump tank fuel salt boundary			
003	Fuel salt freezing in heat exchanger (primary side plugged)	Root causes include salt composition changes which lower the freezing point, insulation detachment, over-cooling on the secondary side			
004	Plugging on secondary side of heat exchanger				
005	Salt contamination/impurities				
006	Spectrum of unanticipated foreign material buildup in the core	Example: oil from leaking fuel salt pump			
007	Improper fuel salt composition during loading to reactor system	Could lead to tube wall thinning, incorrect material compatibility, failure in chemistry control			
008	Fuel pump over-speed / under-speed				
009	Vapor lock of heat exchanger				
010	Fuel salt freezing in primary fuel salt system	Could be due to a change in fuel salt composition			
011	Undercooling/overcooling of heat exchanger				
012	Inadvertent fuel pump trip				
013	Fuel salt pump shaft shear/seizure				
014 015	Fuel salt pump seal failure				
013	Fuel salt pump shaft vibration due to its length				
016	Inadvertent freeze valve opening				
017	Change in core/primary fuel salt system void fraction too high or too low	Root causes include pump cavitation, spray nozzles, helium bubbles (too much injection, entrainment from pump)			
018	Fuel salt pump cavitation				
019	Excessive graphite radiation damage	Salt penetrates the graphite			
020	Change in fuel salt volume in the primary fuel salt system	Too much or too little fuel salt removal			
021	Core flow blockage	Graphite breaking			
022	Change in core geometry				

IE ID	IE for radioactive releases	Critical discussion notes
023	Fuel loading error	
024	Fuel handling/loading detection error	
025	Graphite leaving the core	Graphite flows away with the salt
026	Foreign material damage to fuel salt pump	Graphite or other material damages the fuel salt pump
027	Uncontrolled rod withdrawal causes sudden power increase and undercooling	Due to eddy currents, localized concentration gradients, spurious rod withdrawal
028	Uncontrolled rod insertion causes sudden power decrease and overcooling	
029	Undesired poison insertion	
030	Spurious scram	
031	Undesired increase in cooling results in excessive overcooling	
032	Undesired decrease in cooling when required results in excessive overcooling	
033	Control rod thimble break	
034	Accidental soluble poison insertion	
035	Asymmetric cooling (flow distribution) in the core	Unbalanced, low flow in loop, not uniform
036	Redox control failure	
037	Plugging of gas lines	
038	Flooding of gas lines	
039	Thermal shield failure	
040	Core instrumentation failure	
041	Spectrum of unanticipated foreign material buildup in the core	Example: oil from leaking fuel salt pump
042	Overflow line plugging	
043	Air ingress/injection (oxygen/moisture)	
044	Overfilling/underfilling of fuel salt	
045	Inadvertent electrical heating of fuel salt	
046	Loss of offsite power	
047	Station black-out	Loss of all electricity, including backup sources (batteries, generators, etc.)
048	Loss of mechanical hold-down of buoyant core structures	Including graphite core structures
049	Failure of core support structures	

System name: Reactor and Primary Fuel Salt System System description: Contains the fuel salt, generates power, major source of radionuclides			
IE ID	IE for radioactive releases	Critical discussion notes	
050	Failure of core flow distributors		
051	Failure to separate gas from primary fuel salt		
052	Inadvertent over-pressurization	Can be caused by a design flaw or blockage	
053	Gas entrainment by the primary fuel salt pump(s)	Off-gas separation performance deviation from its design state	
054	Sudden change thermophysical properties causing a change in coolant flow rate	Sudden increase/decrease in salt viscosity	
055	Partial loss of coolant flow results in insufficient heat removal		
056	Total loss of coolant flow results in insufficient heat removal		
057	Failure of instruments due to failure of radiation shielding surrounding the primary fuel salt system		
058	Failure of control system that leads to system instability (e.g., growing oscillations of pump flow)	Instabilities resulting from behavior of the control system.	
059	Operation of passive systems in unstable regions (e.g., growing oscillations in mass flow of one of the natural circulation cooling loops)	Instabilities resulting from response of the system to external disturbances.	
060	Break/leak/rupture in steam generator, releasing steam into the associate secondary/tertiary heat transfer salt		
061	Premature criticality due to control rod misalignment during primary fuel salt fill		
062	Core flow channel deformation due to nonuniform graphite swelling (radiation effect and thermal expansion)		
063	Injection of fuel salt of wrong concentration or temperature		
064	Void reduction or collapse due to sudden primary fuel salt pressure increase		
065	Primary heat exchanger tube flow-induced vibration (i.e., for shell-and-tube type heat exchangers)		
066	Increase/decrease in heat removal by fuel salt heat exchanger		

System	System name: Drain Tanks System description: Contains the fuel salt primarily for decay heat removal			
IE ID	IE	Critical discussion notes		
067	Failure of drain tank heating system combined with actuation of drain tank system	Thermal shock/reverse thermal shock could cause a leak/rupture in the drain tank system		
068	Spectrum of drain tank fuel salt boundary breach sizes and locations			
069	Precipitation of fissile material in drain tank	Potential for a criticality event		
070	Breach of drain tank decay heat removal (NaK) loop	NaK, under natural circulation, is assumed to be used as the fluid for closed loop cooling of the drain tank		
071	Freezing of closed-loop cooling, causing a loss of heat sink			
072	Drain of fuel salt too slow			
073	Over-pressurization of water pool for drain tank	A water pool/tank is assumed as the ultimate heat sink for the drain tank		
074	Loss of water make-up to the water pool of the heat removal system			
075	Over-pressurization of drain tank			
076	Improper reheating of drain tank (after system activation)			
077	NaK electromagnetic pump wrong direction	Flow stalls, decay heat removal is affected		
078	Insulation failure on NaK, natural circulation loops	Could lead to freezing of closed-loop cooling		
079	Open vent valve on drain tank			
080	Inadvertent closure of a normally open drain tank valve	Freeze valves will not open / failure to drain		
081	Inadvertent opening of a normally closed drain tank valve			
082	Failure to drain or partial drain of fuel salt			
083	Drain tank vent valve fails closed			
084	Drain tank line to off-gas system is plugged			
085	Drain tank freeze valve leaks			
086	Loss of power to drain tank NaK pump			
087	Foamy salt / high void fraction in drain tank			
088	Unexpected thermophysical properties:			
089	Water ingress to drain tank			
090	Failure of steam relief on water pool (ultimate heat sink)			
091	Flooding of area around drain tank			
092	Foreign material ingress to drain tank	Insulation failure		

System	name: Fuel Processing System System description: Re	esponsible for disposal of used fuel salt and uranium extraction	
IE ID	IE	Critical discussion notes	
093	Inadvertent criticality, including inside the fuel storage tank and waste salt tanks	Many possible root causes: introduction of moderator after separation, existing water in system, etc.	
094	Spectrum of fuel processing system breach sizes and locations		
095	Too much or too little fluorine flow		
096	Incorrect gas flow composition, contains impurities such as water and oxygen		
097	Loss of temperature control in NaF bed		
098	Transfer of fuel storage tank too soon		
099	Breach in the fuel salt sampler system		
100	Water-flooding of fuel storage tank		
101	Waste salt tank not connected during transfer		
102	Failure to empty fuel storage tank	Potential criticality concern	
103	Breach in the caustic neutralizer		
104	Loss of inventory control of fissile material		
105	Mister failure		
106	Loss of heating/cooling in fuel storage tank		
107	Loss of shielding (as example of the fuel processing system)		

System	System name: Reactor Building System description: Includes the cell cooling and heating for the reactor and support structures		
IE ID	IE	Critical discussion notes	
108	Leak between containment cells	Leak path between containment cells, one root cause is thermally induced stress	
109	Salt leak through liner, leading to direct contact with concrete		
110	Failed containment liner		
111	Inadvertent isolation of containment cells		
112	Loss of cooling to primary containment		
113	Loss of cooling to secondary containment		
114	Failure of decay heat removal system		
115	Over-cooling of reactor vessel auxiliary cooling system (RVACS)		
116	Flooding of decay heat removal system (e.g., RVACS)		
117	Adverse concrete-metal interactions		
118	Contamination of containment gas		
119	Loss of inert containment gas		
110	Heat exchanger leaks in secondary salt or power conversion systems		
111	Nitrate salt (heat transport salt) thermal breakdown		
112	Water-flooding of the reactor cell		
113	External hazards including high-winds, missile and aircraft impact		
114	Internally generated missiles	Compressor, turbine blades	
115	Graphite oxidation	Requires high temperature source	
116	Failure of the cooling system for the concrete (resulting in overheating and failure of the concrete support structure for the reactor)		
117	Break in the water lines for the concrete cooling system, resulting in water pooling within the cells; can cause overcooling in the nearby vessels/pipes		

System name: General IEs System description			ound the room, general suggestions for any MSR system
IE ID	IE		Critical discussion notes
118	Excessive noble metal plate-out on heat exchangers		
119	Cold slugging in the reactor core		
120	Support structure failure by seismic event		
121	Thermal degradation of concrete		
122	Inadvertent recirculation in the off-gas system		
123	Thermal shield stuck closed/open due to thermal of	lamage	
124	Fuel salt in the off-gas system		
125	Reverse operation of cathodic protection system		Plutonium buildup, could lead to reactivity event
126	Failure in solid/liquid waste systems		
127	Failure of instrumentation		
128	Control system error or failure		
129	Incorrect measurement, prediction, or assumption of fuel salt thermophysical properties		
130	Inadvertent transfer of fuel salt		
131	Fuel salt hammer		
132	Loss of free liquid-gas interface, primary fuel salt system goes solid		
133	Thermal striping along primary fuel salt system		
134	Volatile gas formation from ingress/overloading o	f gases	
135	Stuck control rods		
136	Loss of control rod cooling		
137	Fire in reactor building		What impact would fire suppression system have during an event sequence?
138	Harsh environment in control room (chemical, radiation, tritium, high temperature, etc)		If operators suddenly abandon the control room, what is the impact?
139	Local pressure build-up due to overheating in gas-pockets that cannot vent		
140	Cooling failure of systems or components that cannot operate far from ambient temperature (e.g. < 100 °C)		Some examples: electronics, concrete.

3. FREQUENCY AND CONSEQUENCE ESTIMATES

On the second day of the workshop, the relative frequency and consequences of the identified MSR IEs were discussed. Because of time constraints, only a few high-level, critically important IEs were selected for extended discussion to estimate their anticipated frequency ranges and potential consequences should the event occur. The process provided insights that could be extended for further development of potential event sequences. The high-level initiating events selected for extended discussion included the following:

- Primary fuel salt heat exchanger failures
- Primary fuel salt boundary breaches
- Primary fuel salt composition changes
- Primary fuel salt void fraction changes
- Drain tank/decay heat removal failure
- Drain tank breaches
- Off-gas system breaches and other failures

For the workshop discussion, the qualitative frequency ranges used were as follows:

- Anticipated operational occurrence (AOO), $f_{AOO} \ge 10^{-2}$ per-plant-year
- Design basis event (DBE), $10^{-2} > f_{DBE} \ge 10^{-4}$ per-plant-year
- Beyond design basis event (BDBE), $f_{BDBE} < 10^{-4}$ per-plant-year

Qualitative consequences were also estimated in terms of severity and ranged anywhere from not determined, none, low, or high, where possible.

Date: May 22, 2019 Session Title: Roundta		Session Title: Round	Itable Discussions of IE Frequencies and Consequences
Session lead(s): A	ex Huning, OR	NL; Askin Guler Yigit	toglu, ORNL
IE: Primary fuel salt heat exchanger failures		er failures	Description: Includes tube breaches between salt fluid systems and general events which lead to a failure to remove heat from the primary fuel salt
Example IEs			Discussion Notes
001, 003, 004, 007, 011, 065, 066	 Frequency: Specific failure modes depend on heat changer type (shell-and-tube vs. microchannel or "printed circuit" ty Failure modes should include corrosion, vibration, thermal cycling Using LWR experience, the consensus is that this type of events would be an AOO Consequences: Highly dependent on what the secondary fluid is. If it is another similar salt at low pressure, then the radior contained in the primary fuel salt, with some very small or minor contamination of the secondary salt Minimal challenge to plant safety functions For very small or minor breaches and failures, there is some potential for plant controls and operations to c and remain online until it is practical to shutdown 		the corrosion, vibration, thermal cycling consensus is that this type of events would be an AOO the secondary fluid is. If it is another similar salt at low pressure, then the radionuclides would stay the salt, with some very small or minor contamination of the secondary salt safety functions aches and failures, there is some potential for plant controls and operations to compensate for the event

IE: Primary fuel sa	alt boundary breaches	Description: Includes the spectrum of possible breach sizes and locations, except the primary salt heat exchanger
Example IEs	Discussion Notes	
001, 002	 Generally, as with LWRs are data must be present to support break "should be" a DBE, the Consequences: Any breach along the primator drain tank system Consequences could be limitor. The reactor containment celetonsequences of a primary breached, or contains air or 	ends on the MSR design and primary fuel salt system type: loop, integral/pool, or modular and other reactor types, medium and large breaks are expected to be a DBEs or lower. However, valid bort such a frequency estimate. A certain IE frequency should not be "prescribed." If a medium or large nen data and plant design must confirm this conclusion ry fuel salt boundary is expected to drain into the reactor containment cell, which then drains to the sted, depending on the defense-in-depth and functional containment approach l could be a more critical barrier to radionuclide release than the primary fuel salt boundary fuel salt boundary breach are much higher if the reactor containment cell is initially open, has been oxygen instead of an inert gas are consensus severity of potential consequences is anywhere from low to high , depending on other ion successes and failures

IE: Primary fuel sa	Description: Any IE involving primary fuel salt chemistry which leads to unanticipated changes in fuel salt properties, precipitation, plate-out, etc.
Example IEs	Discussion Notes
005, 054, 063	Frequency: Root causes could include faulty redox control or sensor failures Contaminants could be present in the fuel salt during loading or helium gas being used to purge the salt What is an allowable chemical composition drift? What setpoints should be established? Liquid fueled MSRs are expected to have several systems that affect the fuel salt composition and chemistry. The failure of any of these systems, instrumentation, or controls could alter the fuel salt composition and chemistry. Therefore, this type of event is expected to be an AOO Consequences: Enhanced corrosion could affect the life of the plant components, availability, and economic goals Potential component burn-through Potentially long timescales for any plant response or required control actions More information about specific event sequences is needed to establish general consequence estimates. However, one scenario is that the plant shuts down without any radiological consequence

IE: Primary fuel salt void fraction changes		Description: Any IE which leads to a change in the primary fuel salt bulk or local void fraction
Example IEs	Discussion Notes	
017, 051, 064	There are several root cause be too much helium injectio	nsity wave oscillations in the core s for too many bubbles. From the MSRE, cover gas was entrained in the pump bowl. There could also n, poor gas sparging, or other gas-ingress events ge was determined, as these events are highly dependent on the design, and there is a large uncertainty
	 Control systems compensate however, the system is stabl The need for good, verified The consequences and effect 	level of uncertainty about the impact of fuel salt void fraction changes of for oscillations at the "noise" level. Locally, there can be large changes in void fraction. Globally, the analytical tools was reiterated for these types of events to for such events should be addressed by the design. Therefore, event sequences consequences are cost or failure of the other systems such as control rods, decay heat removal, etc.

IE: Drain tank/dec	ay heat removal failure	Description: Any IE which causes the drain tank failure to perform its function of decay heat removal from the primary fuel salt
Example IEs	Discussion Notes	
071, 072, 073, 074, 080, 082, 090	 Freeze valve reliability sho For passive decay heat rem decay heat removal system The frequency of these eve defense-in-depth systems a major decay heat removal from the consequences: Vessels, pipes, and other st Consequences can be mitig 	nts is highly dependent on the design, the selection of safety related components, and the additional nd components available which can perform the safety function. However, the consensus was that failure events would be in the BDBE range eel components could melt leading to a breach and release of radionuclides gated by other containment barriers such as the reactor containment cell the consensus severity of potential consequences is anywhere from low to high , depending on other

IE: Drain tank brea	Description: Includes the spectrum of possible primary fuel salt or off-gas lines or tanks associated with the drain tank system	
Example IEs	Discussion Notes	
067, 068, 075, 076	 Frequency: Breaches in the drain tank system could be caused by activities during or after the last activation or use of the system (e.g., failure to close a valve, over-cooling of the system) Thermal fatigue, thermal cycling, and thermal striping and ratcheting affect the breach probability over time Could have a leak that is pre-frozen by salt and is exposed during the next drain A transient event in the primary salt system, or slower than anticipated drain, leading to hotter-than-normal salt going into the drain tank, could cause a breach Like other primary fuel salt boundary breaches, the frequency is expected to be DBE or lower Consequences: Like other primary fuel salt boundary breaches, severity is anywhere from low to high, depending on other event sequence safety function successes and failures 	

IE: Off-gas system	Description: Any IE associated with the off-gas system which could lead to a plant disruption or release of radionuclides
Example IEs	Discussion Notes
084, 096, 124, 134	Frequency: Individual components must be examined independently Frequency of breach and other failure events depends on many factors: system design, batch vs. continuous operation, frequency of off-gas system component actuations, procedures and automatic actions, selection of safety related off-gas system components, defense-in-depth and other components available to perform safety related functions No consensus frequency was determined given the large uncertainty Consequences: Potential for large gaseous fission product, highly corrosive, and hazardous material releases Consequences are limited by location and size where the breach occurs within the system. Breaches towards the end of the off-gas system are much lower in severity than those at the start of the system Consequences depend on holdup time and system capacity Other non-breach types of events could have significant impact on plant operations (e.g., pressure buildup and backflow to the reactor or drain tank system, impure helium going to the primary fuel salt system) Expected consequence severity is anywhere from low to high

4. CONCLUSIONS AND NEXT STEPS

A generic list of MSR IEs was generated using a process of expert elicitation based on a combination of PHA and FMEA. It is the reactor developer's role to apply an IE identification method to his or her specific design at the beginning of the accident sequence evaluation process.

The workshop highlighted a number of commonly beneficial follow-on MSR safety-evaluation activities, as follows:

- 1. Create scenario-specific MSR PIRTs for both fast and thermal MSRs
- 2. An important adjunct of assessing what can go wrong is developing an understanding of phenomena that impact how failures can occur
- 3. Develop and validate accident progression modeling tools
- 4. Develop and/or acquire fuel salt performance models and data
- 5. Develop fuel salt radionuclide release models and data

It is anticipated that the stakeholders will cooperate in the development of tools, data, and their application.

The report authors wish to thank all the participants for their time and contributions to this effort. Without their thoughtful effort, neither the demonstration of the evaluation process nor the list of representative events would have been created.

Workshop Participants

Participant	Company
Randy Belles	ORNL
Ben Betzler	ORNL
Matthew Bucknor	ANL
Yu-Shan Chin	CNL
Brandon Chisholm	Vanderbilt
Rich Christensen	U Idaho
Sarah Creasman	ORNL
Claudio Delfino	Kairos
Richard Denning	Consultant
Raymond Dickson	CNL
Tim Drzewiecki	NRC
George Flanagan	ORNL
Karl Fleming	Southern Company
Scott Greenwood	ORNL
Askin Guler Yigitoglu	ORNL
Megan Harkema	Vanderbilt
Kurt Harris	Flibe
David Holcomb	ORNL
Lin-wen Hu	MIT
Alex Huning	ORNL
Emily Hutchins	ORNL
Brian R Johnson	TerraPower
Jim Kinsey	INL
Steven Krahn	Vanderbilt
David LeBlanc	Terrestrial Energy
Hui Liu	Terrestrial Energy
Julio Lobo	MUONs
Stewart Magruder	NRC
Matthew Memmott	BYU
Chantal Morin	CNSC
Mike Muhlheim	ORNL
Hanh Phan	NRC
Ed Pheil	Elysium
Mike Poore	ORNL
Lou Qualls	ORNL
Cristian Rabiti	INL
Brad Rearden	ORNL

Participant	Company
William Reckley	NRC
Brian Robinson	DOE
Piyush Sabharwall	INL
Mike Salay	NRC
Raluca O. Scarlat	UC Berkeley
Andrew Sowder	EPRI
Xiaodong Sun	U Michigan
Michael Tschiltz	NEI
Staci Wheeler	Alphatech Research
Dane Wilson	ThorCon
Andy Worrall	ORNL
Smain Yalaoui	CNSC