
ORNL/TM-2019/1225

Documenting automated Fortran-C++
bindings with SWIG

Andrey Prokopenko
Matthew Bement
Seth Johnson
Katherine Evans

June 2019

Approved for public release.
Distribution is unlimited.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: www.osti.gov/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.gov
Website: http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex-
change representatives, and International Nuclear Information System representatives from the
following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: report@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or fa-
voring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

2

www.osti.gov/
mailto:info@ntis.gov
http://classic.ntis.gov/
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/TM-2019/1225

Computational Sciences and Engineering Division

DOCUMENTING AUTOMATED FORTRAN-C++ BINDINGS WITH SWIG

Andrey Prokopenko (PI) (Oak Ridge National Laboratory)
Matthew Bement (Los Alamos National Laboratory)

Seth Johnson (Oak Ridge National Laboratory)
Katherine Evans (Oak Ridge National Laboratory)

Date Published: June 2019

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-Battelle, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

ABSTRACT . 1
1 INTRODUCTION . 1
2 GENERAL PROCEDURE . 1
3 FORTRILINOS ADAPTATION . 2
4 LIMITATIONS . 5
5 REFERENCES . 6

2

ABSTRACT

A new SWIG/Fortran tool introduced in Johnson et al. [to appear] automatically generates native Fortran
2003 interfaces to C and C++ libraries. This allows a seamless integration of existing C++ libraries into
the Fortran applications. However, using the generated interfaces is complicated by the lack of appropriate
documentation. In this report, we document a way to automatically port the existing Doxygen
documentation of the C++ libraries to Fortran. We use ForTrilinos library as our target application, and
discuss the scope and limitations of this approach.

1 INTRODUCTION

Doxygen is both a tool and a specification for writing documentation for software. The documentation is
written within code comments, and thus is relatively easy to maintain. The documented code is run through
the doxygen tool to produce output in one of the available formats, such as HTML, LATEX, etc. Many large
scientific projects, such as Trilinos Heroux et al. [2003], rely on Doxygen to document their application
programming interface (API), hosting the generated HTML output on a website for easy access by the
users.

Doxygen supports many programming languages. Of particular importance, it supports both C++ and
Fortran. When running doxygen, it is possible to produce the output in language-agnostic form, i.e., XML
format. Thus, if one is able to write a tool to convert Doxygen XML output back to a specific language, and
to insert it in the right place of the generated code, it would be possible to translate comments from one
language to the other.

In this report, we discuss the steps required to insert Doxygen documentation into the automatically
generated Fortran interface wrappers for an existing C++ library.

2 GENERAL PROCEDURE

In this Section, we describe the steps to automatically port documentation from a C++ header to an
automatically generated Fortran interface wrapper.

Step 1. Produce language-agnostic XML output

The first step is to use Doxygen to generate XML output. This is done by runnning the doxygen tool on the
relevant C++ library headers. As an input, doxygen takes in a Doxygen configuration file (Doxyfile). A
default Doxyfile could be generated by running

$ doxygen -g

In order to produce XML output, the option GENERATE_XML in the Doxyfile must be set to YES.

Step 2. Convert XML output to SWIG docstrings

In order for the documentation be attached in the right places in the generated output later, it must first be
converted to a SWIG-readable format called docstrings. A docstring is a SWIG code snippet containing the
function name and its documentation, including the input arguments. For example,

1

%feature("docstring") Teuchos::ParameterList::set "ParameterList &
Teuchos::ParameterList::set(std::string const &name, T const &value)

Set a parameter whose value has type T.

Parameters:

name: [in] The parameter ’s name.

value: [in] The parameter ’s value. This determines the template parameter T.
In most cases, you will not need to specify the type T explicitly; the
compiler will infer it from this argument.

This is done by running a Python script doxy2swig.py (available as part of the Trilinos’ package
PyTrilinos) as follows:

$ doxy2swig.py doxygen_output.xml swig_docstrings.i

Here, doxygen_output.xml is the Doxygen XML output produced by the first step, and
swig_docstrings.i is the resulting SWIG file containing docstrings for all the functions in the
index.xml.

Step 3. Include SWIG docstrings file into SWIG interface file

This file of docstrings must then be included in the SWIG interface file like this:

%include "swig_docstrings.i"
... rest of SWIG file ...

When SWIG is run, the documentation strings will be automatically inserted in the appropriate places in
the wrapper code in the form of native language comments.

Step 4. Run Doxygen on the produced Fortran wrapper files

The last step is to run doxygen again on the produced wrapper file to generate the documentation in the
desired format.

3 FORTRILINOS ADAPTATION

In this Section, we describe the adaptation of the general approach described in Section 2 to ForTrilinos.
For reasons documented in Section 4, we require doxygen version 1.8.15 or above.

ForTrilinos provides interfaces for several Trilinos packages (Belos, Teuchos, Tpetra) and a general linear
and nonlinear solver interfaces. We will use Tpetra to describe the documentation generation.

As discussed in Section 2, the first step is to generate Doxygen XML documentation. In order to
automatically pick up the location of the original Trilinos Tpetra headers, ForTrilinos carries
Doxyfile_tpetra.in file with the following code:

2

INPUT = @PROJECT_SOURCE_DIR@/packages/tpetra/classic/src \
@PROJECT_SOURCE_DIR@/packages/tpetra/classic/NodeAPI \
@PROJECT_SOURCE_DIR@/packages/tpetra/core/src \
@PROJECT_SOURCE_DIR@/packages/tpetra/kernels/src \
@PROJECT_SOURCE_DIR@/packages/tpetra/tsqr/src

During ForTrilinos configuration, the @PROJECT_SOURCE_DIR@ macro is automatically replaced by the
correct location of the Trilinos source directory. We note here that we used this approach instead of
specifying a relative (to ForTrilinos) path as the later does not properly work with symbolic links.

The Doxyfile_tpetra.in is also modified to have

EXTRACT_PRIVATE = YES
EXTRACT_ALL = YES

This step produces a file tpetra_dox.i containing the appropriate docstrings, and places it in the
ForTrilinos/src/tpetra/src directory, containing other SWIG files used to generate Tpetra
interfaces. The main file, fortpetra.i, contains the following line

%include "tpetra_dox.i"

in order to automatically pick up docstrings with SWIG.

The ForTrilinos wrapper files are generated only in developer mode (enabled with
-DForTrilinos_ENABLE_DeveloperMode=ON). The generated file, fortpetra.F90 in this case, will
contain the required documentation, a snippet of which is shown below:

module fortpetra
use, intrinsic :: ISO_C_BINDING
implicit none
private

! DECLARATION CONSTRUCTS

! class Tpetra::Map< LO,GO,NO >
!> A parallel distribution of indices over processes.
!>
!> Parameters:
!> -----------
!>
!> LocalOrdinal: The type of local indices. Currently , this must be int.
!> (In Epetra, this is always just int.)
!>
!> <snip>
!>
!> C++ includes: Tpetra_Map_decl.hpp
type, public :: TpetraMap
type(SwigClassWrapper), public :: swigdata
contains
procedure :: getGlobalNumElements => swigf_TpetraMap_getGlobalNumElements
...

3

procedure , private :: swigf_TpetraMap_getRemoteIndexList__SWIG_0
procedure , private :: swigf_TpetraMap_getRemoteIndexList__SWIG_1
generic :: getRemoteIndexList => swigf_TpetraMap_getRemoteIndexList__SWIG_0 ,

swigf_TpetraMap_getRemoteIndexList__SWIG_1
end type TpetraMap
interface TpetraMap
module procedure swigf_new_TpetraMap__SWIG_1
module procedure swigf_new_TpetraMap__SWIG_2
...
end interface
<snip>
contains
! MODULE SUBPROGRAMS

!> Tpetra::Map< LocalOrdinal ,
!> GlobalOrdinal , Node >::Map()
!>
!> Default constructor (that does nothing).
!>
!> This creates an empty Map, with 0 (zero) indices total. The Map’s
!> communicator only includes the calling process; in MPI terms, it
!> behaves like MPI_COMM_SELF.
!>
!> This constructor exists mainly to support view semantics of Map. That
!> is, we can create an empty Map, and then assign a nonempty Map to it
!> using operator=. This constructor is also useful in methods like
!> clone() and removeEmptyProcesses(), where we have the information to
!> initialize the Map more efficiently ourselves , without going through
!> one of the three usual Map construction paths.
function swigf_new_TpetraMap__SWIG_1(numglobalelements , comm, lg) &
result(self)

...
end function
!> Tpetra::Map< LocalOrdinal ,
!> GlobalOrdinal , Node >::Map()
!>
!> Default constructor (that does nothing).
!>
!> This creates an empty Map, with 0 (zero) indices total. The Map’s
!> communicator only includes the calling process; in MPI terms, it
!> behaves like MPI_COMM_SELF.
!>
!> This constructor exists mainly to support view semantics of Map. That
!> is, we can create an empty Map, and then assign a nonempty Map to it
!> using operator=. This constructor is also useful in methods like
!> clone() and removeEmptyProcesses(), where we have the information to
!> initialize the Map more efficiently ourselves , without going through
!> one of the three usual Map construction paths.
function swigf_new_TpetraMap__SWIG_2(numglobalelements , comm) &

result(self)
...

4

end function
!> global_size_t Tpetra::Map< LocalOrdinal , GlobalOrdinal , Node
!> >::getGlobalNumElements() const
!>
!> The number of elements in this Map.
!>
!> This function should be thread safe and thread scalable, assuming that
!> you refer to the Map by value or reference , not by Teuchos::RCP.
function swigf_TpetraMap_getGlobalNumElements(self) &

result(swig_result)
...
end function

As we can see, the generated documentation is inserted into the Fortran wrapper file in correct places.
However, due to limitations described in Section 4, the documentation for the constructors is repeated.

The final run of doxygen on the generated F90 file produces the results as shown in Figures 1 and 2.

4 LIMITATIONS

The described procedure works well in many situations. However, it also has significant drawbacks that are
hard to overcome.

Specifically, for C++ to Fortran documentation translation, we encountered:

• The docstrings are simply copied from the XML documentation

Often, the C++ documentation uses C++ syntax and terminology, references C++ classes and
methods. Ideally, such syntax should be translated into the wrapper language syntax, so that all of
the documentation visible to the user of a package would be in native format.

• Generic procedures are handled incorrectly

Fortran generic procedures pose a challenge on multiple fronts. First, there are challenges related to
Doxygen itself. For example, note the getremoteindexlist generic of the Tpetramap interface in
Figure 1. If one follows the link to swigf_tpetramap_getremoteinexlist_swig_0, there is
essentially no documentation, as shown in Figure 3.

To access the documentation for this procedure, one has to refer back to the top level fortpetra
interface documentation, navigate to the Functions/Subroutines section and then follow the link to
swigf_tpetramap_getremoteinexlist_swig_0, where one finds the expected documentation,
as is shown in three images shown in Figure 4.

When one does access the documentation for the generic procedures in this manner, the
documentation is identical for different function signatures, as is also seen in Figure 2. This is due to
how doxy2swig handles the different argument lists. It is not currently known if modifications to
doxy2swig could address this limitation, and if so, if SWIG allows docstrings to be associated with
function signatures in addition to function names.

5

We also note that only recent versions of Doxygen seem to work. The recommended version is 1.8.15 or
above. For example, we found that Doxygen 1.8.5 does not link the documentation of the binding name
function to the procedure name.

5 REFERENCES

Michael Heroux et al. An overview of Trilinos. Technical Report SAND2003-2927, Sandia National
Laboratories, 2003.

Seth R. Johnson, Andrey Prokopenko, and Katherine J. Evans. Automated Fortran-C++ bindings for
large-scale scientific applications. Computing in Science & Engineering, to appear.

6

Figure 1. Generated Doxygen documentation for TpetraMap.

7

Figure 2. Generated Doxygen documentation for TpetraMap.

Figure 3. Incorrect Doxygen output for TpetraMap generic.

8

Figure 4. Correct Doxygen output for TpetraMap generic.

9

	ABSTRACT
	INTRODUCTION
	GENERAL PROCEDURE
	FORTRILINOS ADAPTATION
	LIMITATIONS
	REFERENCES

