
Bo Shen
03/31/2019

Approved for public release. Distribution is unlimited.
DOCUMENT AVAILABILITY

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.gov
Website http://www.ntis.gov/help/ordermethods.aspx

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Extending ORNL HPDM Capabilities for Design and Optimization of New Refrigerant Blends – FY19 2nd Quarterly Milestone Report:

Literature Review of Heat Transfer and Pressure Drop Correlations for HFO Blends in Water Heating Application

Author
Bo Shen

Date: 03/31/2019
Executive Summary

Based on a comprehensive literature review, the two-phase heat transfer and pressure drop correlations, best suitable for modelling the next generation HFO blends in brazed plate heat exchangers and fluted tube-in-tube heat exchangers, were identified. The selected correlations have been incorporated to the segment-to-segment (finite volume) heat exchanger models in the HPDM library. Details are described below.

Two-Phase Heat Transfer in Brazed Plate Heat Exchangers

Boiling

Giovanni et al. (2015a) presented a new model for refrigerant flow boiling inside Brazed Plate Heat Exchangers (BPHEs) based on a set of 251 experimental data. The data covered HFC refrigerants (HFC236a, HFC134a, HFC410A), HC refrigerants (HC600a-Isobutane, HC290-Propane, HC1270-Propylene), and also a new low Global Warming Potential (GWP) HFO refrigerant (HFO1234yf). The new model works for nucleate and convective boiling. A set of 505 experimental data by different laboratories, were used to validate the new model, including HFC134a, HFC410A, HFC507A and HCFC22 with different plate geometries.

Two-phase evaporation of BPHEs comprises two mechanisms, i.e. nucleate boiling and convective boiling, where nucleate boiling is dominated by heat flux and convective boiling is controlled by mass flux and quality. The Thonon et al. (1997) criterion is used to separate the two boiling regimes, as given below:

\[
Bo = \frac{q}{(G \Delta h_{LV})} \quad (\text{Eq.1})
\]

\[
X_{tt} = \left[1 - \frac{x_m}{X_m}\right]^{0.9} \left(\frac{\rho_G}{\rho_L}\right)^{0.5} \left(\frac{\mu_G}{\mu_L}\right)^{0.1} \quad (\text{Eq.2})
\]

Where \(Bo \) is dimensionless boiling number, \(q \) is heat flux, \(G \) is mass flux, \(\Delta h_{LV} \) is refrigerant vaporization heat. \(X_{tt} \) is dimensionless Martinelli number. \(X_m \) is vapor quality, \(\rho_G \) and \(\rho_L \) are refrigerant vapor and liquid density, respectively. \(\mu_G \) and \(\mu_L \) are refrigerant vapor and liquid viscosity, respectively.

When \(BoX_{tt} > 0.15e - 3 \), it is dominated by nucleate boiling. When \(BoX_{tt} < 0.15e - 3 \), it is dominated by convective boiling.

In convective boiling regime, the heat transfer coefficient is calculated as:

\[
h_{cb} = 0.122 \ast \phi \ast (k_l/d_h)Re_{eq}^{0.8}Pr_{L}^{1/3} \quad (\text{Eq.3})
\]

Where \(\phi \) is brazed plate surface enlargement factor, \(k_l \) is the liquid thermal conductivity, \(d_h \) is the channel hydraulic diameter, \(Pr_{L} \) is the liquid Prandtl number, \(Re_{eq} \) is equivalent Reynolds number.

\[
Re_{eq} = G \left[(1 - x) + x \left(\frac{\rho}{\rho_0}\right)^{\frac{3}{2}}\right]d_h/\mu_L \quad (\text{Eq.4})
\]

In the pool boiling dominated regime, the heat transfer coefficient considers impacts of heat flux, reduced pressure and plate surface roughness.

\[
h_{nb} = 0.58 \ast \phi \ast h_0 \ast C_{Ra} \ast F(P^*) \ast (q/q^0)^{0.467} \quad (\text{Eq.5})
\]

Where \(C_{Ra} \) represents the effect of plate surface roughness \(C_{Ra} = (R_d/0.4)^{0.1333} \), \(R_d \) is the surface roughness [\(\mu m \)]. \((q/q^0)^{0.467} \) represents the heat flux term, \(q^0 = 20,000 \). \(F(P^*) \) represents the effect of reduced pressure.
\[F(P^*) = 1.2 \times P^*^{0.27} + \left[2.5 + \frac{1}{1 - P^*} \right] P^* \]

(Eq.6)

\(P^* \) is the reduced pressure, i.e. the refrigerant local pressure divided by its critical pressure. \(h_0 \) is a base pool boiling coefficient specific to each individual refrigerant type. It can be calculated using Cooper correlation.

\[h_0 = 55P_0^{0.12 - 0.2\log_{10}(0.4)}(\log_{10}(0.4))^{-0.55}q_0^{0.67}M^{-0.5} \]

(Eq.7)

Where \(P_0^* = 0.1 \), \(q_0 = 20000 \), M is the refrigerant molar weight [g/mole].

Condensation

Based on the study of Giovanni et al. (2015b), condensation in brazed plate heat exchangers are dominated by two mechanisms, including gravity-controlled region and forced convection region. The criterion to separate the two regions is the two phase Reynolds number as given in Equation 4. When \(Re_{eq} < 1600 \), it is the forced convection region; \(Re_{eq} > 1600 \), it is the gravity-controlled region.

In a gravity-controlled region, the average condensation coefficient along the flow channel is:

\[h_{grav,ave} = 0.943 \times \varnothing \times \left(\frac{kL}{\mu hL} \right)^{1/2} \]

(Eq.8)

Where \(\Delta T \) is the temperature difference between the plate surface and the refrigerant saturation. \(L \) is the plate flow channel length. \(Pr_L \) is the liquid phase Prandtl number.

In a forced convection region,

\[h_{fc} = 1.875 \times \varnothing \times \left(\frac{kL}{d_h} \right)^{0.445}Pr_L^{1/3} \]

(Eq.9)

Heat Transfer and Pressure Drop in Fluted Tube-in-Tube Heat Exchangers

Rousseau et al. (2003) modelled and validated a tube-in-tube condenser with complex fluted geometries. They proposed a method to calculate two-phase heat transfer respectively at the inner tube and annular sides, which is to scale the heat transfer of single-phase heat transfer in a smooth tube using two ratios, one accounts for geometry factor i.e. friction pressure drop or single-phase heat transfer in a fluted tube versus a smooth tube and, the other account for two-phase heat transfer versus single-phase heat transfer in a smooth tube.

The geometrical factors below are specific to fluted tubes:

\[D_{vi} = \frac{4Vol}{\pi L} \]

(Eq.10)

Where \(D_{vi} \) is the tube side volume-based diameter, \(Vol \) is the tube side volume, \(L \) is the coiled tube length. The volume based outside diameter of the fluted tube is calculated as:

\[D_{vo} = D_{vi} + 2t \]

(Eq.11)

\(t \) is the wall thickness.

The flute angle is calculated as:

\[\theta = \arctan \left(\frac{\pi D_{vo}}{Np} \right) \]

(Eq.12)

Where \(N \) is the number of flutes, \(p \) is the flute pitch.

Condensation

Annular side:

The single-phase friction coefficient of helical coil is calculated using Das (1993).
\[f_{\text{helicat}} = 4\left[0.079Re_v^{-0.25} + 0.075\left(\frac{D_{ho}}{D_{vo}}\right)^{0.5}\right] + 17.5782Re_v^{-0.317}\left(\frac{D_{ho}}{D_{vo}}\right)^{0.3621}\left(e/D_{ho}\right)^{0.6885} \]

(Eq.13)

Where \(Re_v\) is the vapor phase Reynolds number at the total mass flow rate based and annualar side hydraulic diameter. \(D_{ho} = D_{oi} - D_{vo}\) is the annular hydraulic diameter, given by the difference between the inside diameter of the outer tube and the outside volumetric diameter. \(e\) is the flute depth.

The friction coefficient of a straight tube is adopted from Swamee and Jain (1976).

\[f_{\text{straight}} = 0.25/(\log10\left(\frac{r/D_{ho}}{3.7} + 5.74/Re_v^{0.9}\right))^{2.0} \]

(Eq.14)

Where \(r\) is the tube surface roughness. Thus, the heat transfer enhancement due to the fluted geometry is

\[r_h = f_{\text{helicat}}/f_{\text{straight}} \]

(Eq.15)

According to the Shah correlation, the two-phase condensation enhancement factor is calculated as:

\[\frac{1}{r_{tp}} = \frac{1-x}{0.8} + \frac{3x^{0.5}(1-x)^{0.04}}{Pr^{0.38}} \]

(Eq.16)

If use Dittus-Boelter correlation to calculate single-phase heat transfer in a straight tube, the two-phase condensation heat transfer at the annular side is given as:

\[h_{tp} = 0.023Re_v^{0.8}Pr^{0.4}k_1/D_{ho}r_hr_{tp} \]

(Eq.17)

Where \(Re_v\) is the vapor phase Reynolds number at the total mass flow rate based and annular side hydraulic diameter.

Tube side:

Based on the work by Arnold and Christensen et al. (1993), the helical tube side single-phase heat transfer (Nusslets number) is:

When \(Re_\ell \leq 5000\)

\[Nu_{flute} = 0.014Re_\ell^{0.842}(e^*)^{-0.067}(p^*)^{-0.293}(\theta^*)^{-0.705}Pr^{0.4} \]

(Eq.18)

When \(Re_\ell > 5000\)

\[Nu_{flute} = 0.064Re_\ell^{0.773}(e^*)^{-0.242}(p^*)^{-0.108}(\theta^*)^{-0.599}Pr^{0.4} \]

(Eq.19)

Where \(e^* = \text{flute depth}/D_{vi}, p^* = \text{flute pitch}/D_{vi}, \theta^* = \theta/(\pi/2)\).

At tube side, the single-phase heat transfer enhancement factor due to the fluted geometry is \(r_h = Nu_{flute}/Nu_{straight}\). And \(Nu_{straight}\) can be calculated using the Dittus-Boelter correlation.

Evaporation

Huang et al. (2014) modelled and validated a fluted tube-in-tube evaporator. They correlated single-phase heat transfer as below:

\[Nu_{lo} = \frac{f_{lo}/Re_{lo}^{0.2}}{1 + 9.77\left(p_{lo}^2 - 1\right)^{0.5}}Re_{lo}^{0.2}(e^*)^{-0.32}(p^*)^{-0.28}(r^*)^{-1.64} \]

(Eq.20)

When \(Re_{lo} \leq 800\), the liquid friction pressure drop coefficient is calculated as:

\[f_{lo} = 96(r^*)^{0.035}/Re_{lo}(1 + 101.7)Re_{lo}^{0.52}(e^*)^{1.65} + 2\theta^* - (r^*)^{5.77} \]

(Eq.21)

When \(Re_{lo} \leq 40000\)
\[f_{lo} = 4 \left[1.7372 \ln \left(\frac{Re_{lo}}{1.964 \ln (Re_{lo}) - 3.8215} \right) \right]^{-2} (1 + 0.0925 r^*) e_l \quad \text{(Eq.22)} \]

\[e_l = 1 + 222 Re_{lo}^{0.09} (e^*)^{24} (p^*)^{-0.49} (\theta^*)^{-0.38} (r^*)^{2.22} \quad \text{(Eq.23)} \]

Where \(r^* = D_v/D_{oi} \).

They used Kandlikar (1991) to calculate two-phase evaporation heat transfer.

The nucleate boiling term:
\[h_{nb} = 0.6683Co^{-0.2} (1 - x)^{0.8} h_{lo} + 1058Bo^{0.7} (1 - x)^{0.8} F_{fl} h_{lo} \quad \text{(Eq.24)} \]

The convective boiling term:
\[h_{cb} = 1.136Co^{-0.9} (1 - x)^{0.8} h_{lo} + 667.2Bo^{0.7} (1 - x)^{0.8} F_{fl} h_{lo} \quad \text{(Eq.25)} \]

Where \(Co = (1 - x)^{0.8} \left(\frac{\rho_v}{\rho_l} \right)^{0.5} \) is the convective dimension less number.

\(F_{fl} \) is empirical parameter specific to each individual refrigerant type. If not known, \(F_{fl} = 1.0 \).

The overall boiling coefficient is the larger value between the nucleate boiling and convective boiling.
\[h_{evap} = \max(h_{nb}, h_{cb}) \quad \text{(Eq.26)} \]

References:
Giovanni A. Longo, Simone Mancin, Giulia Righetti, Claudio Zilio, A new model for refrigerant boiling inside Brazed Plate Heat Exchangers (BPHEs), International Journal of Heat and Mass Transfer, Volume 91, 2015a, Pages 144-149.