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AM Additive manufacturing 
AMSC Additive Manufacturing Standardization Collaborative 
ANSI American National Standards Institute 
ASME American Society of Mechanical Engineers 
ASTM American Society for Testing and Materials 
BPVC Boiler and Pressure Vessel Code 
BWR boiling water reactor 
CAD computer-aided design 
DED directed energy deposition 
DOE US Department of Energy 
DoD US Department of Defense 
FAA Federal Aviation Administration 
FSAR final safety analysis report 
HIP hot isostatic pressing 
LENS laser-engineered net shaping 
LOM laminated object manufacturing 
LWR light water reactor 
NDE 
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non-destructive examination 
National Institute of Standards and Technology 

Non-LWR non-light water reactor 
NRC US Nuclear Regulatory Commission 
NPP nuclear power plant 
PBF power bed fusion 
PWR pressurized water reactor 
RG regulatory guide 
SAE Society for Automotive Engineers 
SDO standards developing organization 
SPR special purpose reactor 
SSC systems, structures, and components 
UAM ultrasonic additive manufacturing 
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1. ADDITIVE MANUFACTURING OVERVIEW 

Very small special purpose reactors (SPRs) are under consideration by various entities for remote 
installations and communities. This type of plug-and-go resource requires inherently positive safety 
attributes and robust design. Such reactors may be transportable with fresh fuel to serve as a complete 
power “battery,” and they may even be transportable on short notice after initial use. SPRs could 
eliminate costly fossil fuel deliveries. Modifications to regulatory requirements could allow small 
passively safe reactors to be operated remotely by an offsite operations crew. While use cases for such 
reactors are currently under development, advanced manufacturing processes should be considered to 
support reactor economics through more timely and less costly manufacturing of reactor structures and 
components. 
 
Additive manufacturing (AM) techniques are beginning to provide benefits to numerous industries in 
terms of reducing cost, weight, waste, etc. The aerospace, defense, medical, and automobile industries are 
prime examples of industries benefiting from AM. Smaller applications of this technology are beginning 
to appear in the nuclear industry. SPRs, especially micro-size reactors (e.g., less than ~50 MW electric), 
may benefit from using AM to produce systems, structures, and components (SSCs). This may include 
production of the fuel, the SSCs in the nuclear island, and other potential applications. For very small-
scale reactors, a large portion of the power plant could be produced in a factory using AM techniques and 
then transported to a fixed or temporary location.  
 
AM offers numerous benefits to the reactor industry. It provides the ability to produce geometries that are 
difficult or costly to produce with conventional (subtractive machining) methods. AM also provides the 
ability to produce multiple layers of materials, such as coatings, cladding, or gradients of materials. AM 
produces components quickly and with minimal waste, and it offers significant reductions in time and 
infrastructure associated with spare parts management. The potential for improved component capabilities 
and performance, shorter parts production time, and reduced supply side infrastructure is significant. 
 
A significant advantage of AM is its ability to produce single or small quantities of an item, avoiding the 
need to develop a significant infrastructure to produce only one or two items. AM supports the innovative 
nature of micro-reactor development by offering more economic, more timely manufacturing and 
construction capabilities that can maintain nuclear power as a clean and economic option. 
 
A previous ORNL report [1] focused on early AM material considerations for reactor technologies and 
provided some initial licensing considerations. The current report is a complement to the previous report, 
providing a survey of AM capabilities that could be used to manufacture SPR SSCs. Specific reactor use 
cases and overviews of various reactor types are not included in this report.  
 
It is difficult to be overly detailed regarding availability, testing, and application of specific AM 
technologies and materials for nuclear use because the AM standards have not kept pace with the 
capabilities of the rapidly evolving AM industry.  
 
 

2. ADDITIVE MANUFACTURING CAPABILITIES 

There are many markets for nuclear reactors, some of which support more small-scale, small market size 
energy supply applications. As a result, small and remote power applications for clean, reliable nuclear 
power plants (NPPs) are under consideration. To address the economics of SPRs, vendors must be 
innovative in their approach to reactor operation and construction to reduce cost while still providing for 
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the health and safety of the public and protection of the environment. AM presents a possible path to 
successful construction.   
 
AM processes build three-dimensional parts by incrementally adding thin layers of materials guided by 
information loaded into a computer-aided design (CAD) file. The CAD file provides the template for the 
various AM equipment types to produce complex parts without the need for expensive tooling or forms, 
and it reduces the need for many conventional processing steps. Intricate parts can be made in one step 
without the limitations of conventional processing methods and the associated waste. [3] 
 
The chemical compositions of the alloys commonly used in AM differ appreciably. As a result, the 
differences in thermophysical properties result in significant differences in the structure and the properties 
of the products fabricated when using different alloys under the same AM processing conditions. 
Therefore, all alloys are not equally printable, and an appropriate alloy must be selected to fabricate a 
defect-free, structurally sound component. During AM, energy absorption by the feedstock materials 
affects the temperature profiles, deposit geometry, solidification, microstructure and properties of the part. 
Energy absorption depends on the heat source characteristics. For lasers, electron beams, and plasma arcs, 
the radius and the power density distribution are important properties of the heat source. [3] 

2.1 SUPPLY CHAIN 

Regardless of the AM process used, a multi-part supply chain is necessary to produce a final component. 
According to the EWI Additive Manufacturing Consortium [4], a long list of steps is involved to produce 
a final component: 
 

1. Develop component initial design 
2. Produce a CAD file 
3. Select component materials  
4. Plan the production path  
5. Document the thermal history of the materials 
6. Evaluate the material residual stress 
7. Implement material heat treatment 
8. Validate material properties 
9. Perform qualification and certification 
10. Select the AM process  
11. Conduct process sensing 
12. Develop process controls 
13. Perform component inspection 
14. Implement dimensional controls 
15. Perform component finishing 
16. Document quality assurance 
17. Deliver and install component  

 
Several issues must be addressed within the supply chain steps, such as in-process quality control, surface 
finish, and process repeatability. In addition, economic questions [4] must be addressed prior to using AM 
techniques to produce any given NPP component. These questions include: 
 

1. Do current manufacturing constraints limit parts performance? 
2. Can subcomponents be merged to avoid assembly? 
3. Can the number of joints be minimized? 
4. Can weight and material be reduced while achieving the same function? 
5. Is extensive tooling needed to manufacture a part? 
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6. Can new material combinations increase part performance? 
7. Can part durability be maximized? 

2.2 AM TECHNOLOGIES 

The American Society for Testing and Materials (ASTM) has categorized AM technologies into seven 
broad categories: 
 

1. Powder bed fusion (PBF) 
2. Directed energy deposition (DED) 
3. Sheet lamination 
4. Binder jetting 
5. Material extrusion 
6. Material jetting 
7. Vat photopolymerization 

 
Just as every component and material is not an ideal candidate for AM processing, every identified AM 
technology category is not an ideal choice for producing NPP components. 

2.2.1 Powder Bed Fusion 

AM techniques using PBF employ a laser or an electron beam to melt and fuse powdered material into a 
shape as directed by a CAD file. PBF is typically used with polymers and metals. Typically, a roller 
spreads a thin layer of material across the previous layer, and then the material is exposed to a laser or an 
electron beam, which melts and fuses the powdered material to the previous layer. These steps are 
repeated as the component is built upward from the base [5].  
 
Other names for this AM technique include: 
 

• Selective layer sintering 
• Selective laser melting 
• Selective heat sintering 
• Direct metal laser sintering 
• Electron beam melting 

 
Direct metal laser sintering and electron beam melting are PBF techniques used for metal applications and 
would be applicable to the production of NPP components. These processes have been used with stainless 
steel, titanium, cobalt chrome, nickel alloys, and aluminum. 
 
PBF allows multiple parts to be built simultaneously, and it allows complex geometries to be constructed. 
However, part size is limited by the area of the machine’s build chamber. The build rate is typically less 
than five pounds per hour and is considered slow. It is also noted to be difficult to control the material 
microstructure, and heat treatment is required post-build [6]. 
 
In general, as-deposited AM austenitic stainless steels exhibit higher yield strength, ultimate tensile 
strength and hardness, and lower ductility when compared to their traditionally processed counterparts. 
Austenitic stainless steels made using PBF show no clear trend in yield and ultimate tensile strengths as a 
function of linear or volumetric heat input. The thermal history of the components being fabricated by 
PBF depends on the scan strategy, which cannot typically be stipulated in closed commercial AM systems 
and is difficult to capture. Also, scan strategies vary between studies based on the effects of multiple 
samples being fabricated on the same build plate and the orientation of the samples. The variation in scan 
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strategy, as well as any variation in laser spot size or build preheating, is at least partially responsible for 
the lack of clear trends for PBF austenitic stainless-steel components [3]. 

2.2.2 Directed Energy Deposition 

AM techniques using DED typically employ a nozzle mounted on a multi-axis arm, which deposits 
melted material onto the specified surface, where it solidifies. The process is similar in principle to 
material extrusion. The build material, which can be deposited from any angle using the multi-axis arm, is 
melted upon deposition with a laser or electron beam. The process can be used with polymers and 
ceramics, but it is typically used with metals in the form of either powder or wire. Electron beam versions 
are only used with metals [5]. 
 
Other names for this AM technique include: 
 

• Laser-engineered net shaping (LENS) 
• Directed light fabrication 
• Direct metal deposition 
• 3D laser cladding 

 
DED has been used with titanium and cobalt-chrome alloy. It is considered a good process to use when 
repairing or adding material to an existing component. 
 
LENS using a powder feed can be used to fabricate larger structures with good microstructure. However, 
complex geometries are more difficult with this technique, and significant post-build processing is 
required [6]. 
 
Austenitic stainless steels made by DED cause the yield strength and ultimate tensile strength to decrease 
with increasing linear heat input, but no clear trend is found in yield or ultimate tensile strengths as a 
function of volumetric heat input. Lower linear heat inputs result in smaller melt pools, higher thermal 
gradients, and therefore fast cooling rates and fine microstructures, leading to higher yield and ultimate 
tensile strengths compared to components made with higher linear heat inputs [3]. 
 
Ni-base alloys used in AM include Inconel 625, Inconel 718 and Invar 36. Ni-base superalloys Inconel 
718 and Inconel 625 are widely used in the aerospace industry due to their high strengths at elevated 
temperatures. There is no clear trend between ultimate tensile strength and ductility data for Ni-base 
alloys processed via AM (PBF and DED). Thus, more data are needed to link processing, structure, and 
properties in these alloys made by AM [3]. 

2.2.3 Sheet Lamination 

AM techniques using sheet lamination typically employ layers of material that are bonded together. The 
two principle techniques for AM sheet lamination include: 
 

• Ultrasonic additive manufacturing (UAM) 
• Laminated object manufacturing (LOM) 

 
UAM uses sheets or ribbons of metal which are bound together using ultrasonic welding. The process 
requires additional machining and removal of the unbound metal. This is often done during the welding 
process. LOM uses a similar layer-by-layer approach, except, paper is used as material and adhesive 
instead of welding. Laminated objects are often used for aesthetic and visual models and are not suitable 
for structural use. UAM uses metals that include aluminum, copper, stainless steel and titanium. The 
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process is low temperature and allows for internal geometries to be created. The process can bond 
different materials and requires relatively little energy, as the metal is not melted [5]. Although metal 
parts can be manufactured using this AM technique, it does not support the direct production of structural 
NPP components. UAM is being investigated for fuel and control rods. 

2.2.4 Binder Jetting 

AM techniques using binder jetting process two materials; a powder-based material and a binder. The 
binder acts as an adhesive between powder layers. The binder is usually in liquid form, and the build 
material is in powder form. A print head moves horizontally along the x and y axes of the machine and 
deposits alternating layers of the build material and the binding material. After each layer is completed, 
the machine lowers the build platform including the object being printed, and the next layer is deposited 
[5]. 
 
Binder jetting can be used with stainless steel, polymers, and ceramics. However, due to the method of 
binding, the material characteristics are not always suitable for structural parts, and despite the relative 
speed of printing, additional post processing adds significant time to the overall process. Although metal 
parts can be manufactured using this AM technique, this technique does not support the direct production 
of structural NPP components. However, irradiation testing of specimens using this process is in progress 
at the Idaho National Laboratory’s Advanced Test Reactor [6]. 

2.2.5 Material Extrusion 

AM techniques using material extrusion cause the material to be drawn through a nozzle, where it is 
heated and then deposited layer by layer. The nozzle can move horizontally, and a platform moves up and 
down vertically after each new layer is deposited. Material extrusion is used with polymers and plastics 
[5]. It is a technique commonly used on many inexpensive, domestic, and hobby 3D printers, and it does 
not support the production of structural NPP components. Polymers and plastics may be used for 
shielding. 

2.2.6 Material Jetting 

AM techniques using material jetting create objects in a method similar to the method used in a two-
dimensional ink jet printer. Liquid material is jetted onto a build platform using either a continuous or 
drop-on-demand approach. Once the material solidifies, more liquid material is applied, and the model is 
built layer by layer. The material is deposited from a nozzle which moves horizontally across the build 
platform. The material layers are then cured or hardened using ultraviolet light. Machines vary in 
complexity and in their methods of controlling the deposition of material. Because material must be 
deposited in drops, the number of materials available to use is limited. Polymers and waxes are suitable 
and are commonly used due to their viscous nature and ability to form drops [5]. Therefore, this AM 
method does not support the production of structural NPP components. Polymers and plastics may be 
used for shielding. 

2.2.7 Vat Photopolymerization 

AM techniques using vat photopolymerization involve a vat of liquid photopolymer resin. An ultraviolet 
light is used to cure or harden the resin where required, while a platform moves the object being made 
downwards into the vat of liquid photopolymer resin after each new layer is cured. Where the resin 
encounters the light, it cures or hardens. Vat photopolymerization is only used with polymers and 
plastics [5], so this AM method does not support the production of structural NPP components. Polymers 
and plastics may be used for shielding. 
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2.3 POST-AM PROCESSING 

Using a laser or an electron beam to manufacture components from a powdered metal or wire subjects the 
material to repeated heating and cooling. This process typically leads to internal stresses that must be 
relieved before the component can be removed from the build plate. After the component is removed 
from the build plate, subsequent heat treatment and controlled cooldown is required to improve material 
properties such as density and strength. Heat treatment can affect the finished component dimensions as it 
does in conventionally produced components.  
 
A process frequently used in the metal casting industry in lieu of heat treating the component is hot 
isostatic pressing (HIP). Using HIP, the component is subjected to high pressure in an inert environment 
at an elevated soak temperature. This improves material density by eliminating internal voids. HIP also 
improves fatigue resistance. Because AM manufacturing resembles metal casting, HIP is a frequently 
used AM post-processing technique. 
 
Surface roughness is currently a major drawback of AM in two important aspects. First, rough surfaces 
that contact flowing fluids will impact system performance. Second, rough surfaces provide stress 
concentrations that serve as crack nucleation sites, potentially limiting fatigue performance [3]. Therefore, 
in nuclear applications, surface finishing is a necessity. Surface finishing can be very complex or 
impossible to implement on very complex parts with difficult-to-reach internal surfaces. Testing and 
inspection of each component will also be required. Tight flow specifications may cause components 
manufactured by AM techniques to fail final testing. Since component dimensions can change during post 
AM processing, process repeatability is a consideration. Standards for nondestructive examination (NDE) 
of AM components during processing and post-processing are necessary [7] and should be developed. 
 
 

3. STANDARDS 

The growth in the use of AM and the expansion of its techniques and materials creates challenges in 
specifying, producing, and certifying SSCs for nuclear power reactors. Standards governing the materials, 
applications, manufacturing, testing, certification, use, etc., for nuclear power applications have not kept 
pace with growth in the field. Development of AM standards in parallel with the growth in this industry 
will accelerate its application in the nuclear power field. 
 
Industry consensus standards are frequently endorsed in regulatory guidance issued either by the US 
Nuclear Regulatory Commission (NRC) or the US Department of Energy (DOE) as a means to 
demonstrate compliance with regulations and requirements. Industry standards for materials (chemical 
composition, flowability, density, particle size and distribution, etc.,); manufacturing methods (process 
control, machine calibration and qualification, material handling, post-processing needs, cybersecurity, 
etc.,); quality and certification; nondestructive evaluation (data requirements, methods, metrology); and 
maintenance and repair of the products are needed to provide assurance that the products meet their 
requirements and collectively ensure the health and safety of the public. The standards are also essential 
for designers, manufacturers, suppliers, and users to supply proven products to accelerate the adoption of 
new nuclear technologies. 
 
In 2016, America Makes, the national accelerator for AM and 3D printing, along with the American 
National Standards Institute (ANSI) launched the America Makes & ANSI Additive Manufacturing 
Standardization Collaborative (AMSC) “to coordinate and accelerate the development of industry-wide 
AM standards and specifications consistent with stakeholder needs and thereby facilitate the growth of the 
AM industry” [2]. AMSC does not write standards, nor does ANSI. (ANSI serves as administrator and 
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coordinator of the US private-sector voluntary standardization system to help define standardization needs 
and is engaged in accreditation of standards development organizations.)  
 
The need was recognized to develop an AM standards development roadmap. AMSC is leading a 
program to identify AM standards and specifications that are in use or being developed. Federal agencies, 
including the National Institute of Standards and Technology (NIST), the Department of Defense (DoD), 
the Federal Aviation Administration (FAA), and several more standards development organizations 
(SDOs) are participating in this collaborative effort. Even so, the development of new consensus 
standards and their endorsement by NRC or DOE can be a lengthy process.  
 
 

4. SUMMARY 

Of the AM capabilities reviewed in this report, PBF and DED are the two AM techniques that most 
readily lend themselves to the production of structural parts, including components for NPPs. The 
questions posed in Section 2.1 must be considered for each proposed NPP SSC to be produced using AM 
techniques. Steels with good yield strength characteristics can be produced using AM methods. However, 
fatigue, which is the mechanical response of a material subjected to cyclic loading, becomes an issue. In a 
material completely free of porosity or surface-related defects, fatigue failure occurs in a catastrophic 
manner when voids form due to the accumulation of dislocations. These propagate outward until 
complete fracture occurs. When stress concentrators such as surface or internal defects are introduced, the 
number of cycles required for fracture of a specimen can be greatly reduced, thus decreasing fatigue 
life [3]. 
 
Creep properties may also differ between components produced by AM techniques and components 
produced by traditional means. Creep in processed parts is due to the presence of defects and fine 
microstructural features [3]. Post AM heat and pressure treatment of components can relieve some creep 
behavior in the metal. However, more testing and irradiation performance will be necessary for nuclear 
component applications. 
 
DOE has an initiative underway to provide irradiation data. Irradiation testing specimens1 of stainless 
steel alloy 316L and Inconel 718 produced using AM processes have been conducted at the Advanced 
Test Reactor at Idaho National Laboratory. The irradiated specimens used in the DOE reactor material 
AM initiative were produced using PBF and DED techniques. Larger components produced using AM 
techniques with post-processing provided using HIP are planned for irradiation testing in the Advanced 
Test Reactor. These components include a large alloy 316L valve body, a boiling water reactor (BWR) 
steam separator inlet swirler, and a BWR nozzle [6]. 
 
  

                                                      
1 It is important to note that alloy 316L and Inconel 718 are designations for wrought alloys, which are ductile enough to be 
worked hot or cold during fabrication. However, AM is not a wrought process—it is a melting and solidification process. AM 
metals are more like cast-metal alloys. Metal casting is characterized by molten metal flowing into a mold by gravity or into a die 
by high pressure to create a shape. Therefore, the melting and solidification that occurs during AM is like casting. There is no 
deformation processing in typical AM. Cast Alloy CF8M is the approximate equivalent of wrought Alloy 316L. 
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In the paper on AM manufacturing of metallic components [3], the authors succinctly summarize the state 
of the art: 
 

Although mechanical properties of parts produced by AM are in many cases comparable 
with their conventionally processed counterparts, properties can vary with process 
parameters and locally within a part. Controlling mechanical properties of parts will 
require greater understanding of both the AM process and the evolution of 
microstructure under complex thermal cycles. Progress in better understanding the AM 
processes will be important to avoid common defects and to ultimately tailor 
composition, structure and properties of AM parts based on scientific principles. 
Furthermore, greater market penetration of AM will require an increased level of 
standardization and control to attain repeatable processes to produce parts with 
consistent properties. 

 
Developing nuclear-related industry standards in parallel with development of AM materials and 
manufacturing methods, as well as means of product testing and validation, will accelerate the adoption of 
new nuclear technologies.  
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