Assembly of Rabbit Capsules for Irradiation of Pyrolytic Carbon / Silicon Carbide Diffusion Couples in the High Flux Isotope Reactor

Approved for public release. Distribution is unlimited. Annabelle G. Le Coq Kory D. Linton Ryan C. Gallagher Tyler J. Gerczak Kurt A. Terrani Christian M. Petrie

June 28, 2018

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 *Telephone* 703-605-6000 (1-800-553-6847) *TDD* 703-487-4639 *Fax* 703-605-6900 *E-mail* info@ntis.gov *Website* http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source:

Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 *Telephone* 865-576-8401 *Fax* 865-576-5728 *E-mail* reports@osti.gov *Website* http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ORNL/SPR-2018/876

Materials Science and Technology Division

Assembly of Rabbit Capsules for Irradiation of Pyrolytic Carbon / Silicon Carbide Diffusion Couples in the High Flux Isotope Reactor

Annabelle G. Le Coq Kory D. Linton Ryan C. Gallagher Tyler J. Gerczak Kurt A. Terrani Christian M. Petrie

Date Published: June 28, 2018

NSUF Work Package #: UF-18OR020708 Work Package Manager: Kory Linton Milestone #: M3UF-18OR0207081

Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, TN 37831-6283 managed by UT-BATTELLE, LLC for the US DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725

CONTENTS

CONTENTS	iii
LIST OF FIGURES	iv
LIST OF TABLES	v
ACKNOWLEDGMENTS	vi
ACRONYMS	vii
ABSTRACT	1
1. INTRODUCTION	
2. EXPERIMENTAL DESIGN AND TEST MATRIX	
2.1 CAPSULE DESIGN	
2.2 TEST MATRIX	5
3. RABBIT CAPSULES ASSEMBLY	7
4. SUMMARY AND CONCLUSIONS	
5. WORKS CITED	9
APPENDIX A. FABRICATION DOCUMENTATION FOR COMPLETED RABBITS	

LIST OF FIGURES

Figure 1. Section view showing irradiation capsule design concept	4
Figure 2. Predicted temperature contours showing (a) a section view of the internal components,	
(b) the specimens, and (c) the SiC temperature monitors	4
Figure 3. Example of fabricated specimens.	5
Figure 4. Parts layout for rabbit DC01 (top) and rabbit DC02 (bottom).	7
Figure 5. Specimens loaded in the container (left) and top-down view of the specimen container	
inserted in the housing (right)	8

LIST OF TABLES

Table 1. Specimen types included in the irradiation test matrix	5
Table 2. Rabbit irradiation test matrix showing the loading of specimens within each rabbit, the	
irradiation positions, and fill gas	6

ACKNOWLEDGMENTS

This research was sponsored by the Nuclear Science User Facilities (NSUF) Program of the US Department of Energy (DOE), Office of Nuclear Energy. Neutron irradiation in the High Flux Isotope Reactor (HFIR) is made possible by the Office of Basic Energy Sciences, US DOE. The report was authored by UT-Battelle under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The contributions of David Bryant who assembled the capsules are gratefully acknowledged.

ACRONYMS

CVD	Chemical vapor deposition
DOE	Department of Energy
HFIR	High Flux Isotope Reactor
IPyC	Inner pyrolytic carbon
LWR	Light water reactor
MIBL	Michigan Ion Beam Laboratory
NSUF	Nuclear Science User Facilities
OPyC	Outer pyrolytic carbon
ORNL	Oak Ridge National Laboratory
РуС	Pyrocarbon
SiC	Silicon carbide
TRISO	Tristructural-isotropic

ABSTRACT

Tristructural-isotropic (TRISO)–coated particle fuel is a promising advanced fuel concept being considered for several advanced reactor applications and for accident-tolerant fuel for light water reactors. One of the aspects studied in the development of this advanced fuel concept is the release of specific fission products (Ag, Eu, and Sr). The silicon carbide (SiC) layer of TRISO fuel serves as the primary barrier to metallic fission products and actinides not retained in the fuel kernel. The goal of this project is to evaluate the effect of irradiation on the diffusion of these fission products in the SiC layer of the fuel. For this purpose, rabbit capsules containing small slab diffusion couple specimens have been assembled to be irradiated in the High Flux Isotope Reactor (HFIR). The diffusion couple specimens have been fabricated using similar processes and equipment as those used to make TRISO particles; the desired fission products have been implanted in the specimens using an ion accelerator. Moreover, the effect of temperature on the fission products diffusion will be studied separately by performing thermal experiments in the absence of irradiation. This report describes the irradiation experiment design concept, summarizes the irradiation test matrix, and reports on the successful assembly of two rabbit capsules that will be irradiated in the HFIR.

1. INTRODUCTION

Tristructural-isotropic (TRISO)–coated particle fuel is a promising advanced fuel concept being considered for several advanced reactor applications and for accident-tolerant fuel for light water reactors. This type of fuel consists of a spherical uranium-bearing fuel kernel, surrounded by a buffer layer, and successive layers of dense inner pyrolytic carbon (IPyC), silicon carbide (SiC), and dense outer pyrolytic carbon (OPyC). During operation, the SiC layer serves as the primary barrier to metallic fission products and actinides not retained in the kernel. The development of this advanced fuel concept requires a thorough understanding of fission product diffusion kinetics in the various coating layers. Previous observations suggest that irradiation influences diffusion of fission product species in SiC [1-3].

Irradiation capsules have been designed to allow the irradiation of representative specimens in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Post-irradiation examination will provide diffusion depth profile data. Representative TRISO layer properties are pursued to investigate materials relevant to TRISO-coated particle fuel performance. The samples are comprised of only the pyrocarbon (PyC) and SiC layers, no fissile material is present. The diffusing fission product species of interest have been directly implanted into the specimens. A slab geometry has been pursued to simplify the post-irradiation depth profiling of the diffusion couple systems. This report summarizes the capsule design, the irradiation test matrix, and the successful assembly of the capsules for irradiation in the HFIR.

2. EXPERIMENTAL DESIGN AND TEST MATRIX

2.1 CAPSULE DESIGN

The irradiation capsule design is shown in Figure 1. This design places up to 40 diffusion couple specimens (maximum dimensions 3.35 mm x 5.55 mm x 0.30 mm) inside small cutouts in a graphite container. The container is then placed inside a square cutout in a cylindrical holder made from Nb-1Zr alloy. Passive SiC temperature monitors line the inside of the holder cutout and SiC retainer springs keep the graphite container pressed into one corner of the cutout. The holder is positioned in an aluminum housing, which is directly cooled by the reactor primary coolant. Inside the housing, centering thimbles placed at each end maintain the holder centered in the housing and keep a constant gas gap between the two components. Support disks (not shown in the figure) made from molybdenum are placed between the holder and the centering thimbles. Wires are inserted through the thimbles and the radial holes in the holder to ensure that the thimbles cannot dislodge from the holder. The small raised features above and below the base of the centering thimble (see Figure 1) reduce the contact area between the centering thimble and the contacting components (the holder and the bottom of the housing). These features significantly reduce axial heat losses through the thimbles. Grafoil insulator disks are also stacked on both ends of the capsule to further reduce axial heat losses. Quartz wool (not shown) is packed into the ends of the cutouts in the graphite container to keep the specimens in place. Finally, an end cap is welded to the housing to seal the rabbit capsule.

Figure 1. Section view showing irradiation capsule design concept.

Finite element modeling of this design predicts 1,100 °C average specimen temperatures [4]. The thermal performance will be validated by the SiC temperature monitors, post-irradiation. Figure 2 displays the temperature contour plot of the internal rabbit components, the specimens and the temperature monitors.

Figure 2. Predicted temperature contours showing (a) a section view of the internal components, (b) the specimens, and (c) the SiC temperature monitors.

2.2 **TEST MATRIX**

Table 1 summarizes the four different types of specimens that have been fabricated at ORNL. Two different types of SiC (single crystal 4H-SiC and commercially available chemical vapor deposition (CVD) SiC) have been implanted with Ag on one surface, and seal coated with SiC. In addition, layered PyC and SiC diffusion couple specimens were produced to mimic the TRISO layers in a TRISO fuel particle. Two variants of PyC/SiC/PyC specimens, SiC variant and baseline variant, were fabricated and slightly differ by their layers properties. One PyC layer was implanted with species of interest, and the PyC/SiC/PyC specimens were seal coated with SiC. The fission product species have been implanted at the Michigan Ion Beam Laboratory (MIBL). Finally, PyC/SiC/PyC specimens without any species implantation or seal coating were fabricated. Figure 3 shows an example of some fabricated specimens.

Specimen type	Specimen condition	Implanted species	Specimen ID*				
Seal-Coated 4H-SiC	AH SIC	Δα	4H-x				
	411-510	лg	4-xx				
Seal-Coated CVD-SiC	CVD-SiC	Ag	CVD-x				
		Ag	32-xx				
	SiC variant	Eu	28-xx				
Saal Coatad		Sr	35-xx				
DyC/SiC/DyC		Ag	30-xx				
Tyc/Sic/Tyc	Decolina	Ag+Pd	Ag-xx				
	Daseinie	Eu	33-xx				
		Sr	34-xx				
As-fabricated	Blank ByC/SiC		27 vv				
PyC/SiC/PyC	Dialik-PyC/SIC	-	37 - XX				
* with -x or -xx, the specimen ID number							

Table 1. Specimen types included in the irradiation test matrix

Figure 3. Example of fabricated specimens.

For each specimen type, condition and implanted species, between one and five specimens were inserted in each capsule. Table 2 summarizes the irradiation test matrix with the loading of specimens in each rabbit, the irradiation positions, and fill gases. The rabbits DC01 and DC02 contain twenty-nine and thirty specimens, respectively. The rabbits will be inserted in the hydraulic tube of the HFIR during cycle 481 (July 2018): one rabbit will be irradiated for about 5 days, which will result in a radiation dose of approximately 0.5 dpa; the other rabbit will be irradiated for about 11 days, which will result in a radiation dose of approximately 1 dpa. The targeted specimen surface temperature is approximately 1,100 °C.

Rabbit	Irradiation dose (dpa)	Specimens	Irradiation position	Fill gas
DC01	0.5	CVD-1, CVD-2, CVD-3, CVD-4, CVD-5, 4H-1, 4H-4, 4-01, 4-02, 4-03, 30-01, 30-02, 30-03, 32-01, 32-02, 32-03, 34-01, 34-02, 35-01, 35-02, 37-01, 37-02, 37-03, 37-04, 28-01, 28-05, Ag-01, Ag-02, 33-01	HT-4	Ne*
DC02	1	CVD-6, CVD-7, CVD-8, CVD-9, CVD-10, 4H-5, 4H-7, 4-04, 4-05, 4-07, 30-04, 30-05, 30-06, 32-04, 32-05, 32-06, 34-03, 34-04, 35-03, 35-04, 37-05, 37-06, 37-07, 37-08, 28-03, 28-04, Ag-03, Ag-04, 33-02, 33 ⁻ 03	HT-6	Ne*

Table 2. Rabbit irradiation test matrix showing the loading of specimens within each rabbit, the irradiation positions, and fill gas

* Or Ne equivalent

3. RABBIT CAPSULES ASSEMBLY

The two rabbits (DC01 and DC02) were assembled. Pictures of the parts layout for the two rabbits are shown in Figure 4. Figure 5 shows the specimens loaded in the cutouts of the graphite container and a top-down view of the container loaded in the housing. The signed capsule fabrication request forms are provided in APPENDIX A.

Figure 4. Parts layout for rabbit DC01 (top) and rabbit DC02 (bottom).

Figure 5. Specimens loaded in the container (left) and top-down view of the specimen container inserted in the housing (right).

All capsule components were dimensionally inspected and cleaned according to HFIR-approved procedures, drawings and sketches. After assembly of the internal components, the rabbit housing end caps were welded to the housings using an electron beam weld. The capsules were then places inside sealed chambers that were evacuated and backfilled with 40.5% He-Ar balance mixture gas three times to ensure a pure environment. The chambers were placed inside a glove box, which was also evacuated and backfilled with 40.5% He-Ar balance mixture gas. Each rabbit had a small hole in the bottom of the housing that was sealed using a gas tungsten arc welding procedure. All welds passed visual examination. Each capsule was then sent for nondestructive examination, which included a helium leak test, hydrostatic compression at a pressure of 1,035 psi, mass comparisons before and after hydrostatic compression to ensure no water penetrated the capsule housing, and a final post-compression helium leak test. Both rabbits passed helium leak testing and hydrostatic compression (see leak test report in APPENDIX A).

4. SUMMARY AND CONCLUSIONS

This report summarizes the capsule design and the irradiation test matrix for two rabbit capsules, which were successfully assembled to be inserted in the HFIR during cycle 481 (July 2018). Each capsule contains about 30 specimens of different types with fission product implantation. The specimens will be evaluated post-irradiation to determine their diffusion depth profiles. The rabbits were successfully assembled, welded and leak tested. Pictures of the rabbit assembly process are included in this report. Documentation of the capsule fabrication is provided in an appendix. For separation of the effects of radiation and temperature on the diffusion products in the SiC layers of the specimens, a thermal experiment in the absence of irradiation will also be performed on the same types of specimens. Ultimately, the data gathered from these experiments will assist in the development of accurate models and codes for TRISO fuel performance, which are needed to ensure safe and efficient operation of this fuel for advanced reactor applications or for use as an accident-tolerant fuel for light water reactors (LWRs).

5. WORKS CITED

- 1. T.J. Gerczak, et al, *Observations of Ag diffusion in ion implanted SiC*. Journal of Nuclear Materials, 2015. **461**: p. 314-324.
- 2. B. Leng, et al., *Effect of carbon ion irradiation on Ag diffusion in SiC*. Journal of Nuclear Materials, 2015. **471**: p. 220-232.
- 3. S. Dwaraknath and G.S. Was, *Development of a multi-layer diffusion couple to study fission product transport in \beta-SiC. Journal of Nuclear Materials, 2014. 444(1-3): p. 170-174.*
- 4. C.M. Petrie et al., *Design and Thermal Analysis for Irradiation of Pyrolytic Carbon / Silicon Carbide Diffusion Couples in the High Flux Isotope Reactor*, ORNL/TM-2017/390, Oak Ridge National Laboratory, Oak Ridge, TN, 2017

APPENDIX A. FABRICATION DOCUMENTATION FOR COMPLETED RABBITS

APPENDIX A. FABRICATION DOCUMENTATION FOR COMPLETED RABBITS

Capsule Number:	DC01			_						
Irradiation Conditions						Approvals				
Irradiation Location		HT	4				Request		Build	
Target Fluence			1.18E+22			Performed by:	1 1	1	~~~~	6/12/18
First Cycle Goal			481	-			12 M	- CM	Dandy	
Irradiation Time		5.0	days			Checked by:	MO	n	n	plu la
Irradiation Temperature			1,100°C	_			- 2	40.182	1hr	-6/2/18
Fili Gas			40.5% He, Ar bal.	_			07	12/18	'N	1.100
Capsule Fabrication										
	Drawing	Rev.	Part	Material	Count	Comment	MATIR	FAB IR	ID	Mass (g)
Housing	X3E020977A634	A	1	AI 6061	1		20713	20713	17-108	4.3249
Housing end cap	X3E020977A634	A	2	AI 4047	1		20714	20714	17-114	0,5164
Holder	S16-31-DIFFCOUPLE	1	1	Nb-1Zr	1		19733	20843	18-01	14.3481
Specimen Container	S16-31-DIFFCOUPLE	1	2	Graphite	1		19484	20844	18-01	1.2860
Centering Thimble	S46-90 DIFFCOURLE	0	4	Ti-6A/4V			20063	20842	18-01	0.1421
	310-30-DIFF GOOFCE	U U	~		ŕ .		20000	20042	18-02	0.1432
Thermometry									18-06	0.2136
	SHE SO DIFFERALIDI F		2	SiC			10662	20840	18-07	0.2135
	ST0-S0-DIFFGOOFLE	Ň	3	310	1		15002	20048	18-08	0.2128
									18-09	0,2123
					1				CVD-1	0,010
					i				CVD-2	0.010
						CVD-SiC-SC			CVD-3	0.011
									CVD-4	0,012
									CVD-5	0,011
							1		4H-1	0.009
						4H-SIC-SC			4H-4	0.010
							1		4-01	0.009
						DCCD-			4-02	0.010
						4H3IG_M13_3G42			4-03	0.010
].						1		30-01	0.007
						DCCD-30			30-02	0.006
								1	30-03	0.006
							-		32-01	0.006
Specimen	S16-31-DIFFCOUPLE	1	3	Layers of SIC, with	29	DCCD-32	20871	20871	32-02	0.005
discrition.	SIS OF SIT COST L		, i i i i i i i i i i i i i i i i i i i	Ag, Pd, Eu or Sr	~~	DCCD-34			32-03	0.005
							-		34-01	300.0
									34-02	0.007
							1		35-01	0.006
						DCCD-35	DCCD-35		35-02	0.005
							1		37-01	0.005
									37-02	0.004
						DCCD-37			37-03	0.004
									37-04	0.004
							-		28-01	0.008
						DCCD-28			28.05	0.005
	1						-		Ac-01	0.006
						DCCD-33		1	Ag-02	0.007
						bCCD-33	1	1	33-01	0.007
Patainar Spring	S16-30-DIFFCOURLE	0	2	SIC	2		19502	19502	2 1014	0.2420
Support Disk	S16-30-DIFFCOUPLE	Ťŏ	5	Moly	2	0.05-0.13 thick	20710	20710	2 total	0.0650
Support DISK	S16-30-DIFFCOUPLE	<u>,</u>		Mohy	2	5 diameter	19600	19603	2 total	0.0510
Pyro	S18-30-DIFECOLIPLE	0	7	Geatell	8	0.05-0 13 thick	19812	19812	6 total	0.0460
Duranta Wood	S18-30-DIFF000FLE	0	8	SiO2	AR	See note 10	20224	20270	N/A	0.0740
Quanz Wool	1 STO-SO-DIFFOOUPLE	L	<u> </u>	0102	100	L. Geenne TO	LULLA	Levera	Total Ma	3 22 2799
Assembly									Specimen Ma	0 2090
resembly		Rev.	Com	ment	1				Internal Mar	5 17.4386
Assembly Drawing	S16-30-DIFFCOUPLE	0			1					
Welding & Cleaning	X3E020977A633	0								
Fill Gas	40.5% He, Ar bai,				1					

A-3

Capsule Number:	DG02			_						
Irradiation Conditions						Approvals		141		
Irradiation Location		HT	6				Request	GRIB	Build	
Target Fluence			2,59E+22			Performed by:	12 1	111	~ ~	4/12/18
First Cycle Goal			481				12/2	~ 1	soly	20
Irradiation Time		11.0	days			Ghecked by:	1 1/5	na.	00	Carl
Irradiation Temperature			1,\$00°C	_			1	25	12.20	-6//2/12
Fill Gas			40.5% He, Ar bal.			b/ i	12/10 1	and the second s	1	
Capsule Fabrication										
	Drawing	Rev.	Part	Material	Count	Comment	MATIR	FAB IR	ID	Mass (g)
Housing	X3E020977A634	A	1	AI 6081	1		20713	20713	17-109	4.3241
Housing end cap	X3E020977A634	A	2	AI 4047	1		20714	20714	17-77	0.5149
Holder	S16-31-DIFFCOUPLE	1	1	Nb-1Zr	1		19733	20843	18-03	14.4088
Specimen Container	S16-31-DIFFCOUPLE	1	2	Graphite	1		19484	20844	18-02	1.2418
Centering Thimble	SHA 20 DEECOUDLE	0		Ti-6Al4V			20002	00040	18-03	0.1409
	1919-30-DIPPEUUPLE	1 0	4		2		20093	ZV04Z		

	DIG GO DI LOODI EL	Ľ			-		20000	TAD IX	18-04	0.1441		
Thermometry									18-02	0.2116		
			10503 90840		18-03	0.2131						
	STO-SO-DITY CODI LL	ľ		010	-		10002	20040	18-04	0.2103		
									18-05	0.2130		
									CVD-6	0.011		
									CVD-7	0.011		
						CVD-SIC-SC			CVD-8	0.010		
									CVD-9	0.010		
									CVD-10	0.011		
						4H-SIC-SC			4H-5	0.011		
									4H-7	0.011		
1]		DCCD.4HSIC MTS SC			4-04	0.008		
1						02			4-05	0,009		
1									4-07	0.010		
1								20871 -	30-04	0.007		
					30	DCCD-30 DCCD-32	20871		30-05	0.007		
1				Layers of SiC, with Ag, Pd, Eu or Sr					30-05	0.007		
		COUPLE 1							32-04	0.005		
Specimen	specimen S16-31-DIFFCOUPLE		3						32-05	0.005		
									32-06	0.005		
								DCCD-34			34-03	0.006
										20671 2 19502 1 20710 2		34-04
						DCCD-35			35-03	0,006		
									35-04	0.006		
						DCCD-37			37-05	0.004		
									37-00	0.005		
									37-07	0.005		
									37-05	0.005		
						DCCD-28			28-03	0.005		
									28-04	0.000		
						DCCD-33			Ag-03	0.006		
									33.02	0.000		
						DCCD-33			33-02	0.007		
Retainer Spring	S16-30-DIFECOUPLE	0	2	SIC	2		19502	19502	2 iotal	0.000		
Support Disk	S16-30-DIFFCOUPLE	0	5	Mole	2	0.05-0.13 lbick	20710	20710	2 total	0.2420		
Utilina	S16-30-DIFFCOUPLE	0	6	Moly	2	.5 diameter	19600	19600	2 total	0.0500		
Insulator Disk	S16-30-DIFFCOUPLE	0	7	Grafoil	6	0.05-0.13 thick	19812	19812	6 total	0.0460		
Quartz Wool	\$16-30-DIFFCOUPLE	C C	8	SiO2	AR	See note 10	20224	20279	N/A	0.0710		
Education and the second secon									Lotal Mace	02 3126		

Assembly

		Rev.	Comment
Assembly Drawing	S16-30-DIFFCOUPLE	0	
Welding & Cleaning	X3E020977A633	0	
Fill Gas	40.5% He, Ar bal.		

Total Mass 22 3126 Specimen Mass 0,2160 Internal Mass 17,4736

ബി				Report Number: 6/8/3-1		
ACCREDITED		LEA	K TEST REPORT			
Test Requested by:	LICOQ		Allowable Leak Rate: < (2	-7 La Std-Atm-cc/s		
Date Requested:	6/18/13		Date Required: 6/18/1	8		
Work Order Number:	33822()		Test Pressure Req. Across Boun	idary: - / Arm		
Item Tested: 2 CA	RE CAPS DC	OL. Droz	Customer: RAJSD			
Specification: AP- INS	7-20977-020,85	NDE 70, Rev: 7	Technique Used: INSIDE - (Dor Rev: D Inside - Out Outside - In		
		EQUI	PMENT			
	LEAK DETECTOR		STANI	DARD LEAK		
Make and Model:	DIXEN AS	an 18270-1	Manufacturer: 1/25 CO	Tracer Gas: Ho		
Serial Number:	4(D 0 860	1405	Model: SC-1	Serial Number: 15220		
			Leak Rate: 2.095 - 8 Atm	1-cc/s @ -1 atm @23.9 "C		
	TEST GAUGES		Correlation Formula: $[1 - (T_{cal} - T_{surf}) C_T] LR$	Temp Coefficient: 3.0%/°C		
Temp Gauges: 🗛 🕻	005.945	Due: 11/13/18	Correlated LR: 2. 15 2 - 7 Atm-cc/s @ -1 atm @ 24,2 °C			
Pressure Gauges:	2/4	Due: -	Calibration Due Date: 9/22/18			
		RES	ULTS ØQuantitative	Semi - Quantitative		
MA	CHINE CALIBRATI	ON	SYSTEM TE	ST CONDITIONS		
System Pressure:	1323	MB	System Temperature: 24,2°C 🛛 Surface 🗆 Internal Gas			
Background:	×1E-9	Aim-cc/s	s delta P Test Boundary: - ATUS			
Leak Response:	2.15-8	Aim-cc/s	Tracer Gas: He	% Concentration: 40.52		
Minimum Detectable Le	ak: 1 p - 8	Atm-cc/s	System Response Time:	526		
System Sensitivity:	2 0-9	Atm-cc/s	System Response: 2.8	E-9 Atm-cc/s		
Response Time:	LSSEL		Duration of Test: ~ 51	nin		
Aux. Equipment:	BELL JAR		18			
ACCEPT 🔲 RE.	JECT SKETCH.	/ DATA ATTACHED	System Leak Rate: 4-9	1m-cc/s (a) atm (a) 24.2 °C		
COMMENTS:	-1 to 8 10 2.4	17	6.96.4			
CF.						
- Pez	HYPRO 1	h i				
		\cap				
Test Conducted By:	1h	/	11	1.0.0		
SPR	23/1/1		Level: III Date:	6/(8/18 Time: (0,30)		
ann NIJE 70-MS, Rev. I CN01				IDMS: 21077		

PRESSURE TEST REPORT

IRR CAPS		MJR NUMBER:	LOCATION: (if installed)
		DRAWING NUMBER:	CHARGE 39051622
SAFETY WORK PERMIT N	O. (if required):	PRESSURE SOURCE USED:	TEST REQUESTED BY:
MA		HAND RUMP	JEFF BRYOR
ER NITROGEN			
	JLTRASONIC	BUBBLE PRES	SURE DECAY
2010年1月	PRE-TES	T CHECKLIST	
NREQUIRED: YES	Пио	WELDED JOINTS PAINTED OR IN	ISULATED: VES NO
SSEL (HYDROSTATIC TEST ONL	. <u>Y): X</u> YE	S 🗌 NO	,
	TEST G	AUGE DATA	
SERIAL NUMBER MJF_564 AA AMBIENT ROOM	MANUFACTUREF BEAMEX NA- 76°F affron	cal date 10-11-17 MA	RANGE SUBDIVISIONS O-2400 psig O, I psig psig
	TEST	RESULTS	
DRE TEMPERAT GAUGE #2	URE INITIALS °F <u>BB</u> °F <u>BB</u> °F <u></u> used Pressure (psig)	TIME PRE GAUGE #1	SSURE TEMPERATURE INITIALS GAUGE #2 \circ psig \circ psig \circ psig \circ psig psig \circ psig \circ psig \circ psig \circ psig psig \circ psig \circ psig \circ psig \circ psig TURE M/A \circ F + 460 = \circ psig Degrees R INITIAL O = psig
ign Name, Level)			Date:
Builton			6-18-18
	IRR CAPS SAFETY WORK PERMIT N MA ER NITROGEN VISUAL I SERIAL NUMBER MA MA AMA AMA AMA AMA Remperature Psig I Psig I Psig I I TEMPERATURE (Degrees R) J-Ade RE = NA (psig)* TEST RESULTS: TEST RESULTS:	IPR CAPS SAFETY WORK PERMIT NO. (If required): MA IPRE-TES MA INTROGEN AIR IVISUAL ULTRASONIC PRE-TES NO SSEL (HYDROSTATIC TEST ONLY): YES IPRE-TES MA MA BEAMEX MA MA MA MA MA MA MA TEST G SERIAL NUMBER MANUFACTURER MA MA AMA MA AMA MA AMA MA AMA MA AMA MA MA TOO" E approve MA TEST SURE TEMPERATURE INITIALS SB SAUGE #2	IAR (AB) MIR NUMBER: SAFETY WORK PERMIT NO. (If required): PRESSURE SOURCE USED: MA HAD & & MR MA INTROGEN MA INTROGENCIAL MA INTROGENCIAL MA INTROGENCIAL MA INTROGENCIAL MA INTROGENCIAL MA INTROGENCIAL

FORM NDE-80-1, Rev. 0

IDMS: 20329

Reactor and Nuclear Systems Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831

Document No.: AP-RNSD-20977-020 Rev 5 Date: January 17, 2012 Page A-6 of 7

STANDARD OPERATING GUIDELINE

S4.,

FORM A-3 — FINAL CAPSULE HYDROSTATIC PRESSURE TEST WORKSHEET

CAPSULE	MASS		
ID	Pre-test	Post-test	Gain/Loss
DCOI	22.552	22,552	- O
Deor	22,457	12.457	0
4 -			
	-		
	1		-
		- • · · · ·	
	1		
		1	
		1	2
///			
			7
		11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	42. Y. I.

<u>a</u>			Report Number: 6/18/18-2	
LEAK TEST REPORT				
Test Requested by: LE COQ		Allowable Leak Rate: < E	7 (He) Sid-Aim-cc/s	
Date Requested: 6/18/18		Date Required: 6/18/18		
Work Order Number: 338211		Test Pressure Req. Across Boundary: -/ ATM		
Item Tested: A EA IRE CAPI DCOI, DCO2		Customer: PNSD		
Specification: AD-RNSD - 20177- DCD - E5	NDE 70, Rev: 7	Technique Used: NSC DE - 02	Rev: O Inside - Out	
	EQUI	PMENT	Carling and and the second	
LEAK DETECTOR		STANDARD LEAK		
Make and Model: AD (x 2 + Son (37 -)+		Manufacturer: VE2 Co	Tracer Gas: Le	
Serial Number: 4(1) D861905		Model: SCY	Serial Number: 15220	
		Leak Rate: 2.04E -3 Atm-cc/s @ -/ atm @ 23. C °C		
TEST GAUGES		Correlation Formula: [1 - $(T_{cal} - T_{surf}) C_T$] LR	Temp Coefficient: 30 %/°C	
Temp Gauges: A DO5445	Due: 11/13/08	Correlated LR: 2. 13 E . B Atm-cc/s @ 1 atm @ 24. 6°C		
Pressure Gauges: M7	Due: 🧭	Calibration Due Date: 9/22/18		
	RES	ULTS Quantitative	Semi - Quantitative	
MACHINE CALIBRATION		SYSTEM TEST CONDITIONS		
System Pressure: < 3 5 -3 MB		System Temperature: 24.6 °C 🕅 Surface 🗌 Internal Gas		
Background: < 1 = 9	Atm-cc/s	delta P Test Boundary: * /	ATM	
Leak Response: 2.12.8	Atm-cc/s	Tracer Gas: He	% Concentration: 40, 5	
Minimum Detectable Leak; $(\xi - 9)$	Atm-cc/s	System Response Time: 🧹 🗧	532C	
System Sensitivity: 2 E - 7	Atm-cc/s	System Response: $\angle _{\mathcal{E}}$	-G Atm-cc/s	
Response Time: < 55EC		Duration of Test: ~ 5 M		
Aux. Equipment: BELC 54	AR			
ACCEPT REJECT SKETCH/DATA ATTACHED		System Leak Rate: < 12-7 An	m-cc/s @ [aim @24.4 "C	
COMMENTS: CF= 684	12.47			
AFTER HY	DRO			
- / / /	1			
	. //			
Test Conducted By:	21	Level /// Deter	6/14/18 Time 2'000	
Form NDE 70-MS, Rev. 1 C/K01	1×	Level. LH Dale.	IDMS: 21077	