ORNL/TM-2018/752

NEAMS Workbench 1.0 Beta

Bradley T. Rearden
Robert A. Lefebvre
Brandon R. Langley
Adam B. Thompson
Jordan P. Lefebvre

January 2018

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

National Technical Information Service
5285 Port Royal Road

Springfield, VA 22161

Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639

Fax 703-605-6900

E-mail inffo@ntis.gov

Website http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

Office of Scientific and Technical Information
PO Box 62

Oak Ridge, TN 37831

Telephone 865-576-8401

Fax 865-576-5728

E-mail reports@osti.gov

Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

http://www.osti.gov/scitech/
http://classic.ntis.gov/
http://www.osti.gov/contact.html

Reactor Nuclear Systems Division

NEAMS WORKBENCH 1.0 BETA

Bradley T. Rearden
Robert A. Lefebvre
Brandon R. Langley
Adam B. Thompson
Jordan P. Lefebvre

Date Published: January 2018

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283

managed by
UT-BATTELLE, LLC
for the
US DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725

ORNL/TM-2018/752

CONTENTS

CONTENT Sttt bbb bbbt bbb bt e et e bt e Rt eb e s bt e b e e et e e eneas %
LIST OF FIGURES ...ttt et bbbttt bbbt iX
LIST OF TABLES ...ttt ettt sttt eneeneereenesnenaenneeas Xi
A S S I 2 A 3 S xiii
1. INTRODUCTION ...ttt bbbttt ettt bt ne e e s 1
2. MULTI-FIDELITY PHYSICS.....oo oottt sttt et naeneas 1
3. USER INTERFAGCEottt sttt sttt es et nestesnesseneeneas 2
4. INPUT CONFIRMATION AND ANALYSIS TEMPLATES ..o 6

4.1 HIERARCHICAL INPUT VALIDATION ENGINE (HIVE)cccoovviiiininnnn 6

4.2 HIERARCHICAL INPUT TEMPLATE EXPANSION ENGINE (HALITE)......7
5. VISUALIZATION TOOLS ..ottt sttt sbennene s 8

5.1 VST ettt e 8

5.2 EXTENDABLE PLOTTINGcoocitititie it 9
6. RUNTIME ENVIRONMENTcoiiiiiiieieieit sttt neens 10
7. CODE INTEGRATION ..ottt ittt sttt ettt ens 11

7.1 MOOSE APPLICATIONS ...ttt 11

A 0 7 N (@ N NS R 12

7.3 ARGONNE REACTOR CODESccooitiiieieieinise e 13

7.4 SCALE CODE SYSTEM ..ottt 14

7.5 CODE INTEGRATION ...ttt 15
T AN AN | I AN = | I I I SRRSO 15
0. CONCLUSIONS ...ttt ettt st et st e st e e e s e e neebesnenbenee e ene e 16
10. ACKNOWLEDGEMENTS ..ottt st et e e 16
11, REFERENGCESottt sttt sttt e e sabe e st e e s te e e snte e e ntee e e 17
APPENDIX A. NEAMS WORKBENCH 1.0 BETA USER DOCUMENTATION................ A-3
AppendiX Table 0f CONTENTScoiiiiici e e es A-4
NEAMS Workbench User DOCUMENALION...........cccocverieieeiee e sie et A-8
REQUITEIMIENES ...ttt ettt et et e s te et e st e e se e s besbeeseesteessesbesseeseesteanaesreas A-8
Supported OPErating SYSIEIMSciveieiiie ettt ra et e sbeaneestesreesaesre s A-8
SYSIEM REQUITEIMENTS.cviiieiii ettt A-8
FBALUIES ...ttt et b bt bbbkt a bt e bt e bt e s bt e eRt e bt e be e ehe e eheeehbeenbeebeenree s A-8
ST Lo SPSSN A-8
V7T (0] 0] 0 =T o PSS A-9
DECAY DALe.ceeeieieieieetesee et A-9
SCALERTE ...ttt bbb bbbt b bbb bt s bbbt et enes A-9
Standard COMPOSITION.ciiiieieeece st re e be s e et e sreeneesreareenbesre s A-9

TeMPIAtE ENQINE ...t A-9

TEMPIALES DIFECLOIY....c.viiticiie ettt be et b e s beesb e te e e e ntesraeeenras A-9
R] [oF: T TP P PTPTPRRORPN A-9
1L T PSSR A-9
I T =0] SRR A-10
Close text documents when all editors are ClOSEd...........coovriririiiiiieiec s A-10
COMMENT FOMEOIOUNGviiitiitit et eneas A-11
0] 1 T O PO P RS UR PO A-11
Highlight CUITENE LINE....cviiie et st sre e ste e e A-11
YT o o I o] =T | (o TN T o USSR A-11
NUMDET FOTEGIOUNG.......ceiiiieieeeiee et bbb A-11
SCALE INput File EXIENSIONS.....c..iiiiiiiiiieie sttt sttt se et sre st sae e A-11
Sequence Declarator FOregroUNd..........ccciieiiiiiierieie et A-11
SEIING FOMEOIOUNT ...ttt A-12
CONFIGUIALIONS. ...ttt bt bbbt ettt b re e A-12
APPLICAtION ENVIFONMENT......oiiiiiiiecie ettt sttt be et e e sresbeenaesreenes A-13
APPHCALION OPLIONScviiiic ettt e st e e be s beese e besreesresbeeseesreares A-13
RUN ENVIFONMENT ...ttt sttt sa et e steesaesreeneebesneeneeneeenes A-13
APPLHCAtION INTEGFATIONiiiiiiccc et ra e e s beereesreere s A-13
L 00T RS] o SRR A-15
INPUE CIEALION ...ttt bbbttt bbb n s A-15
INPUE EQITING 1.ttt ettt nb e A-15
(070] (0] 0T 0 IS T=] (=T (o] 1RSSR A-17
IN-LINE CAlCUIBLONei ittt te et sta e e e steereenbennean A-17
Example USING FUNCLION.........cociiiiiiieies e A-17
Example Using BasiC OPEIandS..........ccviieiiiieiiieieetieste sttt seesresteesaesresraeste e erestesneesreanis A-18
INPUt COMPONENT CrEALION.......eeiiiieiie ettt et sttt s be e besre e e s teeneesreetaebesrean A-18
INPUE NAVIGATION ...t A-20
ST VT 1o 2] o | SRS PS A-21
EXECULING INPUL ..ottt et b e re e b e te e e besteeeennas A-21
GeomMEtry VISUAIIZATIONooviiiiiiicieeee e A-22
GEEEING STATEA ...t A-22
ALIaS GEOMELIY PACKAGEeiviitieie ettt sttt st re e te e nrs A-23
ATIAS VIBWS ...ttt e sttt s e s e te s st et e sbeeneeseeeteebenneeneenteaneenees A-23
RENEING IMOUES ...t ere s A-25
(=] 4 - | PSSP A-26
Material + OULIINE.cciiieee et A-26

Vi

L@ 11 11 [T TP A-27

(@ 4 - SRS A-28
(@ T PV = 1o T[0T =TSRSS A-29
OFIGIN CrOSSNAITS ...ttt b ettt b b n e n e ene s A-30
PANNMING ...t b bbbttt R n e A-30
L ToT=] 1 =] T o USSR A-30
pAo 1011111110 F ST P TSP PP TP URPR A-31
0 . (o | SRS A-32
LC T g0 P ST 0T o] oo o OSSR A-32
Input Parser, Schema, and Validator.............cccoov e, A-33
INPUL PAISET ...t et r e e s Rt s e sr e b e e srenn e e nenne e A-33
[TV ol 1T o - SRS A-34
INPUL ValIAAEOT ...t be et s be s be s steereetenre e A-34
Templates for AutO-COMPIELIONcc.oiviiiiiiii e A-34
SyNtaxX HIGhTIGNTING ..o A-34
L [To 0] [T 0] 0T T LSRR A-34
OFNEE FHEIAS. ...ttt sttt b e A-36
RUNTIME REQUITEIMENTS. ...ttt A-37
RUNtime ENVIFONMENT BASICS.....c..iiiiiiieieiiiciene ettt A-37
Base Runtime Environment WOrkbenCh.pyccccovoiiiiie i A-37
EXECULION SEAGES ... ettt b b ettt A-38
Creating a Runtime Environment (Extending Workbench.py)........c.cccceveieiiininninciciens A-38
Y o] o] FTor= Vo] T8 = U RS TOSPROSN A-39
Supporting ApPlICatIoN OPLIONSoiveiiiiiiisie e A-39
Listing SUPPOITEA OPLIONScveviieiieiieiieiesie ettt A-39
Passing Supported Options to the APPCAtioNccoveiieiiieie e A-40
IS4 o PSSR A-41
Output POSt-ProCeSSOr SUPPOIT........veiiiiieeiisiee e A-41
TEXE POST-PIOCESSOIS ...ttt ettt ettt sttt b e nbe e b e A-42
POSt-ProcesSOr COMMEANGS.........eiiiriiiierieierie ettt sttt sttt e et e ese st A-43
Expected COmMMANG OULPUL........coiiiiiiiiiereee e A-43
o 01T T PSSR A-44
BaAE SEITES ...ttt bbbt r et r et A-44
COlON MP SEIIES ...t b et nb e re e A-45
LINIE SBIIES vt ieeteee sttt ettt ettt et s et e et e e st ke r et Rt et e Ee s e nteereenaenreenen A-46
S Tors LT T TSSOSO PSPPI A-48
Conditionally Enabling POSt-PrOCESSOIS........ciuiiieiiitiiiesiesteeiestesteeiestesre et sreesre e naesresreens A-48

vii

Organizing Post-Processors for Use in WOrkbench...........coooiiiiiiiciciiecce A-49

CoNFIGUIADIE VIBWS ...ttt et be e sre e A-50
SPIIE VIBWS ...ttt ettt st et e st e e a e et e s beeat e st e te e b e sreereenrenne e e e A-50
ST TOP ettt A-51
SPIT BOTOM ...ttt A-52
S 0] 1 = 1 USSR A-53
SPIE RIGNT ... A-54
SPIE RESIZING ..ttt b st n e e nre A-55
[U B o [1] o SRR A-55
2D PIOt INterface CONIOIScoiiviiiiieieieeee e et A-55
SUPPOITEd PIOt FOIMALS.......c.iiiiiiiieiieieeeee e A-57
AMPX Continuous Energy Cross SECLIONSccccveieiiiieieiiee st re e et sreenes A-57
AMPX MUltigroup CroSs SECLIONSecviiiiieieie ettt e e ste e sbe e sresreesaesreere s A-57
ORIGEN (F71) Concentration PIOEINGccovriiiiiiieieiesesese e A-57
ORIGEN Opus (PLT) Concentration and Spectra PIOttingccccevevvnieneniieienese e A-57
ORIGEN Gamma Line PIOLLING........cciviiiiiiecic ettt A-57
Ptolemy Plot (PTP) General 2D PIOtHNGcccoveiieieie e A-57
SCALE Plot Format (SPF) General 2D PIOTHINGcccoviiveiieieiiiiiscsieseeseeee e A-57
Covariance (COVERX) MatriX PIOttING.......c.cccoviiiiiiiiiiiec e A-57
LT LAV L 8V B L - F SRS SR A-58
USING VISIT bbb bbbttt A-58

viii

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

LIST OF FIGURES

1. Conceptual design of tools integrated in the NEAMS Workbench for advanced reactor
LA 1Y [PPSR 2
2. The NEAMS Workbench leverages the Fulcrum user interface from SCALE. 3
3. Fulcrum user interface with interactive input error detection. 4
4. Fulcrum auto-completion and forms-based input. 4
5. Fulcrum geometry visualization capabilities. 5
6. Fulcrum plotting capabilities. 5
7. Sketch of HALITE template expansion to provide input for multiple codes from the
same problem definition. 8
8. Vislt Visualization embedded in the NEAMS Workbench 9
9. BISON integration in the NEAMS Workbench. 12
10. Dakota integration in the NEAMS Workbench. 13
11. Prototype ARC/Workbench integration and associated workflow manager. 14
12. ARC integration in the NEAMS Workbench. 14

LIST OF TABLES

Table 1. Code Integration for the NEAMS Workbench ...,

Xi

ABSTRACT

The mission of the US Department of Energy (DOE) Nuclear Energy Advanced Modeling and
Simulation (NEAMS) Program is to develop, apply, deploy, and support state-of-the-art predictive
modeling and simulation tools for the design and analysis of current and future nuclear energy
systems. This is accomplished using computing architectures that range from laptops to leadership-
class facilities. The NEAMS Workbench is a new initiative that will facilitate the transition from
conventional tools to high-fidelity tools by providing a common user interface for model creation,
review, execution, output review, and visualization for integrated codes. The Workbench can use
common user input, including engineering scale specifications that are expanded into application-
specific input requirements through the use of customizable templates. The templating process
enables multi-fidelity analysis of a system from a common set of input data. Additionally, the
common user input processor can provide an enhanced alternative application input that provides
additional conveniences over the native input, especially for legacy codes. Expansion of the integrated
codes and application templates available in the Workbench will broaden the NEAMS user
community and will facilitate system analysis and design. Current and planned capabilities of the
NEAMS Workbench are detailed here.

Xiii

1. INTRODUCTION

The mission of the US Department of Energy (DOE) Nuclear Energy Advanced Modeling and
Simulation (NEAMS) Program is to develop, apply, deploy, and support state-of-the-art predictive
modeling and simulation tools for the design and analysis of current and future nuclear energy
systems. This is accomplished by using computing architectures ranging from laptops to leadership-
class facilities. The tools in the NEAMS ToolKit will enable transformative scientific discovery and
insights otherwise not attainable or affordable and will accelerate the solutions to existing problems as
well as the deployment of new designs for current and advanced reactors. These tools will be applied
to solve problems identified as significant by industry, and consequently, they will expand validation,
application, and long-term utility of these advanced tools.

The NEAMS program is organized into three product lines: Fuels Product Line (FPL), Reactors
Product Line (RPL) and Integration Product Line (IPL).

NEAMS FPL and RPL provide many advanced tools, such as the (1) BISON and MARMOT fuel
performance tools based on the Multiphysics Object-Oriented Simulation Environment (MOOSE)
from Idaho National Laboratory [1], [2],and (2) the PROTEUS neutronics code and the NEK5000
computational fluid dynamics code from the Simulation-based High-efficiency Advanced Reactor
Prototyping (SHARP) tools from Argonne National Laboratory (ANL) [3]. However, these advanced
tools often require large computational resources, can be difficult to install, and require expert
knowledge to operate, causing many analysts to continue to use traditional tools instead of exploring
high-fidelity simulations.

The NEAMS IPL is responding to the needs of design and analysis communities by integrating robust
multiphysics capabilities and current production tools in an easy-to-use common analysis
environment. This enables end users to apply high-fidelity simulations to inform lower order models
used for advanced nuclear system design, analysis, and licensing.

The NEAMS Workbench is a new initiative that will facilitate the transition from conventional tools
to high-fidelity tools by providing a common user interface for model creation, review, execution,
output review, and visualization for integrated codes [4]. The Workbench can provide a common user
input, including engineering-scale specifications that are expanded into code-specific input
requirements through the use of customizable templates. The templating process enables multi-fidelity
analysis of a system from a common set of input data. Expansion of the codes and application
templates available in the Workbench will broaden the NEAMS user community and will facilitate
system analysis and design. Users of the Workbench will still need to license and install the
appropriate computational tools, but the Workbench will provide a more consistent user experience
and will ease the transition from one tool to the next.

2. MULTI-FIDELITY PHYSICS

The NEAMS Workbench will enable analysts to select the fidelity of each type of physics for use in
the simulation. Analysts can choose from a variety of tools integrated from many projects and code
teams. A conceptual design of tools can be integrated for advanced reactor analysis is shown in Fig. 1.
Current production tools with advanced components supported by the NEAMS program—such as
those from the Argonne Reactor Codes (ARC) [5] and the SCALE Code System [6]—are shown in
light gray, MCNP [7] and other production tools are shown in dark gray, tools from the NEAMS
ToolKit are shown in maroon, and tools from Consortium for Advanced Simulation of Light Water
Reactors (CASL) [8] are shown in black. The Workbench will make it possible to use the same
fundamental engineering input data to create code-specific input models for each tool, enabling
analysts to learn more about specific phenomena by performing reference high-fidelity analyses. This
will confirm approximations or assumptions in fast-running lower order design calculations.

Multiphysics capabilities provided by tools such as SHARP and MOOSE will continue to provide
fully coupled capabilities under the Workbench. The Workbench also provides for traditional single
physics codes that form a multiphysics suite with coupling through manipulation of the output of one

code to serve as input for the next. Translation tools will be developed and integrated into the
workflow manager to extract and format the needed data in a manner that does not require intrusive
changes to the physics codes themselves.

Workflow ManaﬁerGuides Phxsics :

User Interface: Input Generation, Job Launch, Outp ut Review, Visualization

System Templates and Workflow Manager

Cross Depletion/
Section Neutronics Source
Preparation Terms

T T T

Thermmal
Hydraulics / Fuel Structural Uncertainty

Plant Performance Analysis Quantification

Systems

Ted & + 4+ SRR 3 + +
DIF3D REBUS ohasys | uFE-METAL m PERSENT

MC2-3 PARCS ORIGEN 2.2 SE2-ANL PARFUME DIABLO m

MPact ORIGEN m BISON [
Proteus m MARMOT

MCNP SAM

Production
Tools

NEAMS

CASL

Other

Shift RELAP-7

NEK5000

Fig. 1. Conceptual design of tools integrated in the NEAMS Workbench for advanced reactor analysis.
3. USER INTERFACE

To enable users to easily transition from one tool to another, an intuitive user interface is desired.
Such an interface will provide guidance on the proper use of a tool by new or infrequent users without
impeding the rapid generation or modification of inputs by experiences users. Visualization of input
geometry and data files is desired, and the user interface should also provide easy access to computed
results in text, tabular, and graphical forms. All integrated codes should be presented with a similar
look and feel, and the comparison of results from multiple analyses should be available.

The rapid development and deployment of the NEAMS Workbench was enabled by leveraging the
Fulcrum user interface, which was developed over many years and was included in the 2016 release
of SCALE 6.2. Fulcrum introduced several new concepts as an integrated user interface for nuclear
analysis. It builds on decades of experience from thousands of users, and it replaces eight user
interfaces from the 2011 release of SCALE 6.1. Fulcrum is a cross-platform graphical user interface
designed to create, edit, validate, and visualize input, output, and data files. Fulcrum directly connects
the user with the text form of the input file while providing inline features to assist with building the
correct inputs. Fulcrum provides input editing and navigation, interactive geometry visualization, job
execution, overlay of mesh results within a geometry view, and plotting of data from file formats. An
error checker interactively identifies input errors such as data entry omissions or duplications for all
supported codes. The input validation engine identifies allowed data ranges and interdependencies in
the input and then reports inconsistencies to the user. The layout of panels in Fulcrum is highly
configurable to accommodate the preferences of users, as shown in Fig. 2.

ene == SCALE
File Edt View Run Help

R
i) Frnpcd Sdervd) D Mesws
T Material B 28.9626x 200m o

Geometry
Visualization

Input Preferred by
Novice or Occassional §

Text Input Prefered by
Expert Users with
i Highlighting and Error
Detection

View origin: (23.0867, -7.70067, 0)

sy Front(XZ) Side(v-2) 30 Meshes.
Overlay & 21.3240x z00m| = | Showviewrigin
248605 - 3.406-05
1.810-05 - 248005

—— -238 mt=102 n,gamma 600 K xs 1.32e-05- 181205
1000 T 1-235 mi=18 fission 600 K xs 9.630-06 - 1.320-05.
b 1 7.03206 -9.636-06

[513e06-7.030-06
[0 374806513006
B 2.730-08 - 3.746-08
1.890-06 - 2.730-08
1.456-06 - 1.990-06
1.060-06 - 1.450-06

Visualization LL /

7.748-07 - 1.066-06
21907 -3.016-07

B 554007 - 774007
4.12e-07 - 5.646-07
1.600-07 - 219007 QOverlay
1.17e-07 - 1.60e-07

i Mesh Results
I 052008 1.176-07

View origin; (40.124983, 00433821, 0)

Fig. 2. The NEAMS Workbench leverages the Fulcrum user interface from SCALE.

The configuration files that define how each code input is structured, the requirements and
interdependencies of each input block, and the types and content of the dialog boxes available for
input assistance are all provided in text files that can be created and edited by any Workbench user. In
this way, the members of any team can integrate their tools into the Workbench, whether they are
production tools that are widely available, custom-developed analysis tools in a proprietary
environment, or university-led prototypes for the exploration of new algorithms. Custom-developed
configuration files can be contributed back to Workbench developers to be considered for inclusion in
the production version. An example of the interactive input error detection is shown for a SCALE
input in Fig. 3, where a user inadvertently typed u02 (u-zero-2) instead of uo2 to specify uranium
dioxide as a material. The first error at the bottom of the screen demonstrates how Fulcrum compares
the current input against the list of allowed values in this context and recommended alternatives to
assist the user. A second error is shown where the user was specifying the uranium enrichment for this
material. Here an input rule is applied stipulating that the weight percent values must sum to 100%. In
this case, the user inadvertently entered a total of 101%, and Fulcrum identified that error, as well.

Leveraging the configuration files for each code supported by the Workbench, the Fulcrum user
interface provides context-aware assistance in auto-completing the input, which can be useful when
learning the intricacies of a new code or when transitioning between many codes, as is the intent of
the Workbench. An example from SCALE is shown in Fig. 4. In the left image, the user inserts the
cursor at the desired point in the input, presses the key combination of ctrl-space, and Fulcrum lists all
available options in this context, providing geometry shapes in this example. Selecting a configurable
option launches an additional interactive dialog, shown on the right, to provide additional assistance
in populating this portion of the input.

The Fulcrum interface currently supports visualization capabilities from SCALE for Monte Carlo
geometry, with results overlaid as shown in Fig. 5. Plotting capabilities are available for nuclear data
and covariance data plotting, as well as a variety of computed quantities using line plots, histograms,
bar charts, and surface plots, as shown in Fig. 6. The capabilities of Fulcrum have been expanded
beyond those required by SCALE, especially to support analysis with NEAMS finite element codes,
by integrating visualization capabilities from Vislt [9]. The integration of the ParaView [10]
visualization tool is also planned.

comps SCALE 6.2 Run y View.. Edit..

1809 ' - fresh fuel U02 composition

1810 ud2 1431 den=10.0538 1 293.00 92234 0.0271 92235 4.04 92236 0.0140 92238 96.9190 end
1811 ' Fuel Assembly 24 Node 18

LS ' - fresh fuel U02 composition

1813 uo? 1432 den=10.0538 1 293.00 92234 0.0271 92235 3.04 92236 0.0140 92238 96.9190 end
ittt
1‘3'15_ ' homogenized compositions in the activation source regions of assembly ID = 1

1816 ' lower end fitting

1817 wtptBottom0l 401 1.48 8 26000 68.30 24000 19.00 28000 9.50

1818 25000 2.00 14000 1.00 6000 0.08 15000 0.04 27000 0.08 1.0 293.0 end
1819 ' gas plenum

1820 wtptPlenum0l 501 0.71 8 26000 0.67 24000 0.24 28000 0.06

1821 25000 0.01 14000 0.01 40000 97.33 50000 1.59 8016 0.09 1.0 293.0 end
1822 ' upper end fitting

1823 wtptTopEnd0l 601 0.8B6 12 26000 57.04 24000 19.44 28000 1B.31

1824 42000 1.60 25000 1.73 14000 0.91 6000 0.07 15000 0.04 22000 0.07
1825 41000 0.65 13000 0.07 27000 0.07 1.0 293.0 end

1826 ' lower in-core spacer

| line:1810 column:1 - Validation Error: name value "u02" is not one of the allowed values: [... "u-241" "u-242" "u-u02" "u232-u02" "u233-uo2" "u234-uo2" ...

line:1810 column:1 - Validation Error: stdcomp children "wtpt" sum to 101 for 92000 group - instead of the required sum of 100

Line: 1810, Col: 1 /mavric/comps/stdcomp/name

Fig. 3. Fulcrum user interface with interactive input error detection.

ane s SCALE)) = SCALE
File Edit View Run Help File Edt View Run Help
Rslcad Save Savess Closelas Pint Gul Copy Peste Undo Redo Find Feload Save Sawems Clhsetsb FPrit | Cut Copy Paste : Undo Aedo Find
@ mavric aos107.inp"
document SCALZ 6.2 R, Vew. Edi. donment i SCALEs2 LI
0 7 [— — —
g: S 33 rand qasmac @ @ == cylinder -kenov (configurabie)
e global arit 1 31 glebal
35 cylirder 2 8.255 25.40 -25.40 35 oy z
36 aylirder 2 10.795 27.94 -27.94 Bl oy
E oylirder 3 20,055 27.94 -27.94 30 =%
38 cylirde:r 4 13.335 40.64 30.48 33 <y,
39 cylirder 5 13.335 -30.48 -40.64 32 v
40 41
a1 cona - kenowi (canfigarabla) 152.4 -152.4 . o
42 cone 42
a3 cuboid - Kenovi (cenfigirable) 43 me
44 41 e
15 oy Lind conovi (configarabla) 43 2 CYUNDER LBL R 2, 2,
46 45 ey
ar xeylinder 47 e
8 veylinder 42 =
19 zoylinder 42
50 ecylinder kensvi (cenfigirable) 50 e
51 poecylinder 51 boundal
52 erd ga dodecahedren - kenovi (configurable) 52 end geomet haddor
53 dedecahedren 53 Embedded
54 ‘-~ ellipssid kensvi (confi ble) . g | . E
55 ' Dati ellipsoid 55 ' Definitd] Componerﬂ
56 '-—-— hexprisn - kenovi (configurable) || —-mm-mmommmo 55 .
57 rasd d hexprisn 57 read defin! llustration
58 re hopper kenovi (configarable) 53 respon
53 hopper to-dese-rate tactors 53 5t
60 para_leleniped - kenovi (configarable) 61 do
61 arl para’ 1alapipad 6L end rBl Type cylincer
62 pentager kensvi (cenfigarable) 62
63 i pencagor 63 dieswd
64 plane - kenovi (configarable) 61 il Id 6 - 1 -
65 plars 2 2153570 2505692 and 63 ot CUﬂf\g urable
66 xpplane 6 0.000012 0.00€00002 ead 65 tri - o
N e 2 ea) Medus 33500000 Parameters
8 zpplane 63
69 ge quadratio - kennui (aanfigirabla) £] gridea Top 45.720000
70 quadratic ance mag/blased source® T [x1
7 rhexprism 7 b
72 rhemboid - kenovi (configirable) 1z o Botom 46720000
73 rhembad o I3 2zL|
74 ring kensvi (cenfigarable) 71 iz +h
75 ring 13 0|
76 sphere - kenovi (configirable) T8 s
7 sphers 77 =L
T8 enugiltwmsmmusy U dmemfieeesbio 73 end gr
3 T3 oylindor 6 36.65 46.72 46.72
B0 qrodGeomet=-y 8 L2 griuGs,
BL title="nmash for mesh tally — 1 insh wesals" 8L [T A
B2 slineaz 110 139.7 139.7 B2 Xb! Resu‘t PreVIQW
83 yLinea: 110 -139.7 139.7 RI v
e o - e THTTEm—
Line: 40, Col: 7 imavric/geometry/global_unit Valdation Mcesagos Line: 40, Co: 7 i Gancel | (QUOKIY fesseses

Fig. 4. Fulcrum auto-completion and forms-based input.

= scaE

Interactive
Geometry ')\
Investigation 77N

Interactive
AV
Cut Planes

Cartesian/
Cylindrical
Mesh

u\l | Result
Overlay

LR

Prob. Dep. at 5.00 years

ook Don 500 pears
i wED0 s

. General
!I“”“‘"'“"""" Output Results

e Y L T T T
Ena e gy 1)

Fig. 6. Fulcrum plotting capabilities.

4. INPUT CONFIRMATION AND ANALYSIS TEMPLATES

The use of multiple tools within the NEAMS Workbench is facilitated through the automatic
confirmation of the input format, allowed values, and completeness, as well as through templates that
provide for a common definition of a system that can be expanded and run with multiple tools.

The Workbench Analysis Sequence Processor (WASP) [11] package is an open source C++ library
and toolset for streamlining the lexical and semantic analysis of ASCII formatted inputs. WASP
includes lexers, parsers, and interpreters to provide input processing of integrated applications. WASP
uses a parse-tree data structure to facilitate input data retrieval and validation. WASP provides the
Workbench with the ability to process common input and data formats. WASP also provides input
analysis and templating capabilities through the Hierarchical Input Validation Engine (HIVE) and the
Hierarchical Input Template Expansion engine (HALITE).

4.1 HIERARCHICAL INPUT VALIDATION ENGINE (HIVE)

With HIVE, a combination of 19 rules is used describe valid input and to interactively provide users
with feedback on the validity of their input. The rules are implemented in an input schema for each
supported code. Given an input schema and an input parse-tree from WASP, HIVE will conduct
simple type, value, and occurrence checks, as well as complex relational checks. As integrated in the
Workbench, HIVE provides immediate feedback to the user in the Validation panel, as previously
shown in Fig. 3. The HIVE schema files are stored inside the Workbench application in text format,
so they can be supplemented or customized by expert users if desired.

The 19 rules of HIVE are as follows:

1. MinQOccurs: describes the minimum number of times that an element is allowed to appear
under its parent context;

2. MaxOccurs: describes the maximum number of times that an element is allowed to appear

under its parent context;

ValType: describes the allowed value type for the element (Int, Real, String);

ValEnums: describes a list of allowed value choices for the element;

MinVallnc: describes the minimum inclusive value that this element is allowed to have if it is

a number (the provided input value must be greater than or equal to this);

6. MaxVallnc: describes the maximum inclusive value that this element is allowed to have if it
is a number (the provided input value must be less than or equal to this);

7. MinValExc: describes the minimum exclusive value of the element in the input if it is a
number (the provided input value must be strictly greater than this);

8. MaxValExc: describes the maximum exclusive value of the element in the input if it is a
number (the provided input value must be strictly less than this);

9. ExistsIn: describes a set of lookup paths into relative sections of the input file and possible
constant values where the value of the element being validated must exist;

10. NotExistsIn: describes a set of lookup paths into relative sections of the input file where the
value of the element being validated must not exist;

11. SumOver: describes what sum the values must add to under a given context;

12. SumOverGroup: describes what sum the values must add to under a given context when
grouped by dividing another input element's value by a given value;

13. IncreaseOver: describes that the values under the element must be increasing in the order that
they are read;

14. DecreaseOver: describes that the values under the element must be decreasing in the order
that they are read;

15. ChildAtMostOne: describes one or more lists of lookup paths into relative sections of the
input file (and possible values) where at most one is allowed to exist;

16. ChildExactlyOne: describes one or more lists of lookup paths into relative sections of the
input file (and possible values) where at exactly one is allowed to exist;

ok w

17. ChildAtLeastOne: describes one or more lists of lookup paths into relative sections of the
input file (and possible values) where at least one must exist;

18. ChildCountEqual: describes one or more lists of lookup paths into relative sections of the
input file where the number of values must be equal; and

19. ChildUniqueness: describes one or more lists of lookup paths into relative sections of the
input file where the values at all of these paths must be unique.

These rules facilitate all input validation tasks with the exception of higher order validation tasks such
as comparing input data with data from a related binary file, or validating constructive solid geometry
parameters. At this time, the validation engine cannot handle recursion (e.g., validation of
mathematical expression).

4.2 HIERARCHICAL INPUT TEMPLATE EXPANSION ENGINE (HALITE)

The Hierarchical Input Template Expansion Engine (HALITE) couples flat or hierarchical data with
application-specific input templates to facilitate Workbench input auto-completion and future
workflow tasks. The HALITE engine provides Workbench with the capability to create application-
specific input using application-agnostic data. HALITE provides common attribute and expression
substitution, as well as the unique capability to drive input expansion via a single hierarchical data set.
This is the same data-driven workflow construct that has been successfully demonstrated in the UNF
Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS) [12].

HALITE has the following templating features:

e Scalar and iterative attribute and mathematical expression substitution enables traditional and
complex data insertion;

e Substitution formatting enables rigid fixed-width input formats where needed:;

e Conditional template blocks enable inclusion or exclusion of template sections using some
condition;

e File input enables reuse of a common sub-template; and
Parameterized file input enables advanced reuse of a sub-template with explicit loop or
implicit array element iterative repetition or specific data sets.

A sketch of the HALITE workflow to expand a common problem definition in terms of
engineering parameters such as dimensions, compositions, etc. into code specific inputs is show in
Fig. 7.

Engineering-style
problem-specific input
(type of system, materials,
dimensions, time steps, etc.)

Input for
Code A

Input for

Template engine Code B

expansion

Database of supported
system configurations
Known systems and customizable

Input for
features

Code C

Input requirements andoptions for
each code

Code- and problem-specific information
(mesh geometry, etc.)

Fig. 7. Sketch of HALITE template expansion to provide input for
multiple codes from the same problem definition.

5. VISUALIZATION TOOLS

The interpretation of input data, geometry models, and output results is enabled through the
convenient integration of multiple visualization tools. The Vislt tool is embedded in the Workbench
for visualization of 3D mesh geometry and mesh results. Customized plotting is enabled for any
application using Fulcrum’s native plotting package that has been extended with a customizable
interface to any text file.

5.1 VISIT

Vislt is a powerful distributed, parallel visualization and graphical analysis tool developed for analysis
of mesh data from high-performance computing. In the NEAMS Workbench, Vislt is composed of
three parts:

1. The Vislt Graphical User Interface (GUI), which will load as an embedded application in
its own dockable panel. The native Vislt controls are fully accessible from the VisIt GUI

2. The Vislt Canvas, which is a tab within the NEAMS Workbench workspace layout

3. Vislt visualization, which requires a Vislt Canvas. A new Vislt visualization will
automatically create a new Vislt Canvas for visualization and graphical analysis of the mesh
data.

The integration of Vislt provides an important extension of the previous Fulcrum visualization
capabilities that did not allow for plotting of common 3D mesh formats such as Exodus, VTK, and the
broad range of formats and features available in Vislt. Figure 8 depicts Vislt embedded in the
NEAMS Workbench with a flexible window layout.

user: faq
Tue Jan 9 07:2 =1 A

Fig. 8. Vislt visualization embedded in the NEAMS Workbench.

5.2 EXTENDABLE PLOTTING

Because the NEAMS Workbench is intended to support a broad range of codes, any of which may
have its own binary or ASCII data formats, an extendable data processor plotting capability was
developed to enable the Workbench to extract data from any text file and create plots such as those
shown in Fig. 6. Any developer or user can create a Workbench processor file that will extract data
from a text file to create a NEAMS Workbench data plot. The processor file is interpreted at runtime,
allowing the user to extend the NEAMS Workbench plotting capabilities for local installation. The
processor file can be shared with colleagues, further enabling collaboration.

The Workbench processor files are composed of three components: (1) processor hierarchy,

(2) processor filtering, and (3) the processor engine. Because there could be numerous processor files
associated with different types of analysis, an optional hierarchy feature is available to allow the user
to dictate the organization of the processors in the Workbench user interface. This hierarchy allows
many processors to be binned into fewer logical groups. In addition to processor organization via
hierarchy, the extensions and filter_pattern features allow the user to limit the files for which the
processor is enabled according to the given file extensions and/or the specified filter_pattern. The
ability to limit when the processor is enabled ensures that the NEAMS Workbench is streamlined for
the data under inspection. The processor consists of plot series information and data extraction logic.
The data extraction logic uses any command line utility to extract data into spreadsheet format. The
Grep and Awk utilities are most commonly used and are available across all supported platforms. The
data extraction logic can create multiple series, one per spreadsheet. The plot series can reference the
data using a familiar, Excel-like cell-reference mechanism which allows for capturing the keys,
values, and uncertainties (low, high). Line style, axis labels, and scale can all be specified. In addition
to 2D line and scatter graphs, bar charts and color map plotting are also available. Figure 9 depicts
application output plotting enabled by integrated Workbench processors.

Fig. 9. Extendable Workbench processor plotting.

6. RUNTIME ENVIRONMENT

A goal of the NEAMS Workbench is to facilitate transition from conventional tools to high-fidelity
tools. Many codes involve different means of launching a calculation, and some have multiple means.
A generic runtime environment interface was created to facilitate their execution and to provide a
consistent interface through which the user can interact with each tool in all necessary modes of
operation (e.g., serial, parallel, and scheduled execution).

Tools with no runtime environments require the user to manually conduct all steps associated with
running them. For example, the user might be required to copy the problem input file into a specific
location with a specific file name, such as input, and then invoke the application, thus producing
temporary scratch files and output file(s). If multiple simultaneous calculations are desired, many
complications follow that will likely lead to failed or erroneous results. Other codes are distributed
with sophisticated job management capabilities designed for use in quality assured licensing
calculations that should not be disrupted. As such, the NEAMS Workbench enables the integration of
customized runtime environments for each integrated tool. A runtime script provides the setup,
execution, or finalization logic needed to fulfill the runtime interface. The setup logic might create a
working directory, TMPDIR, and then copy the problem.inp into the TMPDIR as TMPDIR/input. The
execution might invoke the application executable, passing application messages back to the calling
application (e.g., command console, Workbench). The finalized logic might (1) combine the output
files located in TMPDIR into logical order, (2) copy the output back into problem.out, residing next to
problem.inp, and (3) delete the TMPDIR to clean up after itself. Once integrated by a developer or
expert users, runtime scripts are accessible through a dropdown menu in Workbench. The scripts are
written in Python and stored in the runtime environment (rte) directory inside of Workbench, so they
can be customized and supplemented as tools and use scenarios evolve.

A Workbench script can be developed to allow consistent invocation for any specific application
logic, and it may provide great convenience relative to the application’s typical command-line
interface. As the runtime environment matures and additional features (e.g., a queuing system) are
added for the base class, all incorporated runtimes will benefit.

10

7. CODE INTEGRATION

To facilitate the use of NEAMS-developed codes, as well as many commonly used production
capabilities, a wide range of tools from many teams was integrated for this first beta release of the
NEAMS Workbench. Integration of a new code is enabled by first ensuring that WASP can process
its input format. For modern tools that use common input structures, this first step is fairly simple. For
legacy codes that use custom developed input formats, new customized features in WASP must be
developed. Once the input can be read into Workbench in a hierarchical format, the HIVE schema
files are developed, generally by following the user documentation to support various blocks of input,
confine input to allowed values, and manage interdependencies between multiple input parameters.
Next, a runtime environment script is developed that includes processes to properly arrange the input
files and executables and to retrieve the output data. HALITE templates are developed and added to
the Workbench configuration to provide autocomplete of all or part of application’s input. At any
time, a software developer or end user can customize or supplement the HIVE schema files or
HALITE templates for codes with input formats supported by WASP. The codes integrated for the
NEAMS Workbench Beta 1.0 release are detailed below.

7.1 MOOSE APPLICATIONS

The MOOSE framework provides the foundation for many NEAMS developed tools, most visibly the
BISON fuels performance code. Initial efforts for the NEAMS Workbench focused on convenient
coupling between the MOOSE framework and the NEAMS Workbench. With its modern software
design, MOOSE includes a common input format and a common engine for processing input for any
MOOSE application. WASP was updated to support the MOOSE input format as one of its known
input styles, and MOOSE was updated to generate a HIVE schema file for any MOOSE application.
Simply running a MOOSE application with the command line argument --definitions will generate a
HIVE schema file representing the current input features of the MOOSE application. This file is then
added to the Workbench configuration prior to startup. A generic MOOSE runtime is provided with
the NEAMS Workbench. A custom runtime environment must only be developed for each MOOSE
application if the command line arguments are not already available in the MOOSE Workbench
generic runtime. As BISON is a key NEAMS tool, it is integrated in the NEAMS Workbench Beta 1.0
with a schema file and runtime script, and other MOOSE applications will be integrated in future
releases or can be added by end users. After running a MOOSE calculation, the output file can be
viewed, and the mesh data files can be visualized with the embedded Vislt tools, as shown in Fig. 10
for a BISON calculation.

11

DB: srgecredTes‘rS.e DB: sm(%credTesTSD_ouT.e -
Time: Time:4
Feeudocolar ,-"‘]‘\\ Pseudocolor
giE gl e
' 5

8! 107-3) 6045
l 5005 '» 596.3

295, 588.2
I 1.000 l 580.0
Max: 1180, Max: 612.7
e s 300

Y

Y ‘ X

7 |/

¥ V

\z 'z

\\\\\\

Fig. 10. BISON integration in the NEAMS Workbench.
7.2 DAKOTA

The Dakota suite of iterative mathematical and statistical methods has been integrated into the
Workbench. The suite is from Sandia National Laboratories, and the methods interface with many
computational models. A new definition-driven input interpreter was developed and added to WASP
to support the Dakota input format, and many updates were implemented in the internal Dakota
schema file to provide for improved consistency in the Dakota input. A Python translation script was
written to convert the internal Dakota input schema to a HIVE schema file. A customized runtime
environment was created, and customized plotting capabilities were enabled to allow for convenient
visualization by extracting data from the output file and generating plots. An example calculation of
Dakota in the NEAMS Workbench is shown in Fig. 11.

12

o0 NEAMS Workbench
File Edt View Run Help
Récad Sww Swesc Cosetsy Pr | C

et S cu cay Pas oo Reso | Fed
[moncon crcm e O | e I —
Processors Dakoia B document g Dakota - Dakoia 1 B mny View Edi y “ Table
Imethod
8 id methed = 'UQ'
9 sampling
10 sample_type lhs
11 samples = 100
12 seed = 98765

08

13 response_levels = 0.1 0.2 0.6 2.0

14 0.1 0.2 0.6 3.0

15 0.1 0.2 0.5 2.5 o8
16 distribution cumulative

17

18variables

19 uniform uncertain = 2

20 lower_bounds = 0. 0.

21 upper bounds = 1. 1. 04
22 descriptors = 'x1' "x2'

23 normal uncertain =1

24 means = 0.3

25 std deviations = 0.03

26 descriptors = "x3" o

27

28 interface

29 id interface = 'Il'

30 analysis drivers = 'text book'
31 direct

32

33 responses
34 response_functions = 3

08

Ouputs

Fig. 11. Dakota integration in the NEAMS Workbench.
7.3 ARGONNE REACTOR CODES

The traditional Argonne Reactor Codes (ARC) for fast reactor analysis have been integrated into the
NEAMS Workbench at the request of the Advanced Reactor Technologies team members who
routinely use these tools. In this work, a new common input was developed using the Standard Object
Notation input format developed for SCALE 6.2 and revised in WASP. This common input is used to
populate templates to run calculations with MC?2-3, DIF3D, REBUS, and PERSENT for integrated,
problem-dependent, cross section preparation, core analysis, depletion, and sensitivity/uncertainty
analysis. Before the common input was developed, each of these calculations required a separate input
file, and many of the input formats were so difficult to use that a specialized script was often required
to generate them. With the ARC/Workbench integration creating the PyARC [13] Workflow manager,
users can easily create engineering style input, have the Workbench generate the input for the codes,
launch the calculations using a customized runtime environment, and visualize the results with the
embedded Workbench processor files and Vislt tool. An integrated ARC/Workbench input and
associated workflow are shown in Fig. 12. An example ARC calculation in the NEAMS Workbench
is shown in Fig. 13. Users who access the ARC codes through the Workbench will have easier access
to advanced codes of NEAMS, which in the future will be able to leverage common input parameters,
especially with the planned integration of MCNP and PROTEUS.

13

Workflow Manager
Pre-processing:
* Atom density calculation
* Thermal expansion
Y - ') Translation into codes’ input language
Auto P EneE

B Runtime environment
§ completion

Convenient

“standard” input
definition and
templates

ARC Cod..é Inputs

Real-tim 7
input
validation

Fig. 12. Prototype ARC/Workbench integration and associated workflow manager.

e e == NEAMS Workbench
File Edit View Run Help

e e — —
= | Bomeme . DB: arcbench_test3_cor .. - @ PP
Cycle: 3 Time:3 —
o i — g & 5 ©
.""“““’ Open Close Reopen Fapace Cyerisy

- 1.66667E-01 & ar
= 1.66667E-01

it Active source arcoench_test3_core.vik B
~ 6.66667E-01 4 at

Time

< <« EEE > 1>

Plots

N T L % 4

Add, Operaiors, Delete Hide/Show Draw Variables,

| w [¢ [rFLUX_Groue. o0000s

ry_condition=ref
5

cenditionsreflectiv

Apply 1o © active window all windows

2 Apply operators to all plots.
153 Apply subsat sslections 1o all plots

TiteoSice Oporats
x 50
¥ 0
z 100
3 Interactive
Make default Load Save Reset
Apply Unpest Dismiss
user: raq
Tue May 218
@
Messages

Fig. 13. ARC integration in the NEAMS Workbench.

7.4 SCALE CODE SYSTEM

Because the NEAMS Workbench leverages the Fulcrum user interface from SCALE, it supports the
dozens of verified and validated design and licensing tools used for criticality safety, reactor physics,
radiation shielding, radioactive source term characterization, and sensitivity/uncertainty analysis for a
full range of systems light water reactors (LWRs), advanced reactors, and research/test reactors.
Examples of SCALE integration are shown in Fig. 3 — Fig. 6 above.

14

7.5 CODE INTEGRATION

Table 1 includes the codes that are integrated for the NEAMS Workbench Beta 1.0 release, as well as
near-term code integration activities. Under a Nuclear Energy University Program award, Rensselaer
Polytechnic Institute (RPI) is partnering with ORNL’s Workbench team, ANL’s PROTEUS team, and

the Los Alamos National Laboratory (LANL) MCNP team to integrate these tools. Teams at ORNL
are leading efforts to integrate the NEK5000 code, as well as the Warthog tool that couples
PROTEUS neutronics with BISON fuel performance. Additionally, the Systems Analysis Module

(SAM) from ANL will be integrated in the near future.

Table 1. Code Integration for the NEAMS Workbench

— Integration
Tool Application Status lead
MOOSE General purpose multiphysics Beta 1.0 ORNL/INL
framework
BISON Fuel performance Beta 1.0 ORNL/INL
Dakota Un(_:er_taln_ty quantification and model Beta 1.0 SNL/ORNL
optimization
ARC Fast reactor analysis Beta 1.0 ANL
SCALE Wldely usgzd multlpu_rpose neutronics Beta 1.0 ORNL
and shielding analysis
PROTEUS Three-dlmen5|onal unstructured grid In progress RPI/ANL
finite element neutron transport solver
MCNP Widely used Monte Carlo radiation In progress RPI/LANL
transport code
NEK5000 = Computational fluid dynamics analysis | In progress ORNL
Multiphysics neutronics and fuel
Warthog performance in MOOSE In progress ORNL
SAM MOOSE tool for single phase systems Planned ORNL/ANL
analysis
VERA-IN | CASL multiphysics tools Planned ORNL

8. AVAILABILITY

The NEAMS Workbench Beta 1.0 is available to interested users and developers. An open source
version is planned for the near future, but because of the origins of the Fulcrum user interface and its
integrated development with SCALE, a SCALE license is currently required to request the beta
version of the NEAMS Workbench. The user documentation for operating many Workbench features
is provided in Appendix A of this report.

Instructions for acquiring the NEAMS Workbench 1.0 Beta release are as follows:

1. Acquire RSICC License for the SCALE Code System
https://rsicc.ornl.gov/codes/ccc/ccc8/ccc-834.html
2. Email nwb-help@ornl.gov to request NEAMS Workbench

Include your SCALE RSICC license confirmation email

Include the operating system(s) for which you would like prebuilt binary executables

15

3. Receive a response from nwb-help@ornl.gov
a. Download the NEAMS Workbench deployment
b. Follow the installation instructions

9. CONCLUSIONS

The NEAMS Workbench is a new initiative created in response to the needs of design and analysis
communities. It is intended to enable end users to apply high-fidelity simulations to inform lower
order models for the design, analysis, and licensing of advanced nuclear systems. In its beta release
capacity, it enables enhanced input editing, validation, and navigation capabilities to assist new users
of NEAMS tools in getting started. In addition, the NEAMS Workbench provides basic job execution
via an extensible runtime environment and convenient output visualization and analysis capability via
fast 2D data plotting, as well as 3D mesh visualization through the integrated Vislt toolkit.

The NEAMS Workbench will facilitate the transition from conventional tools to high-fidelity tools by
providing a common user interface and common user input processing capabilities: flexible input
formats, hierarchical validation engine, and template engine. An extensible runtime environment
ensures that computational environments can be taken into account. Integrated applications and
associated system templates will continue to broaden the NEAMS tools user community and will
facilitate system analysis and design.

The future open source release of the NEAMS Workbench user interface and common input
processing capabilities will further enable future collaboration and will enable extensions of NEAMS
Workbench for proprietary industry application modeling and simulation needs.

10. ACKNOWLEDGMENTS

This research was sponsored by the U.S. Department of Energy Nuclear Energy Advanced Modeling
and Simulation Program. Argonne National Laboratory’s work was supported by U.S. Department of
Energy (DOE) under Contract number DE-AC02- 06CH11357. Additionally, special thanks are in
order for the collaborators who made contributions or provided direction that facilitated application
integration. Specifically, thanks to Cody Permann for his guidance and assistance with integration of
the MOOSE framework applications, Laura Swiler and Brian Adams for their guidance and assistance
with integration of the Dakota, Nicolas Stauff for his collaboration and guidance on ANL’s ARC
integration and creation of the PyARC coupling module, and Harinarayan Krishnan for his guidance
and contributions to Workbench for the Vislt visualization toolkit integration.

16

10.
11.

12.

13.

11. REFERENCES

D. Gaston, C. Newman, G. Hansen, And D. Lebrun - Grandie’, “MOOSE: A parallel
computational framework for coupled systems of nonlinear equations, Nucl. Eng. Des., 239,
1768-1778 (2009).

R.L. Williamson, J.D. Hales, S.R. Novascone, M.R. Tonks, D.R. Gaston, C.J. Permann,
D. Anders, and R.C. Martineau, “Multidimensional multiphysics simulation of nuclear fuel
behavior,” J. Nucl. Mater, 423 149-163 (2012).

Y.Q. Yu, E.R. Shemon, J.W. Thomas, Vijay S. Mahadevan, Ronald O. Rahaman, and
Jerome Solberg, SHARP User Manual, ANL-NE-16/6, Argonne National Laboratory, Argonne,
Illinois (2016).

B.T. Rearden, R.A. Lefebvre, A.B. Thompson, B.R. Langley, and N.E. Stauff, “Introduction to
the Nuclear Energy Advanced Modeling and Simulation Workbench,” M&C 2017 — International
Conference on Mathematics & Computational Methods Applied to Nuclear Science and
Engineering, Jeju, Korea, April 16-20, 2017.

ARC 11.0: Code System for Analysis of Nuclear Reactors, Argonne National Laboratory (2014).
Available from Available from Radiation Safety Information Computational Center as CCC-824.

D.B. Pelowitz, Ed., MCNP6 User’s Manual, Version 1.0, Los Alamos National Laboratory report
LA-CP-13-00634, Rev. 0 (May 2013). Available from Radiation Safety Information
Computational Center as CCC-810.

John A. Turner, Kevin Clarno, Matt Sieger, Roscoe Bartlett, Benjamin Collins, Roger Pawlowski,
Rodney Schmidt, and Randall Summers, “The Virtual Environment for Reactor Applications
(VERA): Design and Architecture,” J. of Comput. Phys., 326, 544-568 (2016).

LLNL: VisIT Visualization Tool (2002—2016). https://wci.lInl.gov/codes/visit
Kitware: ParaView (2002-2016). http://www.paraview.org

R.A. Lefebvre, B.R. Langley, and J.P. Lefebvre, Workbench Analysis Sequence Processor,
ORNL/TM-2017/619, UT-Battelle, LLC, Oak Ridge National Laboratory (2017).

R.A. Lefebvre, J.M. Scaglione, J.L. Peterson, P. Miller, G. Radulescu, K. Banerjee, K.R. Robb,
A.B. Thompson, and J.P. Lefebvre, “Development of Streamlined Nuclear Safety Analysis Tool
for Spent Nuclear Fuel Applications,” Nuclear Technology Vol. 199, Issue 3, 2017.

N. Stauff, N. Gaughan, and T. Kim, “ARC integration into the NEAMS Workbench,”
ANL/NE-17/31, September 30, 2017.

17

https://wci.llnl.gov/codes/visit
http://www.paraview.org/

APPENDIX A. NEAMS WORKBENCH 1.0 BETA USER
DOCUMENTATION

APPENDIX A. NEAMS WORKBENCH 1.0 BETA USER
DOCUMENTATION

NEAMS Workbench User Documentation

version 1.0 beta

NEAMS Workbench Help Documentation

Robert A. Lefebvre
Adam B. Thompson
Brandon R. Langley
Jordan P. Lefebvre

October 31, 2017

A-3

NEAMS Workbench User Documentation

Appendix Table of Contents

APPENDIX A. NEAMS WORKBENCH 1.0 BETA USER DOCUMENTATION................ A-3
ApPendixX Table Of CONTENTSccviiiiiiie e A-4
NEAMS Workbench User DOCUMENTALION...........ccoiiiiriiieeie e A-8
REQUITEIMENES ...ttt ettt et et e b e st e et e s teesaesteeteesbesteersesbeaneeseesteanaenreas A-8
Supported OPErating SYSIEMSciveieiiiecie ettt e et ra et e ste s e sresreesaesre s A-8
SYSIEM REQUITEIMENTS.cveiiieiieiere et A-8
FBAEUIES ...ttt bbbt bbb bbb bt bt bt neenbeennenae s A-8
ST 0TSSR A-8
V7T (0] 0] 0 =T o SR A-9
DECAY DAL ... e.eeeereieieieete et e ne e A-9
SCALERTE ...ttt ettt ettt ettt s ettt ene st n e e e ne e A-9
StaNdard COMPOSTEION.cviiitiiiite et b e A-9
TeMPIALE ENQINE ...ttt A-9
TEMPIALES DIFECLOIY....c.viivieie ittt sttt sr et e e s be e teebesre e s e sbesaeesreans A-9
[V] o7 OSSO A-9
=] - SRR A-9
IR =T 1 o) SOOI A-10
Close text documents when all editors are ClOSEd...........ccoovvririiiiineneeee e A-10
COMMENT FOMEOIOUNGcviiiiisiist ettt A-11
Current 1INe NIGNTIIGNT........c.oiiii e A-11
0] 0 T TSP T PR UPP PR PP A-11
HIghlight CUITENT TN ..o A-11
KEYWOIT FOTBGIOUNT ...ttt A-11
NUMDBEE FOTEQIOUNT.......viivieiiiieciie ettt b e st r e st e e s besaeesbesaeeeeneas A-11
SCALE INpuUt File EXIENSIONS.....ccuiiiiiiiice ettt sttt ettt s re et ne e A-11
Sequence Declarator FOrEGrOUNG.c.cviiririirierieieieeeie et A-11
SEIING FOMEGTOUNT ...ttt A-12
(@00) {10 U =1 40 TSRS A-12
APPIICALION ENVIFONMENT ...ttt A-13
APPIICALION OPLIONS ...ttt A-13
RUN ENVIFONMENT ...ttt bbbttt b e bttt A-13
WA o] o] TTor= Vo T 1] (=T | =1 o] o SRR SRR A-13
INPUL SUPPOIT ... e e n e e n e nr e srenreenne s A-15
o] oLV O =T 1 o] o OSSPSR A-15
INPUL EQITING .o.veiiee ettt sbe e te e besre e e e sbeeneesreeraennens A-15
(070 1100 0TS T=] =T £ o] o SR A-17

NEAMS Workbench User Documentation

IN-LINE CalCUIBLONottt e e e reeree e A-17
INPUL COMPONENT CrEALION.......ecuiiieiitieie sttt et estesteesaesreeraenaeas A-18
Validating INPULc.ooieecce et b e s beeta e be s e b e peeneenrs A-19
INPUE NGVIGATION ...t A-20
SAVING INPUL ...ttt r e n e n e ene s A-21
EXECULING INPUL ..ottt st et e et e s b e e re e tesne e e e steaneeeas A-21
GEeOMELrY VISUAIIZATIONoveviiiieieeese e A-22
GEEEING STAITEA ...t b bbb A-22
ALIaS GEOMELIY PACKAGEiciiiteiie ettt ettt ettt s te e et e e e sresbeenbesaeenes A-23
AIAS VIBWS ...ttt bbbt et b bbbttt b et ee s A-23
RENEING IMOUES ...t A-25
IVTAEEITAL ...ttt bbbttt A-26
Material + OULIING.......ooiiiiieee et A-26
L 11 T RS A-27
OVEITAY ...t bbbt b bbb et e ettt A-28
OVETIAY + DOUNGAIIESciviciieic ettt et e s beenee s besreeneenre e A-28
(@ g 1o LI ol (015t T UL £ OSSR SP A-30
PAINNING Lttt bbb bbbt n e n e A-30
R LCTor=) o1 (=] 1o To SRR A-30
oo] 1 011 oo F SRRSO A-31
o] .0 (0 | OSSR A-32
GramMMAL SUPPOIT. ... ettt sttt b bbbt e bt e e e b e e s e nb e b e e nbeene e r e A-32
Input Parser, Schema, and Validator.............cccooviiiiiiiicice e A-33
INPUE PAISET ...ttt r e nr e nn st reenre e A-33
INPUE SCREMA ...ttt bbb A-34
INPUL ValIHAIOT ...ttt s te e s be e e besbeesresbeeraentens A-34
Templates for AULO-COMPIELIONcccoviiiiiece e A-34
SyNtaX HIGhHGNTING ... A-34
(110 0] T | 0L T SRR A-34
OFNEE FHEIAS. ...t bbbttt b bt ene s A-36
RUNEIME REQUITEIMENTS. ...t A-37
RuNtime ENVIrONmMENt BaSICS........cccviiiiieieie ettt A-37
Base Runtime Environment WOrkDENCH.PYccvoviiiiiiii e A-37
EXECULION SEAGES ... vttt b e e et ne s nre A-38
e (=T (1] RS STUP PP TUPUURURR A-38
RUN bbbt b et b e bbbt bbbt bt e b bt et benne e et nes A-38
POST-TUN ... bbb bttt b et bbbt b e R b bRt be e e e enes A-38

NEAMS Workbench User Documentation

Creating a Runtime Environment (Extending workbench.py).......cccooiiininiicicns A-38
WA o] o] FTor: 1T T V- T OSSR A-39
Supporting ApPlication OPLIONSccveiiiiiiiiiiee e A-39
LiSting SUPPOITEA OPLIONSc.veuieiiiiieiieiisieei e A-39
Passing Supported Options to the APPlICAtioNcccovvviiieie i A-40
IS £ o SRS A-41
Output POSt-ProCesSOr SUPPOIT........viiiireerererie et A-41
TEXE POSE-PIOCESSOIS ... ittt ettt ettt ettt et rbe e sbe e sheesabesabe b e e beesbeeseee e A-42
POSt-ProCesSOr COMMEANGSc..ciiiiiiiieeiecte e ste st ste et re e et e ste e e sre e s e besreesresreanes A-43
Expected COMMANG OUEPUL........cuviiiiiieieeieiee e A-43
[0 BRSSPSR A-44
BaAE SEITES ...ttt et E ettt b E e b b e e A-44
LO00] (o] g\ T oI T=T TSRS A-45
LLINE SBIIES vttt etttk ettt ettt ettt e ke Rt te e Re st e Rt n e been e e ntenreereenreenen A-46
S Tors LT T TSSOSO RSP PRRR A-48
Conditionally Enabling POSt-PrOCESSOIS........cviiiiieriiieeriesteeteesiesteeeesresreesae e ree e sreesresreenis A-48
Organizing Post-Processors for Use in WOrkbench...........cccoeoiiiiieiccce A-49
CONFIGUIADIE WIBWS ...ttt A-50
SPIIE VIBWS ..ottt st e et e e b e s ae et e st e e ae e st e ste et e sbeete e besaeenrenre e A-50
SPIIE TP et bbb bbbttt bt A-51
SPIIE BOTIOM ...ttt bbbttt A-52
Yo L1 T 1 A USROS SR A-53
SPIIE RIGNT ..ottt e st e b e e s re b e b sae e re e A-54
SPIT RESIZING ...ttt b et A-55
DL 1 W o ()17 Vo [RSSO RP A-55
2D POt INtErface CONLIOISvcuiiiiieiieieiee et eeneas A-55
01011111 1o TSSO TP P PP TPP PP A-55
PANNING ...ttt bt A-55
ST VT S SPS A-55
o [0 A o o] oL =SOSR A-55
L 3T o RSP A-55
AAXIS et E e bR e et R e Rt e R e e b e e b e e anneenneere e A-55
(€] o] o SR A-55
=T 0 =] o o TS U PP OR PR PP A-56
PIOT TS ettt bbb bbb et n e A-56
Plottable NaVIgation IteMS..........ccviiiiiiicc e st re s A-56
Adding a Graph to an EXIStiNG PIOT.........ccooiiiiiiiieee e A-56

NEAMS Workbench User Documentation

Copying the Plot's Data Table..........ccooiiiiiie e A-56
SUPPOIEA PlOL FOIMALS.iiiiciieiiecie ettt sttt ettt sre s sre e e e A-57
AMPX Continuous ENergy CrosS-SECLIONScccvveieiierieiieiesie st sie st siese e et snes A-57
AMPX MUlti-group CroSs-SECLIONS.cciirerreieieieesi st A-57
Origen (F71) concentration PIOTHINGccccoreriririeieicese e A-57
Origen opus (PLT) concentration and spectra plotting.........cccccvvvveveiiiie v A-57
Origen gamma liNe PIOTHINGcooeiiiiee s A-57
Ptolemy plot (PTP) general 2D PlOttiNgooveiiiiiiiieieeee e A-57
SCALE Plot Format (SPF) general 2D pIOtting.........ccovcveiiiiiiiciececcceee e A-57
Covariance (COVERX) MatriX PIOttiNGccccoeiieiiiiiiecc e A-57
SENSITIVITY DAL ...ttt bbbt A-58
L0 [0 AV TS] | TP R A-58

A-7

NEAMS Workbench User Documentation

NEAMS Workbench User Documentation

Welcome to the NEAMS Workbench user documentation. You are here for two reasons.
1. Touse NEAMS Workbench to help you run an application. Options are currently:

» SCALE - https://rsicc.ornl.gov/codes/ccc/ccc8/ccc-834.html

 ARC - https://rsicc.ornl.gov/codes/ccc/ccc8/ccc-824.html and the PyARC interface
« MOOSE Applications - http://mooseframework.org/

« Dakota - https://dakota.sandia.gov/

2. Tointegrate an application into NEAMS Workbench

» Read Application Integration section
« Click the help>Documents training Session*.pdf
 Contact NEAMS Workbench Help <nwb-help@ornl.gov>

There are several steps to get started using NEAMS Workbench with an integrated application.

1. Create an application runtime configuration via Configurations

2. Open or create an application input file. This may require the selection of the application’s
grammar, more of which can be learned from the Grammar Support section.

3. Edit, navigate, validate, execute, and review.

We know there is room for improvement, so please help us prioritize future work by providing
feedback.

Requirements
Supported Operating Systems

NEAMS Workbench Help <nwb-help@ornl.gov>.

« Linux 64-bit (Fedora, RHELG)
» Mac OS X (Darwin) 10.9.5 or newer
« Windows 7,10 64-bit

For help compiling NEAMS Workbench from the source, please send an email to NEAMS
Workbench Help at_nwb-help@ornl.gov.

System Requirements
» Minimum requirements: 2 GB RAM, dual core processor
« Recommended requirements: 4+ GB RAM, quad core processor
» Recommended for large models: 16 GB RAM

Features

Settings

This section outlines the growing number of ways the user is able to customize Workbench’s
environment and interface.

Note

The settings editor is accessible via File -> Settings...

A-8

https://rsicc.ornl.gov/codes/ccc/ccc8/ccc-834.html
https://rsicc.ornl.gov/codes/ccc/ccc8/ccc-824.html
http://mooseframework.org/
https://dakota.sandia.gov/
mailto:nwb-help@ornl.gov
mailto:nwb-help@ornl.gov
mailto:NEAMS%20Workbench%20Help%20%3cnwb-help@ornl.gov

NEAMS Workbench User Documentation

Environment

Workbench requires the following resources to be able to properly facilitate user actions (component
creation, standard composition listing, etc.).

[] = Settings
Decay Data Iprojects/scale_data/origen_data/origen.rev03.decay.data
Fiter & SCALERTE Iprojects/scale6. 2/build/release/install/bin/scalerta
-ilter Set

Standard Composition /projectsiscale_data/scale.rev38.sclib
Text Editor

Template Engine Iprojects/scale6. 2/buildreleasefinstall/etc/ TemplateEngine/dist TemplateEngina. jar
Templates Directory Iprojects/scale6. 2/build/release/install/etc/Templates
Vulcan Iprojects/scale6. 2/build/release/install/bin/vulcan
m Cancel OK

Decay Data This is needed to conduct unit conversions for data. This file is typically located in <path
to SCALE>/data/origen.rev*.decay.data

SCALERTE The SCALE runtime environment to which Workbench delegates execution of SCALE
inputs

Standard Composition This is the SCALE standard composition library from which Workbench
provides composition introspection to facilitate component creation.

Template Engine The Java application which facilitates template expansion. Template expansion is an
integral part of component creation and the ORIGAMI Automator.

Templates Directory This is the directory in which templates reside. These templates—and potentially
their Fulcrum User Interface (FUI) files—are used to facilitate component creation.

Vulcan This is the SCALE material processor. This command line utility is a convenience application
to the SCALE material processor. Vulcan converts SCALE composition/mixture/material input into
mixture, nuclide, and number density triplets.

Filter Set Workbench provides four preset lists of nuclides with which the user may filter what is
being plotting while viewing the contents of an F71 file. These lists may be edited by the user in the
settings dialog, but currently, the user can only add or remove a preset by directly editing the settings
file on disk.

A-9

NEAMS Workbench User Documentation

® e we Settings

Environment Nuclide Set1 5 1c99 ru101 rh103 ag109 cs133 nd143 nd145 sm147 sm148 sm150 sm151 sm152 eu151 eu153 gd155

. Filter Set Nuclide Set2 3 mo85 1c99 ru101 rh103 ag109 nd143 nd145 sm147 sm149 sm150 sm151 sm152 eu151 eu153 gd155
liter Sef

Nuclide Set3 5125 se79 sm147 sm151 sn126 sr90 tc99 th229 th230 th232 u232 u233 u234 u235 u236 u238 y90 zr93

Text Editor
! Nuclide Setd am241 ce1d4 cm244 co60 cs134 ¢5137 eu154 kr85 pu238 pu23S pu240 pu241 ru1086 sr90 ya0

“ Cancel OK

Text Editor

One of Workbench's core capabilities is editing any text file the user would like to edit. This group of
settings allows the user to customize the text editing experience, including specifying the font, syntax
highlighting colors, etc. These settings apply to all editors.

@ @ s Settings

Enviranment Close text documents when all editors are closed [True
Comment Foreground

Filt i
g, Fiter Sel (0. 127, 0] (255)

. Text Editor Red 0O

Green 127

Blue 0

Alpha 255

Current line highlight
[255, 255, 153] (255)

Red 255

Green 255

Blue 153
Alpha 255

Fant

& [Courier New, 12]

Family Courier New w

M Cancel 0K

Close text documents when all editors are closed This indicates whether to close the document if all
associated text editors have been closed. “False” allows the document to stay open, displayed in the
navigation tree, until the user explicitly closes the document (via the File menu or other documented

manners).

A-10

NEAMS Workbench User Documentation

Comment Foreground

The foreground color of any text identified as a comment.

31 ' Geometry Block - SCALE standard geometry package (SGGP)

N N N A A A e R e R S B B e L
Current Line Highlight

This is the background color of the line on which the cursor currently resides.

33 read geometry

34 | global unit 1
35 cylinder 1 8.255 25.40 -25.40
Font

The font specifies the text editor’s current font.

Highlight Current Line Indicates whether the line on which the cursor currently resides should be
highlighted with the color specified by Current Line Highlight.

Keyword Foreground The foreground color of any text identified as a keyword.
33 read geometry

Number Foreground The foreground color of any text identified as a number.

34 global unit 1

35 cylinder 1 8.255 25.40 -25.40
36 cylinder 2 10.795 27.94 -27.94
37 cylinder 3 20.955 27.94 -27.94
38 cylinder 4 13.335 40.64 30.48
39 cylinder 5 13.335 -30.48 -40.64
40 cylinder 6 35.56 45.72 -45.72
41

42 cuboid 99 139.7 -139.7 139.7 -139.7 152.4 -152.4
43

44 media 31 1

45 media 1 1 2 -1

46 media 2 1 3 -2

47 media 2 1 4

48 media 2 1 5

49 media 1 1 6 -3 -4 -5

50

51 media 3 1 99 -6

52 boundary 99

SCALE Input File Extensions

These are the file extensions with which to associate any SCALE-specific editing capabilities (input
parsing/validation, geometry visualization, etc.).

Sequence Declarator Foreground The foreground color of any text identified as a sequence declarator.

A-11

NEAMS Workbench User Documentation

17 =mavric
String Foreground

The foreground color of any text identified as a string.

"

60 title="ANSI standard (1977) neutron flux-to-dose-rate factors
Configurations

Note

Configurations are opened via file>Configurations... file menu item

Workbench allows the user to configure and save multiple environments for individual applications to
run through the Workbench with user-specified arguments.

Additionally, a runtime environment can be specified in place of system-defined variables.

Bison Add...
Application Emvirorment
Configuration: Bison 1 Adde Ramave Rename...
Appiication Options
Proparty Valg
¥ Shared
Executable Ipathitorbison-opt
Save Working Directory
Output Directory Ipathfofoutput_dir
Cutput Basename
Timagtamp
Verbose Level 2
Working Directory Ipathfodworking_dir

Additional Arguments
v Unique
Allnw Danoacatn

Fun Environmant

Cloar Bystem Environmant

Varlablo Vinluas

<VARIABLE> <VALUE= Unsst
TMPDIR puBd) BmiT/
SHELL Thinbash
PATH Jusribinzfusrisbin
Apply Cancel oK

To get started, minimally,

1. Select an application for which to create a configuration. If your application is not listed, you
will need to conduct the application’s Application Integration.

2. Specify the Executable path in the application options.

A-12

NEAMS Workbench User Documentation

Application Environment

Once an application is selected, the environment can be configured. A default configuration is
provided and can be renamed and cloned. In order to run using the configuration, the executable’s file
path must be updated.

Note

Provided configuration names must be unique. If a duplicate is provided, it will automatically be
renamed.

Application Options

This displays a list of the most recent arguments that can be passed to the application at run time. The
arguments are separated into two categories:

1. Shared: Common arguments that are accepted by all available applications. The “Additional
Arguments” property can be used to provide arguments as they would be entered on the
command line. If an argument has been deprecated and you still wish to use it, it can be
specified here.

2. Unique: Application specific arguments that will update based on selected application.

Run Environment

For each application, a list of system environment variables can be provided for use at run time. You
can use any environment variables as values in the fields.

Application Integration

Below is a step-by-step guide for integrating your application into the NEAMS Workbench. Please
send questions to NEAMS Workbench Help at nwb-help@ornl.gov.

1. Create an input schema for your application.

a. If your application is MOOSE based, you may create this by running your application
with the --definition flag.

b. The schema generated with this command should support full input validation of all of
your application’s inputs.

c. Itshould also contain autocomplete hooks that use the MOOSE templates already
included in Workbench.

d. If your application is not MOOSE based, please reference the Schema Creation section of
this documentation for creating your own schema.

e. Move the schema file to INSTALL/etc/InputDefinitions/finaloutput/Y ourAppName.sch,
where INSTALL is the installation location of Workbench.

2. Create a grammar file.

a. Move into the Workbench install grammar directory at INSTALL/etc/grammars, where
INSTALL is the installation location of Workbench.

b. If your application is MOOSE based, copy the grammar file from another MOOSE
application, such as bison.wbg, to YourAppName.wbg.

c. Make the name = field in your grammar file be YourAppName instead of what is
currently there.

d. Make the schema = field in your grammar file be the relative path to the schema from

Step 1.

e. The highlighter field is set up for a general MOOSE highlighter. This may be modified if
you want.

f. The templates field is set up for general MOOSE templates. These may be modified if
you want.

A-13

mailto:nwb-help@ornl.gov

NEAMS Workbench User Documentation

S@

You may also modify the other fields such as the tree display depth and input extensions.
You may learn the full scope of the grammar file fields in the Grammar Support section
of this documentation.

Full validation and autocomplete should now be available for your input in Workbench.

3. Hook up a runtime to actually run the code on the input.

a.

C.

If your application is MOOSE based, you may simply open Workbench, go to File-
>Configurations, add a new MOOSE configuration, and set the executable field to
point to your executable.

You may learn about the full scope of hooking up an application with runtime flags in
the Configurations and Runtime sections of this documentation.

Your application input should now run with your executable through Workbench.

4. Create a post-processor file to scrape the output and visualize.

a.

b.

Move into the Workbench install processors directory at INSTALL/etc/processors,
where INSTALL is the installation location of Workbench.

Copy a processor file from something of interest and modify the fields however you see
fit.

You may learn the full scope of the processor file fields in Output Post-Processor Support
section of this documentation.

Your application’s run results should now be able to be visualized inside Workbench.

A-14

NEAMS Workbench User Documentation

Input Support

Workbench provides a cross-platform input editing experience. Its foremost mission is to not alter the
user’s desired format. In fulfilling this mission, the text editor is its central feature. A significant
feature set is in development that will facilitate input introspection, auto completion, and context-
specific help documentation.

Current Workbench features facilitate the creation, editing, navigation, validation, and execution of
input. All actions revolve around the input text file. In the absence of full component wizards, a
component creator mechanism is provided for some of the components that lack obvious input
definitions (compositions, geometry, etc.).

Input Creation Use File -> New file... to create an input file. The user is presented with a file dialog
which allows the selection of the directory and the naming of the new input file. Upon input file
creation, an empty file will be presented in a new input tab. Input editing may commence.

Input Editing The Workbench input editor is composed of several parts: the text editor, a quick
navigation drop-down, validation and messages and search panels, line and column indicator, and the
document navigation tree. The foremost component is the text editor, which most users will find to be
similar to their favorite platform-specific text editor.

oo =lts]

~— 2 3 456

£

HEUNHIT AR TR REIANATANIE

C IEEREERZERESRIESRIEINYZ

1011 “ 9

1. The text editor: uses color highlights to visually enhance the input representation. Advanced
editing features include:
» Selected text highlighting (after a word is selected, matching selections are also
highlighted)
« Column selections
 In-line calculator

2. The quick nav: provides a drop-down list of the high-level components found in the input.
This drop-down is populated once Workbench successfully parses the input document.

A-15

NEAMS Workbench User Documentation

o ks

9.

10.

Note

The run configurations: provide a list of applications the user has configured to be able to run
from within Fulcrum. Selecting the last item, “Customize,” displays a dialog in which the user
may add, remove, or edit configurations to be displayed here.

The run menu: provides a means of running the currently selected configuration.

The view menu: provides a list of ways to visualize information provided in the given input.
Currently only includes geometry visualization.

The edit menu provides a list of ways to edit the given input, including accessing
autocomplete capabilities, toggling comments, and indenting/un-indenting text.

The search panel: provides search capability within the given document via regular expression
patterns.

The validation panel: provides a list of parser and validation error messages. The output
panel, which provides message listing from the runtime upon execution of the input, would be
visible if “Messages” were selected.

Validation/messages selector: shows its corresponding panel above when a button is clicked.
Line and column indicator: indicates the line and column of the cursor. Clicking this indicator
will display a line and column edit box. Entering the line and optional column (comma
delimited) will navigate the cursor to the entered line and column.

Current input context: if the input is valid up to the cursor’s current location, this displays the
path of the associated parser input node.

Navigation panel: provides tree listing of the high level input components. This tree is
populated once Workbench successfully parses the input document.

You can open files associated to files listed in the navigation panel by right clicking the navigation
item to acquire its context menu from which an '‘Open Associated files' sub menu will list all files that
are associated. Left click any of the associated files and it will be loaded.

Workbench is integrated with the parser package which provides Workbench insight into each
component of the input. This coupling allows NEAMS Workbench to provide line and column quick
navigation capability via the quick nav drop-down and document navigation components, and it also
facilitates the integration of any geometry visualization via the new Atlas geometry package. Upon
any text edit, Workbench uses the NEAMS Parser package and reprocesses the input, checking for
parse errors (i.e., missing terminators or components or incorrectly typed components). After
reparsing the input, the quick nav and document navigation components are updated.

A-16

NEAMS Workbench User Documentation

Column Selection

Column selection can be used to select a rectangular area of a file. To begin the selection, press the
Alt/Option key and move the cursor as you would for a standard multiline select. The selected area
then allows for insertions, deletions, copying, cutting, and pasting to another location.

“ isald B9 1307 <130.7 AN.7 <1307 1834 2834

In-Line Calculator Selected functions and expressions can be evaluated by clicking Edit -> Evaluate
or by using the CMD+E key combination. Expressions can contain multiple operators to be evaluated
at once.

In addition to basic arithmetic operators (+, -, *', /, »), the following functions are available for
evaluation:

sgrt, cos, sin, root, abs, min, max, avg, sum, mul, floor, ceil, exp, log, logn, log10, hyp, ifFunction,
clamp, inrange, sign, deg2rad, tan, equal, acos, asin, atan, cosh, tanh, sec, csc, cot, sinh, round,
roundn, d2g, g2d, r2d

Note

min, max, avg, sum, and mul are fuctions that accept a variable number of input parameters. i.e.
min(X5 Xor Xgrews xn)

Example Using Function

cos(pi) =cos(pi)

By selecting and evaluating the function following the equal sign, the selection will change to the
evaluated term, so the example above will now read, cos(pi) =-1

A-17

NEAMS Workbench User Documentation

Example Using Basic Operands

(4%2)75/4+1=(4*%2)75/4+1

By selecting and evaluating the expression following the equal sign, the selection will change to the
evaluated term, as follows.

(4*2)"5/4+1=8193
Input Component Creation

The component creation is made available as an extensible means to generate components where the
components can vary from simple, one-line components like a composition or geometry region, to
complex complete inputs describing entire spent fuel canisters. Instantiating the input component
creator is straightforward. With the cursor at the desired insertion location, click the
Edit...>Autocomplete (CTRL+SPACE key shortcut), which will list all available autocomplete input
at that location in the input. Any autocompletion record with “(Configurable)” following it can be
selected to instantiate that component’s creator.

[pe -
00

LRIl Eesuansuna

SEEEYRREERISRRNRNEEN YIS

44

;:azaeﬂaaases;a:xsgaz:szs=sa

A-18

NEAMS Workbench User Documentation

Note: Configurable autocomplete, or component creators, are not available in all contexts. If there is a
component you would like to have auto-completable or configurable, let us now with an email to
NEAMS Workbench Help at nwb-help@ornl.gov.

®] s StocOMmp - basic (configurable)
Composition uo2| ™
Mixture 1
Theoretical Density 10.960000 -
Volume Fraction 1.000000 -
Temperature 293.000000 -

Isotopic Weight Percents))
+- Isotope Weight Percent

1 [+ |- oo238 4| 99.283325 -
2 | +|- 82235 B o7i13es o
3 |+ |- || 92234 Bd|ooos3t0 ¢

Add row

uc2 1 den=10.960000 1.0 293.0
92238 99.283325
92235 0.711366
92234 0.00531 end

| THESUIS™] Template

Cancel ﬁ

The image above illustrates the basic composition creator. Upon left clicking the OK button, the
results are placed at the cursor location from which the component creator was instantiated.

Validating Input

Upon editing or initial viewing of an input file, Workbench uses an input parser and Hierarchical
Input Validation Engine (HIVE) packages to process the input and determine the input’s validity.
Error messages from the parser and HIVE packages are placed into the validation panel for the given
input. The types of validations performed by HIVE are numerous and beyond the scope of this
document. The HIVE package attempts to communicate in as meaningful a way as possible. As
always, if an error is ineffectively communicated or not communicated at all, please contact NEAMS
Workbench Help at nwb-help@ornl.gov.

A-19

mailto:nwb-help@ornl.gov
mailto:nwb-help@ornl.gov

NEAMS Workbench User Documentation

56 H20 1 0 6.59947E-02 293.6 end

57 0-16 1 0 3.29974E-02 293.6 end

98 ' This is a SCALE only material:

60 H#-1 100 0 6.68584E-02 293.6 end

61 o-16 100 0 3.34293E-02 293.6 end

62

64 H-1 2 0 6.6348B5E-02 293.6 end

er O 1e L] n 2_ 21742 NN Le W - B -]
56:2: name value "h20" is not one of the allowed values: [... "h-solid_ch4" "h-x(e)-hr" "h-zrh2" "h20" "h20-%(e)-hr" "ha-255" ...]
Line: 56, Col: 2 /csasB/comps/stdcomp/name

The above image illustrates a common mistake in which composition of h2o (H Two O) has been
specified as h20 (H Two Zero). The validation panel lists the mistake as an error, specifying the input
file path, the line and column (line 56, column 2), the name of the input component (decl, an
abbreviation for declarator), and the value. The validation panel also states that the value is not a
member of the enumerated set of composition names, and it provides a closest match list of what
could have been intended, one of which is the correct h20. This error message can be clicked, and the
input editor will automatically navigate to the location of the error (line 56, column 2), facilitating fast
response time for the user.

It is important to note that while a significant amount of NEAMS has validation checks enabled, some
components are too complex for HIVE to validate. For example, geometry errors involving undefined
or doubly defined regions are not validated. These more complex validation procedures are performed
by their respective components in NEAMS. In the case of geometry, these errors are communicated
upon geometry visualization via the respective geometry package.

Input Navigation

Navigation of input can be done several ways. The simplest is via the regular cursor movements or
scrollbar manipulation, as would be done in any text editor. Depending on the actions (error look up,
document searching, etc.) this can become unproductive when dealing with large or unfamiliar inputs.

Workbench provides the document quick nav drop-down at the top of the input editor. The drop-down
menu lists the high level components of the input. Clicking one of these items will place the cursor at
the start of the component. If the component is not within the current scroll view, the scroll bar is
automatically manipulated to ensure that the component and the cursor are visible.

The document navigation panel provides the same capability as the quick nav drop-down.

Beyond the document navigation components mentioned here, the line and column indicator can be
clicked to show a line and column edit box where the desired line and optional column number can be
specified to quick nav to the specified location. This line and column indicator can facilitate jumping
to document locations mentioned in warnings, errors, or other contexts.

7894 unit 2000
7895 cylinder 2000 6.88302 149.9901 -149.9901

_e 7. oo JecsasB/geometry/unit/decl
56, 2| —

As the NEAMS input infrastructure is modernized, more capabilities will be added. The latest
capability is the ability to “Go to Definition.” Upon right clicking in an input file, a context menu is

A-20

NEAMS Workbench User Documentation

displayed, the first item of which will be “Go To Definition of ...” which allows the user to quick nav
to the definition of the component. If the component is related to another input component (e.g., a
geometry unit media record’s mixture is defined in the composition block's composition records), then
left clicking the “Go to Definition ...” will place the cursor on the component and select the text at that
location. If the component is defined by more than one related item (e.g., multiple composition
records defining a single mixture), then a dialog will be presented to allow you to select a part of the
definition to navigate.

Saving Input

Saving input is straightforward. The input file must be selected in the document navigation panel,
after which clicking File -> Save or File -> Save As... will save the file.

Alternatively, when the input file is selected, the CMD+S key combination will save the file.
Note

Workbench will conduct auto saves of your text files as filename.fulcrum.autosave. If Workbench quits
at any time while the file is modified, then the filename.fulcrum.autosave acts as a recovery file. If
Workbench successfully shuts down then this file is removed.

Executing Input

The execution of input can be conducted by clicking the Run button, or this can be accomplished by
having the input file selected in the document navigation panel and conducting the CMD+R key
combination, which will launch runtime configuration with the selected file. Upon invocation, a new
tab is added to the messages panel, and messages from the selected runtime configuration will
automatically be listed.

an e = GOALE

oo | - =t]
- B soaeez [ney e o

B EUENMeY CHERRN RS EENS B RIS EOAS Baaxan sonl] §

g e e

The execution can be stopped by right clicking the message panel to acquire the message panel’s
context menu, which contains the “Kill” and “Terminate” menu items. Terminating the execution will
give the job a chance to gracefully exit, cleaning up working space and deleting temporary files.
Killing the execution will be immediate and will leave temporary files lingering.

A-21

NEAMS Workbench User Documentation

Note

Depending on the operating system, killing or terminating your execution may leave stray temporary
files remaining, and orphaned child processes may still be running. It is advised to (1) check the
temporary directory for stray files to avoid unwanted disk space consumption and (2) to use your
operating system’s process monitor to ensure that potentially orphaned child processes are no longer
consuming your machine’s processors.

Beyond the runtime execution of the input, the Vulcan material processor can be invoked via the
Run>Mixing table menu item for material review, and the messages panel will be populated with the
mixture pool table listing the mixture, nuclide, and nuclide number density triplets. Additionally, the
input components can be listed in a directory style listing via the Run>Input Listing menu (or toolbar)
item.

Geometry Visualization

Geometry visualization uses the new Atlas package and corresponding Atlas view component in
Workbench. Currently, only SCALE geometry is supported. Units are centimeters and as such all
geometry units are displayed in centimeters.

Getting Started

To visualize geometry that is supported, load the input file.
Note

Geometry visualization is only available if the document was parsed successfully.

Click the “View” button on the toolbar, and then click the “View geometry” item in the menu that
pops up.

o

document [J | SCALE62 [J Ry oo Edit.

{10852 - View geometry -3V

10353r T s s s R R R R T s D PRI . S E S e s S B
110354 -

10355

10356 global unit 9999

110857 cylinder 9999 721.0 150.0 -150.0

110358

le 9997

(10359 me 0 1 9999
10360 boundary 9999

110361 -

110362 -

110363 '

A new panel will open in Workbench with the initial Atlas geometry view loaded. In the initial Atlas
view—the top (X-Y)—X increases from left to right and Y increases from bottom to top.

A-22

NEAMS Workbench User Documentation

en e - CALE
F

Atlas Geometry Package

The Atlas geometry package is part of the SCALE modernization effort. Specifically, it is a re-usable
C++ package that can interpret SCALE geometry (NEWT, KENO V.a. and VI). Workbench uses
Atlas to present geometry visualization and allow geometry interaction.

Atlas Views

The Workbench Atlas component currently supports the three primary Cartesian cut planes,
specifically the top (X-Y), the front (X-Z), and the side (Y-Z). Each view is accessible via its
respective view-mode buttons. It should be noted that 3D is not yet implemented. Each view has an
axis slider on the right side of the view. The axis slider controls the elevation of the cut plane in the
current Atlas view. Moving the slider up increases the elevation, and conversely moving it down
decreases the elevation. Atlas conducts dynamic ray tracing of the implicit geometry equations
composing the SCALE geometry. As a result, some visual artifacts may be observed when zoomed to
a level of less than 1e-9 cm.

A-23

NEAMS Workbench User Documentation

The screenshot below shows the front (X-Z) view. X increases from left to right, and Z increases from
bottom to top.

LEN] - GCALE

Fle Edt Vew Run Help

lh.-‘. i —-r__-n__Qﬂul\- e " S Copy Famm b Fpie o

oo e | - wupels |
> Fe e Bl BerD. 0. Mt

i Ataters B 0000 e

¥ documant

A-24

NEAMS Workbench User Documentation

The screenshot below shows the side (Y-Z) view. Y increases from left to right, and Z increases from
bottom to top.

LEN] . —-ECALE
Fle Edt View Fun Hep

foow Sws Gemer ComUS s | G Copr Fam | unie fee

oo o I o e e —_—_—_—___S_S__“__“_——_——“_—“_“—“_“___—S—_S—__—_—_———
B il 0

» documant

| Grgm. 9.0,

Each view has a “View origin” label which indicates the origin of the view in absolute Cartesian
coordinates.

Rendering Modes

Multiple geometry rendering modes are available to the user.

A-25

NEAMS Workbench User Documentation

Material

This renders the geometry by filling in the bodies represented by the units’ media definitions with
their own respective colors.

m Froet (X7) Swe{¥-d] 30 il
Mazenal B |1.0000x 200m

Diigher 5. 4)

Material + Outline

This renders the geometry as in “Material,” but it also draws (in black) the outlines of the individual
geometry regions that compose the materials.

A-26

NEAMS Workbench User Documentation

Mkl P Sien a0 e
Matenal + cuting B 100000 200m

Do 5.6

Outline

This shows (in the associated materials’ colors) only the outlines of the units’ regions.

M Freeocn) Ssefvn a0 Livacina

Dt B 1 0000 z00m

Degr 0, 0.4

NEAMS Workbench User Documentation

Overlay

This renders (in black) the outlines of the units’ regions and overlays any mesh data the user has
selected in the mesh browser.

Overay m'n,omm;m 1)

T fl‘;g:;%

A-28

NEAMS Workbench User Documentation

Overlay + Boundaries

This renders the geometry as in “Overlay,” but it also draws the boundaries of the meshes specified in
the data selected by the user in the mesh browser.

Miimam i.w&sa{ny_ﬂ_umm

Note:

Only Cartesian mesh boundaries are supported for this release. Cylindrical mesh boundaries will
be supported in a future release.

A-29

NEAMS Workbench User Documentation

Origin Crosshairs

The origin can be indicated with crosshairs by toggling the “Show view origin” button.

M Froeen Sempen 9| e
Manerial

Boocmon |-

oo (0,8,)

Panning

Panning is performed by holding the left mouse button and the SHIFT key and dragging in the
opposite direction of the desired pan. Upon initial click, the location under the mouse will be the same
location upon concluding the pan. That is, if you leave click and drag to the lower right corner, the
upper left corner will be the new center, assuming a rectangular image.

Recentering

Often there is a point of interest that must be the center of your view. A simple double click on the
point of interest will recenter the view.

Additionally, clicking on the “View origin” label in the lower left corner of the Atlas view will
present the user with an edit box. Typing two comma-separated values into the edit box will recenter.

This “View origin” edit box works in 3D, as demonstrated in the following:

« Entering a single value changes the elevation of the cut plane axis, which is equivalent to
using the slider in X-Y, Z as specified.

A-30

NEAMS Workbench User Documentation

« Entering two values performs a pan in the view. That is, specifying 0,12 in the X-Y view pans
to the location X=0, Y=12.
« Entering three values performs both an elevation change and a pan.

Zooming

There are two ways to zoom. The most obvious is to use the zoom factor spin box that zooms in or out
of the center of the view.

The second means of zoom is to use the mouse to draw a zoom reticle by left clicking and dragging
from the top left reticle corner to the desired bottom right corner. Upon release of the left mouse
button, the zoom will be implemented. If the user decides that while drawing the zoom reticle, the
zoom is no longer desired, then pressing the ESC key will terminate the zoom action.

Mikauy Freex) See(vZ) 3D | Mesees
Material B [20.0000x z00m

(o -3 BTDEINE; ¥: GA109474; Unit: 2000; Mature: 205 Origerc (0, 0,0)

A-31

NEAMS Workbench User Documentation

'.-‘--'“‘ Froek (6} Swm {00 [
Matenal B 125 82781 zoom

?:" S i

,\'
o

D {21260, 373884,

Zoom-to-Fit

To zoom out to the extent of the model, simply left click, hold, and drag up and to the left, and then
release the mouse button. The view will fit the entire geometry into the available Atlas view panel.

Grammar Support

One of the major goals of Workbench is to support/integrate multiple modeling and simulations
toolsets. Each toolset may have its own input format, and users will expect to be able to open/edit
inputs native to their respective tools of choice. To facilitate this capability, Workbench supports what
has been dubbed “grammars,” or files that provide information to assist with supporting these native
input formats. These grammar * _wbg, files are expected to be in the SON format, with fields

describing the following:

« Input parser, schema, and validator

» Templates to assist with auto-completion

« Patterns used for syntax highlighting

- Other metadata to assist with editing content, displaying document hierarchies, etc.
The following is an example grammar file:

commentDelimiter = """ enabled = true

extensions = [inp in input] highlighter = "highlighters/scale.wbg" maxDepth = 2

name = SCALE parser = SCALE

schema = "../InputDefinitions/finaloutput/scale.sch" templates = "../Templates/autocomplete"
validator = SCALE

A-32

NEAMS Workbench User Documentation

Grammar files provided by Workbench are expected to be found here:
[path/to/install/etc/grammars/*.wbg

Users may create their own grammar files to be used the next time Workbench is launched. Those
files are expected to be found here: /path/to/user/home/.workbench/6.3/processors/*.wbp

Note: When creating custom grammars, if the name is identical to one deployed with Workbench,
then the user-defined grammar overrides the other. If the user creates multiple grammars with the
same name, then the last-seen grammar is used:

In this example, there are two Grammar 1s, grammarl.wbg and grammar3.wbg. The one
defined by grammarl.wbg is discarded, replaced by the one defined by grammar3.whbg.

grammarl.wbg:

name = "Grammar 1"

grammar2.wbg:

name = "Grammar 2"

Input Parser, Schema, and Validator

Input Parser

The parser field is used to specify the type of parser to be used when processing a given text file’s
contents. Workbench natively supports several SCALE-specific input formats that can be specified
here:

e ChartPlot: SCALE's parser to process ChartPlot files (defaults to * . chart)

« PtolemyPIt: SCALE's parser to process Javapeno's plot files (defaults to * . ptp, formerly
*_plt inJavapeno and older versions of SCALE)

» SCALE: the main SCALE parser (defaultsto *.inp , *.in"", and * . input)

« SON: SCALE's parser to process SON files (defaults to *.son)

With the addition of the Workbench Analysis Sequence Processors (WASP) library, Workbench also
supports the following parsers:

» DDI: "definition-driven interpreter”, a schema-informed parser created to support Dakota

- GetPot: the input format used by MOOSE and MOOSE-derived codes

« JSON: JavaScript Object Notation, a storage/data exchange format used extensively in
websites and increasingly in mobile/native apps

WASP also provides an improved, more efficient implementation of SON that can be enabled via
waspSON to differentiate it from SCALE’s SON.

A-33

https://dakota.sandia.gov/release-notes-headings/uncertainty-quantification-uq

NEAMS Workbench User Documentation

Note

SON originated within SCALE, as did some file types that use SON for their storage format, like
CustomPlot (*. spf) files. Any such SCALE-SON-dependent files will list the parser as SON.

Input Schema

Note

Schema (*.sch) files are assumed to be SON-formatted, and the SON parser, whether SCALE or
WASP, is selected based on whether the associated val idator is SCALE- or WASP-based.

Input Validator

The schema field is used to specify the path to the schema, which is the file used to describe the
input format. Since some text file formats will not have an associated schema, this field is optional.

The val idator field is used to specify how to validate the given text file against its associated
schema. This field’s value should be SCALE or WASP, depending on the parser. This field is
optional for the same reason that schema is optional. Though encouraged, document validation is
not required if a schema is available.

Warning

If a schema is not available, this field should not be included.

Templates for Auto-Completion

The templates field is used to specify the path to the directory containing templates to aid in auto-
completion for the given text file. These templates are placed in the file at the line/column at which
the user triggers auto-completion logic. These templates can allow the user to quickly populate an
input file with various blocks of text that may be needed but are not familiar to the user, or it can
provide an example by which users may learn the type of information to provide for a given field or
block of text. Since some code developers may not provide templates to aid with auto-completion, this
field is optional.

Syntax Highlighting

The highlighter field is used to specify the path to an associated highlighter (* .wbh) file.
These files provide a series of syntax highlighting rules to help users visually identify pieces of their
text files, such as strings, numbers, comments, etc. Since some code developers may not provide
highlighter rules, this field is optional.

Highlighter File
Highlighter files are SON-formatted files that provide a series of named rulle objects containing the

following fields:

» background: the color of the line behind the matching text
- alpha: the alpha, or transparency, channel (0-255, where 0 is transparent and 255 is

opaque)
- blue: the blue channel (0-255): blue =0, 128, 255

A-34

NEAMS Workbench User Documentation

- green: the green channel (0-255, ...): green = 0, 128, 255
- red: the red channel (0-255, ...): red = 0, 128, 255
 bold: whether the matching text should be given a bold font weight
» Foreground: the color of the matching text (see background for channel descriptions)
- 1'tal ic: whether the matching text should be italicized
 pattern: the regular expression pattern used to identify sections of text to which to apply
the given style

Note

Workbench is based on the Qt framework, which has native support for regular expressions
documented here. Specifically, the patterns should follow the RegExp syntax and are treated as
case insensitive (e.g., "test pattern" and "TEST PATTERN" are treated the same).

Highlighter files are expected to be found here:
/path/to/install/etc/grammars/highlighters/*.wbh

The following shows a SCALE-style comment rule, a double-quoted string rule, and an integer rule:

rule("Comment") { background {

alpha =24
red=0
green =128
blue =0

}
foreground {
red=0
green =128
blue =0

}

italic = true

pattern = "("'|%]|//).*"

1

A-35

http://doc.qt.io/qt-4.8/qregexp.html
http://doc.qt.io/qt-4.8/qregexp.html#PatternSyntax-enum

NEAMS Workbench User Documentation

green =0

blue =0

}

pattern = "'\
}

rule("Integer") { background {
red=0

green =0

blue = 128

}

foreground {
red = 255

green = 255
Note

Rules are applied in the order they are defined. The following two lines demonstrate how the above
rules work: ' comment before the string "inside a double-quoted string" comment after the string

"inside a double-quoted string. % starts a SON comment."

The following shows what happens if an integer is found in general text and inside a quoted string:
Four score and seven (87) years ago...

"Four score and seven (87) years ago..."

Other Fields

commentDelimiter specifies the string to be used when (un)commenting code via the keyboard
shortcut or “Toggle comment” action.

enabled indicates whether the grammar should be enabled for use in Workbench.

extensions is a list of file extensions with which to associate the grammar. If a given input file’s
extension is found in a single grammar’s list of extensions, it will automatically be enabled for the
text file. Otherwise, no grammar is applied, but the user may still manually select one via the
grammar drop-down box.

Note

If a grammar is disabled, its extensions are not checked when trying to determine whether a given
text file has any associated grammars.

maxDepth is how many levels past the document root are displayed when populating the navigation
tree. See the following example of a very simple SON document:

A-36

NEAMS Workbench User Documentation

obj1 {

array [1 2 3] keyl = valuel obj2 {
key2 = value2

}

}

Its corresponding navigational hierarchy with a maxDepth of 2:
input.son

document

obj1

array keyl obj2

Its corresponding navigational hierarchy with a maxDepth of 3:
input.son

document

obj1

array

value value value

keyl

value

obj2

name uniquely identifies the grammar and allows the user to know which grammars are available
when editing text files.

Runtime Requirements
This section documents how the NEAMS Workbench runtime environment works and can be

extended.
« Python. Python 2.7.8,10 tested.

Runtime Environment Basics

The purpose of the runtime environments is to buffer the user from the nuances of running a
supported application. The user does not need to know whether the target application requires the user
to run it from the directory where a given input file resides, and the user does not need to manually
copy desired output from the working directory to the output directory. These details should be
handled by the runtimes; the user only needs to know how to run the scripts and that it will work.

Base Runtime Environment workbench.py
workbench.py is the base runtime script and contains the majority of the execution logic. It also

provides a set of “shared" options that any script that extends it will inherit; run the following to see
the full list:

python workbench.py --help

A-37

NEAMS Workbench User Documentation

Execution Stages
Pre-run

This stage is when the runtime might create directories it needs for execution, such as the working
directory (if it does not already exist).

Run

This stage is when the actual execution occurs, running the given executable, capturing/printing its
output, and reporting the result (return code) of the execution.

Post-run

This stage is when the execution has completed and the runtime might need to perform some extra
housekeeping tasks, such as copying files from the working directory to the output directory,
removing some extraneous files that may have been generated outside the working directory
(depending on the executable's own behavior), etc.

The following is the simplest example of how a user might run a given executable via the runtime
script:

python workbench.py -e /path/to/exe -i /path/to/inputl

This performs the following:

« Creates a working directory in which to run the executable (defaults to a new directory in the
user’s temp directory, /tmp/<app>.<user>.<process>)

« Changes the working directory to /tmp/<app>.<user>.<process>

« Runs the executable

« Changes the working directory to the previous working directory

« “Cleans up” by removing /tmp/<app>.<user>.<process> in its entirety (including
any files that were generated during execution)

The following is a similar example, but now it overrides the working directory:
python workbench.py -e /path/to/exe -i /path/to/inputl -O /home/user/work_dir

This performs the following:

» Creates the given working directory in which to run the executable:
/home/user/work_dir/<app>.<user>_<process>
Changes to /home/user/work_dir/<app>.<user>.<process>

* Runs the executable

« Changes to the previous directory

« Since the output directory was explicitly provided, it will not be cleaned up. This is because
the runtime treats a custom working directory as a flag to indicate it should not be removed
after execution is completed.

Creating a Runtime Environment (Extending workbench.py)
Application developers may wish to create a runtime environment specific to their applications.

Ideally, all that a developer would need to do is provide the application name, a list of the options the
application supports, and a way to map the runtime’s options to the application’s options.

A-38

NEAMS Workbench User Documentation

Application Name

This is currently used to help identify the running application that is creating the working directory or
logging information about any actions the script is performing. The base script identifies itself as
workbench, so a custom runtime for an application called mytestapp would define the following
function:

def app_name(self):

return "mytestapp”

Supporting Application Options

Runtime-supported applications likely will have their own options they support. To fully support said
applications, the runtime must be able to interpret the options and pass them properly to the
application.

If the runtime must support an option whose flag conflicts with one of the base script’s options, it
must provide a unique flag instead. For example, if mytestapp supportsa —e flag that must be
exposed to the user, it must be renamed to something that does not conflict with the base script’s
options, such as -E.

Listing Supported Options

The base script provides a method that derived scripts can override to return a list of dicts
containing metadata describing the supported options. Since the base script uses Python’s argparse
module for processing supported options, the di cts may contain the following fields (in alphabetical
order):

- action: the action to take when this option is specified. This is mostly pertinent to Boolean
flags, whose presence indicates True or False values. It can also be used to provide

access to a custom action class if the developer is familiar with
argparse.ArgumentParser

- defaul t: the default value to use if the option is not specified

« dest: the variable in which to store the parsed result

- Tlag: the identifying flag, such as -e, -1, etc.

- help: the message to print next to the flag in the ——help listing

- metavar: the pattern used to indicate a value’s presence in the ——help listing. For
example, —e’s metavar is executable: -e executable Path to the executable to run

« name: the string used by NEAMS Workbench when listing the supported options

» nargs: the number of values expected to follow the flag

 required: indicates whether the option is required

« type: the expected data type for the option’s values currently supported: bool, Float,
int, string, stringlist

Most of these values are passed as-is to the argparse . ArgumentParser, but the following are
special cases:

« name: not supported by argparse.ArgumentParser
« type: the aforementioned list of supported values is for NEAMS Workbench; the value is

converted to the corresponding Python type before being handed off to
argparse._ArgumentParser

A-39

NEAMS Workbench User Documentation

To provide the base script with a list of supported options, the custom runtime must define the
following function:

def app_options(self):

opts =]

The following is a simple example of supporting a -V option that asks the application to print its
version and quit (if it works that way):

assuming self.print_version is a boolean field defined in the class

def app_options(self):

opts =]

opts.append({

"action": "store_true", "default": self.print_version, "dest": "print_version", "flag": "-V",
"help": "Print the version number and quit", "name": "Print Version",

"type": "bool"

)

Passing Supported Options to the Application
Supporting options is the first step, but now the options need to be passed to the executable. The
custom runtime must define the following function to do so:

def run_args(self, options):

args =]

The following example maps the -V flag from the previous example to the executable’s
corresponding option:

def run_args(self, options):

build argument list args =[]

print version info if self.print_version:

args.append(**-V'")

The following example maps the -V flag from the previous example to the executable’s
corresponding option if it is not -V:

A-40

NEAMS Workbench User Documentation

def run_args(self, options):

build argument list args =[]

print version info if self.print_version:

args.append("--print-version-and-quit")

return args

Testing

Testing is paramount. New features require new tests to be added. Execution of tests is performed by
invoking the following command at the root directory: python -m unittest discover -v

Output Post-Processor Support

The modeling and simulation toolsets that Workbench is in development to support can produce a
large amount of output, from general debugging information, to progress/status updates, to the final
result of all the calculations the codes perform. Some of this output is in files that are easily accessible
via stable APIs, like HDF5, but more often it is found in mixed-format (free form, tabular, etc.) text
files with no simple means of extracting/visualizing. This is where Workbench’s post-processing
capabilities aim to fill the gap.

Users of these codes often are familiar with scripting tools/techniques to scrape the output and
reformat/import it to something like Excel for plotting. Workbench has the ability to run the same
sequence of commands the user would write in this situation, process the results, and create/open a
resultant plot file. The commands to run, the information needed to know how to process the results,
and metadata used to automatically associate these commands with given text files are stored in files
and available to the user within Workbench.

These post-processor, * _wbp, files are expected to be in the SON format, with fields describing the
following:

« Text post-processors
« Conditionally enabling post-processors
« Organizing post-processors for use in Workbench

The following is an example post-processor file:
% only files with the following extensions are supported

extensions = [out]

A-41

NEAMS Workbench User Documentation

% file must contain this grep-supported pattern

filter_pattern = "best estimate system k-eff"

% place these processors in this organizational 'hierarchy’
hierarchies = ['SCALE/KENQ"]

% processor to run against a given file
processor("Best Estimate K-Effective + Uncertainty”) {
% delimiter to use when parsing the output

delimiter=""

% logic to extract data from the file
logic = """${GREP} "best estimate system k-eff" ${CURRENT_FILE} | ${AWK} "{print NR, $6,

% plot series to create
scatter("Best Estimate K-Effective + Uncertainty") {
% series keys (x-values)

keys = "a:a"

% series values (y-values)

values = "b:b"

% series value uncertainties (+/- unc)
values_uncertainty = "c:c"

}

}

Post-processor files provided by Workbench are expected to be found here:
/path/to/install/etc/processors/*.whbp

Users may create their own post-processor files to be used the next time Workbench is launched.
Those files are expected to be found here:
/path/to/user/home/ .workbench/6.3/processors/* _wbp

Text Post-Processors

Post-processor files contain a list of processors that define a command to execute and how to
process the results of the command. The first thing to note is the processor must be named. The user
must provide a unique identifying string as follows: processor (*’'Processor name'). This
name is used to identify the post-processor in Workbench so the user knows which processors are
available.

A-42

NEAMS Workbench User Documentation

Note

When creating custom post-processors, if the name is identical to one deployed with Workbench,
then the user-defined post-processor overrides the other. If the user creates multiple post-processors
with the same name, the last-seen post-processor is used:

1: processor(*“Processor 1") {...}
12: processor("Processor 2) {...}

22 nrnracenr("Drnrocenr 1" £ L

In this example, there are two Processor 1s, on lines 1 and 12. The one on line 1 is discarded,
replaced by the one on line 23.

Post-Processor Commands

Each processor must provide a series of commands to execute on a given text file to extract
pertinent information in a delimiter-separated-value format. A simple example might be to use grep
to search for a line that contains a pair of numbers, and awk to format the line. The logic might
look like this:

grep "x-y" ${CURRENT_FILE} | awk "{print $2, $3}"

Note
${CURRENT_FILE} is defined to be the text file against which a processor is executed

Assuming that the target file contains x-y 1 5, the output of this command would be 1 5.

delimiter specifies the field delimiter to use when splitting the logic output into columns. In
the above example, del imiter should have been a single space. delimiter may be a regular
expression matching the syntax of a highlighter rule’s pattern.

Expected Command Output

The output of a post-processor command is expected to be like an Excel spreadsheet: a two-
dimensional matrix of cells, populated with the textual output of the command. When extracting the
data to create plot series, the cells can be referenced using an Excel-like pattern: [First
column][first row]:[last column][last row], where columns are letters and rows
are numbers:

Al: column 1, row 1
D17: column 4, row 17

C7:F10: column 3, row 7, through column 6, row 10

When selecting a whole row, the pattern does not need to specify the column (and vice versa):
E:E: column 5, all rows

3:3: all columns, row 3

A-43

NEAMS Workbench User Documentation

One difference from an Excel spreadsheet is that the processor cell patterns have the ability to specify
a wildcard, ?. This allows the user to select a range of cells without having to know the start or end
row and/or column:

A1:A?: column 1, row 1, through column 1, last row (equivalent to A:A) C7:?10: column 6, row 7,
through last column, row 10

B?:E5: column 2, first row, through column 5, row 5 (equivalent to B1:E5)
?2:D6: first column, row 2, through column 4, row 6 (equivalent to A2:D6)

G8:??: column 7, row 8, through last column, last row (the end of the spreadsheet)

Plot Series

The end-goal of the post-processor capability is to automatically generate a plot of the data extracted
by logic. These plots will either be bar, color map, line, or scatter plots. One logic can be used to
create any number of series:

processor("Processor 1") { delimiter =
logic = 'grep "x-y" ${CURRENT_FILE} | awk "{print $2, $3}"

bar("Bar series name") {...} colormap("Color map series name") {...} line("Line series name") {...}
scatter("Scatter series name") {...}

}

Bar Series

A bar series is a typical bar chart with categories along the x-axis and bars extending along the y-axis.
The following is an example of a bar series:

bar("Bar series name") { key_labels ="a:a" keys = "b:b"

values = "c:c"

}
key_labels is a cell-selection pattern that specifies which cells should contain the categories’
names. In this example, the categories’ labels should be in the first column.

keys specifies which cells should contain the categories” keys (how to order the bars on the chart).
In this example, the categories’ keys should be in the second column.

values specifies which cells should contain the categories’ values. In this example, the categories’
values should be in the third column.

A-44

NEAMS Workbench User Documentation

Note The above example could be used with the following “spreadsheet” data to create a bar
series:

Barl 1l 1
Bar2 2 3
Bar3 3 5
Bar4 4 7
Bar55 5
Bar6 6 3
Bar7 7 1

It would look something like this:

Color Map Series

A colormap series is a two-dimensional matrix of color-coded cells. Data can be read in
rectangular or lower-triangular matrix forms. Cell colors are selected automatically based on the cells’
values relative to the range of values found in the matrix. For example, if the color scale ranges from
red (low) to yellow (high), the minimum value would map to red, the maximum value would map to
yellow, and a value in the middle might map to orange.

The following is an example of acolormap series:

colormap("Color map series hame") { data = "b2:??"
key labels ="b1:?1"

type = "lower_triangular" value_labels = "a2:a?"

}

data specifies which cells should contain the matrix data. In this example, the data should start in
row 2, column B (2), and extend to the bottom right corner.

key_labels specifies which cells should contain the labels for the columns. In this example, the
labels should be in the first row.

type specifies whether the matrix should be read as a full (rectangular) matrix or a lower-triangular
matrix. It is assumed to be a full matrix if this field is not present.

value_labels specifies which cells should contain the labels for the rows. In this example, the
labels should be in the first column, starting with the second row.

A-45

NEAMS Workbench User Documentation

Note

The above example could be used with the following “spreadsheet” data to create a color map series:

rowl 1

row2 0.75 1
row3 0.5 0.25 1
row4 0.25 0.125 0.0625

1
row5 0 -0.25 -0.5 - 1
0.75

It will look something like this:

......

Line Series

A Line series is a typical line plot with a collection of key-value (x-y) pairs with lines connecting
them. The keys/values can also have associated uncertainty values; if provided, the number of
keys/values/respective uncertainties should match. The following is an example of a I'ine series:

line("Line series name") { keys = "a:a" keys_uncertainty = "b:b" values = "c:c" values_uncertainty =
"d:d"
keys specifies which cells should contain the keys (x-coordinate) for the data points.

keys_uncertainty specifies which cells should contain the keys’ uncertainties. This field is
optional.

keys_uncertainty_high specifies which cells should contain the keys’ upper-bound
uncertainties. This field is optional.

keys uncertainty low specifies which cells should contain the keys"” lower-bound
uncertainties. This field is optional.

values specifies which cells should contain the values (y-coordinate) for the data points.

A-46

NEAMS Workbench User Documentation

values_uncertainty specifies which cells should contain the values’ uncertainties. This field is
optional.

values_uncertainty_high specifies which cells should contain the values’ upper-bound
uncertainties. This field is optional.

values_uncertainty_low specifies which cells should contain the values’ lower-bound
uncertainties. This field is optional.
Note

Currently, there is no restriction on whether keys _uncertainty can be specified at the same time
as keys_uncertainty low and keys uncertainty high (similarly, with values¥*). *low
and *high currently take precedence, but this is not guaranteed to always be the case.

20.29
30.38
40.47
50.56
60.45
70.34
80.23
90.12

©O O O O O O o O
N WS O WOWDN P

Note

The above example could be used with the following “spreadsheet” data to
create a line series:

101100
10010.1

It will Innk ecamethinn like thig:

A-47

NEAMS Workbench User Documentation

Scatter Series

A scatter series is like a line series, except the lines are hidden and the data points are visible.

Note
The above line series will look something like this if it were a scatter series:

Conditionally Enabling Post-Processors

By default, all post-processors are enabled and available for any text file the user may have open in
Workbench. This may not always be desirable, particularly as the list of available post-processors
grows. The following fields are provided to assist with paring down the list to a more manageable
(and contextually relevant) set for a given file:

- extensions: a list of file extensions by which to coarsely filter the following post-
processors

- Filter_pattern: a case-sensitive, grep-supported regular expression by which to more
finely filter the following post-processors

These fields can appear more than once in a post-processor file. Any post-processors following one of
these fields will be filtered according to the extensions or filter_pattern specified until
another is seen. The following will demonstrate this feature:

processor("Processor 1") {...}

extensions = [out] filter_pattern = "first pattern” processor("Processor 2") {...}

filter_pattern = "(seco|2)nd pattern” processor("Processor 3") {...}

extensions = [txt] processor("Processor 4") {...}

extensions = [] filter_pattern = "

processor("Processor 5") {...}

A-48

NEAMS Workbench User Documentation

« Processor 1 will be enabled for all text files since there are no preceding filters
* Processor 2 isonly enabled for *_.out files that contain First pattern
» Processor 3 is only enabled for *.out files that contain second pattern or 2nd pattern
« Processor 4 is only enabled for *.txt files that contain second pattern or 2nd pattern
« Processor 5 will be enabled for all text files since extensions and
Tilter_pattern are "reset" with an empty list and empty string, respectively

Organizing Post-Processors for Use in Workbench

By default, all post-processors are grouped together in a single list where the user may select one to be
run against a given text file. As the number of available post-processors grows, this list will become
unwieldy, so it would be convenient to be able to organize post-processors according to
context/relevance. The hierarchies field does just this.

When the user is viewing a text file, there is a menu containing the list of available processors (it is
disabled if there are none). hierarchies allows the user to specify a list of “paths” under which
to place the following processors in the menu. The following will demonstrate this feature:

processor("Processor 1") {...}

processor("Processor 2") {...}

hierarchies = ["Group 1"] processor("Processor 3") {...}

hierarchies = ["Group 1/Subgroup 1", "Group 2"] processor("Processor 4") {...}

hierarchies = ["Group 1/Subgroup 1", "Group 2/Subgroup 1"] processor("Processor 5) {...}

The following is an approximate visual representation of the resultant menu structure:
Processors

Processor 1

Processor 2

Group 1

Processor 3

Subgroup 1

Processor 4

Processor 5

Group 2

Group 1 andGroup 2 aresubmenus of the main Processors menu, and each has its own
submenu, Subgroup 1.

A-49

NEAMS Workbench User Documentation

Configurable Views

Workbench allows the user to configure open views in a way only restricted by the amount of screen
estate available. This allows a Workbench to be configured to a layout most suitable to the user.

LEX) - ECALE
i Egt Vew Fun Hop

fnmi Sms femw ComUS Pwe | Ca Gy e me fee

g Foeoen o, 0. | s) P Sm D s doewore B G0ALER [R e s
Ml n, > 3 i Bl 150.0000 zoor E

Ted Fod) e lifgl B e
Mtmeial & ot B 15 1315 reem .

ey {1 M1A T QTR O (HOUR ARG L TR, G | sasbigeonetryiund i e

iiﬁﬁ%ﬁ%iﬁﬁ%ﬂii!ﬂﬁiiiﬁﬁ% g

Split Views

This section discusses splitting views to the top, bottom, left, or right, and resizing splits.

It is often desirable to view multiple files at the same time. This is easily done by dragging and
dropping a tab to the top, bottom, left, or right of the area to be split.

Steps:

1. Drag by left-clicking and holding the tab while moving the mouse.

2. Drag the tab to the top, bottom, left, or right, and drop by releasing the left mouse button.
Note

This panel in which the drag is occurring will provide some visual feedback by highlighting the region
where the split will occur.

A-50

NEAMS Workbench User Documentation

Split Top

Left-click the tab in the tab group where a new split is desired, and drag to the middle of the top
border of the section of the tab where the split is desired.

LN)
Fio Edt View Fun Hop
Rl Gave e ComMd Prea | Gu Cipy Pas | ek Fen | Fed

M Fein S W e
Mazeral B |1.0000x 200m

- TALE

Crgn #.0.0

document B SCAER? B Mo e

’

| a2 222 R E s e

A-51

NEAMS Workbench User Documentation

Split Bottom

Left-click the tab from the tab group where a new split is desired, and drag to the middle of the
bottom border of the section of the tab where the split is desired.

= SCALE

‘ace
Fio Edt View Run Help
Reiad Saw faweas Clossisd Prine G Copy Pae i

-0ALE

Féa Edt View Fun oo

[l -

i

o P PP

A-52

NEAMS Workbench User Documentation

Split Left

Left-click the tab from the tab group where a new split is desired, and drag to the middle of the left
border of the section of the tab where the split is desired.

ace - SCALE
Fio Edt Yiew Run Hop
P G davean Gowwn P | G Gy P | s Pen | P

[T e

Matosal B |1 0000 z0cm

LN] -SOALE
Fia Edt View Fun Holp

fonad o feewsi e PEN | S8 Giy P Use P

o
M PO, 0D, 0, e e - e
Matorial B 10050 coom .

b8 GSHAEGE 2N
5 vaMmEer IO

EE-ER

EE

A-53

NEAMS Workbench User Documentation

Split Right

Left-click the tab from the tab group where a new split is desired, and drag to the middle of the right
border of the section of the tab where the split is desired.

== SCALE

‘ane
Fio Edt View Run Holp

ane - SOALE
Fie Edt View Run Help
sl Sows sy DloMus S cn o —

T — TR

i

A-54

NEAMS Workbench User Documentation

Split Resizing

Resizing splits can often be desired and is easily done. Between each split resides a split widget; left-
click this widget and drag it in the direction of the desired resize.

Data Plotting

Workbench provides data plotting capabilities for many of the plot formats produced by SCALE. The
plot interface is intended to be fast, unobtrusive, and intuitive, but it is still under development.

2D Plot Interface Controls

The 2D Plot interface allows zooming, panning, and other interactions expected from a 2D plotting
package, as detailed below. Most data produced by SCALE is 2D graph data, as seen above;
covariance and correlation matrices can also be visualized via this plot interface, as seen below.
Zooming

Zooming is performed via the mouse scroll wheel. Scrolling down, zooms in, and scrolling up, zooms
out. Additionally, right clicking on the plot will present a context menu which includes the item “Fit
graph,” which will zoom the plot to the extents of the data. Upon mousing over the data, an overlay
item displays the data coordinate under the mouse. As illustrated above, at the point under the mouse,
the generation run and ke are 79.5105 and 0.828436, respectively. Clicking a graph on a plot will
highlight the graph data and update the hover item with the graph’s name.

Panning

Panning is performed by conducting a mouse click and drag. During the mouse drag, the plot will
automatically update. Additionally, right clicking on the plot will present a context menu that includes
the item “Fit graph” which will zoom the plot to the extents of the data.

Saving

The plot interface allows saving the current plot view in the portable document format (PDF),
portable network graphics (PNG) format, the joint photographic expert group (JPG) image format, or
the SCALE plot [interactive] format (SPF). SPF is only available for 2D graph plots, but it provides a
mechanism for persisting configured plot views and property settings.

Plot Properties

Plot properties are accessible via right clicking the plot and selecting “Plot options.”

Chart

This facilitates toggling the plot wide axis visibility and plot title.

AXxis

This function facilitates configuring the plot axis label, scale, range, and grid lines.

Graph

Graph facilitates configuring a specific graph’s name, line style, color, weight, scatter style, pen, and
error bar visibility.

A-55

NEAMS Workbench User Documentation

Legend
Legend facilitates changing legend visibility, font family, size, and look (bold, italic, underlined, etc.).
Plot Tips

This is a list of features that are not immediately visible, but typically hidden in context menus or key
combinations.

Plottable Navigation Items

When a file is opened, any plottable item is represented in the navigation panel with a navigation item
that includes a plot icon. Double clicking this navigation item will plot the data represented by the
navigation item.

Adding a Graph to an Existing Plot

You can add data as a graph to an existing plot by finding the data item in the navigation panel and
right clicking the item to acquire the its context menu. From this context menu, you can select “New
Plot,” or if any other plots with matching axis names are present, “Add graph to ‘some other plot,””
where “some other plot” is the existing plot’s title.

Copying the Plot’s Data Table To copy the presented plot data to Excel, copy all cells. To select the
cells, right click the table and left click “Select All,” and subsequently, “Copy” or clicking the upper
left most cell and right clicking the selection and selecting “Copy.” After copying the table, paste into
Excel as usual.

A-56

NEAMS Workbench User Documentation

Supported Plot Formats
AMPX Continuous Energy Cross Sections

SCALE’s Continuous Energy (SCE) cross section data can be plotted by selecting File -> Open SCE
Library.... Navigate to the SCALE data directory and select ce_v*_endf.xml files for plotting (e.g.,
ce_v7.1_endf.xml). Upon selection, a few moments may be needed to load the header information,
after which the navigation panel will list the nuclides available for inspection. Double left clicking the
desired nuclide, temperature, and reaction will display a plot of the cross section over energy.

AMPX Multigroup Cross Sections

SCALE’s Multigroup cross section data can be plotted by selecting File -> Open multigroup library....
Navigate to the SCALE data directory and select scale.rev*.xn* files for plotting (e.g.,
scale.rev04.xn252v7.1). Upon selection, a few moments may be needed to load the information after
which the navigation panel will list the nuclides available for inspection. Double left clicking the
desired nuclide, radiation (neutron or gamma), reaction, or transfer array with temperature and
reaction, will display the plot.

ORIGEN (F71) Concentration Plotting

ORIGEN concentration files (F71) can be opened when the file has the *.f71 extension. Select File ->
Open... and select any file with the *.f71 extension.

ORIGEN Opus (PLT) Concentration and Spectra Plotting

Opus plot files (PLT) can be opened when the file has the *.plt extension. Select File -> Open... and
select any file with the *.plt extension.

ORIGEN Gamma Line Plotting

SCALE’s gamma data can be plotted by selecting File -> Open ORIGEN gamma data.... Navigate to
the SCALE data directory and select origen.rev*.*gam.data file for plotting (e.g.,
origen.rev04.mpdkxgam.data) typically inside the origen_data directory within the SCALE data
directory. Once the data are loaded, double left clicking the nuclide data will create a new plot.

Ptolemy Plot (PTP) General 2D Plotting

Ptolemy plot files (PTP) can be opened when the file has the *.ptp extension. Select File -> Open...
and select any file with the *.ptp extension. Double clicking the document navigation item will create
a plot with all available graphs plotted. Alternatively, double left clicking a single graph item create a
new plot of just that data.

SCALE Plot Format (SPF) General 2D Plotting

SCALE Plot Format (SPF) can be opened when the file has the *.spf extension. Select File -> Open...
and select any file with the *.spf extension. Double clicking the document navigation item will create
a plot with all available graphs plotted. Alternatively, double left clicking a single graph item create a
new plot of just that data.

Covariance (COVERX) Matrix Plotting
SCALE’s covariance data can be plotted by selecting File -> Open covariance library.... Navigate to
the SCALE data directory and select scale.rev*.*groupcov files for plotting (e.g.,

scale.rev08.56groupcov?.1). Once the data are loaded, double left click a nuclide-reaction to nuclide-

A-57

NEAMS Workbench User Documentation

reaction item from the navigation panel, which will display the correlation coefficient matrix.
Alternatively, right clicking on the desired navigation item will display a context menu where you can
select correlation coefficient matrix, covariance matrix, New plot - std dev by group, or New plot - std
dev by energy.

Sensitivity Data

Sensitivity Data Files (sdf) can be opened when the file has the *.sdf extension. Select File -> Open...
and select any file with the *.sdf extension.

Using Vislt

As a result of collaboration with Berkeley Lab, the Vislt data visualization tool has been embedded
into Workbench. This provides a robust set of 2D and 3D data visualization capabilities not
previously available. If Workbench is built with Vislt support, then the standard Vislt interface will
be embedded in (docked to) the right side of Workbench’s main window. It can be docked to all four
sides or popped out as a free-floating window.

Note

Vislt works with a fixed maximum number of rendering windows, currently set to 16 in Workbench. To
ensure at least one rendering window exists, one window will be reserved and not used, leaving only
15 tabs available at a time.

To start a visualization workflow with Vislt, select File - New Visualization to create a
new tab that is dedicated to displaying Vislt-supported content. Once the tab is created, Vislt is able to
use the tab to visualize data. At this point, all Vislt-related functionality is provided by Vislt’s own
interface. For more information on how to use Vislt, please see their documentation at the Vislt
website (http://visit.linl.gov).

A-58

	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	1. INTRODUCTION
	2. MULTI-FIDELITY PHYSICS
	3. USER INTERFACE
	4. INPUT CONFIRMATION AND ANALYSIS TEMPLATES
	4.1 HIERARCHICAL INPUT VALIDATION ENGINE (HIVE)
	4.2 HIERARCHICAL INPUT TEMPLATE EXPANSION ENGINE (HALITE)

	5. VISUALIZATION TOOLS
	5.1 VISIT
	5.2 EXTENDABLE PLOTTING

	6. RUNTIME ENVIRONMENT
	7. CODE INTEGRATION
	7.1 MOOSE APPLICATIONS
	7.2 DAKOTA
	7.3 ARGONNE REACTOR CODES
	7.4 SCALE CODE SYSTEM
	7.5 CODE INTEGRATION

	8. AVAILABILITY
	9. CONCLUSIONS
	10. ACKNOWLEDGMENTS
	11. REFERENCES
	APPENDIX A. NEAMS WORKBENCH 1.0 BETA USER DOCUMENTATION

	APPENDIX A. NEAMS WORKBENCH 1.0 BETA USER DOCUMENTATION
	Appendix Table of Contents
	NEAMS Workbench User Documentation
	Requirements
	Supported Operating Systems
	System Requirements
	Features
	Settings
	Environment
	Text Editor
	Comment Foreground
	Current Line Highlight
	Font
	SCALE Input File Extensions
	String Foreground
	Configurations
	Application Environment
	Application Options
	Run Environment
	Application Integration
	Input Support
	Column Selection
	Example Using Function
	Example Using Basic Operands
	Input Component Creation
	Validating Input
	Input Navigation
	Saving Input
	Executing Input
	Geometry Visualization
	Getting Started
	Atlas Geometry Package
	Atlas Views
	Rendering Modes
	Material
	Material + Outline
	Outline
	Overlay
	Overlay + Boundaries
	Origin Crosshairs
	Panning
	Recentering
	Zooming
	Zoom-to-Fit
	Grammar Support
	Input Parser, Schema, and Validator
	Input Parser
	Input Schema
	Input Validator
	Templates for Auto-Completion
	Syntax Highlighting
	Highlighter File
	Other Fields
	Runtime Requirements
	Runtime Environment Basics
	Base Runtime Environment workbench.py
	Execution Stages
	Pre-run
	Run
	Post-run
	Creating a Runtime Environment (Extending workbench.py)
	Application Name
	Supporting Application Options
	Listing Supported Options
	Passing Supported Options to the Application
	Testing
	Output Post-Processor Support
	Text Post-Processors
	Post-Processor Commands
	Expected Command Output
	Plot Series
	Bar Series
	Color Map Series
	Line Series
	Scatter Series
	Conditionally Enabling Post-Processors
	Organizing Post-Processors for Use in Workbench
	Configurable Views
	Split Views
	Split Top
	Split Bottom
	Split Left
	Split Right
	Split Resizing
	Data Plotting
	2D Plot Interface Controls
	Zooming
	Panning
	Saving
	Plot Properties
	Chart
	Axis
	Graph
	Legend
	Plot Tips
	Plottable Navigation Items
	Adding a Graph to an Existing Plot
	Supported Plot Formats
	AMPX Continuous Energy Cross Sections
	AMPX Multigroup Cross Sections
	ORIGEN (F71) Concentration Plotting
	ORIGEN Opus (PLT) Concentration and Spectra Plotting
	ORIGEN Gamma Line Plotting
	Ptolemy Plot (PTP) General 2D Plotting
	SCALE Plot Format (SPF) General 2D Plotting
	Covariance (COVERX) Matrix Plotting
	Sensitivity Data
	Using VisIt

