ORNL/TM-2017/698

Workbench Analysis Sequence
Processor

Robert A. Lefebvre
Brandon R. Langley
Jordan P. Lefebvre

October 2017

Approved for public release.
Distribution is unlimited.

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE US DEPARTMENT OF ENERGY

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

National Technical Information Service
5285 Port Royal Road

Springfield, VA 22161

Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639

Fax 703-605-6900

E-mail info@ntis.gov

Website http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

Office of Scientific and Technical Information
PO Box 62

Oak Ridge, TN 37831

Telephone 865-576-8401

Fax 865-576-5728

E-mail reports@osti.gov

Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

ORNL/TM-2017/698

Reactor and Nuclear Systems Division

WORKBENCH ANALYSIS SEQUENCE PROCESSOR

Robert A. Lefebvre
Brandon R. Langley
Jordan P. Lefebvre

Date Published: October 2017

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, TN 37831-6283
managed by
UT-BATTELLE, LLC
for the
US DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725

CONTENTS

CONTENTS .ttt ettt h et ettt ea et e e bt s et en e bt e bt e et et e e bt e st et e et e eseemee bt ebeeneeeeeneeneennes iii
ABSTRACT ..ttt ettt h ettt e a ettt s bt ea e et e e bt eh e em e e bt eh e e et et e bt e h e et et e ebe e st e beeteeaeentens 1
L. COMPONENTS .ttt ettt a e e b e e h e s et e bt st e et eb e e bt eme et e sbeeme et e ebe s bt eneenbeebeeneenes 1
2. GETTING STARTED ...ttt ettt ettt ettt sttt be st et e bt e bt e testesaeeneens 3
B B A STe 1011 (=) 1111 1SRRI 3

2.2 Code Configuration and Compilation............ccceeruieriiieriiriiie ettt ee e 3

3. CORE PACKAGE ...ttt sttt h e e et ettt e b et e st e sb e em et e bt eeeeneenbeebeeneenee 5
Bil COTE PATTS ..ttt ettt ettt e e et e ettt e e e bttt e e bt e e e s eabe e e e s abete e e aab e e e s eabtee e ebtee e eanbaeeeebeeas 5

3.2 SHING POOL ..ottt ettt ettt e et e et e et e e nteeenteeenteeenreenn 5

3.3 TOKEN POOL ...ttt ettt et ettt ettt ettt et b e en 6

3.4 Tree NOAE POOL.....ooiiiiiiiiie ettt et et 6

T T 1<) 0] (=] 1S O TR PP RPSPR 7

4. EXPRESSION ENGINEooiiiiiiiiiee ettt sttt sttt ettt ente e eneens 8
4.1 Arithmetic and Algebraic OPEratorS.........cccuierererirerieeeieeeiieerieeeree et e ebeesbeesteeeeeeenaeesnseesnnes 8

4.2 Relational OPETatorscceeriieiiiieeiieeiie et esee e et eeteeebeesteesteeeteeesseeesnseesnseesnseesseeaseeesnseesnses 8

4.3 BOOICAN OPETALOTS ...eeeuiiieiiieriiieetieeiteeteeeetteesteeeseteessteesbeesseeaseeansaeasseeesnseesnseesnseesseessseesnseesnses 9

4.4 Default Variables ..ot 9

4.5 Default FUNCHIONSootiiiiiiiiiiietetetee ettt ettt 9

4.6 SPECIAl FUNCHONSeiiiiiiiiiecie ettt et et e st e et e et e e seeessteesnseesnteesnseesnneeeseeenns 10

AT ATTAY ACCESS .eteiiuiiiieieiiite ettt et ee ettt ettt e sttt e sttt e s aabt et e s bttt e s bbbt e s abb e e e e abt e e e ab bt e e eabbeeeeabreeeas 10

5. HIERARCHICAL INPUT VALIDATION ENGINE (HIVE)......cccceoiiirieiieiieieeeeeeeeeeeeee e 11
5.1 Input Validation Rules SUMMATIY.........ccceooiiiiiiiiiiiiiie ettt 11

5.2 Input Validation Details and EXamplescccoooiriiiiiiiiiiiiciereeee e s 12
5.2.1 Miscellaneous Details and EXamplescccoevviiiiieiiieiiieeieeieece e 12

5.2.2 MinOccurs Details and EXampPIes.........cocvieiiiiiiiiiiieiieeieeeee e 14

5.2.3 MaxOccurs Details and EXampPles........cocvveriiiriieiiieiiieiieeieesie et 17

5.2.4 ValType Details and EXamples.........cccveeeiieriiiiiiiiiieciieeieeee et 21

5.2.5 ValEnums Details and EXampPles.......ccccecvveiiiiiiiiiiieiieeieee e 22

5.2.6 MinVallnc Details and EXamplesccccveeiiiiriiiiiieiiieiieeeere et 24

5.2.7 MaxVallnc Details and EXamplescccceeeriiiriiiiiieiiieeieeeese et 27

5.2.8 MinValExc Details and EXamples........ccccveiiiiriiiiiieiiieeieeeere e 31

5.2.9 MaxValExc Details and EXamPpPlescceeviirriiiiiiieiiieiieeieese et 34

5.2.10 Existsln Details and EXampPIescccveeriieiiiiiiieiieecieeiteee et 38

5.2.11 NotExistsIn Details and EXamplesccoeviiiriiiiiieiiieeieeieeeee e 45

5.2.12 SumOver Details and EXamplescccceciieiiiiiiiiiiieiiie et 50

5.2.13 SumOverGroup Details and EXamplescccoociiiiiiiiieniiiniiieieeceeceeeiee e 51

5.2.14 IncreaseOver Details and EXamplesccocoveiiiiiiieiiiieiieeieee et 56

5.2.15 DecreaseOver Details and EXamples..........occveriiiiiieiiiieniiieieeieeceese e 58

5.2.16 ChildAtMostOne Details and EXamples.........coocveviieiiiieiiiieiieeieecieeceeeee e 60

5.2.17 ChildExactlyOne Details and EXamples.........ccccveviieiiieiiiiiiiieiieceeeceeeee e 62

5.2.18 ChildAtLeastOne Details and EXamplescccveviieriiieriiiiiieeieeeieesieeeiee e 64

5.2.19 ChildCountEqual Details and EXamples..........cccceeveiieriiieriiiiiieeieerieeseeeiee e 66

5.2.20 ChildUniqueness Details and EXamplescccccveviieriieiiiiiiieenieeceeceeeee e 69

5.3 Input ASSIStaNCe DELaIlS.......c.ceeiuiieiiieiiieeiie e et e sabeesens 72
5.3.1 MaxOccurs Assistance Detailscccceeveerienieniiniiiiiieeeeee e 72

5.3.2 ChildAtMostOne Assistance Detailsccceeviiiriieiiieiieeie e 72

5.3.3 ChildExactlyOne Assistance Detailscccceeviieriieiiieiiieeieeeereese e 72

iii

10.

5.3.4 ValEnums AsSSIiStance DetailSooooiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 72

5.3.5 ExistsIn Assistance DetailS......c..cooeeiiiriiniiniiniiniiiieeeeee e 73
5.3.6 ValType Assistance DetailS........ccccveeeuieeriiiniiieniiecieeceeee et 73
5.3.7 InputTmpl AssiStance Details.......ccccccieeiiieiiiiiiiiecieecee e 73
5.3.8 InputName AsSistance DetailS........cccccveriiiiiiiiiiiieiiieciieee e 73
5.3.9 InputType AssiStance DeEtailsccccceeriiiriiiiiiiieiiieciee et 73
5.3.10 InputVariants Assistance DetailS.........ccccceeriiiriiiiiiiieiiieeie e 74
5.3.11 InputDefault Assistance DetailS.........cccceceiriiiiriiiiiiieiieeie e 74
5.3.12 Description AssSistance Detailscceveierriiiiiiieiiieiiie et 74
SEQUENCE INPUT RETRIEVAL ENGINE (SIREN) ...ccutiiiiiiiiiieiesiee e 75
6.1 SElECtING INOGES ...evieiiieeiie ettt ettt ettt e st e et e et e esaee e seeessseesnbeesnseesaseeanseeensaeenseesnseesnses 75
6.1.1 Selection EXamPIES.......ceeeriiiiiieiiieiiie ettt et et e site e seteesnte e s teesneeenee e 75
0.1.2 PIEAICAESeetiiiieiieiieieeeee ettt st 75
6.1.3 Selecting UnKnowWn NOAES.........coocuieriieriiiieiieerieesieesteeeiteesieeesiteeseteeseeesbeesneeenseeenes 76
STANDARD OBJECT NOTATION (SON)....ceiiiiiieiiiietieierie sttt sttt 77
A B NG =T Y41 L (USRS 77
7.2 HIETarchy via ODJECLS ...ccveieiieiiiieeiie ettt etee e tee ettt ettt et e set e e s ete e s beesaseeeseeensaeenseesnseennnes 77
R TN 4 ;) £ o) D L USRS 78
DEFINITION DRIVEN INTERPRETER (DDI) ..c..coitiiiiiiiiieieeeese et 80
HIERARCHIAL INPUT TEMPLATE EXPANSION ENGINE (HALITE)....cccccvevieiieiieieeieeens 82
9.1 Template Evaluation SUMMATY.........ccccieriieiiiieeiieeiee ettt et eseaeesteesnteesneeaseessaeennseesnsessnses 82
9.2 Attributes and EXPIESSIONSccveeriieriieriieiiieeiieeieeeetee et eseteeseeeessteesbeesseesseessaeenseesnseesnses 83
0.2.1 SHlent AIITDULES ..coveeiiiiiiieiieereee ettt sttt s 83
0.2.2 Optional AIIDULESeeecuiiiiiieiiieiie ettt ettt e st ee et e e seaeeseteesnteesbeessaeenaeenes 84
0.2.3 AHIIDULE Patternscooviiiiiiiiiieiee e 84
9.2.4 Example Atribute Patterncocoiiiiiiiiiiieiieee ettt 84
0.2.5 EXPIESSIONS ..euuvieiurieeiiieetieesteeeseteesteesteesteeesseeessseessseesnseesnseesaseeessseessseesnsessnseessseessseeenns 85
9.2.6 Example EXpression Patterns........cccoccieiiiieiiieniieciie ettt 85
L2 T o) 01 F: 111 0TSSP 85
LR N TeTe) o TeTa BN 1 Lo 11 SRS 90
9.4.1 ODbject SCOPEd AIIIDULE.ieieiieiieeeiie ettt et ee et e sete e saeesneeesbeesseeenseeenes 90
0.4.2 Array ScOPed ATIIDULEccuviiiiieiiieeiie ettt e et ste e sete e s beesneeenaeenes 90
L2 T 1 T 00 o) o RSP 91
0.5.1 EXAMPIE DALA....cuiiiiiiiiiii ettt et e ste e s teeenaeenae e 91
9.5.2 Parameterized File IMPOTtc.coocuiiiiiieiiiieie ettt 92
9.6 Conditional BIOCKS.....cc.ciiiiiiiiiiiiiiii ettt 92
COMMAND LINE UTILITIES ...ttt sttt st 94
10.1 File LiStING ULIITIES ..eeuveeeiieriieeiiieeite et eieeeite ettt et e steesteesteeeteeseseeesnaeesnseesnseesnseesnseeennseenns 94
10.2 File Component Selection ULIIITIESc..eerieerieerieeeieeeieeeieeeieeeieeesete e st e steeseeesteesseeesnneenes 95
10.3 XML UBIEI@S 1ottt ettt ettt ettt sttt et b e e e et be et e st e e bt emeebesbeeseeneebeeneeneenes 96
10.4 File Validation UIIEIES.ceoueirtiireineeieeieeeeieeieecee ettt ettt et 97
10.5 The HierarchAL Input Template Expansion (HALITE) Enginecc.cccoccevveviiiiniinninncnncne 97
10.6 Schema Skeleton Creation UtIIEY.......cccueiirieiiiieiiieeiee et 97

v

ABSTRACT

The Workbench Analysis Sequence Processor (WASP) was developed to streamline lexing, parsing,
access, validation, and analysis of ascii text files.

The foundation of WASP resides on the parse tree data structure, where each node in the tree represents
the syntax of the input document. Nodes can parent nodes with children. Nodes that have no children are
known as terminal or leaf nodes, and they represent tokens (string, number, delimiter, etc.) in the text file.
The fast lexical analyzer generator (flex - https://www.gnu.org/software/flex/) and GNU Bison parser
generator (https://www.gnu.org/software/bison/) are extensively used for lexing and parsing.

1. COMPONENTS

WASP is composed of the following primary components:

1. Core: the waspcore package contains most necessary data structures and interface classes needed to
interact with text files.

StringPool: a string storage optimization class where ascii data are stored in a contiguous
memory block where each string is null terminated and indexed.

TokenPool: a token/word storage optimization class where Token information (string data
via StringPool, file location) is stored. Line and column are calculated on the fly via token
file offset and file line offset.

TreeNodePool: a TreeNode storage class where TreeNode information (token, name, parent,
type, children, etc.) is stored.

Interpreter: an interface and high-level implementation class which facilitates specific
grammar, lexer, and parser state information and parse tree storage

wasp_node: enumerated token/node types used to aid in identifying context and intent.
utils: contains utility functions useful for string processing and tree visiting.
wasp_bug: contains software quality assurance and development aids that can be
preprocessed out of deployments.
. design by contract: insist, require, ensure, assert, check, remember.
. timing: 3 levels of timers for code performance monitoring. 1-3, highest to lowest.
. debug lines: set of macros that allow printing debug information to screen.

2. Expr: the waspexpr package contains lexer, parser, and evaluation logic for mathematical
expressions.

Basic mathematical operators:

. multiplication "*'

. division /'

. addition '+'

. subtraction '-'

. boolean ('<','<="'==""I=", etc.)

. exponentiation "'
Scalar variable assignment, reference, and creation: known variable can be referenced and
updated, or new variables created during expression evaluation

Mathematical functions

10.

GetPot: the waspgetpot package contains lexer, parser, and tree node view for the getpot grammar
(http://getpot.sourceforge.net/).

HIVE: the Hierarchical Input Validation Engine contains algorithms for validating a parse tree
using a document schema/definition file, the flexible scalar and referential rules - supporting

— element occurrence,

— value,

— child uniqueness and choice,

— existence,

— sum,

- predicated sum, etc.
JSON: the waspjson package contains a lexer, as well as a parser for the JSON grammar
(http://www.json.org/)
SIREN: the Sequence Input Retrieval Engine (SIREN) contains a lexer, a parser, and evaluation
logic for tree node lookup; the flexible tree node lookup mechanism supports

- absolute and relative wild-carded names and value, or
— index-predicated node path lookup

SON: the Standard Object Notation (SON) waspson package contains the lexer, parser, and tree
node view for the SON grammar; the flexible, structured input entry mechanism supports

— objects, arrays, and keyed values, as well as

— identified objects, arrays, and keyed values.
DDI: the Definition-Driven Interpreter (DDI) contains a lexer, parser, and an interpreter for the
lightweight input format.

— Hierarchical Input format with very little syntax.

HALITE - the Hierarchical Input Template Expansion engine provides a data-driven means of
expanding patterned input.

— Supports attribute and expression evaluations.

— Supports template imports.

— Supports conditional action blocks.
Utils - the wasputils package contains executable utilities for listing/viewing, selecting, validating,
and transforming WASP-supported grammars.

— List: lists paths to each file element.

— Select: allows using SIREN expression to select pieces of input.

— Valid: validates a given text file with a given document definition/schema.

— XML: translates a given text file into XML with data and location information

2. GETTING STARTED

For individuals wanting to compile the code from source, below are the tested requirements and
configurations.

2.1 REQUIREMENTS

. C/CXX compiler (See repository .gitlab-ci.yml for build configurations)
. GCC-4.8 tested on Linux or Mac OS

. LLVM-7.0.2 tested on Mac OS

. Visual Studio 2012 for Windows

. Intel 15 for Windows

. MinGW 4.8.5 for Windows

. Git 1.7+
. CMake-2.8.12.2,3.5,3.8
. Python-2.7

2.2 CODE CONFIGURATION AND COMPILATION

. Save the ssh-key in code-int.ornl.gov.

. Clone wasp git clone git@code-int.ornl.gov:lefebvre/wasp.git ~/wasp

. Change directory into wasp cd ~/wasp

e Clone TriBITS git clone https://github.com/lefebvre/TriBITS.git TriBITS TriBITS documentation
. Clone extra repos ./TriBITS/tribits/ci_support/clone extra_repos.py

. Create a build directory mkdir -p ~/build/wasp

. Change into the build cd ~/build/wasp

. Create a configuration script in ~/build/. Let’s call it ../configure.sh(linux)

#!/bin/bash
Linux bash file example
rm -rf CMake*
cmake \
-D CMAKE_BUILD_ TYPE:STRING=RELEASE \
-D wasp_ENABLE_ALL_ PACKAGES:BOOL=ON \
-D wasp_ENABLE_TESTS:BOOL=ON \
-D CMAKE_INSTALL PREFIX="pwd /install \
-G "Unix Makefiles" \
~/wasp

for example, to a script that will enable getpot

#!/bin/bash
Linux bash file example
rm -rf CMake*
cmake \
-D CMAKE_BUILD_TYPE:STRING=RELEASE \
-D wasp_ ENABLE_waspgetpot=0ON \
-D wasp_ENABLE_TESTS:BOOL=ON \
-D CMAKE_INSTALL PREFIX="pwd /install \

-G

"Unix Makefiles" \

~/wasp

Additionally, a script to enable a third part library (TPL) plugin, configure tpl.sh :

Invoke configure script in the build directory. ../configure.sh or ..\configure.bat

It is recommended that the configure script be placed in the build directory as opposed to the
build/wasp directory because it allows the deletion of the build/wasp directory without removing the

configuration script.

cmake \

-D

wasp_ENABLE_ALL_PACKAGES:BOOL=ON \
CMAKE_BUILD_TYPE:STRING=RELWITHDEBINFO \
wasp_ENABLE_INSTALL_CMAKE_CONFIG_FILES:BOOL=ON \
wasp_ENABLE_googletest:BOOL=0FF \
wasp_ENABLE_testframework:BOOL=0FF \
wasp_ENABLE_wasppy:BOOL=0FF \
wasp_ENABLE_TESTS:BOOL=0OFF \
CMAKE_INSTALL_PREFIX="pwd /install \
wasp_GENERATE_EXPORT_FILE_DEPENDENCIES:BOOL=ON \
CMAKE_C_COMPILER:STRING=gcc \
CMAKE_CXX_COMPILER:STRING=g++ \

-V o\

$*

Subsequently, invoke the script with a path to the root source:

../configure_tpl.sh /path/to/source

Lastly, due to an issue in cmake install file creation, a manual copy of the waspConfig_install.cmake is

needed:

cp waspConfig install.cmake install/lib/cmake/wasp/waspConfig.cmake

After configuration is complete, conduct the compilation via the make system available (make, NMake,

Ninja, MSBuild, etc.)

3. CORE PACKAGE

The core package of WASP provides the foundation for text processing. A primary mission of WASP is
to capture information in a manner that facilitates reconstituting a user’s text file. This information is
captured in two primary stages: lexing and parsing of the text files:

e Lexical analysis processes the text file by recognizing patterns of text and producing a token that
encapsulates information pertaining to this pattern.
e The parser recognizes patterns of tokens and constructs a parse tree for future examination.

Typically, all whitespace characters are not captured in the parse tree, as they can be deduced and
reconstituted upon request.

3.1 CORE PARTS

The primary components of wasp core are:

1. StringPool: provides contiguous string storage. All strings are stored, null-terminated, in a single
data container.

2. TokenPool: provides contiguous token storage. Tokens consist of string data, a token type, and a file
byte offset.

— Anindex is used to identify the location in the StringPool where the data reside.
— The token pool stores new line offsets.

— The file byte offset is used to compute line and column with the assistance of the new line
offset.

3. TreeNodePool: manages TreeNodes, each of which consists of a node name, type, and child indices.
— Uses StringPool for contiguous node name storage.
— Uses TokenPool to store all leaf node token information.
4. Format: utility methods for formatting values which provide a type-safe printf as needed by the
expression engine and HALITE.
5. wasp_node: central location for node and token type enumeration.
6. Object: generic type data structure to facilitate typed-data access to hierarchical data; facilitates
HALITE data-driven capabilities
7. Interpreter: base class providing boilerplate lexing and parsing logic; contains core token and node
construction logic for lexer and parser to use.

Each Pool and its subsequent Interpreter is a templated class allowing space consolidation when
application size is known. For example, if the application is to interpret files that will never be more than
65KiB, an unsigned short can be used as the template type.

3.2 STRING POOL
The string pool consists of two members: (1) a vector of chars and (2) a vector of indices indicating string

starts. This ensures that the string data consumed from a text file are reasonably maintained and that
storage size is not inflated.

In a benchmark of one application’s input—consisting of 300MB in which the document tokens’
mathematical mode was 3 characters, with a mean of 4—using std::string produces on average ~28+ byte

overhead per token, or specifically, 8 byte heap pointer, 8 byte size, 8 byte heap page header, and 8 byte
heap memory page.

In contrast, the StringPool only requires a 5 byte overhead per token, or specifically, a 4 byte index, and a
null terminating character. Using the StringPool facilitates a significant memory consolidation.

3.3 TOKEN POOL

Token pool associates a token type and a file byte offset with the text that resides in the StringPool. New
lines are captured as a special piece of meta data for text location deduction. The type information
indicates whether it is an integer, real, word, declarator, terminator, etc. This information can be used to
deduce context or perform operations on a class of data.

The file byte offset is the absolute location in the file at which the text begins. This is not intuitive to a
user, but when combined with new line offset text location, line, and column, it can be deduced.
Specifically, the line can be computed as the distance from the upper bound of the token’s file offset in
the list of line file offsets and the line offset.

line = distance(line file offsets.begin(), line_file offsets.upperbound(
token_ file offset))

The column can be computed as the difference of the token’s file offset and the upper bound, minus 1, of
the token index into the list of line file offsets.

column = token_file offset - (
line file offsets.upperbound(token file offset) - 1)

3.4 TREE NODE POOL

The tree node pool coordinates access and storage to nodes. Nodes can be classified as inner nodes and
leaf nodes. Inner nodes can have children and represent a set of input. Leaf nodes always represent a
token. For example, key = 3.14159 has the following hierarchy:

document

| keyed value
| declarator ('key')
| assign ('=")
| value (3.14159)

Here, the inner node is “keyed_value,” with leaf child nodes declarator, assign, and value.
All nodes have associated metadata:

1. Node type: declarator, terminator, value, name, etc.

2. Node name: user familiar name

3. Parent node pool index: the location in the tree node pool that the parent of the node resides

Additional metadata for parent/inner nodes consists of:
1. First child pool index, which is the index of the first child
2. The number of children
There is a convenient TreeNodeView class that provides consolidated per-node data access.

3.5 INTERPRETER

The interpreter is the base class to facilitate all syntax specific interpreters (DDI, SON, etc.). The
interpreter brokers transactions between the lexer and parser, and it also stages and stores the parse tree
for future access.

The interpreter manages the TreeNodePool and tracks the root of the parse tree. It also provides a stage
construct to facilitate text syntax where hierarchy is ambiguous and sub-trees may not exist to immediate
parent (see DDI for active use).

4. EXPRESSION ENGINE

The expression engine facilitates numerical and string expression evaluations that are integrated into other
Workbench Analysis Sequence Processor components.

4.1 ARITHMETIC AND ALGEBRAIC OPERATORS

The Expr engine supports regular arithmetic and algebraic operations.

Operation Result

Subtraction 3 - 4equals -1
Addition 5 + 3equals8
Division 8 / 2equals4

Multiplication 3 * 3 equals9
Exponentiation 2 ~ 3 equals 8
Parenthesis (3 - 4) * -1equals1

4.2 RELATIONAL OPERATORS

Relational operations are also supported.

Operation Result

Equal 3==3 equals true
Not Equal 31=3 equals false
Less Than 8 < 9equals true
Less Than or Equal 8 <= 9equals true
Greater Than 9 > 8equals true

Greater Than or Equal 9 >= 8 equals true

Syntactic alternatives exist.

Operation Result

Equal 3 .eq. 3equalstrue
Not Equal 3 .neq. 3equalsfalse
Less Than 8 .1t. 9equalstrue
Less Than or Equal 8 .lte. 9equalstrue
Greater Than 9 .gt. 8equalstrue
Greater Than or Equal 9 .gte. 8equals true

4.3 BOOLEAN OPERATORS

Operation Result

Not 1(3==3) equals false
Or 1(1==1) || 1==1equals true
And 1(1==1) && 1==1equals false

4.4 DEFAULT VARIABLES

The default variables are available for use in expression evaluations:
Name Value

pi 3.14159265359 approximately pi
e 2.7182818284590452353602874713527 approximately e
nl l\nl

4.5 DEFAULT FUNCTIONS

The Expr engine also has the following functions available for use in expression evaluations:

Function Description

sin(theta) sine of theta: opposite over hypotenuse
sinh(x) hyperbolic sine of x

asin(x) arc sine of x

asinh(x) inverse hyperbolic sine of x

cos(theta) cosine of theta: adjacent over hypotenuse
cosh(x) hyperbolic cosine of x

acos(x) arc cosine of x

acosh(x) inverse hyperbolic cosine of x

tan(theta) tangent of theta: opposite over adjacent
tanh(x) hyperbolic tangent of x

atan(x) arc tangent of x

atan2(x,y) arc tangent of x/y

atanh(x) inverse hyperbolic tangent of x
sec(theta) secant of theta: hypotenuse over adjacent
csc(theta) cosecant of theta: hypotenuse over opposite
cot(theta) cotangent of theta: adjacent over opposite

floor(x)
ceil(x)
exp(x)
log(x)
1g(x)
loglo(x)
sgqrt(x)
deg2rad(x)
rad2deg(x)
deg2grad(x)
grad2deg(x)
round(x)

round(x,p)

closest integer value below x
closest integer value above x

e raised to x

natural log (base e) of x

binary log (base 2) of x

common log (base 10) of x
square root of x

converts x degrees into radians
converts x radians into degrees
converts x degrees into gradians
converts x gradians into degrees
rounds x to the closest integer
rounds x to the p decimal point

abs(x) absolute value of x
pow(x,y) x raised to the power of y
mod(x,y) modulo of x given 'y
max(x,y) maximum of x or y
min(x,y) minimum of x or y

fmt(x,format) format the variable x with the desired format

4.6 SPECIAL FUNCTIONS

The Expr engine has a few special functions that are always available.

4.7 ARRAY ACCESS

The Expr engine supports accessing array elements by recognizing array[index] patterns. Only zero-

based rank 1 arrays are supported.

Function

Description

if(condition,if-true,if-
false)

defined('name"')

size(array)

if the condition evaluates to true, the if-true valueis
returned, else if-false is returned

return true, if and only if a variable with name name exists.
Note the argument is quoted

acquires the size (element count) of the given array

10

5. HIERARCHICAL INPUT VALIDATION ENGINE (HIVE)

The Hierarchical Input Validation Engine (HIVE) uses a set of rules to describe the schema of an
application's input. These rules describe scalar and relational input restrictions. They can use a Sequence
Input Retrieval Engine (SIREN) Expression. Applications use HIVE and schema files to facilitate input
validation, introspection, and input creation assistance. SIREN Expressions, SON Syntax, and Template
Files are beyond the scope of this section.

The section layout is as follows:

. The Input Validation Rules Summary section provides brief descriptions of input validation rules.
These rules do not contain defaults. The rules are only used when they have been specified.

. The Input Validation Details and Examples section provides a more detailed description, examples,
and exact syntax of input validation rules. This section supplies an example schema, an example
input that will pass validation against the schema, an example input that will fail validation against
the schema, and the validation messages that HIVE produces when validating the failing input
against the provided schema. If the user is incorporating a specific rule in the integration of an
application, then the examples section for that particular rule should be fully understood
syntactically and semantically.

. The Input Assistance Details section provides descriptions and details of the rules that may be used
by input generation applications for input assistance and autocompletion.

In this document, the term input is used when referring to a file that is to be validated, and schema is used
when referring to the file that describes the definition and rules against which the input is validated.
Currently, schema files must be written in the SON syntax, which is used herein for example input files.

5.1 INPUT VALIDATION RULES SUMMARY

e MinOccurs: describes the minimum number of times that an element is allowed to appear
under its parent context.

e MaxOccurs: describes the maximum number of times that an element is allowed to appear
under its parent context.

. ValType: describes the allowed value type for the element (Int, Real, String).
. ValEnums: describes a list of allowed value choices for the element.

. MinVallnc: describes the minimum inclusive value that this element is allowed to have if it
is a number (the provided input value must be greater than or equal to this).

. MaxVallnc: describes the maximum inclusive value that this element is allowed to have if
it is a number (the provided input value must be less than or equal to this).

« MinValExc: describes the minimum exclusive value of the element in the input if it is a
number (the provided input value must be strictly greater than this).

e MaxValExc: describes the maximum exclusive value of the element in the input if it is a
number (the provided input value must be strictly less than this).

« ExistsIn: describes a set of lookup paths into relative sections of the input file and possible
constant values where the value of the element being validated must exist.

« NotExistsIn: describes a set of lookup paths into relative sections of the input file where the
value of the element being validated must not exist.

11

« SumOver: describes what sum the values must add to under a given context.

« SumOverGroup: describes what sum the values must add to under a given context when
grouped by dividing another input element's value by a given value.

« IncreaseOver: describes that the values under the element must be increasing in the order
that they are read.

e DecreaseOver: describes that the values under the element must be decreasing in the order
that they are read.

e ChildAtMostOne: describes one or more lists of lookup paths into relative sections of the
input file (and possible values) where at most one is allowed to exist.

e ChildExactlyOne: describes one or more lists of lookup paths into relative sections of the
input file (and possible values) where at exactly one is allowed to exist.

e ChildAtLeastOne: describes one or more lists of lookup paths into relative sections of the
input file (and possible values) where at least one must exist.

e ChildCountEqual: describes one or more lists of lookup paths into relative sections of the
input file where the number of values must be equal.

e ChildUniqueness: describes one or more lists of lookup paths into relative sections of the
input file where the values at all of these paths must be unique.

5.2 INPUT VALIDATION DETAILS AND EXAMPLES
5.2.1 Miscellaneous Details and Examples

Before exploring the details of all of the validation rules, the first thing to note is that the hierarchy of a
schema file must represent a union of all possible input hierarchies. This is just to say that every
hierarchical node in an input file that is to be validated must have an exact mapping to a node at the same
hierarchical path in the schema. If there is an element in an input file that does not have an exact mapping
to an associated node in the schema, then that element is said to be invalid. Once the hierarchy of the
schema is built, then rules can be added to every element for validation. Every element in the input
document is represented by a SON object in the schema. All rules for an element at a given context are
represented by either SON flag-values or SON flag-arrays.

Hierarchical nodes in the schema that do not have an associated node in the input are not traversed
further. For example, if a schema defines nodes A, B, and C at the root level, but a given input only
contains nodes A and C at its root level, then the rules directly inside of node B are examined to check if
B is a required portion in the input. However, the children of node B are not traversed further, because it
has been verified that those children are not in the input.

At the basic level, there are two types of validation messages that may be reported by HIVE.
1. Problems with the input file are reported in the form given below:
line:X column:Y - Validation Error: MESSAGE

Input validation applications may capture the line and column reported so that the offending input
elements can be navigated to simply by clicking on the message.

2. Problems with the schema file are reported in the following form:

Validation Error: Invalid Schema Rule: MESSAGE line:X column:Y

12

This message example denotes an actual error in the schema file (not the input) at the provided line
and column number.

Schema example:

test{

should_exist _one{

}

should _exist_ twoq{
value{

}
}
invalid rule{
inside{
BadRuleName=10
}

}

Input the example that PASSES validation on schema above:

test{

1
[2345]

should exist _one
should exist two

}

Notes: This input passes validation against the provided schema because both input elements (i.e.,
test/should_exist_one and test/should_exist_two) exist in the schema, and no schema
validation rules are broken, as no other rules exist for the input elements provided in the input.

Input example that FAILS validation on schema above:

test{

21
[22 23 24 25]

should not_exist_one

should not_exist_ two

invalid rule{
inside=5

}
}

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

Validation Error: Invalid Schema Rule: "BadRuleName" line:11 column:13

line:3 column:5 - Validation Error: /test/should not exist one is not a v
alid piece of input

13

line:4 column:5 - Validation Error: /test/should not exist two is not a v
alid piece of input

Notes: This input fails to validate against the provided schema because, as described above, neither
/test/should_not_exist_one nor /test/should_not_exist_two exist in the schema. Also, an
element exists in the input that has an invalid rule, named BadRuleName in the schema.

5.2.2 MinOccurs Details and Examples

The Minimum Occurrence rule describes the minimum number of times that an element must occur
under its parent context. It is used mostly to denote whether a piece of input is required or optional. Most
often, this rule will have a literal constant for minimum allowances. The value must be an integer. For
example, MinOccurs = 0@ denotes that this element is optional under its parent context, and MinOccurs
= 1 denotes that this element is required to occur at least once under its parent. If a negative number is
specified for the value of this rule, then it is treated the same as MinOccurs = 0. This rule may also
contain a relative input lookup path from the element being validated. The syntax for this usage is
MinOccurs = "../../some/relative/input/path”

If the lookup path describes a set containing a single value, and if that value is an integer, then that value
will be used to determine the minimum allowed occurrences of the element being validated.

Schema example:

test{

control{

}

bad_two _numbers{

}
bad_real{

}
bad_string{

}

valueone{
MinOccurs=10

}

valuetwo{
MinOccurs="../control”

}

valuethree{
inside{

MinOccurs=-5

}

}

value bad_one{
inside{
MinOccurs="../../bad_two_numbers'

}
}

value bad_twoq{

14

inside{

MinOccurs="../../bad _real”
}
}
value bad three{
inside{
MinOccurs="../../bad_string"
}
}

}

Input example that PASSES validation on schema above:

test{
control=15

valueone=1
valueone=2
valueone=3
valueone=4
valueone=5
valueone=6
valueone=7
valueone=8
valueone=9
valueone=10

valuetwo=1
valuetwo=2
valuetwo=3
valuetwo=4
valuetwo=5
valuetwo=6
valuetwo=7
valuetwo=8
valuetwo=9
valuetwo=10
valuetwo=11
valuetwo=12
valuetwo=13
valuetwo=14
valuetwo=15

}

Notes: This input passes validation against the provided schema because valueone must occur at least
10 times under its parent context, and it does. Also, valuetwo must occur at least a number of times
equal to whatever integer is location at a relative location of " . . /control”. A relative lookup from

15

valuetwoto "../control” yields one integer with the value 15. valuetwo exists under its parent
context at least 15 times, so all is well.

Input examples that FAILS validation on schema above:

test{
control=15

valueone=1
valueone=2
valueone=3
valueone=4
valueone=5
valueone=6
valueone=7
valueone=8
valueone=9

valuetwo=1
valuetwo=2
valuetwo=3
valuetwo=4
valuetwo=5
valuetwo=6
valuetwo=7
valuetwo=8
valuetwo=9
valuetwo=10
valuetwo=11
valuetwo=12
valuetwo=13
valuetwo=14

}

test{
bad_two numbers=6
bad_two _numbers=7
bad real=8.2
bad string='some string'
valuethree{

}

value bad_one{

}

value bad_twoq{

}

value bad three{

}

16

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

line:1 column:1 - Validation Error: test has 9 "valueone" occurrences - w
hen there should be a minimum occurrence of 10

line:1 column:1 - Validation Error: test has 14 "valuetwo" occurrences -
when there should be a minimum occurrence of "15" from "../control”

line:32 column:1 - Validation Error: test has © "valueone" occurrences -
when there should be a minimum occurrence of 10

line:37 column:5 - Validation Error: valuethree has 0 "inside" occurrence
s - when there should be a minimum occurrence of -5

line:39 column:5 - Validation Error: inside minimum occurrence checks aga
inst "../../bad_two numbers" which returns more than one value

line:41 column:5 - Validation Error: inside minimum occurrence checks aga
inst "../../bad _real" which does not return a valid number

line:43 column:5 - Validation Error: inside minimum occurrence checks aga
inst "../../bad_string" which does not return a valid number

Notes: This input fails to validate against the provided schema because valueone only occurs 9 times
under its parent context, when its MinOccurs rule in the schema denotes that it should occur at least 10
times. valuetwo should occur at least 15 times under its parent context, because its MinOccurs rules in
the schema contains a path to "../control”. A relative lookup from valuetwoto "../control”
yields one integer with the value 15. However, valuetwo only occurs 14 times under its parent. The
second test element in the input has zero valueone elements when there should be at least 10 as
previously described.

5.2.3 MaxOccurs Details and Examples

The Maximum Occurrence rule describes the maximum number of times that an element is allowed to
occur under its parent context. Most often, this element will have a literal constant value to describe a
number of maximum allowances. The value must be integer or 'NoLimit' (indicating that there is no
upper limit on the number of times this element can occur). This rule may also have a relative input
lookup path from the element being validated. If the lookup path describes a set containing a single value,
and if that value is an integer, then that value will be used to determine the maximum allowed
occurrences of the element being validated.

Schema example:

test{

MaxOccurs=NoLimit
control{

}

bad_two_numbers{

}

17

bad_real{

}
bad_string{
}
valueone{
MaxOccurs=10
}
valuetwo{
MaxOccurs="../control”
}
value bad_one{
inside{
MinOccurs="../../bad_two_numbers"”
}
}
value bad_twoq{
inside{
MinOccurs="../../bad _real”
}
}
value_bad_three{
inside{
MinOccurs="../../bad_string"
}
}

}

Input example that PASSES validation on schema above:

test{
control=15

valueone=1
valueone=2
valueone=3
valueone=4
valueone=5
valueone=6
valueone=7
valueone=8
valueone=9
valueone=10

valuetwo=1
valuetwo=2
valuetwo=3
valuetwo=4
valuetwo=5

18

valuetwo=6
valuetwo=7
valuetwo=8
valuetwo=9
valuetwo=10
valuetwo=11
valuetwo=12
valuetwo=13
valuetwo=14
valuetwo=15

}

Input example that FAILS validation on schema above:

test{
control=15

valueone=1
valueone=2
valueone=3
valueone=4
valueone=5
valueone=6
valueone=7
valueone=8
valueone=9
valueone=10
valueone=11

valuetwo=1
valuetwo=2
valuetwo=3
valuetwo=4
valuetwo=5
valuetwo=6
valuetwo=7
valuetwo=8
valuetwo=9
valuetwo=10
valuetwo=11
valuetwo=12
valuetwo=13
valuetwo=14
valuetwo=15
valuetwo=16

19

test{
valueone=1
valueone=2
valueone=3
valueone=4
valueone=5
valueone=6
valueone=7
valueone=8
valueone=9
valueone=10
valueone=11
valueone=12
valueone=13
valueone=14

¥

test{
control=2
bad_two _numbers=6
bad_two numbers=7
bad real=8.2
bad string='some string'
valueone=1
valuetwo=1
valuetwo=2
valuetwo=3
valuetwo=4
value bad _one{

}

value bad_twoq{

}

value bad three{

}
}

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

line:1 column:1 - Validation Error: test has 11 "valueone" occurrences -
when there should be a maximum occurrence of 10

line:1 column:1 - Validation Error: test has 16 "valuetwo" occurrences -
when there should be a maximum occurrence of "15" from "../control”

line:36 column:1 - Validation Error: test has 14 "valueone" occurrences -
when there should be a maximum occurrence of 10

line:52 column:1 - Validation Error: test has 4 "valuetwo" occurrences -
when there should be a maximum occurrence of "2" from "../control"

20

line:
inst

63 column:5 - Validation Error: inside minimum occurrence
"../../bad_two numbers" which returns more than one value

65 column:5 - Validation Error: inside minimum occurrence
"../../bad_real" which does not return a valid number

line:
inst

67 column:5 - Validation Error: inside minimum occurrence
"../../bad_string" which does not return a valid number

line:
inst

ValType Details and Examples
Int - meaning a negative or positive integer

Real - meaning a negative or positive floating point value (or integer)
String - meaning a literal string of text

Schema example:

test{

one{
ValType=Int
}
two{
ValType=Int
}
three{
ValType=Int
}
four{
ValType=Real
}
five{
ValType=Real
}
six{
ValType=Real
}
seven{
ValType=String
}
eight{
ValType=String
}
nine{
inside{
ValType=BadType
}

21

checks aga

checks aga

checks aga

The Value Type rule checks the type of the element value in the input. This can be one of the following:

Input example that PASSES validation on schema above:

test{
one=-8
two=0
three=83
four=-9.4
five=3
six="+9e-3"
seven=ThisIsAString
eight="This Is Also A String"

}
Input example that FAILS validation on schema above:
test{
one=-8.3
two=0.3
three="+8e-3"
four="*"

five=StringHere
six="another string here'
seven=4.5

eight=5E-4

nine="'hello world’

}

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

Validation Error: Invalid Schema Rule: Bad ValType Option "BadType" at 1li
ne:29 column:21 - Expected [Int Real String]

line:2 column:5 - Validation Error: one value "-8.3" is not of type Int
line:3 column:5 - Validation Error: two value "0.3" is not of type Int

line:4 column:5 - Validation Error: three value "+8e-3" is not of type In
t

line:5 column:5 - Validation Error: four value "*" is not of type Real

line:6 column:5 - Validation Error: five value "StringHere" is not of typ
e Real

line:7 column:5
t of type Real

Validation Error: six value "another string here" is no

5.2.5 ValEnums Details and Examples

The Value Enumerations rule contains a static list of values choices. It compares the element’s input
value with the provided choices. If the element's value is not in the schema’s list of allowed enumerations,

22

then this check will fail. Also, a REF : construct may be used to reference a SON array of values that must
exist in the schema after an EndOfSchema{} declaration. These referenced SON arrays can be
conveniently defined in one place but be used by ValEnums rules on many different elements. If a
validation message is produced, then a short list of closest matches is provided to the user alphabetically.
Note that this check is case insensitive, and if the value that is being checked is an integer, then leading
zeros are ignored.

Schema example:

test{

one{
ValEnums=[yes no maybe]
}
two{
ValEnums=[yes no maybe]
}
three{
ValEnums=[REF:ReferencedColors]
}
four{
ValEnums=[REF:ReferencedNumbers]
}
five{
ValEnums=[REF:ReferencedNumbers REF:ReferencedColors]
}
six{
ValEnums=[REF:BadReference REF:ReferencedNumbers]
}

}

EndOfSchema{}

ReferencedColors=[red orange yellow green blue indigo violet]
ReferencedNumbers=[1 2 3 4 5]

Input example that PASSES validation on schema above:

test{
one="yes"
two="Maybe'
three=blue
four=4
five=0RanGe
five=0002

}

Input example that FAILS validation on schema above:

test{
one=red

23

two="Green"

three=yes
four=-4
five=007

six=something

}

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

Validation Error: Invalid Schema Rule: Enum Reference "BadReference" at 1
ine:19 column:20 not found in schema

line:2 column:5 - Validation Error: one value "red" is not one of the all

owed values: ["maybe"™ "no" "yes"]

line:3 column:5 - Validation Error: two value "green" is not one of the a

llowed values: ["maybe™ "no" "yes"]

line:4 column:5 - Validation Error: three value "yes" is not one of the a
llowed values: [... "green" "indigo" "orange" "red" "violet" "yellow"]
line:5 column:5 - Validation Error: four value "-4" is not one of the all
Owed values: ["1" Il2|l ll3ll II4II II5II]

line:6 column:5 - Validation Error: five value "7" is not one of the allo
wed values: [... "3" "4" "5" "blue" "green" "indigo" ...]

5.2.6 MinVallnc Details and Examples

The Minimum Value Inclusive rule provides a number (real or integer) to which the associated input
value must be greater than or equal. Most often, this rule will contain a constant number defining the
minimum allowable value for this element. For example, MinValInc = 0.0 denotes that this element’s
value must be zero or greater. This rule may also have a relative input lookup path from the element being
validated. If the set in the input represented by the relative path is a single value, and if that value is a
number, then that value will be used to determine the lowest allowed value for the element being
validated. If an element at this relative lookup path exists in the input and it is not a number, then it will
fail this check. However, if this element does not exist at all in the input, then this validation check is
delegated to the MinOccurs check and will not fail.

Schema example:

test{

controlone{

}

controltwo{

}

bad_two _numbers{

}
bad_string{

24

}

valueone{
MinValInc=58.7

}
valuetwo{
value{
MinValInc=58.7
}
}
valuethree{
MinValInc=23
}
valuefour{
value{
MinValInc=23
}
}
valuefive{
MinValInc="../controlone"
}
valuesix{
value{
MinValInc="../../controlone”
}
}
valueseven{
MinValInc="../controltwo"
}
valueeight{
value{
MinValInc="../../controltwo"
}
}
value bad_one{
inside{
MinValInc="../../bad_two_numbers"”
}
}
value bad_twoq{
inside{
MinValInc="../../bad_string"
}
}

}

Input example that PASSES validation on schema above:

test{
controlone=15

25

controltwo=-45.3

valueone=58.7

valuetwo=[65 66 67 68 58.7]
valuethree=23

valuefour=[38.3 30.3 23 32.34]
valuefive=15

valuesix=[21 22 23 24 15]
valueseven=-45.3

valueeight=[-32.4 31.9 -30.3 -45.3]

}

Input example that FAILS validation on schema above:

test{
controlone=15
controltwo=-45.3
bad_two _numbers=6
bad_two numbers=7
bad string='some string'
valueone=58.6
valuetwo=[65 56 58.6 58 88.7]
valuethree=22.9
valuefour=[28.3 20.3 22.9 12.34 2e2]
valuefive=14
valuesix=[11 12 15 14 15.1]
valueseven=-45.4
valueeight=[-45.4 -41.9 -100.3 -45.3 -4E-8 -7e+3]
value bad_one{

inside=47
}
value bad_twoq{
inside=48
}

valueone='a-string'

}

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

line:7 column:5 - Validation Error: valueone value "58.6" is less than th
e allowed minimum inclusive value of 58.7

line:8 column:19 - Validation Error: valuetwo value "56" is less than the
allowed minimum inclusive value of 58.7

line:8 column:22 - Validation Error: valuetwo value "58.6" is less than t
he allowed minimum inclusive value of 58.7

line:8 column:27 - Validation Error: valuetwo value "58" is less than the
allowed minimum inclusive value of 58.7

26

line:9 column:5 - Validation Error: valuethree value "22.9" is less than
the allowed minimum inclusive value of 23

line:10 column:22 - Validation Error: valuefour value "20.3" is less than
the allowed minimum inclusive value of 23

line:10 column:27 - Validation Error: valuefour value "22.9" is less than
the allowed minimum inclusive value of 23

line:10 column:32 - Validation Error: valuefour value "12.34" is less tha
n the allowed minimum inclusive value of 23

line:11 column:5 - Validation Error: valuefive value "14" is less than th
e allowed minimum inclusive value of "15" from "../controlone"

line:12 column:16 - Validation Error: valuesix value "11" is less than th
e allowed minimum inclusive value of "15" from "../../controlone"

line:12 column:19 - Validation Error: valuesix value "12" is less than th
e allowed minimum inclusive value of "15" from "../../controlone"

line:12 column:25 - Validation Error: valuesix value "14" is less than th
e allowed minimum inclusive value of "15" from "../../controlone"

line:13 column:5 - Validation Error: valueseven value "-45.4" is less tha
n the allowed minimum inclusive value of "-45.3" from "../controltwo"
line:14 column:18 - Validation Error: valueeight value "-45.4" is less th

an the allowed minimum inclusive value of "-45.3" from "../../controltwo"
line:14 column:30 - Validation Error: valueeight value "-100.3" is less t

han the allowed minimum inclusive value of "-45.3" from "../../controltwo

line:14 column
an the allowed

:49 - Validation Error: valueeight value "-7e+3" is less th
minimum inclusive value of "-45.3" from "../../controltwo"

:9 - Validation Error: inside minimum inclusive value check
../bad_two _numbers" which returns more than one value

line:16 column
s against "../

:9 - Validation Error: inside minimum inclusive value check
../bad_string" which does not return a valid number

line:19 column
s against "../

line:21 column:5 - Validation Error: valueone value "a-string" is wrong v
alue type for minimum inclusive value

5.2.7 MaxVallnc Details and Examples

The Maximum Value Inclusive rule provides a number

(real or integer) to which the associated input

value must be less than or equal. Most often, this rule will contain a constant number defining the

27

maximum allowable value for this element. For example, MaxValInc = 0.0 denotes that this element’s
value must be zero or less. This rule may also have a relative input lookup path from the element being
validated. If the set in the input represented by the relative path is a single value, and if that value is a
number, then that value will be used to determine the highest allowed value for the element being
validated. If an element at this relative lookup path exists in the input and it is not a number, then it will
fail this check. However, if this element does not exist at all in the input, then this validation check is
delegated to the MinOccurs check and will not fail.

Schema example:

test{

controlone{

}

controltwo{

}

bad_two _numbers{

}
bad_string{

}
valueone{
MaxValInc=58.7
}
valuetwo{
value{
MaxValInc=58.7

}
}

valuethree{
MaxValInc=23
}
valuefour{
value{
MaxValInc=23

}
}

valuefive{
MaxValInc="../controlone"

}

valuesix{
value{

MaxValInc="../../controlone"

}

}

valueseven{
MaxValInc="../controltwo"

}
valueeight{

value{
MaxValInc="../../controltwo"

28

}

}
value bad_one{
inside{
MaxValInc="../../bad_two_numbers"”
}
}
value bad_twoq{
inside{
MaxValInc="../../bad_string"
}
}

}

Input example that PASSES validation on schema above:

test{
controlone=15
controltwo=-45.3
valueone=58.7
valuetwo=[55 56 57 58 58.7]
valuethree=23
valuefour=[18.3 20.3 23 12.34]
valuefive=15
valuesix=[11 12 13 14 15]
valueseven=-45.3
valueeight=[-52.4 -51.9 -100.3 -45.3]

}

Input example that FAILS validation on schema above:

test{
controlone=15
controltwo=-45.3
bad_two numbers=6
bad_two numbers=7
bad string='some string'
valueone=58.8
valuetwo=[65 56 58.8 58 88.7]
valuethree=23.9
valuefour=[18.3 20.3 23.1 12.34 2e2]
valuefive=19
valuesix=[11 12 18.2 14 15.1]
valueseven=-45.1
valueeight=[-52.4 -41.9 -100.3 -45.3 -4E-8 -7e+3]
value bad_one{

inside=47
}
value bad_twoq{
inside=48

29

}

valueone='a-string'

}

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

line:7 column:5 - Validation Error: valueone value "58.8" is greater than
the allowed maximum inclusive value of 58.7

line:8 column:16 - Validation Error: valuetwo value "65" is greater than
the allowed maximum inclusive value of 58.7

line:8 column:22 - Validation Error: valuetwo value "58.8" is greater tha
n the allowed maximum inclusive value of 58.7

line:8 column:30 - Validation Error: valuetwo value "88.7" is greater tha
n the allowed maximum inclusive value of 58.7

line:9 column:5 - Validation Error: valuethree value "23.9" is greater th
an the allowed maximum inclusive value of 23

line:10 column:27 - Validation Error: valuefour value "23.1" is greater t
han the allowed maximum inclusive value of 23

line:10 column:38 - Validation Error: valuefour value "2e2" is greater th
an the allowed maximum inclusive value of 23

line:11 column:5 - Validation Error: valuefive value "19" is greater than
the allowed maximum inclusive value of "15" from "../controlone"”

line:12 column:22 - Validation Error: valuesix value "18.2" is greater th
an the allowed maximum inclusive value of "15" from "../../controlone"

line:12 column:30 - Validation Error: valuesix value "15.1" is greater th
an the allowed maximum inclusive value of "15" from "../../controlone"

line:13 column:5 - Validation Error: valueseven value "
than the allowed maximum inclusive value of "-45.3" from

-45.1" is greater
"../controltwo"

line:14 column:24 - Validation Error: valueeight value "-41.9" is greater
than the allowed maximum inclusive value of "-45.3" from "../../controltw

(0]

line:14 column:43 - Validation Error: valueeight value "-4E-8" is greater
than the allowed maximum inclusive value of "-45.3" from "../../controltw

(0]

line:16 column:9 - Validation Error: inside maximum inclusive value check
s against "../../bad_two_numbers" which returns more than one value

30

line:19 column:9 - Validation Error: inside maximum inclusive value check
s against "../../bad _string"” which does not return a valid number

line:21 column:5 - Validation Error: valueone value "a-string" is wrong v
alue type for maximum inclusive value

5.2.8 MinValExc Details and Examples

The Minimum Value Exclusive rule provides a number (real or integer) to which the associated input
value must be greater. Most often, this rule will contain a constant number, and the associated input value
must be greater than this number. For example, MinValExc = 0.0 denotes that this element value must
be greater than zero (not equal). This rule may also have a relative input lookup path from the element
being validated. If the set in the input represented by the relative path is a single value, and if that value is
a number, then that value will be used to determine the minimum exclusive allowed input value. If an
element at this relative lookup path exists in the input and it is not a number, then it will fail this check.
However, if this element does not exist at all in the input, then this validation check is delegated to the
MinOccurs check and will not fail.

Schema example:

test{

controlone{

}

controltwo{

}

bad_two _numbers{

}
bad_string{

}
valueone{
MinValExc=58.7
}
valuetwo{
value{
MinValExc=58.7

}
}

valuethree{
MinValExc=23

}

valuefour{
value{

MinValExc=23

}

}

valuefive{
MinValExc="../controlone"

}

valuesix{

31

value{

MinValExc="../../controlone”
}
}
valueseven{
MinValExc="../controltwo"
}
valueeight{
value{
MinValExc="../../controltwo"
}
}
valuenine{
MinValExc=NoLimit
}
value bad_one{
inside{
MinValExc="../../bad_two_numbers"”
}
}
value bad_twoq{
inside{
MinValExc="../../bad_string"
}
}

}

Input example that PASSES validation on schema above:

test{
controlone=15
controltwo=-45.3
valueone=58.8
valuetwo=[65 66 67 68 58.8]
valuethree=23.1
valuefour=[38.3 30.3 23.1 32.34]
valuefive=16
valuesix=[21 22 23 24 16]
valueseven=-45.2
valueeight=[-32.4 31.9 -30.3 -45.2]
valuenine=-2000.90

}

Input example that FAILS validation on schema above:

test{
controlone=15
controltwo=-453E-1
bad_two numbers=6
bad_two _numbers=7

32

bad string='some string'
valueone=58.7

valuetwo=[65E-1 66 7 68 58.7]
valuethree=23

valuefour=[383E-2 3.3 23 32.34]
valuefive=15

valuesix=[-21 22 2.3E-4 24 15]
valueseven=-45.3

valueeight=[-132.4 -3.19E5 -30.3 -45.3]
valuenine=-2000.90

value bad_one{

inside=47
}
value bad_twoq{
inside=48
}

valueone='a-string'

}

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

line:7 column:5 - Validation Error: valueone value "58.7" is less than or
equal to the allowed minimum exclusive value of 58.7

line:8 column:16 - Validation Error: valuetwo value "65E-1" is less than
or equal to the allowed minimum exclusive value of 58.7

line:8 column:25 - Validation Error: valuetwo value "7" is less than or e
qual to the allowed minimum exclusive value of 58.7

line:8 column:30 - Validation Error: valuetwo value "58.7" is less than o
r equal to the allowed minimum exclusive value of 58.7

line:9 column:5 - Validation Error: valuethree value "23" is less than or
equal to the allowed minimum exclusive value of 23

line:10 column:17 - Validation Error: valuefour value "383E-2" is less th
an or equal to the allowed minimum exclusive value of 23

line:10 column:24 - Validation Error: valuefour value "3.3" is less than
or equal to the allowed minimum exclusive value of 23

line:10 column:28 - Validation Error: valuefour value "23" is less than o
r equal to the allowed minimum exclusive value of 23

line:11 column:5 - Validation Error: valuefive value "15" is less than or
equal to the allowed minimum exclusive value of "15" from "../controlone"

line:12 column:16 - Validation Error: valuesix value "-21" is less than o

33

r equal to the allowed minimum exclusive value of "15" from "../../contro

lone"

line:12 column:23 - Validation Error: valuesix value "2.3E-4" is less tha
n or equal to the allowed minimum exclusive value of "15" from "../../con
trolone”

line:12 column:33 - Validation Error: valuesix value "15" is less than or
equal to the allowed minimum exclusive value of "15" from "../../controlo
r_]ell

line:13 column:5 - Validation Error: valueseven value "-45.3" is less tha
n or equal to the allowed minimum exclusive value of "-453E-1" from "../c
ontroltwo"

line:14 column:18 - Validation Error: valueeight value "-132.4" is less t
han or equal to the allowed minimum exclusive value of "-453E-1" from "
/../controltwo”

line:14 column:25 - Validation Error: valueeight value "-3.19E5" is less
than or equal to the allowed minimum exclusive value of "-453E-1" from "
./../controltwo"

line:14 column:39 - Validation Error: valueeight value "-45.3" is less th
an or equal to the allowed minimum exclusive value of "-453E-1" from "../
../controltwo"

line:17 column:9 - Validation Error: inside minimum exclusive value check
s against "../../bad_two_numbers” which returns more than one value

line:20 column:9 - Validation Error: inside minimum exclusive value check
s against "../../bad_string"” which does not return a valid number

line:22 column:5 - Validation Error: valueone value "a-string" is wrong v
alue type for minimum exclusive value

5.2.9 MaxValExc Details and Examples

The Maximum Value Exclusive rule provides a number (real or integer) to which the associated input
value must be less. Most often, this rule will contain a constant number, and the associated input value
must be less than this number. For example, MaxValExc = 0.0 denotes that this element value must be
less than zero (not equal). This rule may also have a relative input lookup path from the element being
validated. If the set in the input represented by the relative path is a single value, and if that value is a
number, then that value will be used to determine the maximum exclusive allowed input value. If an
element at this relative lookup path exists in the input and it is not a number, then it will fail this check.
However, if this element does not exist at all in the input, then this validation check is delegated to the
MinOccurs check and will not fail.

Schema example:

34

test{

controlone{

}

controltwo{

}

bad_two _numbers{

}
bad_string{

}
valueone{
MaxValExc=58.7
}
valuetwo{
value{
MaxValExc=58.7

}
}

valuethree{
MaxValExc=23
}
valuefour{
value{
MaxValExc=23

}
}

valuefive{
MaxValExc="../controlone"
}
valuesix{
value{
MaxValExc="../../controlone"

}
}

valueseven{
MaxValExc="../controltwo"
}
valueeight{
value{
MaxValExc="../../controltwo"

}
}

valuenine{
MaxValExc=NoLimit
}
value bad_one{
inside{
MaxValExc="../../bad_two_numbers"”

}

35

value bad_twoq{
inside{
MaxValExc="../../bad_string"
}

}

Input example that PASSES validation on schema above:

test{
controlone=15.1
controltwo=-452E-1
valueone=58.6
valuetwo=[55 56 57 58 58.6]
valuethree=22.9
valuefour=[18.3 20.3 22.9 12.34]
valuefive=15
valuesix=[11 12 13 14 15]
valueseven=-45.3
valueeight=[-52.4 -51.9 -100.3 -45.3]
valuenine=2000.90

}

Input example that FAILS validation on schema above:

test{
controlone=15
controltwo=-453e-1
bad_two numbers=6
bad_two numbers=7
bad string='some string'
valueone=58.7
valuetwo=[65 59 57 58 58.7]
valuethree=23
valuefour=[18.3 29.3 23 12.34]
valuefive=15
valuesix=[11 12 13 14 15 17.3]
valueseven=-45.3
valueeight=[-52.4 -51.9 -10.3 -45.3]
valuenine=2000.90
value bad_one{

inside=47
}
value bad_twoq{
inside=48
}

valueone='a-string'

36

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

line:7 column:5 - Validation Error: valueone value "58.7" is greater than
or equal to the allowed maximum exclusive value of 58.7

line:8 column:16 - Validation Error: valuetwo value "65" is greater than
or equal to the allowed maximum exclusive value of 58.7

line:8 column:19 - Validation Error: valuetwo value "59" is greater than
or equal to the allowed maximum exclusive value of 58.7

line:8 column:28 - Validation Error: valuetwo value "58.7" is greater tha
n or equal to the allowed maximum exclusive value of 58.7

line:9 column:5 - Validation Error: valuethree value "23" is greater than
or equal to the allowed maximum exclusive value of 23

line:10 column:22 - Validation Error: valuefour value "29.3" is greater t
han or equal to the allowed maximum exclusive value of 23

line:10 column:27 - Validation Error: valuefour value "23" is greater tha
n or equal to the allowed maximum exclusive value of 23

line:11 column:5 - Validation Error: valuefive value "15" is greater than
or equal to the allowed maximum exclusive value of "15" from "../controlo

ne

line:12 column:28 - Validation Error: valuesix value "15" is greater than
or equal to the allowed maximum exclusive value of "15" from "../../contr
olone"

line:12 column:31 - Validation Error: valuesix value "17.3" is greater th
an or equal to the allowed maximum exclusive value of "15" from "../../co
ntrolone”

line:13 column:5 - Validation Error: valueseven value "-45.3" is greater
than or equal to the allowed maximum exclusive value of "-453e-1" from "
./controltwo”

line:14 column:30 - Validation Error: valueeight value "-10.3" is greater
than or equal to the allowed maximum exclusive value of "-453e-1" from "
./../controltwo"

line:14 column:36 - Validation Error: valueeight value "
than or equal to the allowed maximum exclusive value of "-453e-1" from
./../controltwo”

-45.3" is greater

line:17 column:9 - Validation Error: inside maximum exclusive value check
s against "../../bad_two_numbers" which returns more than one value

37

line:20 column:9 - Validation Error: inside maximum exclusive value check
s against "../../bad _string"” which does not return a valid number

line:22 column:5 - Validation Error: valueone value "a-string" is wrong v
alue type for maximum exclusive value

5.2.10 ExistsIn Details and Examples

The Exists In rule is used as a key to stipulate that an element in the input must be defined somewhere
else in the input. This rule will always contain one or more relative input lookup paths from the element
being validated. The pieces of input at these paths will be collected into a set. This rule may also contain
one or more optional constant values. If these exist, then the constant values will also be added to the set.
Then, all of the values in the input being validated by this rule must exist in the set built from the lookup
paths and the constant values in order to pass the validation. If any element does not exist in this set, then
the validation check fails. This rule may use an optional Abs modifier flag that can occur as a
parenthetical identifier. The Abs modifier flag indicates that the absolute values of all numbers added to
the set checked for existence are used. Then, even if the value of the element being validated is negative
and a value at one of the rule’s relative input lookup paths is positive, but they have the same absolute
value, this validation check will pass. EXTRA: may be used within an ExistsIn to specify constant
values that are allowed. An EXTRAREF : construct may be used to reference a SON array of values that
must exist in the schema after an EndOfSchema{} declaration. The values are also allowed by the
ExistsIn rule. These referenced SON arrays can be conveniently defined in one place but be used by
ExistsIn rules on many different elements. If the allowed EXTRA values are actually a contiguous range
of integer values, then a RANGE: [start end] construct may be used for convenience instead of
writing a separate EXTRA: for every element. These are all shown in the syntax example below. Note that
this check is case insensitive, and if the value that is being checked is an integer, then leading zeros are
ignored.

Schema example:

test{

defineone{

}

definetwo{

}

definethree{
}
useone{
value{
ExistsIn=["..

./defineone/value”
./definetwo/value”
./definethree/value"]

~ N NN

}
}

usetwo{
value{
ExistsIn=[EXTRA:"ford"
EXTRA: "chevy"
EXTRA: "bmw"

38

EXTRAREF :ReferencedColors
EXTRAREF :ReferencedNumbers
"../../defineone/value”
"../../definetwo/value”
"../../definethree/value"]

}
}
usethree{
value{
ExistsIn(Abs)=[EXTRAREF:ReferencedNumbers
"../../definetwo/value"]
}
}
usefour_reg{
value{
ExistsIn=[EXTRA:"hamburger"
EXTRA: "hotdog"
EXTRA:800
EXTRA:900
"../../defineone/value”
"../../definethree/value"]
}
}
usefive reg{
value{

ExistsIn=[EXTRAREF:ReferencedColors
"../../definetwo/value”
"../../definethree/value"

EXTRA:©
RANGE:[1200 1300]
RANGE:[1400 1500]
RANGE:[1600 1700]
RANGE:[1800 1900]]
}
}
usefour_abs{
value{
ExistsIn(Abs)=[EXTRA:"hamburger"
EXTRA: "hotdog"
EXTRA:800
EXTRA:900
"../../defineone/value"
"../../definethree/value"]
}
}
usefive abs{
value{

ExistsIn(Abs)=[EXTRAREF:ReferencedColors
"../../definetwo/value"
"../../definethree/value"

39

EXTRA:©
RANGE:[1200 1300]
RANGE:[1400 1500]
RANGE:[1600 1700]
RANGE:[1800 1900]]
}
}
usesix{
value{
ExistsIn(BadFlag)=["../../defineone/value"]
}
}
useseven{
value{
ExistsIn=["../../defineone/value"
RANGE:[25 fifty]]
}
}
useeight{
value{
ExistsIn=["../../defineone/value"
RANGE:[50 25]]
}
}
usenine{
value{
ExistsIn=["../../defineone/value"
RANGE:[25 50 100]]
}
}
useten{
value{
ExistsIn=[EXTRAREF:BadReference
"../../defineone/value"]
}
}
useeleven{
value{
ExistsIn=["../../../../defineone/value"]
}
}
}
EndOfSchema{}

ReferencedColors=[red orange yellow green blue indigo violet]
ReferencedNumbers=[1 2 3 4 5]

Input example that PASSES validation on schema above:

40

test{

defineone=one
defineone=two
defineone=three
defineone=four

definetwo=[england spain germany italy canada]
definetwo=-200

definetwo=300

definetwo=[500 -600]

definethree=science
definethree=math
definethree=[geography economics recess lunch]

useone=two
useone=germany
useone=[three recess lunch italy canada]

usetwo=[ford bmw red 1 4 math]
usetwo=3
usetwo=blue

usethree=england

usethree=italy

usethree=[5 "3" -2 canada "1"]
usethree=-4

usefour_abs=geography

usefour_abs=[hamburger 900 math hotdog "four™]
usefour_abs=three

usefour_abs=[800 -800]

usefour_abs=-900

usefive abs=orange

usefive_abs=economics

usefive abs=["indigo" violet "geography"]
usefive abs=science

usefive_abs=[600 -600 300 -300 1200 1300]
usefive abs=200

usefive abs=[-500 500 -200 -1850]

usefive _abs=-1675

}

Input example that FAILS validation on schema above:

test{

41

defineone=one
defineone=two
defineone=three
defineone=four

definetwo=[england spain germany italy canada]
definetwo=-200

definetwo=300

definetwo=[500 -600]

definethree=science
definethree=math
definethree=[geography economics recess lunch]

useone=seven
useone=japan
useone=[three spelling yellow italy canada 2]

usetwo=[ford honda red -1 4 math]
usetwo=-3
usetwo=purple

usethree=red

usethree=three

usethree=[5 "3" -2.3 blue "1"]
usethree=lunch

usefour_reg=geography

usefour_reg=[hamburger 900 spain hotdog fries]
usefour_reg=orange

usefour_reg=[800 -800]

usefour_reg=-900

usefive reg=orange

usefive_ reg=economics

usefive reg=["indigo" violet "geography"]
usefive reg=science

usefive reg=[600 2 300 five]

usefive reg=200

usefive reg=[-500 -3 -200]

usesix=one
useseven=two
useeight=three
usenine=four
useten=one
useeleven=two

42

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

Validation Error: Invalid Schema Rule: "50" start of range is greater tha
n or equal to "25" end of range at line:92 column:32

Validation Error: Invalid Schema Rule: Bad ExistsIn Option "BadFlag" at 1
ine:80 column:22 - Expected [Abs]

Validation Error: Invalid Schema Rule: Bad ExistsIn Path "../../../../def
ineone/value" at 1line:109 column:24

Validation Error: Invalid Schema Rule: Enum Reference "BadReference" at 1
ine:103 column:24 not found in schema

Validation Error: Invalid Schema Rule: Range does not have exactly two va
lues at 1ine:98 column:24

Validation Error: Invalid Schema Rule: fifty range value not a valid numb
er at line:86 column:35

line:17 column:12 - Validation Error: useone value "seven" does not exist
in set: [../../defineone/value ../../definetwo/value ../../definethree/v
alue]

line:18 column:12 - Validation Error: useone value "japan" does not exist
in set: [../../defineone/value ../../definetwo/value ../../definethree/v
alue]

line:19 column:20 - Validation Error: useone value "spelling" does not ex
ist in set: [../../defineone/value ../../definetwo/value ../../definethr
ee/value]

line:19 column:29 - Validation Error: useone value "yellow" does not exis
t in set: [../../defineone/value ../../definetwo/value ../../definethree
/value]

line:19 column:49 - Validation Error: useone value "2" does not exist in
set: [../../defineone/value ../../definetwo/value ../../definethree/valu

e]

line:21 column:19 - Validation Error: usetwo value "honda" does not exist
in set: [../../defineone/value ../../definetwo/value ../../definethree/v
alue]

line:21 column:29 - Validation Error: usetwo value "-1" does not exist in
set: [../../defineone/value ../../definetwo/value ../../definethree/valu

e]

line:22 column:12 - Validation Error: usetwo value "-3" does not exist in

43

set:

e]

[../../defineone/value

line:23 column:12 - Validation Error:
t in set: [../../defineone/value .
/value]

line:25 column:14 - Validation Error:
in set: [../../definetwo/value]

line:26 column:14 - Validation Error:
st in set: [../../definetwo/value]

line:27 column:22 - Validation Error:
in set: [../../definetwo/value]

line:27 column:27 - Validation Error:
t in set: [../../definetwo/value]

line:28 column:14 - Validation Error:
st in set: [../../definetwo/value]

Validation Error:
../defineone/value

line:31 column:33
exist in set: [

Validation Error:
../defineone/value

line:31 column:46
exist in set: |

Validation Error:
../defineone/value

line:32 column:17
exist in set: [

line:33
xist in

Validation Error:
./defineone/value

column:23
set: [../.

Validation Error:
./defineone/value

column:17 -
set: [../.

line:34
xist in

column:19 - Validation Error:
[../../definetwo/value

line:40
ist in set:

line:40 column:23 - Validation Error:
t in set: [../../definetwo/value ./.

line:40 column:29 - Validation Error:
xist in set: [../../definetwo/value

line:41 column:17 - Validation Error:
ist in set: [../../definetwo/value .

line:42 column:19 - Validation Error:

44

../../definetwo/value

..

../../definethree/valu

usetwo value "purple"” does not exis
./definetwo/value ../../definethree

usethree value "red" does not exist
usethree value "three" does not exi
usethree value "2.3" does not exist
usethree value "blue" does not exis
usethree value "lunch" does not exi

usefour_reg value "spain" does not
../../definethree/value]

usefour_reg value "fries" does not
../../definethree/value]

usefour_reg value "orange" does not
../../definethree/value]

usefour_reg value "-800" does not e
../../definethree/value]

usefour_reg value "-900" does not e
../../definethree/value]

usefive reg value "600" does not ex

./../definethree/value]

usefive reg value "2" does not exis
./definethree/value]

usefive reg value "five" does not e
../../definethree/value]

usefive reg value "200" does not ex
./../definethree/value]

usefive reg value "-500" does not e

xist in set: [../../definetwo/value ../../definethree/value]
line:42 column:24 - Validation Error: usefive reg value "-3" does not exi
st in set: [../../definetwo/value ../../definethree/value]

5.2.11 NotExistsIn Details and Examples

The Not Exists In rule will always contain one or more relative input lookup paths from the element
being validated. The pieces of input at these paths will be collected into a set. If the value of the element
being validated exists in this set, then this validation check fails. If it does not exist, then the validation
check passes. This rule may use an optional Abs modifier flag that can occur as a parenthetical identifier.
The Abs modifier flag indicates that the absolute value of all numbers added to the set checked for
existence are used. Then, even if the value of the element being validated is negative and a value at one of
the rule’s relative input lookup paths is positive, but they have the same absolute value, then this
validation check will fail. Note that this check is case insensitive, and if the value that is being checked is
an integer, then leading zeros are ignored.

Schema example:

test{
defineone{
}
definetwo{
}
definethree{
}
useone{
value{

NotExistsIn=["../../defineone/value"
"../../definetwo/value"
"../../definethree/value"”]

}
}
usetwo{
value{
NotExistsIn(Abs)=["../../defineone/value"
"../../definetwo/value"]
}
}
usethree{
value{
NotExistsIn=["../../defineone/value"
"../../definethree/value"”]
}
}
usefour{
value{

NotExistsIn=["../../definetwo/value"

"../../definethree/value"”]
}

45

}

usefive{
value{
NotExistsIn=["../../definethree/value"]
}
}
usesix{
value{
NotExistsIn(BadFlag)=["../../defineone/value"]
}
}

}

Input example that PASSES validation on schema above:

test{

defineone=one
defineone=two
defineone=three
defineone=four
defineone=0

definetwo=[england spain germany italy canada]
definetwo=-200

definetwo=300

definetwo=[500 0 -600]

definethree=science
definethree=math
definethree=[geography economics 9 recess lunch]

useone=200
useone=japan
useone=[-500 600 seven -300 art]

usetwo=[science "recess"]
usetwo="lunch"
usetwo=economics

usetwo=["math" geography]

usethree=canada
usethree=england

usethree=[-200 "italy" 300]
usethree="-600"

usefour="one"

usefour=["two" one]
usefour="four"

46

usefour=["four" three]
usefour="three"

usefive=[300 -600]
usefive="one"
usefive=[three italy "england"”]

}

Input example that FAILS validation on schema above:

test{

defineone=one
defineone=two
defineone=three
defineone=four

definetwo=[england spain germany italy canada]
definetwo=-200

definetwo=300

definetwo=[500 0 -600]

definethree=science
definethree=math
definethree=[geography economics 9 recess lunch]

useone=two
useone=germany
useone=[three recess lunch italy canada]

usetwo=[two germany -600]
usetwo="four"

usetwo="600"

usetwo=[-200 200 one]

usethree=four
usethree=lunch
usethree=[two "three"]
usethree="science"

usefour=300

usefour=[-600 economics]
usefour=recess

usefour=[lunch -200]
usefour=math

usefive=[recess "math"]

usefive="science"
usefive=[math economics "geography"]

47

usesix=one

}

HIVE validation messages that occur when validating the failing input shown above against the schema

above:

Validation Error: Invalid Schema Rule: Bad NotExistsIn Option "BadFlag" a
t line:41 column:25 - Expected [Abs]

line:

..

line:
at ".

line:
"o/

line:
t .

line:
"o/

line:
"o/

line:
t ",

line:
line:
at ".

line:

line:
"o/

line:
./definetwo/value" on line:11 column:23

line:
./definetwo/value"” on line:9 column:15

17 column:12 - Validation Error: useone value
/defineone/value" on line:4 column:15

18 column:12 - Validation Error: useone value
./../definetwo/value"” on line:8 column:31

19 column:14 - Validation Error: useone value
./defineone/value"” on line:5 column:15

19 column:20 - Validation Error: useone value

./../definethree/value” on line:15 column:41

19 column:27 - Validation Error: useone value
./definethree/value” on line:15 column:48

19 column:33 - Validation Error: useone value
./definetwo/value"” on line:8 column:39

19 column:39 - Validation Error: useone value

./../definetwo/value"” on line:8 column:45

21 column:14 - Validation Error: usetwo value

./defineone/value"” on line:4 column:15

21 column:18 - Validation Error: usetwo value
./../definetwo/value"” on line:8 column:31

21 column:26 - Validation Error: usetwo value

./definetwo/value" on line:11 column:23

22 column:12 - Validation Error: usetwo value
./defineone/value"” on line:6 column:15

23 column:12 - Validation Error: usetwo value

24 column:14 - Validation Error: usetwo value

48

"two

"germa

also exists at

ny" also exists

"three" also exists at

"recess" also exists a

"lunch" also exists at

"italy" also exists at

"canada" also exists a

"two

also exists at

"germany" also exists

"6@@"

"four"

"6@@"

n 2@@“

also exists at

also exists at

also exists at

also exists at

line:24 column:19 - Validation Error: usetwo value "200" also exists at
./../definetwo/value"” on line:9 column:15

line:24 column:23 - Validation Error: usetwo value "one" also exists at
./../defineone/value"” on line:3 column:15

line:26 column:14 - Validation Error: usethree value "four" also exists a
t "../../defineone/value" on line:6 column:15

line:27 column:14 - Validation Error: usethree value "lunch" also exists
at "../../definethree/value" on line:15 column:48

line:28 column:16 - Validation Error: usethree value "two" also exists at

"../../defineone/value" on line:4 column:15

line:28 column:20 - Validation Error: usethree value "three" also exists
at "../../defineone/value" on line:5 column:15

line:29 column:14 - Validation Error: usethree value "science" also exist
s at "../../definethree/value" on line:13 column:17

line:31 column:13 - Validation Error: usefour value "300" also exists at
"../../definetwo/value” on line:10 column:15

line:32 column:15 - Validation Error: usefour value "-600" also exists at
"../../definetwo/value” on line:11 column:23

line:32 column:20 - Validation Error: usefour value "economics" also exis
ts at "../../definethree/value” on line:15 column:29

line:33 column:13 - Validation Error: usefour value "recess" also exists
at "../../definethree/value" on line:15 column:41

line:34 column:15 - Validation Error: usefour value "lunch" also exists a
t "../../definethree/value” on line:15 column:48

line:34 column:21 - Validation Error: usefour value "-200" also exists at
"../../definetwo/value" on line:9 column:15

line:35 column:13 - Validation Error: usefour value "math" also exists at
"../../definethree/value" on line:14 column:17

line:37 column:15 - Validation Error: usefive value "recess" also exists
at "../../definethree/value" on line:15 column:41

line:37 column:22 - Validation Error: usefive value "math" also exists at
"../../definethree/value" on line:14 column:17

line:38 column:13 - Validation Error: usefive value "science" also exists
at "../../definethree/value" on line:13 column:17

49

line:39 column:15 - Validation Error: usefive value "math" also exists at
"../../definethree/value" on line:14 column:17

line:39 column:20 - Validation Error: usefive value "economics" also exis
ts at "../../definethree/value” on line:15 column:29

line:39 column:30 - Validation Error: usefive value "geography" also exis
ts at "../../definethree/value" on line:15 column:19

5.2.12 SumOver Details and Examples

The Sum Over rule must always contain a context expression and an expected sum value. The expected
sum value is the desired sum when all of the elements in the given context are summed. The context
contains a relative ancestry path in the input hierarchy that the values will be summed over. For a simple
array, this will usually be ".." but may go back further in lineage if needed (e.g., "../../..").

Schema example:

test{
container{
inside{
SumOver("../..")=107.6
}
}
array{
value{
SumOver("..")=209.4
}
}
invalid_array{
value{
SumOver("..")=123.4
}
}
}
Input example that PASSES validation on schema above:
test{
container{
inside=59.4
}
container{
inside=24.9
}
container{
inside=23.3

50

}
array=[4.5 87.3 83.2 34.4]

}

Input example that FAILS validation on schema above:

test{

container{
inside=59.4
}
container{
inside=28.9
}
container{
inside=23.3
}
array=[4.5 87.3 83.5 34.4]
invalid array= [1.2 4.5 something 8.8]

}

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

line:1 column:1 - Validation Error: test children "inside" sum to 111.6 -
instead of the required sum of 107.6

line:12 column:5 - Validation Error: array children "value" sum to 209.7
- instead of the required sum of 209.4

line:13 column:30 - Validation Error: invalid array value "something" is
wrong value type for sum over

5.2.13 SumOverGroup Details and Examples

The Sum Over Group rule must always contain a context path, a group sum value, a compare path,
and a group divide value. The compare path is used to acquire another element in the input hierarchy
relative to the current element being validated. This value must exist in the input and be a number. Then,
this value is divided by the group divide value. This performs integer division to split the input element
that will be added into groups. Then each group must successfully add to the group sum value. If any
group does not add to the group sum value, then this validation check fails. If every group (when split by
performing an integer division on the value at the compare path relative location by the group divide
value) adds to the same desired group sum, then this validation check passes.

Schema example:

test{
inside{
id{
}

51

container{
id{
}
inside{
SumOverGroup("../..")=[ComparePath="../id"
GroupDivide=1000
GroupSum=107.6]

}
badoptions{
badruleone{
SumOverGroup("../..")=[
GroupDivide=1000
GroupSum=107.6]
}
badruletwoq{
SumOverGroup("../..")=[ComparePath="../id"
GroupSum=107.6]
}
badrulethree{
SumOverGroup("../..")=[ComparePath="../id"
GroupDivide=1000
]
}
}
}
array{
value{
SumOverGroup("../../..")=[ComparePath="../../id"
GroupDivide=10
GroupSum=418.8]
}
}
invalid_array{
value{
SumOverGroup("../../..")=[ComparePath="../../id"
GroupDivide=100
GroupSum=123.4]
}
}
}
}
Input example that PASSES validation on schema above:
test{
inside{

id=121

52

container{

id=72123
inside=59.4

}

container{
id=72456
inside=24.9

}

container{
id=72789
inside=23.3

}

container{
id=82123
inside=59.6

}

container{
id=82456
inside=44.7

}

container{
id=82789
inside=3.3

}

container{
id=92123
inside=0.4

}

container{
id=92456
inside=107.1

}

container{
id=92789
inside=0.1

}

array=[4.5 87.3 83.2 54.4]

}

inside{

id=124

array=[4.5 67.3 83.2 34.4]
}

inside{
id=1324
array=[4.5 87.3 83.2 14.4]

53

}

inside{
id=1322
array=[24.5 87.3 83.2 34.4]
}
¥
Input example that FAILS validation on schema above:
test{
inside{
id=121
container{
id=72123
inside=59.4
}
container{
id=72456
inside=14.9
}
container{
id=72789
inside=23.3
}
container{
id=82123
inside=59.6
}
container{
id=82456
inside=54.7
}
container{
id=82789
inside=83.3
}
container{
id=92123
inside=9.4
}
container{
id=92456
inside=107.1
}
container{

54

id=92789
inside=0.8
badoptions{
¥

}

array=[4.9 87.3 3.2 54.4]

}
inside{
id=124
array=[4.5 67.3 83.2 134.4]
}
inside{
id=1324
array=[4.5 97.3 83.2 14.1]
}
inside{
id=1322
array=[24.5 87.3 83.2 14.4]
invalid array= [1.2 4.5 something 8.8]
}

}

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

Validation Error: Invalid Schema Rule: SumOverGroup missing ComparePath a
t line:15 column:21

Validation Error: Invalid Schema Rule: SumOverGroup missing GroupDivide a
t line:20 column:21

Validation Error: Invalid Schema Rule: SumOverGroup missing GroupSum at 1
ine:25 column:21

line:1 column:1 - Validation Error: test children "value" sum to 408.5 fo
r 1320 group - instead of the required sum of 418.8

line:1 column:1 - Validation Error: test children "value" sum to 439.2 fo
r 120 group - instead of the required sum of 418.8

line:3 column:5 - Validation Error: inside children "inside" sum to 97.6
for 72000 group - instead of the required sum of 107.6

line:3 column:5 - Validation Error: inside children "inside" sum to 117.3

55

for 92000 group - instead of the required sum of 107.6

line:3 column:5 - Validation Error: inside children "inside" sum to 197.6
for 82000 group - instead of the required sum of 107.6

line:63 column:34 - Validation Error: invalid array value "something" is
wrong value type for sum over group

5.2.14 IncreaseOver Details and Examples

The Increase Over rule must contain a required modifier flag that occurs as a parenthetical identifier and
indicates the monotonicity. The flag must either be Strict, meaning that the values must be strictly
increasing in the order that they are read (no two values are the same), or Mono, meaning that multiple
values are allowed to be the same as long as they never decrease. For example, 34 5 5 6 7 would pass a
Mono check but would fail a Strict check due to two of the values being the same. This rule also
contains a context path that describes the relative ancestry in the input hierarchy under which the values
must increase. For a simple array, this will usually be ".." but may go back further in lineage if needed
(e.g., "wlul").

Schema example:

test{
container{
inside{
IncreaseOver("../..")=Strict
}
badrule{
inside{
IncreaseOver("../..")=Neither
}
}
}
array{
value{
IncreaseOver("..")=Mono
}
}
another_array{
value{
IncreaseOver("..")=Strict
}
}
}
Input example that PASSES validation on schema above:
test{
container{

56

inside=19.4
}
container{
inside=24.9
}
container{
inside=93.3
}
container{
inside=193.3

}
array=[4.5 87.3 87.3 87.3 98.2 100.2 100.2 163.2]

}

Input example that FAILS validation on schema above:

test{

container{
inside=19.4
}
container{
inside=24.9
}
container{
inside=24.9
}
container{
inside=93.3
badrule{
}
}
array=[4.5 87.3 87.3 87.3 48.2 100.2 100.2 63.2]
array=[4.5 87.3 87.3 something 48.2 100.2 100.2 63.2]
another_array=[4.5 87.3 something 87.3 48.2 100.2 100.2 63.2]

}

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

Validation Error: Invalid Schema Rule: Bad IncreaseOver Option "Neither"
at line:9 column:39 - Expected [Mono Strict]

line:1 column:1 - Validation Error: test children "inside" are not strict
ly increasing at line:10 column:9

line:17 column:5 - Validation Error: array children "value" are not monot
onically increasing at line:17 column:32

57

line:17 column:5 - Validation Error: array children "value" are not monot
onically increasing at line:17 column:49

line:18 column:27 - Validation Error: array value "something" is wrong va
lue type for increasing

line:19 column:30 - Validation Error: another_array value "something" is
wrong value type for increasing

5.2.15 DecreaseOver Details and Examples

The Decrease Over rule must contain a required modifier flag that occurs as a parenthetical identifier and
indicates the monotonicity. The flag must either be Strict, meaning that the values must be strictly
decreasing in the order that they are read (no two values are the same), or Mono, meaning that multiple
values are allowed to be the same as long as they never increase. For example, 7 6 5 5 4 3 would pass a
Mono check but would fail a Strict check due to two of the values being the same. This rule also
contains a context path that describes the relative ancestry in the input hierarchy under which the values
must decrease. For a simple array, this will usually be ".." but may go back further in lineage if needed
(e.g., "ulul").

Schema example:

test{
container{
inside{
DecreaseOver("../..")=Strict
}
badrule{
inside{
DecreaseOver("../..")=Neither
}
}
}
array{
value{
DecreaseOver("..")=Mono
}
}
another_array{
value{
DecreaseOver("..")=Strict
}
}
}

Input example that PASSES validation on schema above:

test{

58

container{
inside=193.3

}

container{
inside=93.3

}

container{
inside=24.9

}

container{
inside=19.4

}

array=[163.2 100.2 100.2 98.2 87.3 87.3 87.3 4.5]

}

Input example that FAILS validation on schema above:

test{

container{
inside=93.3
}
container{
inside=24.9
}
container{
inside=24.9
}
container{
inside=19.4
badrule{
}
}
array=[63.2 100.2 100.2 48.2 87.3 87.3 87.3 4.5]
array=[163.2 100.2 100.2 something 87.3 87.3 87.3 4.5]
another_array=[163.2 100.2 something 100.2 87.3 87.3 87.3 4.5]

}

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

Validation Error: Invalid Schema Rule: Bad DecreaseOver Option "Neither"
at line:9 column:39 - Expected [Mono Strict]

line:1 column:1 - Validation Error: test children "inside" are not strict
ly decreasing at line:10 column:9

line:17 column:5 - Validation Error: array children "value" are not monot
onically decreasing at line:17 column:18

59

line:17 column:5 - Validation Error: array children "value" are not monot
onically decreasing at line:17 column:35

line:18 column:31 - Validation Error: array value "something" is wrong va
lue type for decreasing

line:19 column:33 - Validation Error: another_array value "something" 1is
wrong value type for decreasing

5.2.16 ChildAtMostOne Details and Examples

The Child At Most One rule contains multiple relative input lookup paths. Each of these lookup paths can
optionally have an assigned lookup value. There may be more than one of these rules for any given
element in the schema. Of the given list of elements, at most one must exist in the input in order for this
rule to pass. If there is a lookup value associated with the lookup path, then that path’s value in the input
must be equal to that provided in the schema in order for that element to count toward existence.

Schema example:

test{
ChildAtMostOne = [one two three]

one{

}
two{

}
three{

}
four{

}
five{
ChildAtMostOne=["../four" "../two"]
}
six{
}
seven{
ChildAtMostOne=["../six"]

}
}

Input example that PASSES validation on schema above:

test{
one=1
four=4
six=6

¥

test{

60

four=4

}

test{
two=3

}

test{
five=5

}

test{
seven=7/

}

test{
three=[2 3 4]
four=5
five=6

}

test{
two=[2 3 4]
five=6

}

test{
five=6
four=5

}

test{
one=[2 3 4]
seven=5

}

test{
one=[2 3 4]
six=6
seven=5

}

test{
one=[2 3 4]
five=5

}

test{
two=2
six=[8 9 10]
seven=[11 12]

}

Input example that FAILS validation on schema above:

test{
one=1
three=2

}

test{

61

one=1
two=[6 7 8 9]

three=3

¥

test{
two=[1 2 3 4]
three=5

¥

test{
four=[6 7 8 9]
two=5
five=4

¥

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

line:1 column:1 - Validation Error: test has more than one of: [one two
three] - at most one must occur

line:5 column:1 - Validation Error: test has more than one of: [one two
three] - at most one must occur

line:10 column:1 - Validation Error: test has more than one of: [one two
three] - at most one must occur

line:17 column:5 - Validation Error: five has more than one of: ["../fou
r" "../two"] - at most one must occur

5.2.17 ChildExactlyOne Details and Examples

The Child Exactly One rule contains multiple relative input lookup paths. Each of these lookup paths can
optionally have an assigned lookup value. There may be more than one of these rules for any given
element in the schema. Of the given list of elements, exactly one must exist in the input in order for this
rule to pass. If there is a lookup value associated with the lookup path, then that path’s value in the input
must be equal to that provided in the schema in order for that element to count toward existence.

Schema example:

test{
ChildExactlyOne = [one two three]

one{

}
two{

}
three{

}
four{

}

62

five{

ChildExactlyOne=["../four™ "../two"]
}
six{
}
seven{
ChildExactlyOne=["../six"]
}
}
Input example that PASSES validation on schema above:
test{
one=1
four=4
six=6
}
test{
three=[2 3 4]
four=5
five=6
}
test{
two=[2 3 4]
five=6
}
test{
one=[7 8 9]
four=2
five=6
}
test{
two=2

six=[8 9 10]
seven=[11 12]

}
Input example that FAILS validation on schema above:
test{
four=5
five=6
}
test{
one=1
three=2
}
test{
one=1

two=[6 7 8 9]

63

three=3

}

test{
one=[6 7 8 9]
five=9

}

test{
two=[6 7 8 9]
five=9
four=7

}

test{
three=[6 7 8 9]
seven=9

}

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

line:1 column:1 - Validation Error: test has zero of: [one two three] -
exactly one must occur

line:5 column:1 - Validation Error: test has more than one of: [one two
three] - exactly one must occur

line:9 column:1 - Validation Error: test has more than one of: [one two
three] - exactly one must occur

line:16 column:5 - Validation Error: five has zero of: ["../four™ "../tw
0"] - exactly one must occur

line:20 column:5 - Validation Error: five has more than one of: ["../fou
r" "../two"] - exactly one must occur
line:25 column:5 - Validation Error: seven has zero of: ["../six"] - ex

actly one must occur
5.2.18 ChildAtLeastOne Details and Examples

The Child At Least One rule contains multiple relative input lookup paths. Each of these lookup paths
can optionally have an assigned lookup value. There may be more than one of these rules for any given
element in the schema. Of the given list of elements, at least one must exist in the input in order for this
rule to pass. If there is a lookup value associated with the lookup path, then that path’s value in the input
must be equal to that provided in the schema in order for that element to count toward existence.

Schema example:

test{

ChildAtLeastOne = [one 'two/value' 'three/value']

64

one{

}

two{
value{
}

}

three{
value{
}

}

four{

}

five{
ChildAtLeastOne=["../four™ "../two/value"]

}

six{
value{

}
}

seven{
ChildAtLeastOne=["../six/value"]

}
}

Input example that PASSES validation on schema above:

test{
one=1
four=4
six=6
¥
test{
three=[2 3 4]
four=5
five=6
¥
test{
two=[2 3 4]
four=5
five=6
¥
test{
two=2
five=6
¥
test{
two=2
three=[5 6 7]
six=[8 9 10]

65

seven=[11 12]

}
Input example that FAILS validation on schema above:

test{
four=5
five=6

}

test{
three=2
five=5

}

test{
one=1

three=[5 6 7]
seven=[11 12]

}

HIVE validation messages that occur when validating the failing input shown above against the schema

above:

line:1 column:1 - Validation Error: test has zero of:
three/value'] - at least one must occur

line:7 column:5 - Validation Error: five has zero of:

/value™] - at least one must occur

line:12 column:5 - Validation Error:
] - at least one must occur

5.2.19 ChildCountEqual Details and Examples

seven has zero of:

[one "two/value’

["../four™ "../two

["../six/value"

The Child Count Equal rule is usually used to ensure that arrays in the input have an equal number of

value members. There may be more than one of these rules on any given element. This rule contains

multiple relative input look paths and a required modifier flag that occurs as a parenthetical identifier.
This modifier flag can be either IfExists or EvenNone. If the modifier flag is ITExists, then the

pieces of input in the relative lookup paths must be equal only if they actually exist. However, if the

modifier flag is EvenNone, then this stricter rule denotes that the relative input lookup path nodes in the
input must be equal regardless of whether they exist or not.

Schema example:

test{

ChildCountEqual(IfExists)
ChildCountEqual(EvenNone)

badflags{
inside{
ChildCountEqual
ChildCountEqual(BadFlag)

66

[one/value
[four/value

two/value
five/value six/value

[three/value six/value]

[one/value

four/value]

three/value]

]

}

one{
value{
}

}

two{
value{
}

}

three{
value{
}

}

four{
value{
}

}

five{
value{
}

}

six{
value{
}

}

}

Input example that PASSES validation on schema above:

test{

one=[a b ¢]
one=d
one=[e f]

thr‘ee=[II!II Il@ll ll#ll]
three="%$"
thr‘ee=[IIDOII Il/\ll]

four=[red orange yellow]
four=green
four=[blue indigo]

five=[canada poland england]

five=mexico
five=[italy france]

67

six=[algebra chemistry history]
six=calculus
six=[physics geometry]

}

Input example that FAILS validation on schema above:

test{

one=[a b ¢]
one=d
one=[e f]

two=[1 2 3]
two=4
two=[5 6 7]

thr‘ee=[II!II Il@ll ll#ll]
three="%"
thr‘ee=[IIDOII Il/\ll]

four=[red orange yellow]
four=green
four=[blue indigo]

six=[algebra chemistry history]
six=calculus
six=[physics geometry]

badflags{
}

}

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

Validation Error: Invalid Schema Rule: Bad ChildCountEqual Option "" at 1
ine:8 column:43 - Expected [IfExists EvenNone]

Validation Error: Invalid Schema Rule: Bad ChildCountEqual Option "BadFla

g" at line:9 column:43 - Expected [IfExists EvenNone]

line:1 column:1 - Validation Error: test does not have an equal number of
existing: [one/value two/value three/value]

line:1 column:1 - Validation Error: test does not have an equal number of
[four/value five/value six/value]

68

5.2.20 ChildUniqueness Details and Examples

The Child Uniqueness rule is used quite often. Every value in this set must occur once and only once
among all other values at all other paths. There may be more than one of these rules on any given
element. This rule may use an optional Abs modifier flag that can occur as a parenthetical identifier. The
Abs modifier flag indicates that the absolute value of all numbers that are added to the set checked for
uniqueness are used. Then, even if one value is negative and the other is positive, but they have the same
absolute value, then this validation check will fail. For example, if one ChildUniqueness relative input
lookup path contains “-5” and another relative lookup input path contains “5” then this validation check
will fail if the Abs modifier flag is used.

Schema example:

test{

ChildUniqueness
ChildUniqueness
ChildUniqueness(Abs)
badflags{
inside{
ChildUniqueness(BadFlag) = [four/value]

[one/value]
[one/value two/value]
[two/value three/value]

}

one{
value{

two{
value{

three{
value{

four{
value{

}

Input example that PASSES validation on schema above:

test{

one=[12 a b 11 c 0 -4]
one=d

one=e

one=[f -12 g h]

69

two=[1 2 3 -11]
two=4

two=5

two=[6 7 8]

thr‘ee=[II!II Il@ll II#II]
three="%"
three="%"

thr‘ee:[n"Aan "&") nygn]

}

Input example that FAILS validation on schema above:

test{

one=[a b ¢]
one=d

one="%"

one=[8 b h]

two=[1 b 3 0]
two="%"
two= n * n

two=[6 7 8 -3]

three=[8 "@" c]
three="¢"

three="%"

three=[""" b 0 -7 "*"]

badflags{
}

}

HIVE validation messages that occur when validating the failing input shown above against the schema
above:

Validation Error: Invalid Schema Rule: Bad ChildUniqueness Option "BadFla
g" at line:8 column:29 - Expected [Abs]

line:3 column:13 - Validation Error: one/value value "b" also exists at "
one/value" on line:6 column:13

line:3 column:13 - Validation Error: one/value value "b" also exists at "
one/value" on line:6 column:13

line:5 column:9 - Validation Error: one/value value "%" also exists at "t
wo/value" on line:9 column:9

70

line:6 column:11 - Validation Error: one/value value "8" also exists at "
two/value"” on line:11 column:15

line:6 column:13 - Validation Error: one/value value "b" also exists at
one/value" on line:3 column:13

line:6 column:13 - Validation Error: one/value value "b" also exists at "
one/value" on line:3 column:13

line:8 column:13 - Validation Error: two/value value "b" also exists at
one/value" on line:3 column:13

line:8 column:13 - Validation Error: two/value value "b" also exists at
three/value” on line:16 column:17

line:8 column:15 - Validation Error: two/value value "3" also exists at
two/value"” on line:11 column:17

line:8 column:17 - Validation Error: two/value value "0" also exists at "
three/value” on line:16 column:19

line:9 column:9 - Validation Error: two/value value "%" also exists at "o
ne/value" on line:5 column:9

line:9 column:9 - Validation Error: two/value value "%" also exists at "t
hree/value" on line:15 column:11

line:10 column:9 - Validation Error: two/value value "*" also exists at
three/value” on line:16 column:24

line:11 column:13 - Validation Error: two/value value "7" also exists at
"three/value" on line:16 column:21

line:11 column:15 - Validation Error: two/value value "8" also exists at
"one/value" on line:6 column:11

line:11 column:15 - Validation Error: two/value value "8" also exists at
"three/value" on line:13 column:13

line:11 column:17 - Validation Error: two/value value "3" also exists at
"two/value" on line:8 column:15

line:13 column:13 - Validation Error: three/value value "8" also exists a
t "two/value" on line:11 column:15

line:15 column:11 - Validation Error: three/value value "%" also exists a
t "two/value”™ on line:9 column:9

line:16 column:17 - Validation Error: three/value value "b" also exists a

71

t "two/value” on line:8 column:13

line:16 column:19 - Validation Error: three/value value "0" also exists a
t "two/value” on line:8 column:17

line:16 column:21 - Validation Error: three/value value "7" also exists a
t "two/value” on line:11 column:13

line:16 column:24 - Validation Error: three/value value "*" also exists a
t "two/value” on line:10 column:9

5.3 INPUT ASSISTANCE DETAILS

Six of the previously described validation rules (MaxOccurs, ChildAtMostOne, ChildExactlyOne,
ValEnums, ExistsIn, and ValType) and six new rules (InputTmpl, InputName, InputType,
InputVariants, InputDefault, and Description) may also be used by input assistance
applications to aid with input creation. They may be use for autocompletion assistance or input
introspection.

5.3.1 MaxOccurs Assistance Details

The Maximum Occurrence rule rule may be used by input assistance application logic for filtering
options as needed from the autocompletion list. An element should only be added up to MaxOccurs times
via autocomplete. For example, if an element has MaxOccurs = 1, it can only be added once to the
document. After is it added once, it is filtered from the autocompletion list.

5.3.2 ChildAtMostOne Assistance Details

The Child At Most One rule may be used by input assistance application logic for filtering options as
needed from the autocompletion list. If at most one of multiple choices is allowed at any context, then as
soon as one of those choices is added to the document, the others could be filtered from the
autocompletion list. For example, if an element has ChildAtMostOne = [choicel choice2 choice3] and
choice?2 is added, then choicel and choice3 will not be available on the next autocomplete.

5.3.3 ChildExactlyOne Assistance Details

The Child Exactly One rule may be used by input assistance application logic for filtering options as
needed from the autocompletion list. If exactly one of multiple choices is allowed at any context, then as
soon as one of those choices is added to the document, the others could be filtered from the
autocompletion list. For example, if an element has ChildExactlyOne = [choicel choice2 choice3] and
choice?2 is added, then choicel and choice3 will not be available on the next autocomplete.

5.3.4 ValEnums Assistance Details

The Value Enumerations rule may be used by input assistance application logic to provide a set of
choices that are legal at a given context based on a static set of values supplied in the schema. For
example, if an element has ValEnums = ["a" "b" "c" "d"], then those values could be provided as
autocompletion options.

72

5.3.5 ExistsIn Assistance Details

The Exists In rule may be used by input assistance application logic to provide a set of choices that are
legal at a given context based on values supplied elsewhere in the input. For example, if an element has
Existsln = ["../../some/context]1" "../../some/context2"] and the values 1, 2, 3, and 4 exist in the input at

that relative context, then those values could be provided as autocompletion options.

5.3.6 ValType Assistance Details

The Value Type rule may be used by input assistance application logic to drop in a legitimate default
value of the correct type for flag-values and flag-arrays if no InputDefault is provided in the schema.
For example, the following defaults could be used:

. For an element with a ValType = Int rule, 1 may be inserted.
. For an element with a ValType = Real rule, 0.0 may be inserted.
. For an element with a ValType = String rule, 'insert-string-here' may be inserted.

To override this behavior, please see InputDefault Assistance Details.
5.3.7 InputTmpl Assistance Details

The Input Template rule may be used by input assistance application logic to pick which Template File
to use for autocompletion. For example, if a context has InputTmpl = MyCustomTemplate then a
template named MyCustomTemplate.tmpl may be used by the application for autocompletion.

5.3.8 InputName Assistance Details

The Input Name rule may be used by input assistance application logic to override the name of the actual
node that the template provided by InputTmpl uses for autocompletion, if desired. For example, if the
name of an element in the input hierarchy is something_one, then the name in the schema must be the
same, but a template named MySomething.tmpl should use the name something_two instead for
autocompletion, then something_one can be overridden via:

something_one{
InputName
InputTmpl

"something_ two"
"MySomething"

5.3.9 InputType Assistance Details

The Input Type rule may be used by input assistance application logic to let the template provided by
InputTmpl for autocompletion know what type to switch on, if desired. If a template can handle
multiple situations in different ways, depending on the type it is dealing with, then the application can let
the template know what the type of the current autocompletion context is with this rule. For example, if
there is a template named FlagTypes.tmpl that can handle the types FlagValue and FlagArray
differently, then the application can let the template know it is dealing with a FlagValue via:

flag value node{
InputType = "FlagValue"
InputTmpl "FlagTypes"

73

Alternately, the application can let the same template know it is dealing, instead, with a FlagArray via:

flag _array_node{
InputType = "FlagArray"
InputTmple = "FlagType"
}

5.3.10 InputVariants Assistance Details

The Input Variants rule may be used by input assistance application logic to provide multiple choices of
autocompletion templates for a single context. For example, if an element has InputVariants =
['simple_version' 'middle_version' 'complex_version'] and simple_version.tmpl,
middle_version.tmpl, and complex_version.tmpl exist in the template directory provided by
application’s grammar, then all three of those choices will be available at that context via autocomplete
and use their associate templates.

5.3.11 InputDefault Assistance Details

The Input Default rule may be used by input assistance application logic to explicitly tell a template what
value should be dropped in for flag-values and flag-arrays via InputDefault =
"explicit_default_value'. This should override the ValType logic described in ValType
Assistance Details.

5.3.12 Description Assistance Details
The Input Description rule may be used by input assistance application logic to give a short one line
description in the autocompletion dropdown list via Description = 'autocomplete dropdown

description’'. These descriptions can be very useful to novice users who are unfamiliar with all of the
parameters at a given context.

74

6. SEQUENCE INPUT RETRIEVAL ENGINE (SIREN)

SIREN is a syntax for navigating and selecting document elements. It is heavily influenced by the XML
XPath [https://www.w3schools.com/xml/xpath_syntax.asp] component within the XSLT standard.

For code examples using SIREN, see the SIREN interpreter tests in the code repository.
6.1 SELECTING NODES

The selection of nodes is performed via a path expression. Path expressions can be relative to a current
node or absolute to the document.

An empty result set will be produced if no elements in the document match the given path expression.

Expression Description

nodename Selects all nodes with the name "nodename" that are children of the current node
/ Selects from the root of the document

Selects the current node

selects the parent of the current node

6.1.1 Selection Examples

Expression Description

value Selects all nodes with the name "value" that are children of the current node

/value Selects all nodes with the name "value" that are children of the root of the
document

Jvalue Selects all nodes with the name "value" from the current node

J/value Selects all nodes with the name "value" that are children of the parent of the current
node

6.1.2 Predicates

Selection of document elements may require predicated search patterns that evaluate the position of value
of the element.

Predicates can be used at all level of the path expression and are expressed as 1-base array indices, ranges,
or strides, or token value equality.

Expression Description

value[1] Selects the first node with the name "value" that is a child of the current
node

value[1:10] Selects the first ten nodes with the name "value" that are children of the

current node

value[1:10:2] Selects every other node (stride of 2) with the name "value" that are
children of the current node

75

child[value = 3.14] Selects all nodes with the name "child" of the current node where the
child's value is equal to 3.14

child[name = 'fred']/ear Selects all nodes with the name "ear" which are children of child of the
current node, only when child's name is 'fred'

child[name = Selects all nodes with the name "ear" which are children of child of the

'fred']/ear[hairy="true'] current node, only when child's name is 'fred' and the ear is hairy

6.1.3 Selecting Unknown Nodes

Certain parts of the document may not be known. For this reason, wildcards are supported in the
expression path.

Expression Description

* Selects all nodes that are children of the current node, regardless of name

*]ess Selects all nodes that are children of the current node, where the node name is 'less' or ends
with 'less'

less* Selects all nodes that are children of the current node, where the node name is 'less' or starts
with 'less'

1*s Selects all nodes that are children of the current node, where the node name is 'Is' or starts

with 'I" and ends with 's' with any character between

76

7. STANDARD OBJECT NOTATION (SON)

The standard object notation is a lightweight data entry syntax intended to facilitate application input
acquisition.

The supported constructs are Objects, Arrays, and Keyed values. Additionally, Objects, Arrays, and
Keyed values can be further disambiguated using identifiers.

SON can facilitate simple constructs such as property or configuration files using keyed-values.
71 KEYED-VALUE

The Keyed-Value is the simplest construct for representing information.

name = value

Where name is a string, = indicates assignment, and value can be a string, or number.
Alternatively, the colon "' can be used to indicate assignment.

name : value

An example property store file that illustrates an application window attribute follows:

x=544 y=100
width = 1920
height = 1080

Lastly, if the keyed-value needs to be further disambiguated, then an identifier can be added.
name (id) = value

An example property store file that illustrates an application with attributes of two windows (main,
settings) follows:

x(main)=544 y(main)=100
width(main) = 1920
height(main) = 1080

x(settings) = 520 y(settings) = 800
width (settings) = 120 height(settings) = 120

7.2 HIERARCHY VIA OBJECTS

Hierarchy or grouping can be added using the Object construct. Objects are useful in exhuming common
context with a succinct handle.

Objects can have nested objects, keyed-values, and arrays in any order.

Objects have the following syntax.

77

object name { ... }

object name {

object _name

{
<

The example property store file above illustrates potential object use as follows.

main{
X=544 y=100
width = 1920
height = 1080
¥
settings{
X = 520 y = 800
width = 120 height = 120
¥

Objects support the same identifier scheme as keyed-values.

7.3 ARRAYS OF DATA

SON supports 1d arrays of data that data can be scalar values, keyed-values, and nested-objects or arrays.
Multi-dimensional data can be flattened to 1d, and application-specific context can be provided in
associated keyed-value elements.

Arrays have the following syntax.
array [...]

array [

]...

array

[
-

The example property store file above illustrates potential array use as follows:
name [main settings]

X [544 520]
y [100 800]

78

width [1920 1080]
height[120 120]

Arrays support the same identifier scheme as keyed-values with the one exception that nested arrays
cannot have identifiers.

79

8. DEFINITION DRIVEN INTERPRETER

The definition driven interpreter (DDI) provides a capability with very little syntax.
Specifically, DDI supports data hierarchy, arrays, and scalar values.

The pattern is as follows:

file := section*
section := name value* section*

where the section name must adhere to the pattern [A-Za-z_]([A-Za-z0-9_\.])*. A value can be
an integer, real, or a quoted string. A file can have zero or more sections.

An example is as follows:

Comments look like this
section_namel
keys have optional '='

name = 1
name = 3.14159
name = "string value"

array 1 2 3 4

subsectionl.1
subsectionl1.2 1 2 3 3 4
subsectionl.2.1 "value"
name = 2.71

The above example illustrates arbitrary hierarchy.

Note that the section indentation is recommended for clarity but is not required. All content except for
comments could occur on the same line.

It is also evident that there is an ambiguity in the grammar. Specifically, how does one know whether a
subsequent section is a subsection or a sibling section? Having two sections such as

sectionl
section2

is syntactically the same as having a subsection such as

sectionl
sectionl.1

which presents hurdles for user and program interpretation.
This is where and why the definition is important and required in driving the interpretation of these files.

The definition driven algorithm is straightforward.

80

1. Read a section name and perform the following

1.1. If the section name is legal for the existing context, than capture the section name and push
section context. Repeat steps.

1.2. If the section name is not legal, pop the current context and repeat steps 1.1, 1.2, and 1.3
inquiries on new/parent context.
1.3. If no context available, i.e., exhausted, ERROR.

The result is a parse tree where node names are section names.

81

9. HIERARCHIAL INPUT TEMPLATE EXPANSION ENGINE (HALITE)

The HALITE engine is a data-driven input template expansion engine intended to facilitate application
input or data generation.

When it comes to text creation, there are typically two approaches: (1) write a program to generate the
needed text, or (2) create templates and some program glue logic to read the templates and substitute
attributes.

The HALITE engine attempts to bridge these approaches by providing standard glue logic. In this way,
the templates preserve clarity of intended text, the templates facilitate reuse, development is streamlined
by eliminating the developer and only requiring a template designer, and most importantly templates are
interchangeable, allowing the same data to be used to create a different look, perhaps for a different
application to consume.

The HALITE engine provides a single point, data-driven expansion capability that eliminates the need for
application-specific glue logic.

A template and an optional hierarchical data set is all that is needed to expand templates into text that is
usable by the end consumer.

The supported data constructs are provide by JSON and are Objects, Arrays, and Keyed values. For more
about JSON syntax, see www.json.org.

The expression evaluation supports scalar and vector variable reference and mathematical expression
evaluations.

9.1 TEMPLATE EVALUATION SUMMARY

This section describes the general approach used by the HALITE engine when evaluating a template and
constructing the resulting text.

There are 3 primary components:
1. the template, consisting of constructs discussed below,
2. the optional data, described in hierarchal object notation, and
3. the evaluation stream, which is the destination of evaluating template constructs.

Available template constructs are as follows:

1. Static text: plain text to be emitted to the expanded result which contains no attributes or
expression evaluation

2. Attributes: parameters or expressions to be evaluated, optionally formatted, and substituted into
the expanded result

3. Optional Attributes: parameters’ expressions that, when only present, are emitted to the expanded
result.

4. Silent Attributes: parameters’ or expressions that, when evaluated, are NOT emitted to the
expanded result; useful for intermediate or cached attribute evaluations to be used later.

5. Iterative Attributes: expressions that are evaluated iteratively for a specified range(s) with
optional separator and format.

6. Template imports: construct that imports a template into the existing template with optional use
of data object.

82

7. Iterative template imports: construct that imports a template for each element of an array via
'using' an array or repeatedly via range variables.

8. Conditional blocks: support pre-processor style #if/ifdef/ifndef - #elseif/else - #endif conditional
blocks which will only be emitted when the appropriate condition is true.

Each construct is evaluated and emitted into the evaluation stream, which can be redirected to a file when
using the HALITE utility, or c++ std::ostream when using the wasphalite api.

9.2 ATTRIBUTES AND EXPRESSIONS

Attributes and expressions are delimited by an opening and closing delimiter. By default, these delimiters
are '<' and ">' respectively. These are configurable via corresponding HaliteInterpreter class methods.

Example template attribute statements are:

1. <attr> - default delimiters, '<',">'
{attr} - custom '{' and '}'
${attr} - custom '${ and '}’
#{attr} - custom '#{ and '}'
[:attr:] - custom '[:'and ":]'
etc.

AN I

Formal attribute expression syntax appears as follows:

open_delim (name|expression) (':'['?''|"'] format? separator? range* use?)?
close _delim

where

1. open_delim is configurable, with a default value of '<'

2. ? indicates an optional attribute evaluation, which allows undefined variables to silently fail;
? MUST OCCUR immediately after the attribute options delimiter ":'

3. | indicates silent attribute evaluation; conducts computation/variable creation without emitting
the result to the evaluation stream; MUST OCCUR immediately after the attribute options
delimiter "'

4. 2 and 3 are optional and mutually exclusive

5. optional formatis 'fmt="' format ';', and format is described in the section below.

6. optional separatoris 'sep="' separator ';',and separator is emitted for all but the last
evaluation iteration

7. zero or more range specifications where a range looks like range_variable '='
start[,end[,stride]];. Start, optional end and stride must be integers or attributes
convertable to integers

8. the optional use statement facilitates scoped attribute access as depicted in scoped attribute
sections below

9. close_delimis configurable, default of >'

9.2.1 Silent Attributes

Attributes and expressions that must be evaluated but not placed into the evaluation stream can be
specified using the silent expression indicator:

<attr:|>

&3

9.2.2 Optional Attributes

Attributes may not be specified, and as such they must be considered optional by the template. Optional
attributes appear as follows:

<attr:?>

Here the : ? attribute option indicates that nothing being evaluated will be placed into the evaluation
stream unless the attr is defined.

This is most useful when combined with formatting to tackle text where data may be optionally available,
but when it is available, it requires context:

data record <x> <y> <z> <comment:? fmt=com="%s">

Here the comment is optional data, but when it is present it requires a 'com="comment"' to indicate
context. The format statement provides the context 'com=' only when comment is present.

9.2.3 Attribute Patterns

Attribute names are defined as the regular expression [A-Za-z_]([A-Za-z0-9\._])*. Examples of
these are:

1. wvar

2. var_name
3. var.name
4, wvarl

5. wvarl.real
6. etc.

If an attribute name contains character(s) that violate the regular expression, the variable name can be
quoted. Examples of these are:

1. ‘'var(name)'
2. 'my var(name)'
3. etc.

If an attribute is an array of data, a 0-based index can be used to access the data element. Given data of
"array':["ted","fred",7, 3.14159]

the following attribute patterns are legal:
1. array[@] - "ted"
2. array[1] - "fred"
3. array[2]-7
4. size(array) -4

9.2.4 Example Attribute Pattern

An example attribute substitution appears as follows:
the <FoxSpeed> <FoxColor> fox jumped over the <DogColor> dog.

or

84

the <'fox speed'> <'fox color'> fox jumped over the <'dog color'> dog.

Here the FoxSpeed or 'fox speed' attributes might be 'quick’ or 'fast', the FoxColor might be 'red',
and the DogColor or 'dog color' might be 'brown' or 'black.’

9.2.5 Expressions

The HALITE Engine uses the WASP expression engine for expression evaluation which supports all
regular math operators of multiplication "*', division '/', addition '+', subtraction '-', less than ".It.", less than
or equal "Ite.', greater than '.gt.', greater than or equal '.gte', equal '==', not equal '!=', and precedence '(',")'

. regular trig functions -
sin(x),cos(x),tan(x),asin(x),acos(x),atan(x),atan2(y,x),sec(x),cosec(x),c
ot(x),sinh(x),cosh(x),tanh(x),asinh(x),acosh(x),atanh(x)

. logarithmic functions - 1n(x),log(x),lg(x)

. exp(x)

s pow(x)

. round(x),round(x, p)

e floor(x),ceil(x)

. if(cond, trueval, falseval)

. abs(x)

. modulo - mod(x,y),

e min(x,y) max(x,y)

. sgrt(x)

. defined('x"') - indicates if the variable named x is defined

9.2.6 Example Expression Patterns
An example attribute substitution appears as follows:
the quick red fox jumped over the brown dog going <miles/hour>mph fast.

or

the quick red fox jumped over the brown dog going <velocity mph*1.60934>kph f
ast.

In addition to integer and double precision math operations, string concatenation is also available, such as

<"My result is "+numeric_result>

Here the numeric_result is concatenated to the string My result is, thus producing a final result
that is string typed.

9.3 FORMATTING

Attribute and expressions can be formatted prior to insertion into the evaluation stream. This is influenced
by the C printf and Java.Format capability.

Specifically, the following constructs are provided:

85

%[flags][width][.precision]specifier
9.3.1.1 Format Specifiers

The available specifiers are shown below:

Specifier Description Example

f Decimal floating point 3.14159

e Scientific notation (mantissa/exponent), lowercase 3.9265e+2
String of characters sample

d Signed decimal value 300

The format declarator percent % can be escaped with a double percent specified, %%
9.3.1.2 Format Flags

The available flags are presented below

flag Description Example
- The result will be left justified "left '
+ The result will always include a sign "+result’

The result will include a leading space for positive values 'result'
0 The result will be zero padded 'Oresult’
(

The result will enclose negative numbers in parentheses '(negative result)'

9.3.1.3 Format Width

The width is the minimum number of characters to be written to the output. Most frequently used for
padding.

9.3.1.4 Format Precision

For general argument types the precision is the maximum number of characters to be written to the

output. For floating-point types (specifier = 'e','f"), the precision is the number of digits after the decimal
point.

86

9.3.1.5 Format Examples

String examples are shown below:

Format

Result

Description

'<"str'":fmt=%s>'

'<"str'":fmt=%4s>"'

'<"str'":fmt=%05s>"'

'<"-30":fmt=%05s>'

|<I|_

30":fmt=%%05s="%05s">

'<"str'":fmt=%-10s>"

str

str

'@0str

'00-30

'%05s=
30" 1

str

Integer examples are listed below:

Format

Result

Description

llee_

Print the raw string "str" as a string

Print the raw string "str" with a width of 4 as a
string

Print the raw string "str" with a width of 5 as a
string padded with zeros

Print the raw string "-30" with a width of 5as a
string padded with zeros

Print the raw string "-30" with a format prefix of
'%05s', a width of 5 as a string padded with zeros

Print the raw string "str" left justified with a
minimum width of 10

'<3:fmt=%d>"
'<30:fmt=%4d>"
'<-30:fmt=%-5d>'

'<-30:fmt=%05d>"'

'<30:fmt=% d>"'
'<x=-30:fmt=% d>'
'<30:fmt=%+d>'
'<x=-30:fmt=%(d>'
'<3.14159:fmt=%d>"'

|3|
] 39!
'-30

0030'

30"
'+30'
' (30) "
3

Print the integer 3 as an integer

Print the integer 30 with a width of 4 as an integer

Print the integer -30 left justified with a width of 5 as an
integer

Print the integer -30 with a width of 5 as an integer padded

with zeros

Print the integer 30 with a leading space due to positive value

Print the variable x (-30) and if x > 0 include a leading space

Print the integer 30 with its sign

Print the variable x (-30) with parenthesis if x <0

Print the floating point value as an integer

87

Float-Point examples are as follows:
Format Result Description

'<3.14159265:fmt=%f>' '3.141593" Print the floating-point value 3.14159265
as a floating point value with default
precision of 6

'<3.14159265:fmt=%7f>"' '3.141593"
'<3.14159265:fmt=%8f>"' '3.141593"
'<3.14159265:fmt=%9f>' ' 3.141593'
'<3.14159265:fmt=%10f>' ' 3.141593"
'<3.14159265:fmt=%.0f>' '3
'<3.14159265:fmt=%.1f>' '3.1°
'<3.14159265:fmt=%.2f>' '3.14"
'<3.14159265:fmt=%.3f>' '3.142"
'<3.14159265:fmt=%1.0f>"' '3
'<3.14159265:fmt=%4.1f>' 3.1
'<3.14159265:fmt=%4.8f>' '3.14159265'
'<3.14159265:fmt=%8.2f>' ' 3.14°
'<3.14159265:fmt=%10.3f>"' ' 3.142°'

'<3.14159265:fmt=%01.0f>' '3
'<3.14159265:fmt=%04.1f>' 'e3.1"
'<3.14159265:fmt=%04.8f>"' '3.14159265'
'<3.14159265:fmt=%08.2f>' '00003.14"'
'<3.14159265:fmt=%010.3f>' '000003.142°

'<3.14159265:fmt=%g>' '3.14159"
'<3.14159265:fmt=%.0g>' '3'
'<3.14159265:fmt=%.1g>' '3'
'<3.14159265:fmt=%.2g>' '3.1°
'<3.14159265:fmt=%.3g>' '3.14"
'<3.14159265:fmt=%1.0g>' '3
'<3.14159265:fmt=%4.1g>' ' 3'
'<3.14159265:fmt=%4.8g>' '3.1415927'
'<3.14159265:fmt=%8.2g>' ' 3.1
'<3.14159265:fmt=%10.3g>' ' 3.14"

'<3.14159265:fmt=%01.0g>' '3’
'<3.14159265:fmt=%04.1g>' '0003'
'<3.14159265:fmt=%04.8g>' '3.1415927'

88

'<3.14159265:fmt=%08.2g>' '000003.1'
'<3.14159265:fmt=%010.3g>' '0000003.14"

'<le-4:fmt=%.4g>' '0.0001000'
'<le-4:fmt=%10.4g>' ' 0.0001000"
'<le-4:fmt=%.5g>' '0.00010000"
'<le-5:fmt=%.5g>' '1.0000e-05"
'<le-6:fmt=%.6g>' '1.00000e-06"
'<le-2:fmt=%.7g>' '0.01000000"
'<le2:fmt=%10.7g>' ' 100.0000'
'<3.14159265:fmt=%e>"' '3.141593e+00"
'<3.14159265:fmt=%.0e>"' '3e+00’
'<3.14159265:fmt=%.1e>' '3.1e+00’
'<3.14159265:fmt=%.2e>' '3.14e+00'
'<3.14159265:fmt=%.3e>' '3.142e+00"
'<3.14159265:fmt=%1.0e>' '3e+00’
'<3.14159265:fmt=%4.1e>' '3.1e+00’
'<3.14159265:fmt=%4.8e>' '3.14159265e+00'
'<3.14159265:fmt=%8.2e>' '3.14e+00'
'<3.14159265:fmt=%10.3e>' ' 3.142e+00’

'<3.14159265:fmt=%01.0e>' '3e+00’
'<3.14159265:fmt=%04.1e>' '3.1e+00’
'<3.14159265:fmt=%04.8e>' '3.14159265e+00"
'<3.14159265:fmt=%08.2e>' '3.14e+00’
'<3.14159265:fmt=%010.3e>' '©3.142e+00"

'<le-4:fmt=%.4e>' '1.0000e-04"
'<le-4:fmt=%10.4e>' '1.0000e-04'
'<le-4:fmt=%.5e>' '1.00000e-04"
'<le-5:fmt=%.5e>" '1.00000e-05"
'<le-6:fmt=%.6e>' '1.000000e-06"
'<le-2:fmt=%.7e>' '1.0000000e-02'
'<le-2:fmt=%10.7e>' '1.0000000e-02'
'<1e2:fmt=%10.7e>' '1.0000000e+02"

9.3.1.6

&9

9.3.1.7 Format Error Examples

Some flag specifiers are not legal with given specifiers. The following are examples of common
scenarios:

Format Error

'<"some malformed format string: flag '(' does not match the
string":fmt=%(5s>' conversion ‘s’

'<"some malformed format string: flag '+' does not match the
string":fmt=%+5s>"' conversion ‘s’

'<"some string":fmt=% s>' malformed format string: flag ' ' does not match the

conversion 's

9.4 SCOPED ATTRIBUTE

Because the data is hierarchical, access to lower levels of the data hierarchy can be required. Common
single-level access is facilitated by scoping an attribute access via a 'use' statement.

9.4.1 Object Scoped Attribute

Given hierarchical data of

{
"fox' : { 'color' : 'red', 'speed' : 'quick' }
, 'dog color' : 'brown'

}

the following template uses scoped attributes of fox color and speed to emit the desired result:
the <speed:use=fox> <color:use=fox> fox jumped over the <'dog color'> dog.
or

<"the "+speed+" "+color:use=fox> fox jumped over the <'dog color'> dog.
9.4.2 Array Scoped Attribute

In addition to object-scoped use statements, an array can be used. When an array is used, an iteration is
implied over each element of the array.

Given the array data of

{
"parts’
[
{ "what" : "quick red fox", "action" : "jumped over", "dog state" "
brown" }
,{ "what" : "honey badger", "action" : "didn't care about", "dog stat
e" : "big angry" }
,{ "what" : "weasel", "action" : "slunk by", "dog state" : "sleeping"
}

90

}

the following template uses the scoped attributes, as follows:

<"The "+what+" "+action+" the "+'dog state'+" dog.":use=parts>
The result is a whitespace-separated evaluation of the template using each element in the array:

The quick red fox jumped over the brown dog. The honey badger didn't care abo
ut the big angry dog. The weasel slunk by the sleeping dog.

A file import using an object or array facilitates more complex hierarchical data access.
9.5 FILE IMPORTS

The HALITE engine supports file import, where files consist of all template constructs described in this
section. File imports can be parameterized and both implicitly and explicitly iterative.
The simplest file format appears as shown below:

#import relative/or/absolute/file/path.tmpl

Here the '#import' must occur at the start of the line. The path to the file can be relative to the current
template, working directory, or an absolute path.

The capability for the file being relative to the working directory allows subtemplates to be overridden.

The path can also be templated on any available attribute. The subtemplate has immediate access to all
attributes at the current data level.

9.5.1 Example Data

The given data are presented below:

{
IIXII : Ilblur‘gll
,Ilyll : llblar‘gll
,obj
{
Ilall : "blur‘git"’ Ilell : llblar‘gll R
"Sar‘g"
{
"bravo" : 2
, "delta" : 4
, "charlie" : 3
}
}
,array
[

91

}

The root template (entry for evaluation) has access to X, and y, but in order to access data members of
ob7j, either a scoped attribute evaluation or a parameterized template import must be used.

9.5.2 Parameterized File Import
Parameterized file imports facilitate access to data hierarchy and repetition of templates.
9.5.2.1 File Import Using an Object

The example data contains the obj data layer, which contains nested object sarg and other imaginary
data To access all of the data, a subtemplate can be imported 'using' obJj as follows:

#import some/file.tmpl using obj

The template some/file.tmpl can now access all attributes within obj. Additionally, all attributes in
higher levels (x,y,array,. . .) are still accessible:

some/file.tmpl:

This is a nested template with access to obj's context
variable a=<a>, e=<e>

Variables still accessible from parent data are x:<x>, and y:<y>, etc.
9.5.2.2 Iterative File Import Using an Array or Ranges

The import of files can be repeated using 2 constructs: (1) implicit iteration via use of an array, or
(2) explicit iteration using repeated ranges.

The implicit iteration via use of an array is syntactically identical to import using an object:
#import path/to/file.tmpl using my_array

The explict iteration via ranges is syntactically different to disambiguate and clearly indicates intent:
#repeat path/to/file.tmpl using (var=start[,end[,stride]];)+

Note that the statement starts with #repeat and not the regular #import. The range (var) can be
specified as semicolon ';' delimited to produce embedded loops.

#repeat path/to/file.tmpl using i=1,5; j=2,6,2;

The above will loop j=2,4,6 for i=1 through 5. The variables i and j are available in the imported
template.

9.6 CONDITIONAL BLOCKS

Conditional blocks facilitate alternative paths through templates. Conditional blocks can be activated with
a defined or undefined variable or an expression that evaluates to true or false.

92

#if, #ifdef and #ifndef indicate the start of a conditional block. Subsequently, an additional
condition can be indicated by #elseif or #else and then finally terminated by a #endif

#if condition
block
#tendif

The above block will be emitted if the condition evaluates to true. The condition could be a variable
name referencing a value that is true, or it could be an attribute expression.

#if ted_present
hello ted
#tendif

or

#if < i .gt. @0 >
some logic pertaining to i > ©
#endif

The use of #elseif and #else allow for alternative logic if the initial or prior condition evaluates to
false.

#if < ted present && bill present >
Bill and Ted's excellent adventure!
#elseif ted present

Where is Bill?

#elseif bill present

Where is Ted?

f#telse

Where are Bill and Ted?

#tendif

93

10. COMMAND LINE UTILITIES

The Workbench Analysis Sequence Processor package provides a set of command line utilities to aid in
sequence processing and processor development.

The sequence processor construct parses trees from which two primary functions are typically desired:

1. the listing of the parse tree
2. the selection of input given a select statement.

10.1 FILE LISTING UTILITIES

Available Interpreters have corresponding *list utilities.

SON, GetPot, DDI, and JSON have corresponding sonlist, getpotlist, ddilist, and jsonlist.
These utilities produce an ordered directory-style listing of each parsed input component.

For the given example SON data file example. son:

object(identifier){

key = value

child (name) {

X =1

}
}
array [1 2 3]
an invocation of the sonlist utility,

sonlist example.son

produces a directory-style list of each component in the file:

/

/object

/object/decl (object)
/object/((()

/object/id (identifier)
/object/) ())

/object/{ ({)

/object/key
/object/key/decl (key)
/object/key/= (=)
/object/key/value (value)
/object/child
/object/child/decl (child)
/object/child/((()
/object/child/id (name)
/object/child/) ())
/object/child/{ ({)

94

/object/child/x
/object/child/x/decl (x)
/object/child/x/= (=)
/object/child/x/value (1)
/object/child/} (})
/object/} (})

/array

/array/decl (array)
/array/[([)
/array/value (1)
/array/value (2)
/array/value (3)
/array/] (1)

These lists describe the interpreted hierarchy and value.

Note that the Definition-Driven Interpreter (DDI) is different from the others, as it requires a schema
(definition) in order to parse.

ddilist /path/to/schema.sch /path/to/input.inp
10.2 FILE COMPONENT SELECTION UTILITIES

The ability to select specific parts of the input can be useful in schema creation. All supported interpreters
have corresponding select utilities.

Using the example.son file earlier, a select statement of sonselect example.son
/array/value[1:3] produces the following output:

Selecting /array/value[1:3]

---- 3 nodes selected with statement '/array/value[1l:3]' ----
1) /array/value

1

2) /array/value

2

3) /array/value

3

Alternatively, sonselect example.son /object/child/x produces the following output:

Selecting /object/child/x

---- 1 nodes selected with statement '/object/child/x' ----
1) /object/child/x

x =1

Subsequent selections select from prior selection sets, so sonselect example.son
/object/child/x ../key/value produces:

Selecting /object/child/x

---- 1 nodes selected with statement '/object/child/x' ----
1) /object/child/x

x =1

95

Selecting ../../../array

---- 1 nodes selected with statement
1) /array

array [1 2 3]

«./../../array"' ----

The first node selected is the /object/child/x node, which has the text x = 1. Subsequently, the
relative path ../../../array isused from /object/child/x to select three levelsup ../../../,
and subsequently the array node. Notice that the exact user input is reproduced.

10.3 XML UTILITIES

The XML standard is readily accessible in most programming languages where SON, GetPot, DDI, etc.
are not. As such, the *xml utilities provide a bridge for prototyping or coupling with higher level scripts,
etc.

sonxml example.son
produces

<document>
<object>
<decl loc="1.1" dec="true">object</decl>
<LP loc="1.7" dec="true">(</LP>
<id loc="1.8" dec="true">identifier</id>
<RP loc="1.18" dec="true">)</RP>
<LBC loc="1.19" dec="true">{</LBC>
<key>
<decl loc="2.4" dec="true">key</decl>
<ASSIGN loc="2.8" dec="true">=</ASSIGN>
<value loc="2.10">value</value>
</key>
<child>
<decl loc="3.4" dec="true">child</decl>
<LP loc="3.10" dec="true">(</LP>
<id loc="3.12" dec="true">name</id>
<RP loc="3.17" dec="true">)</RP>
<LBC loc="3.19" dec="true">{</LBC>
<X>
<decl loc="4.7" dec="true">x</decl>
<ASSIGN loc="4.9" dec="true">=</ASSIGN>
<value loc="4.11">1</value>
</x>
<RBC loc="5.4" dec="true">}</RBC>
</child>
<RBC loc="6.1" dec="true">}</RBC>
</object>
<array>
<decl loc="7.1" dec="true">array</decl>
<LBK loc="7.7" dec="true">[</LBK>
<value loc="7.9"»1</value>
<value loc="7.11"»2</value>

96

<value loc="7.13">3</value>
<RBK loc="7.15" dec="true">]</RBK>
</array>
</document>

Any xml element with the attribute dec="true" indicates a 'decorative' input component, required
syntax and could be ignored by most higher-level interpreters.

The attribute loc="1ine.column" indicates the input components location in the file.

The element’s name indicates the name of the input component. The leaf element’s data are the data of
interest stored in the parse tree.

10.4 FILE VALIDATION UTILITIES

The SON, DDI, and GetPot interpreters have Hierarchical Input Validation Engine (HIVE) adapters
allowing them to be validated. As such, there are sonvalid, ddivalid, and getpotvalid utilities.

Invocation of the validation utilities requires a schema, and an input:
sonvalid /path/to/schema.sch /path/to/input.inp

The schema’s contents are beyond the scope of this document. The product of *valid will be a return code
of 0 only if no validation errors occur in the input. If an error occurs, a non-zero return code is produced,
and validation errors emitted. See the HIVE documentation of types of validation errors.

10.5 THE HIERARCHAL INPUT TEMPLATE EXPANSION (HALITE) ENGINE
The HALITE engine has the corresponding halite command line utility.

HALITE provides a data-driven template expansion capability and has a sizable feature set for templating
text data for input or other needs.

The halite command line utility can be invoked with a template and optional JSON-formatted data
parameter set:

halite /path/to/template.tmpl
or with JSON parameter set:
halite /path/to/template.tmpl /path/to/data.json

The expanded template emitted on stdout, and errors/log information is emitted on stderr.
10.6 SCHEMA SKELETON CREATION UTILITY

The ability to take multiple input files known to be valid and to create a schema skeleton from these can
be a very useful starting point for schema creation. Currently, a utility exists that allows this to be done
with a series of SON input files. Therefore, if a user has multiple SON formatted input files that are
known to be valid, and the objective is to begin creating a schema for these files, the first step is to run

sonschemaskel path/to/valid/inputl.son path/to/valid/input2.son ...

97

and the resulting output will be a schema skeleton that can be used with the Hierarchical Input Validation
Engine to validate the inputs. These schema skeletons have actual rule stubs for each input node
commented out. These rules can be reviewed in more detail in the HIVE section and should be modified

for each piece of input.

98

