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CAEBAT OAS/VIBE 
 
P R O D U C T I O N  R E L E A S E  V 1 . 2  

NEW FEATURES 
The new release extends the previous version by implementing: 

 Continuous execution mode of OAS which provides savings in computational time of up to 50% 

 Capability to simulate dynamic discharge (variable potentiostatic/galvanostatic conditions) 

 Improved Integrated Computational Environment (ICE) 

 Deployment via Docker and addition to Virtual Machine 

INTRODUCTION 

As part of the CAEBAT (Computer Aided Engineering for Batteries) activities, ORNL developed a flexible, 

robust, and computationally scalable open-architecture framework that integrates multi-physics and multi-

scale battery models. The physics phenomena of interest include charge and thermal transport, 

electrochemical reactions, and mechanical stresses. They operate and interact across the porous 3D structure 

of the electrodes (cathodes and anodes), the solid or liquid electrolyte system and the other battery 

components. The underlying lower-length processes are accounted for through closure equations and sub-

models that are based on resolved quantities. The schematic of this framework is given in Fig. 1. 

 

Figure 1: Schematic of the OAS modeling framework and interactions with other tasks within the CAEBAT 

program and external activities. 
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This framework enables seamless integration of the following physical phenomena that are necessary for 

development of realistic and predictive battery performance and safety models: 

• Mass Transport 

– Lithium/electron transport through cathode, anode and electrolyte materials. 

– Spatiotemporal variations in material properties 

• Thermal Transport 

– Thermal transport through various battery materials as a function of space and time 

• Electrochemistry 

– Primary and secondary reactions 

– Interfacial reactions 

• Mechanical behavior 

– Linear and nonlinear mechanics 

• Stress/strain relationships   

– Fracture at primary and secondary particle levels 
 

The objective of the project is to develop a mathematical and computational infrastructure, and modeling 

framework that will enable seamless multi-scale and multi-physics simulations of battery performance and 

safety. The modeling framework will transfer the information between models in a physically consistent and 

mathematically rigorous fashion for both spatial and temporal variations. The end result will be a verified, 

computationally scalable, portable, and flexible (extensible and easily-modified) framework that can 

integrate models from the other CAEBAT tasks and industrial partners. The framework will be used to validate 

models and modeling approaches against experiments and to support rapid prototyping of advanced 

battery concepts. Fig. 2 shows different parts of CAEBAT VIBE simulation environment that work together to 

provide user with flexibility in the problem setup, solution formulation and simulation launch. Each of the parts 

is discussed in subsequent sections with corresponding examples. 

 

Figure 2: Parts of the CAEBAT VIBE environment. 
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OAS 
The goal is to create a modular and extensible software infrastructure that can support multiple modeling 

formulations and computer codes for simulation of battery performance and safety. The main guiding 

principles for the design of the framework are: 

• Flexibility 

– programing language-agnostic 

– supports multiple modeling approaches and codes 

– combines appropriate component models for problem at hand 

– supports integrated sensitivity analysis and uncertainty quantification 

• Extensibility 

– ability to add proprietary component models 

• Computational scalability from desktop to HPC platforms 

– portable and adaptable to various computer hardware architectures 
The OAS infrastructure employs a modular design with strict interfaces, object-oriented data structures, and a 

lightweight backplane implemented in Python scripting language. This design is illustrated in Fig. 3. The 

framework services control the various software components through component adapters. The components 

update the battery state through state adapters. The battery state is the minimal digital description of the 

battery in space and time such that each simulation component can apply their respective physics models and 

advance in time from each state point to the next. The OAS framework, along with physics and support 

components and the adapters constitute the Virtual Integrated Battery Environment (VIBE).  

 

Figure 3: Schematic of the OAS modeling framework, which connects physics components through component 

adapters, with linkage to the battery state through state adaptors. A specific collection of components, 

adaptors, and the OAS framework defines one realization of VIBE (Virtual Integrated Battery Environment). 
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BATTERY MARKUP LANGUAGE (BATML) 

The objective of the BatML specification is to provide standardized format for definition of all the necessary 

information for battery performance and safety modeling. The overall design for the BatML is given in Fig. 4 

below. The BatML Schema establishes the main structure for the BatML data files and enables data validation 

and consistency checking. BatML files can contain databases and models with default values or with company 

proprietary information. For e.g., Dow-Kokam or Johnson Controls can provide a database of their cell-

sandwich properties that an OEM can directly use in their models. Several examples based on open literature 

for standard battery materials and components have been developed and made available to the project 

partners.  The graphic workflow environment described later in this documentation (ICE) uses these Schemas 

and Databases along with any additional user input to create a BatML input file. This XML file can either be 

used directly by simulation packages or through translators that transform this input into native formats read 

by the different software components. 

 

Figure 4: Overall Structure of the Battery ML  

The top-level structure of the Battery ML Schema (available at the CAEBAT project website 

http://batterysim.org ) is shown in Fig. 5.  Here we define a battery component type that contains the base 

components such as anode, cathode, electrolyte, separator, current collectors. These base components are 

used to build higher-level components such as cell-sandwich, cell, module, pack, parts (e.g., busbar, cooling 

fins). Each of these components can contain additional sub-components, as their definition is dependent on the 

form of model used. For e.g., the cell-sandwich definition will depend on the model for electrochemical 

component. The Cell can be further specified as Cylindrical cell, Prismatic cell, etc. To enable this flexibility, 

we picked the relational data model (hierarchical data model will also be implemented in the language). The 

main considerations for selecting the relational versus hierarchical data model were  

 Batteries have very deep hierarchy and the hierarchical data model will lead to considerable 

duplication of the data 

 Relational data model provides the flexibility to quickly modify the hierarchies of the models and add 

new components 

Schema controls the 

structure of the output, 
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 Relational approach requires that all the references to the data exist and that the model is self-

contained. This does not impose a strong limitation because the input files will be primarily 

manipulated using GUI and not by user editing of the XML files.   

 Cross referencing in relational data model drastically reduce data duplication and the corresponding 

risk for errors. 

We have also implemented a markup language subset and database (UnitsDB) for the definition of physical 

units in the model. The underlying unit specification is implemented using Units Markup Language (UnitsML) 

specifications from National Institute of Standards and Technology. The UnitsDB can be used to define units of 

relevance to electrochemistry and build on (UnitsML). 

 

Figure 5: Battery ML Schema 

Once the DualFoil model has been selected, it can be further subdivided into different components of the cell-

sandwich. The Battery ML schema imports the cell-sandwich schema (whose structure is shown in Fig. 6 and can 

be downloaded from the project’s web site) that further specifies the details of its components. Similar 

hierarchical expansion can be used to define cell, module, pack, etc. Current implementation contains the 

above battery hierarchy. Translators between BatML and other input formats of CAEBAT partners have been 

developed with the final goal of BatML becoming a standard.  Figure 7 compares the EC Power input and 

conversion to BatML. Similar translators have been developed for Text Battery Model (.tbm) files (BDS/CD 

Adapco), .svm files (NREL MatLab model), as well as ANSYS input.  We keep the project’s website up to date 
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with the latest version of the schema, corresponding documentation and examples, schema validation tools, 

etc. 

 

 

Figure 6: Cell-Sandwich and Component ML Schema Types 
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Figure 7: Translation between BatML and EC Power Input. 

BATTERY STATE 

The OAS framework integrates battery models using component and state adapters. The component adapters 

interact with the components by preparing the necessary inputs to run the components and by scheduling the 

component runs. The state adapters interact with the battery state file(s) by updating all the necessary 

information about the battery state and the methods for coupling the components. Fig. 8 shows a battery state 

file that transfers the information between the electrochemistry, thermal and electrical physics components. The 

device hierarchy is modeled by coarse-graining of the underlying sub-components. The top hierarchical level 

of the model is divided into zones. These zones then transfer information between the components in case of 

loosely coupled multi-physics simulations. Further description and examples of the battery state are given in 

the sections that follow. 

EC-POWER 

Input 

BatML 
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Figure 8: Battery state file – the core for passing data between components 

VIRTUAL INTEGRATED BATTERY ENVIRONMENT (VIBE) 
We have added several components for modeling electrochemistry and mass, electron, and heat transport in 

order to VIBE. The components that have been integrated so far are: 

1. Electrochemistry 

i. Pseudo 2D Dual-Foil (Doyle, Fuller et al. 1993; Fuller, Doyle et al. 1994; Fuller, Doyle et al. 

1994) 

ii. 3 D Electrochemistry Model  - AMPERES 

iii. NTG (Seong Kim, Yi et al. 2011) 

iv. NREL MSMD (Kim, Smith et al. 2011) 

v. AMPERES Single Particle 

vi. AMPERES Pseudo-2D 

2. Thermal 

i. AMPERES 

3. Electrical 

i. AMPERES 

4. Cost Model  

i. ANL Cost Model 

5. Mechanics 

ii. EPIC, LS-Dyna, LIGGGHTS/LAMMPS 

Conservation of current flow is given by,
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INTEGRATED COMPUTATIONAL ENVIRONMENT (ICE) – A GRAPHICAL 
WORKFLOW EDITOR FOR INPUT, SIMULATION SETUP, JOB LAUNCH AND 
ANALYSIS 

The driving force behind ICE is the development of software that provides an integrated set of capabilities 

for working with physics simulators for creating input files, managing and analyzing data, launching jobs and 

code coupling through data mapping. The framework was originally developed for the Nuclear Energy 

Advanced Modeling and Simulation program (NEAMS), - a DOE NE project. The capabilities of ICE for 

CAEBAT were designed specifically to aid in simulation setup and job launch. Within the graphical interface 

the selection of components (physics models), platforms, time-stepping schemes, meshes, etc becomes much 

easier task.  Further updated information can be found on the ICE project webpage at https://eclipse.org/ice.   

Visualization of the simulation results is executed through a connection to the external visualization software 

application, VisIt (https://wci.llnl.gov/simulation/computer-codes/visit ).  Detailed description of ICE usage to 

set up and run a simulation is provided in APPENDIX B.  

  

https://eclipse.org/ice
https://wci.llnl.gov/simulation/computer-codes/visit
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APPLICATION EXAMPLES 

 

Example 1: Cylindrical Cell (Electrochemical-Electrical-Thermal) 

This example (located in VIBE repository at examples/case3/) represents the geometry of a rolled cylindrical 

cell. The main model properties are given in the table below. Fig. 9 shows the geometry and the finite element 

mesh used to resolve the geometry of the cylindrical cell and the current collectors. The top hierarchy model 

has 168 (56 each for the cell-sandwich and positive and negative current collectors) zones in 4 quadrants. The 

zones describe different current collector and cell sandwich regions. The simulation uses 56 concurrent Dualfoil 

simulations for different cell-sandwich zones. Typical results are shown in Fig. 10. The maximum temperature 

occurs at the cell core as expected. 

Physical 
Properties 

  
 Carbon 

Electrode 
(Anode) 

Lithium 
Electrode 
(Cathode) 

Al Foil Cu Foil Separator 

Density kg/m3  2500   1500  2700 8960  1200  

Heat 
Capacity J/Kg-K 

 
 700  700  900  385  700 

Thermal 
Conductivity W/m-K 

 
 0.01 0.01 238  398   0.01 

Electrical 
Conductance  S/m 

 
0.0051 0.0051 38300000  63300000  0.0051 

(Cp) avg J/m3-K 1750000.00      

Height m 0.05      

Diameter m 0.02      

Current 
Density 

A/m2 35 
     

Convective 
Heat 
Transfer 
Coefficient 

W/m2-
K 

25 
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Figure 9: Geometry and mesh of the simulated cylindrical cell 

 

Figure 10: Sample results for example 3 (electrical potential on the left and the temperature on the right) 

 

Example 2: Pouch cell (Electrochemical-Electrical-Thermal) 

This example (located in the VIBE repository at examples/case6/) represents the geometry of a prismatic 

pouch cell. The electrochemistry is modeled using the NTG model instead of the DualFoil model.  The cell under 

consideration is a 70mm x 110mm x 10mm 4.3 Ah pouch cell manufactured by Farasis Energy, Inc with the 

properties given in the table below.  The pouch cell in the current study contained 17 cathode and 17 anode 

layers and the finite element mesh was divided into 71 corresponding zones for cell sandwich, current 

collectors, and pouch (Fig. 11).    

4.253

0.0

s 312.6

301.6

T
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Physical 
Properties 

  
 Carbon 

Electrode 
(Anode) 

Lithium 
Electrode 
(Cathode) 

Al Foil Cu Foil Separator 

Density kg/m3  2500   1500  2700 8960  1200  

Heat 
Capacity J/Kg-K 

 
 700  700  900  385  700 

Thermal 
Conductivity W/m-K 

 
 0.01 0.01 238  398   0.01 

Electrical 
Conductance  S/m 

 
0.001449 0.001449 38300000  63300000  0.001449 

(Cp) avg J/m3-K 1750000.00      

Height m 0.192      

Width m 0.145      

Thickness 
m 

1.7x10-3  

(10 layers)      

Current 
Density 

A/m2 35 
     

Convective 
Heat 
Transfer 
Coefficient 

W/m2-
K 

25 

     

 

Fig. 11. Geometry and mesh of pouch cell. 

The example of the simulation results is shown in Fig. 12 and represents a temperature distribution in a pouch 

cell following a discharge at 5C rate of applied current.  At such high applied current significant increase in 

temperature can be observed in the cell core.  The simulation results have been validated with the 

experiments involving IR temperature measurement on the surface of the pouch cell (Fig. 12b).  Experiments 

agree well with the predicted temperature profiles for all C-rates.   
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(a)      (b) 

Figure 12: Simulation results (a) and validation with IR measurements (b). (S. Allu et al, J Power Sources 

246 (2014), pp. 876-886). 

 

Example 3: 4P and 4S battery module 

In this example, the single pouch cell described in the previous section is used as a building block for a 

module, containing 4 cells in parallel or in series.  The example is in the repository in examples/case7/.  

Meshes representing parallel (4P) and series (4S) module configurations are shown in Fig. 13.  No cooling fins 

were placed between the cells in this model.  The mesh consists of approximately 150,000 FE nodes and 308 

zones in the whole module thus resolving each current collector.  Concurrent electrochemical model runs 

(DualFoil was chosen in this case) were performed in 136 charge transfer zones within the module.  The goal 

of this study was to estimate temperature variations across the cells connected in series and in parallel.   
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     (a) 

   

      (b) 

Fig. 13. Module schematics with (a) series (4S) and (b) parallel (4P) cell arrangements. 
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The results of the simulations when symmetric cooling to the module surfaces is applied with a convective heat 

transfer coefficient of 35 W m-2 K-1 are shown in Fig. 14.  As can be seen both parallel and series cases result 

in very similar distribution of temperature across the module.  In both cases, a 5C discharge rate was applied.   

   

Fig. 14. End of discharge temperature profiles in (a) 4P and (b) 4S modules 
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Example 4: 4P module under dynamic discharge  

In this example, the mesh corresponding to the 4P module is used to simulate the dynamic discharge under the 

user supplied variable potentiostatic/galvanostatic conditions. The example can be found in 

examples/case10/.  The model uses DualFoil and AMPERES Thermal components. An option of driving 

simulation under varying current (dynamic discharge) has been added in the current release. The key-value 

pair file (for detailed description of sections of the input and configuration files please see Appendix A) 

contains several lines dedicated specifically for this new option. The following keywords are used to describe 

the cycling profile: 

NUMSEG Number of segments in the cycling profile 

CURRDEN List of current density values corresponding to each segment 

MODESEG 
List of segment modes. Most commonly used are 0 for potentiostatic and 1 for 

galvanostatic.  

CUTOFFL Lower cut-off potential 

CUTOFFH Upper cut-off potential 

 

NOTE: If the NUMSEG keyword is missing in the key-value pair input file, the simulation will assume a default 

constant current discharge. 

To utilize the dynamic discharge capability, the time stepping must be specified using the EXPLICIT option in 

the simulation config file with explicitly specified values of time corresponding to the segments of the cycling 

profile. Please see Appendix A for detailed description of input and config files required to launch a 

simulation.  

If zero current density is specified in CURRDEN, the simulation will be performed under potentiostatic condition 

using the OCP corresponding to the end of previous cycling segment.  
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GETTING STARTED: RUNNING VIBE IN VIRTUAL MACHINE 

In order to enable a user to take VIBE for a ‘test drive’ we have the software packaged within a Virtual 

Machine (VM) which can be installed on user’s machine of choice.  This section describes the instructions on how 

to run the simulation in VM.  The virtual machine is packaged into the open virtualization format archive 

BatterySim-release<Version>.ova which can be downloaded from the project website.  Before using the VM 

the Virtual Box software needs to be installed on the user machine.  The software can be downloaded from 

https://www.virtualbox.org/ together with the installation instructions and user manual.  Once installed, start 

the Virtual Box and click on File > Import Appliance.  This will open the dialogue box where you can select the 

BatterySim-release.ova as your virtual machine.  After such selection, BatterySim will appear in the list of the 

virtual machines within the left panel of Virtual Box (Fig. 15).   

 Fig. 15. Virtual Box with VM imported 

If you have several virtual machines select the BatterySim and start the VM.  There is no password for the 

BatterySim, so simply press Return key.  This will open the Fedora Linux environment as shown in Fig. 16.   

 Fig. 16. BatterySim VM 

https://www.virtualbox.org/
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From here the user can navigate to the examples directory and run the simulations in command line as 

described in APPENDIX A. In Fig. 17a the terminal window navigating to case 2 is shown with corresponding 

simulation configuration file (thermal_*.conf) and the input directory which stores input files as well as mesh 

(exodus *.e file). After the simulation is complete, the case directory will be populated with log files containing 

information on simulation run and possible errors as well as a new work directory which contains the results of 

simulation and the battery state CGNS file. More on the directory structure and command line launch 

instructions is given in APPENDIX A. Alternatively user may launch ICE by double-clicking on the ICE desktop 

icon (Fig. 17b). Instructions on running simulations with ICE can be found in APPENDIX B.  

       

       (a)       (b) 

Fig. 17. Using command line (a) or ICE (b) to setup and run a simulation in VIBE 

The home directory of the battery simulator is /home/batsim/ and it contains installation of OAS 

(/home/batsim/oas/) and VIBE with the simulation cases (/home/batsim/vibe/). Paths for components’ drivers 

and executables are included in configuration file batsim.conf which is placed in a separate directory 

/PathTo/examples/config/ and is used by each simulation case. Simulation can thus be launched from the case 

directory by specifying the OAS directory and simulation configuration and pressing the Return key: 

 

The BatSim virtual machine comes with four simulation cases packaged in examples directory. These involve 

different battery and module geometries and physical models as discussed in APPLICATION EXAMPLES 

section. For instance running the simulation of case2 as described above will provide a loosely coupled 

electrochemical-thermal-electrical solution for unrolled cell with DUALFOIL as electrochemical component. 

Details of the simulation cases are given in APPENDIX A and APPENDIX B.   
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GETTING STARTED: RUNNING VIBE IN DOCKER 

Using Docker container to run the software is an alternative way to using the virtual machine. The details and 

installation instructions depending on the OS can be found at https://www.docker.com/ . The following 

instructions explain how to: 

 launch the VIBE container 

 connect to the container from ICE 

 stop and remove the container 

 LAUNCH THE VIBE CONTAINER

• Pull the latest version of the VIBE container: 

$ docker pull rombur/vibe-ssh 

• Download the private key id_rsa_vibe: 

$ wget https://raw.githubusercontent.com/Rombur/VIBE/master/remote/id_rsa_vibe 

• Run the container: 

$ docker run -d -p 2222:22 --name vibe_ssh rombur/vibe-ssh 

This will run in detached mode a container named vibe_ssh using the image rombur/vibe-ssh. It will also 

map the port 2222 of your machine to the port 22 of the container. This port has been exposed in the 

container. 

 CONNECT TO THE CONTAINER FROM ICE

Use ICE like you would do in the VM with two differences: 

• Because the examples are in the container not in your local machine, you cannot browse them. If you want 

to use the input files from the examples, you will need to copy them from the container. You can connect to 

the container using the following command: 

$ ssh -i id_rsa_vibe -p 2222 root@localhost 

With this command, ssh will use the port 2222 of your machine and the private key id_rsa_vibe to connect 

to the container. The examples can be found in /opt/vibe/examples. If you want to copy case1 from the 

VIBE container into you working directory, you can do: 

$ docker cp vibe_ssh:/opt/vibe/examples/case1 . 

• Inside the VibeLauncher window, in the Hosts pane, you need to change the hostname from localhost to 

docker and the Execution Path from /home/batsim/caebat to /opt. To do so, simply click on localhost and 

/home/batsim/caebat. Once you launch the job, a window should pop up to specify the properties of the 

new connection. In the Host field, write localhost. In the User field, write root. Click on Network 

Connections, SSH2, then click on Add Private Key... and add the id_rsa_vibe file. Back on the New 

Connection window, under Advanced type 2222 in the Port field. 

 

https://www.docker.com/
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 STOP AND REMOVE THE CONTAINER

• The container will still run even after you exit ICE. You will need to stop and remove it yourself using: 

$ docker stop vibe_ssh 

$ docker rm vibe_ssh 

• To check that the container has been stopped, type: 

$ docker ps 

• There should not be any container named vibe_ssh. To check that the container has been removed, type: 

$ docker ps -a 

There should not be any container named vibe_ssh. 
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APPENDIX A: COMMAND LINE OAS/VIBE LAUNCH INSTRUCTIONS  

This section describes the simulation launch procedure using command line as opposed to using integrated 

computation environment (ICE) which is detailed in the next section.  All simulation scenarios (cases) are a part 

of VIBE and correspondingly are placed in PathTo/vibe/examples/ directory.  When running in BatterySim 

virtual machine this directory will be located in /home/batsim/caebat/vibe/examples/.  As an example the 

coupled electrochemical-electrical-thermal modeling of a prismatic cell (case 6) is considered here.  The 

structure of the directory case6 is shown below.   

 

The input directory contains mesh file (Exodus file) of the geometry as well as key-value pair input file to set 

up material constants in simulation models.  This file needs to be edited if different boundary conditions 

and/or model parameters are desired.  In the present configuration of VIBE the input_keyvalue file has the 

following fields 

 

The names of the keys in the input file are to a great extent self-explanatory.  ICSHORT parameter 

determines whether internal short circuit is modeled in either thermal or electrical components.  NUMBCS sets 

up the number of boundary conditions with BCIDS representing IDs of the side sets in the corresponding mesh 

file where the boundary conditions are to be applied.  Two types of boundary conditions can be set with 

BCTYPE=1 representing Robin boundary conditions and BCTYPE=2 representing the Dirichlet type of BC.  In 

the above example, the block of electrochemical model parameters represents the NTG model setup.  A 

slightly different setup is required when the Pseudo 2D model represented by DualFoil subroutine is used.  

Parameter CUTOFF sets the voltage at which discharge of the cell terminates.  CURRDEN is the applied 

current density in A/m2 in the cell (current normalized by the total area of the cell).  THICKNESS determines 

the thickness of the cell sandwich (in meters).  The YPolyDegrees and UPolyDegrees vectors set the dimensions 

of the polynomial fits for Y and U functions in NTG model (please see formulation of models in the Battery 

Thermal model parameters block 

Electrical model parameters block 

Electrochemical model parameters block 
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State section of this release document).  The first element of the vector represents the order of the polynomial 

that describes impedance (Y) or OCP (U) as a function of depth of discharge.  If the discharge curves at of the 

cell different temperatures are available, the corresponding fits can be made bi-polynomial in which case the 

degree of polynomial in temperature is described by the second element of the vector.  In case when the 

thermal behavior data are not available, this member is simply set to zero, as in the above example.  

YPolyCoefficients and YPolyCoefficients are the vectors containing the coefficients of the corresponding 

polynomial fits.  Once the input file has been modified accordingly and saved the simulation parameters can 

be configured.  This is done within the simulation configuration file SimulationName.conf.  The simulation config 

file captures the components used in the simulation, total number of variables passed through the Battery 

State, input/output from the components and corresponding component drivers.  If a different model is 

desired this can be changed here.  While the example case6 uses NTG model to describe electrochemistry, 

this can be changed to Pseudo 2D component (DualFoil) if needed and if all material constants required for 

DualFoil code to run are available.  Within the configuration file [PORTS] change the [[CHARTRAN]] 

implementation to IMPLEMENTATION = DUALFOIL.  The corresponding component specification can be added 

to the configuration file, for instance: 

 

In this case, the DualFoil Fortran code  requires two input files that need to be placed in the input directory of 

the simulation case.  More on the DualFoil code description and requirements can be found at 

http://www.cchem.berkeley.edu/jsngrp/fortran.html .  The last set of parameters in the simulation config file 

defines the time marching. 

 

Two ways of setting up the time step can be implemented.  REGULAR mode defines beginning, end and 

number of time steps to take during the simulation.  EXPLICIT mode allows specification of a vector containing 

specific values of time at which simulation should be performed.  In the latter case the software uses the 

variable named VALUES.  Time is specified in minutes.  EXPLICIT method allows using non-uniform size of time 

steps and is useful where cell potential changes abruptly compared to otherwise smooth profiles where a 

large time step is sufficient to progress the simulation.  This mode must be used with dynamic discharge option.  

Once the input files have been edited and simulation configuration has been set, the simulation (case6 in 

virtual machine BatterySim in this example) can be launched from the command line by running the following 

line from the simulation case directory 

 

http://www.cchem.berkeley.edu/jsngrp/fortran.html
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When simulation completes the results can be found in work directory where they are arranged by the 

simulation component.   

 

The CFD General Notation System (CGNS) is used to store the variables in zones.  The corresponding state 

file named cphit.cgns is stored in battery_state directory.  The results of the simulation can be retrieved from 

THERMAL_Amperes_5 and ELECTRICAL_Amperes_4 directories with the integer in the directory name showing 

the number of the component in sequence.  These directories contain the *.silo files that can be viewed and 

processed further with VisIt.  Since the Virtual Machine comes with VisIt installed, the user can launch it from 

any directory by simply typing ‘visit’ in the command line and pressing Return key. This starts the visualization 

software where the simulation results can be loaded as a silo database (Fig. 18) or a single file.  

 
Fig. 18. Selecting output files to visualize using VisIt in VM 

To view the temperature distribution in VisIt, add a Pseudocolor plot and select Battery_Temperature from the 

list of variables (Fig. 19a). Clicking on the Draw button will create a plot in the output window (Fig. 19b).  
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(a) 

 
(b) 

Fig. 19. Visualizing thermal solution using VisIt in VM 
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Rotation, zoom, slicing, transforms, lighting, etc. can be performed in VisIt. More on this software can be found 

at https://wci.llnl.gov/simulation/computer-codes/visit/ .   

 

The plot in Fig. 19 shows the distribution of temperature in unrolled strip (once cell sandwich) when 2C 

discharge current is applied and one end of the cell is held at room temperature. The solution is obtained with 

Pseudo2D model (DUALFOIL) used as an electrochemical component. As already mentioned, the model can be 

changed to NTG by replacing DUALFOIL with NTG in the PORTS section of the configuration tile.  

The BatterySim Virtual Machine comes with five different cell and module simulation setups, contained in 

/home/batsim/caebat/vibe/examples directory as: 

 

 Case2 – unrolled cell.  Useful for testing new cell parameters (for example different materials or 

porosities) to get an idea about modeling on a cell-sandwich level.  

 Case3 – cylindrical Li-ion cell.   

 Case6 – pouch cell. 

 Case7 – 4P and 4S modules of four pouch cells from case 6 connected in series (4S) or in parallel (4P) 

 Case10 – 4P module of four pouch cells with dynamic discharge 

 

Any of the above simulations can be launched either from command line as described in this section or using 

ICE as described in the APPENDIX B.   

  

https://wci.llnl.gov/simulation/computer-codes/visit/
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APPENDIX B: LAUNCH INSTRUCTIONS WITH ICE 

This section provides the tutorial on setting up and running a battery simulation using ICE. It is encouraged that 

the user becomes familiar with the VIBE directory structure by studying APPENDIX A first and launching a 

simulation from command line.  Overall the workflow in ICE consists of: 

 Creating the model by working with simulation configuration file (Caebat Model) 

 Creating the simulation input (Caebat Key-Value Pair Generator) 

 Setting up the job launch and running a simulation (Caebat Launcher) 

 Viewing the results 

We created several predefined simulation cases dealing with different cell geometries: unrolled cell 

sandwich, rolled cylindrical cell, pouch cell and module of four pouch cells. All these cases come with the 

Virtual Machine VIBE release. The case of 4.3 Ah pouch cell (case6) is a default simulation setup in ICE and the 

tutorial below discusses the default case first.  

Creating the model 

To begin, launch ICE (if it isn't already running), and you should be presented with an empty workbench. 
Navigate to the ICE Perspective by choosing Window > Perspective > Other and scrolling to ICE in the pop-up 
view. In this Perspective, ICE provides three options for creating new items. The user may click on the green 
plus icon (+) located near the top-right corner of the Item Viewer, click on the New Item button in the main 
ICE toolbar, or choose File > Create an Item.  This will launch a dialog prompting you to select a task (or 
Item) to create (see Fig. 20). Find Caebat Model Builder in the Item Selector list and click Finish.   

 

Fig. 20 CAEBAT item selector in ICE 

A CAEBAT Model Builder will appear in the main workspace with the default values corresponding to the 
pouch cell model.  You can now edit the parameters if for instance a different number of time steps or 
different total time is desired. The CAEBAT Model window has two tabs (Fig. 21): 

 Time Loop Data, Global Configuration, etc 
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 Ports Master 

Time Loop Data window (Fig 21a, b) allows you to select the battery geometry, time stepping scheme, 
components taking part in the simulation and global configuration.  The Ports Master window (Fig. 21c) shows 
the corresponding input directories, input/output variables that are passed through the battery state, and 
path to each component involved in the simulation. Input directories containing meshes are also specified here. 
For now leave all the parameters with their default values and click Go!.  

 
(a) 

 
(b) 
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(c) 

Fig. 21 Battery model setup in ICE. 

Generating simulation input key-value pair file 

The key-value pair input file contains numerical parameters necessary for simulation, such as material 
constants, boundary conditions and coefficients of polynomials when NTG model is used to represent 
electrochemical component. To pull up a default Key-Value file for edit, in Item Viewer click on the green plus 
icon again and select Caebat Key-Value Pair from the drop down menu (Fig. 20). The file with default values 
corresponding to the pouch cell simulation is displayed for edit (Fig. 22). The keys are explained in APPENDIX 
A, pages 19, 20. The default simulation represents a discharge of 4.3 Ah cell with gradient of temperature 
applied as boundary conditions (BCs) to the cell surfaces. These settings can be edited here if different BC or 
different polynomials for NTG model are desired. For now accept the default values (case6) by clicking Go!.  

 

Fig. 22. Key-Value Pair generator in ICE 

This completes the CAEBAT input generation task. The file generated will be used in the next step by the 
CAEBAT Launcher to run the CAEBAT problem. However, if you'd like to review your input file before 
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launching, you can do so by opening the File > Open File... menu in ICE, and navigating to the file. Once 
opened, you will be able to review the input file generated.  

Launching a CAEBAT job 

Once the appropriate input files have been generated, launching a simulation is a relatively simple task.  To 
get started, click the green "+" button once more to create a new ICE Item. Select Caebat Launcher (Fig. 20) 
from the menu and click OK.  A form will appear in the main ICE workbench area (Fig. 23). This form contains 
the information necessary for launching a CAEBAT problem. The first piece of necessary information is to 
specify an input file. From the drop down menu choose the configuration file generated for the Caebat Model 
(in our case Caebat_Model_1.conf). If you created your own input file in the previous step using the CAEBAT 
Model Builder, this file should appear in the list of available files.  

The next step is to specify on which machine CAEBAT will be run, either locally or remotely. A default is 
localhost, however, additional hosts can be added by clicking the "+" button to the right of the Hosts table. 
When adding hosts, set the Execution Path to the directory of the machine's CAEBAT installation. If you are 
launching on a remote machine, also be sure that you have appropriate privileges for the CAEBAT install 
directory.   

Lastly, use the Process menu in the upper right-hand corner; select the Launch the Job task from the drop-
down menu and click the Go! button. Depending on your host machine's configuration, you may be prompted 
for login credentials.  

 

Fig. 23. Battery simulation launcher in ICE 

As the simulation progresses the console window will display different information related to each component 
being executed in sequence. The simulation is finished when the Done! is displayed in Caebat Launcher : 
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Visualizing Output 

The output produced by a CAEBAT job can be visually analyzed in ICE by utilizing the VisIt plug-in. Click on 
Launch Visit and select the location for VisIt installation. If the simulation was run in Virtual Machine, select 
Launch Visit Locally and then click browse and select the path to VisIt binary (Fig. 24). Scroll down and give 
this connection a name (any characters) and then click Finish.  

 

Fig. 24.  Launching VisIt in ICE 

Click on Open Perspective and select Visualization from the list (Fig. 25a). Switch from ICE to Visualization 
mode. In Visualization File Viewer selection can be made for the files to view. Select the desired silo file(s) 
from the /home/batsim/ICEFiles/default/jobs/iceLaunch_Date_Time/work directory. The work directory of 
the simulation contains the results as described in APPENDIX A. Select the silo file(s) corresponding to the 
thermal solution from the THERMAL_Amperes directory.  

  
(a)           (b) 
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Fig. 25. Switching to visualization mode and selecting files in ICE 

In the Visit Plot Viewer add a new plot by clicking the green “+” and selecting Scalars > 
Battery_/Temperature to view the temperature distribution in the cell. Double click on the file name in the Visit 
Plot Viewer. Select pseudocolor from the drop down menu of plot options. The result shows a temperature 
distribution in the pouch cell under non-uniform cooling of the edges (Fig. 26). The visualization capabilities in 
ICE allow object rotation, translation, and zoom in/out. If several silo files were loaded with each file 
representing a time step, a play feature can be used to step through the solutions and see the progression in 
time. These capabilities provide a good tool to judge the goodness of solution. For extended visualization 
tools the user is advised to launch VisIt which comes as a part of VM (simply type visit in the command line and 
hit Return).   

 

Fig. 26. Temperature distribution in pouch cell visualized in ICE 

Simulation involving each of the cases located in examples directory can be performed either using command 

line (APPENDIX A) or by using ICE. The BatterySim Virtual Machine comes with five different cell and module 

simulation setups, contained in /home/batsim/caebat/vibe/examples directory as shown in the table below. Each 

geometry, except unrolled cell, is discussed in details in APPLICATION EXAMPLES section. Any other meshes 

can be created by user to set up new simulation cases.  

 

Case2 

Unrolled cell. Useful for testing new cell parameters (for 

example different materials or porosities) or testing new 

models on simple cell sandwich geometry. 

 

Case3 Cylindrical Li-ion cell. 
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Case6 

Pouch cell.  Default case in ICE with the NTG model 

coefficients based on NMC-Graphite cell discharge 

profiles. 

 

Case7 
4P and 4S modules of four pouch cells from case 6 

connected in series (4S) or in parallel (4P). 

 

Case10 4P module with demonstration of dynamic discharge 

 

Simulation involving any of the above meshes can be prepared and launched using ICE. In the following 
example we will run the module simulation by importing the configuration files in ICE. The examples are based 
on Virtual Machine release of VIBE; with any other installation of VIBE and ICE the pathnames would be 
different.   

Start with launching ICE by double clicking the Eclipse icon in VM.  In order to import items (configuration files 
and key-value pair input files) in ICE click on the yellow arrow located in the top toolbar of the ICE window 
(Fig. 27).  

 

Fig. 27. Importing files in ICE 

This will create a dialog box where the user can browse to navigate to the files that should be imported. Let’s 
start with the 4P module and first import the simulation configuration file into ICE. By clicking the Browse 
button navigate to the /home/batsim/caebat/vibe/examples/case7 directory and select the *_4P.conf file. 
Select Caebat Model from the list and click Finish (Fig. 28a). This will create the Caebat Model form in ICE 
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where the configuration parameters, components and time stepping are specified. Click Go! to create the 
corresponding ICE item. Similarly, import the key-value pair file from the case7/input directory (Fig. 26b) and 
click Go! to create the input file used within ICE. What is left is to create the job launcher by adding an item to 
the item viewer (click on the green “+” in the Item Viewer and select Caebat Launcher). Select the 
corresponding Caebat_Model_*.conf file, check ‘Use custom key-value pair file?’ and select the corresponding 
Caebat_Key-Value_Pair_*.dat file from the drop down list.  

NOTE: Import of the key-value pair file into ICE is necessary only when this file will be modified by user. If no 
modifications are intended, ICE will use the file associated with the selected simulation case and the user can 
leave ‘Use custom key-value pair file?’ field unchecked.  

Launch the simulation by clicking Go!. When finished, display the result of the thermal solution as described in 
Visualizing Output section above (be sure to select the latest iceLaunch directory containing the results of the 
most recent simulation). The resulting window with the thermal solution is displayed in Fig. 29.   

  
      (a)          (b) 

Fig. 28. Importing items into ICE 

 

Fig. 29. Temperature distribution in 4P Li-ion module 
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Similarly, the simulation involving module with cells in series can be performed. Close the Visit Editor window, 
delete the files in Visualization Viewer and switch from Visualization to ICE mode which will open the Item 
Viewer. Close the current Caebat Model, Key-Value Pair and Launcher windows and delete the 
corresponding items from the Item Viewer. Using the procedure described for item import above, import the 
new Caebat Model using the configuration file for 4S simulation (*_4S.conf) located in 
PathTo/examples/case7/ directory.  Import the key-value pair input file from PathTo/examples/case7/input/ 
directory. Since the four cells are now connected in series, the total current flux should be four times less than 
the one used in the previous 4P simulation. Enter the corresponding number in the CurrentFlux field of the Key-
Value Pair form as shown below (Fig. 30) and click Go!.  

 

Fig. 30. Changing values in the input file 

In the same manner as described for the 4P case, add the Caebat Launcher, select the appropriate model and 
key-value files and launch the simulation. When the simulation is done the solution can be checked by using the 
visualization viewer in ICE as previously described. This time let’s check the electrical solution by viewing the 
potential distribution in 4S module. Launch Visit and select the silo file located in the ICE jobs directory where 
the recent launches are stored: 
/home/batsim/ICEFiles/default/jobs/iceLaunch_DateAndTime/work/ELECTRICAL_Amperes/output_Electricity_silo/. 
Select the file 2.1.silo which corresponds to the final solution. In Visit Plot Viewer add an item (green “+”) and 
select Battery_/PotentialSolutionP1 in Scalars (Fig. 31). Click OK.  

 

Fig. 31. Selecting the potential as output variable from the solution. 
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After double clicking on the output variable name (Battery_/PotentialSolutionP1) in the Visit Plot Viewer, the 
plot showing potential distribution in 4S module will appear (Fig. 32). Holding left mouse button down and 
moving the mouse will rotate the plot, holding Shift key down and dragging the mouse with left button pressed 
will translate the plot and using mouse scroll will zoom in and out.  

 

Fig. 32. Output of electric potential in 4S module in ICE 

At this point user should be able to run any of the cases either from the corresponding case directory using 
command line or by using ICE to import the input files from the corresponding case directory and launching the 
simulation. Different discharge currents or time stepping can be applied. Pre-defined boundary conditions for 
thermal solution can also be changed. The default for the module case is uneven cooling of module sides with 
heat transfer coefficients of 15 W/m2K and 55 W/m2K which imitates failure of cooling system when air 
moves fast on one side and slow convective cooling is applied to the other side. These boundary conditions 
can be changed to investigate other cooling scenarios. Next the user can utilize the provided geometries and 
meshes to test other materials or models. If the discharge curves for other materials are available, the NTG 
coefficients can be determined and the user can input them into the key-value pair file as U and Y 
polynomials. The order of those polynomials can be changed as well (default is 6). Case2 and case3 are 
supplied with DUALFOIL as well as NTG pre-defined. The user can select either of the models by typing the 
corresponding name for CHARTRAN component in the Cebat Model form in ICE (as shown below). DUALFOIL 
model is based on porous electrode theory and requires significant amount of material parameters to be 
determined; if these are known for particular cell chemistry, user can set up DUALFOIL as an electrochemical 
component instead of NTG for case6 and case7 as well. Finally, the user can of course supply his mesh to set 
up a new simulation case in VIBE. 
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APPENDIX C: INSTRUCTIONS FOR ADVANCED INSTALLATION 

Prerequisites: 

The following must be installed prior to installation of OAS and VIBE.  

 CMake (version 2.8.6-rc3 recommended), available from http://www.cmake.org 

 C, C++, and Fortran compilers (gcc4.7 or higher, g++, gfortran 4.3 and higher recommended) 

 MPI available from http://www.mpich.org or http://www.open-mpi.org (open MPI 1.8.3 or higher) 

 HDF5 (version 1.8.7 recommended), available from http://www.hdfgroup.org/HDF5/ 

 SILO (version 4.7.2 recommended), available from https://wci.llnl.gov/codes/silo/ 

 CGNS is available at http://cgns.sourceforge.net/ When building cgns use ccmake to edit the flags 

before generating the Makefile.  The flags can be edited to match the following: 

 BUILD_CGNSTOOLS                      ON 

 CGNS_BUILD_SHARED                   ON 

 CGNS_USE_SHARED                      ON 

 CMAKE_BUILD_TYPE                       Release 

 CMAKE_INSTALL_PREFIX                 /PATH/TO/cgnsinstall_dir 

 ENABLE_64BIT                               OFF 

 ENABLE_FORTRAN                         ON 

 ENABLE_HDF5                               ON 

 ENABLE_LEGACY                           OFF 

 ENABLE_SCOPING                         OFF 

 ENABLE_TESTS                               OFF 

 FORTRAN_NAMING                       LOWERCASE_ 

 HDF5_INCLUDE_PATH                    /PATH/TO/hdf5-1.8.9/include 

 HDF5_LIBRARY                              /PATH/TO/hdf5-1.8.9/lib64/libhdf5.so 

 HDF5_NEED_MPI                           OFF 

 HDF5_NEED_SZIP                          OFF 

 HDF5_NEED_ZLIB                          OFF 

Type ‘c’ to configure and ‘g’ to generate the Makefile.  

NOTE.  Make sure the bashrc file contains the corresponding paths to hdf5 and cgns libraries: 

Export LD_LIBRARY_PATH=$CGNS_ROOT/lib:$HDF5_ROOT/lib:$MPI_ROOT/lib:$LD_LIBRARY_PATH 

ICE: 

ICE is a free and open source project available for download from the Eclipse download servers. To 
download, navigate to https://eclipse.org/ice and click the ‘Downloads’ button found in the site’s top toolbar. 
ICE can be downloaded as a binary for Linux, Windows or Mac or as source code from the ICE GitHub 
repository – https://github.com/eclipse/ice. ICE also provides a wiki and other applications that document the 
current capabilities of ICE as well as the bug tracker for the project. Detailed instructions on using CAEBAT 
with ICE can be found at http://wiki.eclipse.org/Using_VIBE_with_ICE and in an instruction video at 
https://www.youtube.com/watch?v=ieMlDUZZfpg. ICE is released under the Eclipse Public License (EPL).  

OAS/VIBE: 

Please contact the team to obtain access to repository. 

http://www.open-mpi.org/
http://cgns.sourceforge.net/
https://eclipse.org/ice
https://github.com/eclipse/ice
http://wiki.eclipse.org/Using_VIBE_with_ICE
https://www.youtube.com/watch?v=ieMlDUZZfpg
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APPENDIX D: IMPLEMENTATION OF TIGHT COUPLING 

One of the major advantages of CAEBAT project is that the final product is an open source software.  In other 

words the user can become a developer and implement his own simulation scenarios as well as integrate 

components into VIBE.  In this example we discuss implementation of tight coupling (Picard iteration) between 

electrochemical (DualFoil) and Thermal components in VIBE.   

In general, Picard iteration to a specified convergence criteria provides tight coupling of two physics 

components f0 and f1 exchanging variables via functions g.  At each time step, a fixed-point iteration can be 

schematically represented as follows. 

   

In terms of implementation in VIBE, such task is relatively simple and requires creating the new simulation 

driver which would call the corresponding components in the right sequence until the desired convergence is 

reached.  Drivers can be found in VIBE/trunk/components (see figure below).   

 

Simulation drivers follow Python logic with the Driver class where the actual call of components is performed.  

The sequence and number of components are characteristic of the simulation setup.  For instance the unit 

iteration sequence in this example can be represented as 

class Driver(Component): 
 
    def __init__(self, services, config): 
... 
    def step(self, timestamp=0): 

... 

#       Iterate through the timeloop  
        for t in tlist[1:len(timeloop)]: 

... 

            while abs(T_new_sum - T_old_sum) > tol : 
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... 
                services.call(chartran_comp, 'init', t) 
                services.call(chartran_comp, 'step', t) 
      services.call(chartran_comp, 'finalize', t) 
 
                services.call(electrical_comp, 'init', t) 
                services.call(electrical_comp, 'step', t) 
      services.call(electrical_comp, 'finalize', t) 
 
                services.call(thermal_comp, 'init', t) 
                services.call(thermal_comp, 'step', t) 
      services.call(thermal_comp, 'finalize', t) 
 
Where the Electrochemical (‘chartran’), Electrical and thermal components are called in the above sequence at 
each time step.  In this particular case the convergence is checked in terms of temperatures from the current 
and previous Picard iteration.  The thermal component is coupled to DualFoil via temperature-dependent 
diffusivities and Buttler-Volmer kinetics in DualFoil component.  To check the influence of tight coupling, 
simulations were run on an unrolled cell with properties of the polymer cell described in Doyle, Fuller 1993. 
The results are shown in Fig. 33.  Weak dependence of sources on temperature results in very fast 
convergence of Picard iterations (typically within 4 iterations).   

     
Fig. 33 Influence of the coupling scheme on the heat source in Li-polymer cell 
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TEAM 
The CAEBAT ORNL team consists of multidisciplinary researchers working on various aspects of computational 

science related to batteries and we are working closely with the experimental groups at ORNL for validation. 

The team structure is given below. More information can be found at the project website http://batterysim.org  
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