
ORNL/TM-2017/486

Generating Billion-Edge Scale-Free
Networks in Seconds: Performance Study
of a Novel GPU-based Preferential
Attachment Model

Maksudul Alam
Kalyan S. Perumalla

October 6, 2017Approved for public release.
Distribution is unlimited.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of
Energy (DOE) SciTech Connect.

Website: http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public
from the following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone: 703-605-6000 (1-800-553-6847)
TDD: 703-487-4639
Fax: 703-605-6900
E-mail: info@ntis.gov
Website: http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex-
change representatives, and International Nuclear Information System representatives from the
following source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone: 865-576-8401
Fax: 865-576-5728
E-mail: report@osti.gov
Website: http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or fa-
voring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

 http://www.osti.gov/scitech/
mailto:info@ntis.gov
http://classic.ntis.gov/
mailto:reports@osti.gov
http://www.osti.gov/contact.html

ORNL/TM-2017/486

Computer Science and Mathematics Division

Generating Billion-Edge Scale-Free Networks in Seconds: Performance Study of a Novel
GPU-based Preferential Attachment Model

Maksudul Alam
Kalyan S. Perumalla

October 2017

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-Battelle, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

CONTENTS

LIST OF FIGURES . v
ACRONYMS . vii
ABSTRACT . 1
1. INTRODUCTION . 1
2. BACKGROUND . 2

2.1 Preliminaries and Notations . 2
2.2 Preferential Attachment–Based Models . 2
2.3 Sequential Algorithm: Barabási-Albert Model . 2
2.4 Sequential Algorithm: Copy Model . 3

3. GPU–BASED PARALLEL ALGORITHM: CUPPA . 4
3.1 Graph Representation . 6
3.2 Partitioning and Load Balancing . 6
3.3 Segmented Round Robin Partitioning . 6
3.4 CUDA-Specific Deadlock Scenario . 8

4. EXPERIMENTAL RESULTS . 8
4.1 Hardware and Software . 8
4.2 Degree Distribution . 9
4.3 Visualization of Generated Graphs . 9
4.4 Effect of Edge Probability on Degree Distribution . 9
4.5 Waiting Queue Size . 12
4.6 Runtime Performance . 12

4.6.1 Runtime Comparison with Existing Algorithms . 13
4.6.2 Runtime vs. Number of Vertices . 14
4.6.3 Runtime vs. Degree of Preferential Attachment . 14
4.6.4 Runtime vs. Probability of Copy-Edge . 15
4.6.5 Runtime varied with the number of Threads . 15

5. CONCLUSION . 15
6. REFERENCES . 19

iii

LIST OF FIGURES

1 Distributing 21 vertices among 3 threads using round robin partitioning. 6
2 Distributing 21 vertices among 3 threads using segmented round robin partitioning with 2

rounds. 7
3 The degree distributions of the PA Networks (n = 250M, d = 4). In log-log scale the

degree distribution is a straight line validating the scale-free property. Further, all three
models produce almost identical degree distributions showing that cuPPA produces
networks with accurate degree distributions. 9

4 Visualization of networks generated by cuPPA using n = 10000, p = 0.5 and d = 1. 10
5 Visualization of networks generated by cuPPA using n = 10000, p = 0.5 and d = 2. 10
6 Visualization of networks generated by cuPPA using n = 10000, p = 0.5 and d = 4. 11
7 The degree distributions of the networks by cuPPA (n = 250M, d = 4) with varying p. 11
8 The maximum size of the waiting queue per thread for different values of p and d (both

axes in log scale). In the worst case (p = 0) the maximum size increases linearly with d
for smaller values (d ≤ 64). For larger d, the actual maximum size of the waiting queue is
comparatively smaller than the worst case. 12

9 Size of the waiting queue decreases significantly with rounds in SRRP scheme. 13
10 Runtimes of SBA, SCM, PPA, and cuPPA for generating a billion of edges. cuPPA is able

to generate a billion edge network in just a couple of seconds 13
11 Runtime vs. number of edges suggests that cuPPA is very scalable with increasing n for

different values of p with a fixed value of d = 4. 14
12 Runtime vs. number of vertices suggests that cuPPA is very scalable with increasing n for

different values of d with a fixed value of p = 0.5. 15
13 Runtime vs. d for generating networks with n = 7812500 with varying

d = 1, 2, 4, 8, 16, 32, 64, 128 for different values of p. The runtime almost increases linearly. . 16
14 Runtime vs. p for three sets of values for n and d (x-axis in log scale). At p = 0 the

runtime is the largest which reduces significantly with a slight increase. As p increases
the runtime reduces. 17

15 Runtime vs. Number of Threads. Best performance is observed with 512 threads per block. . 17

v

ACRONYMS
GPU Graphical Processing Unit
CUDA Common Unified Data Architecture
SBA Sequential Barabási–Albert
SCM Sequential Copy Model
PPA Parallel Preferential Attachment
cuPPA CUDA Parallel Preferential Attachment

vii

ABSTRACT

A novel parallel algorithm is presented for generating random scale-free networks using the
preferential-attachment model. The algorithm, named cuPPA, is custom-designed for single instruction
multiple data (SIMD) style of parallel processing supported by modern processors such as graphical
processing units (GPUs). To the best of our knowledge, our algorithm is the first to exploit GPUs, and also
the fastest implementation available today, to generate scale-free networks using the preferential
attachment model. A detailed performance study is presented to understand the scalability and runtime
characteristics of the cuPPA algorithm. In one of the best cases, when executed on an NVidia GeForce
1080 GPU, cuPPA generates a scale-free network of a billion edges in less than 2 seconds.

1. INTRODUCTION

Recently, there has been substantial interest in the study of a variety of random networks to serve as
mathematical models of complex systems. Such complex systems include world-scale infrastructures such
as computer networks (the Internet) and various genres of social networks. As these complex systems of
today grow larger, the ability to generate progressively large random networks becomes all the more
important. This motivates the need for efficient parallel algorithms for generating such networks. Naïve
parallelization of the sequential algorithms for generating random networks may not work due to the
dependencies among the edges and the possibility of creating duplicate (parallel) edges.

Preferential attachment is a model that generates random scale-free networks, where a new vertex makes
connections to some existing vertices that are chosen preferentially based on some of the properties of
those vertices. There have been sequential [5, 8], shared–memory-based parallel [3], and
distributed–memory based parallel algorithms [2, 12–14] using various preferential attachment models.
Several other studies were done on the preferential attachment-based models. Machta and Machta [11]
described how an evolving network can be generated in parallel. Dorogovtsev et al. [7] proposed a model
that can generate graphs with fat-tailed degree distributions. In this model, starting with some random
graphs, edges are randomly rewired according to some preferential choices.

Graphics processors (GPUs) are a cost-effective, energy-efficient, and widely available parallel processing
platform. GPUs are highly parallel, multi-threaded, many-core processors that have greatly expanded
beyond graphics operations and are now widely used for general purpose computing. The use of GPUs is
prevalent in many areas such as scientific computation, complex simulations, big data analytics, machine
learning, and data mining. However, there is a lack of GPU-based graph/network generators, especially for
scale-free networks such as those based on the preferential attachment model. In this paper, we present
cuPPA, a novel GPU based algorithm for generating networks conforming to the preferential attachment
model. With cuPPA, one can generate a network with a billion edges using a modern NVidia GPU in a
couple of seconds. To the best of our knowledge, this is the first GPU-based algorithm to generate random
networks following the exact preferential attachment model.

The rest of the report is organized as follows. In the following Section 2., background material is provided
in terms of preliminary information, notations, an outline of the network generation problem, and two
leading sequential algorithms. In Section 3., our parallel cuPPA algorithm for the GPU is presented. The
experimental study and performance results using cuPPA are described in Section 4. Finally, Section 5.
concludes with a summary and an outline of future directions.

1

2. BACKGROUND

2.1 Preliminaries and Notations

In the rest of this report, we use the following notations. We denote a network G(V, E), where V and E are
the sets of vertices and edges, respectively, with m = |E| edges and n = |V | vertices labeled as
0, 1, 2, . . . , n − 1. For any (u, v) ∈ E, we say u and v are neighbors of each other. The set of all neighbors of
v ∈ V is denoted by N(v), i.e., N(v) = {u ∈ V |(u, v) ∈ E}. The degree of v is dv = |N(v)|. If u and v are
neighbors, sometimes we say that u is connected to v and vice versa.

We develop parallel algorithms using the CUDA (Compute Unified Device Architecture) framework on the
GPU. A GPU contains multiple streaming multiprocessors (SMs). An SM is a group of core processors.
Each core processor executes only one thread at a time. All core processors can execute their
corresponding threads simultaneously. If some threads perform operations that have to wait for data fetches
with high latencies, those are put into the waiting state and other pending threads are executed. Therefore,
GPUs increase throughput by keeping the processors busy. All thread management, including the creation
and scheduling of threads, is performed entirely in hardware with virtually zero overhead and requires
negligible time for launching work on the GPU. For these advantages, modern supercomputers, such as
Titan, the largest supercomputer in the USA, are build using GPUs in addition to conventional central
processing units (CPUs).

We use K, M, and B to denote thousand, million, and billion, respectively; e.g., 2 B stands for two billion.

2.2 Preferential Attachment–Based Models

The preferential attachment model is a model for generating randomly evolved scale-free networks using a
preferential attachment mechanism. In a preferential attachment mechanism, a new vertex is added to the
network and connected to some existing vertices that are chosen preferentially based on some properties of
the vertices. In the most common method, preference is given to vertices with larger degrees: the higher the
degree of a vertex, the higher is the probability of choosing it. In this report, we study only the
degree-based preferential attachment, and in the rest of the report, by preferential attachment (PA) we mean
degree-based preferential attachment.

Before presenting our parallel algorithms for generating PA networks, we briefly discuss the sequential
algorithms for the same. Many preferential attachment based models have been proposed in literature. Two
of the most prominent models are the Barabási–Albert model [4] and the copy model [10] as discussed
below.

2.3 Sequential Algorithm: Barabási-Albert Model

One way to generate a random PA network is to use the Barabási-Albert (BA) model. Many real-world
networks have two important characteristics: (i) they are evolving in nature and (ii) the network tends to be
scale-free [4]. In the BA model, a new vertex is connected to an existing vertex that is chosen with
probability directly proportional to the current degree of the existing vertex.

2

The BA model works as follows. Starting with a small clique of d̂ vertices, in every time step, a new vertex
t is added to the network and connected to d ≤ d̂ randomly chosen existing vertices: Fk(t) for 1 ≤ k ≤ d
with Fk(t) < t; that is, Fk(t) denotes the k-th vertex which t is connected. Thus, each phase adds d new
edges (t, F1(t)), (t, F2(t)), . . . , (t, Fd(t)) to the network, which exhibits the evolving nature of the model. Let
F(t) = {F1(t), F2(t), . . . , Fd(t)} be the set of outgoing vertices from t. Each of the d end-points in the set F(t)
are randomly selected based on the degrees of the vertices in the current network. In particular, the
probability Pi(t) that an outgoing edge from vertex t is connected to vertex i < t is given by Pi(t) =

di∑
j d j

,
where d j represents the degree of vertex j.

The networks generated by the BA model are called the BA networks, which bear the aforementioned two
characteristics of a real-world network. BA networks have power-law degree distribution. A degree
distribution is called power-law if the probability that a vertex has degree d is given by Pr [d] ∝ d−γ, where
γ ≥ 1 is a positive constant. Barabási and Albert showed that the preferential attachment method of
selecting vertices results in a power-law degree distribution [4].

A naïve implementation of network generation based on the BA model takes Ω(n2) time where n is the
number of vertices. Batagelj and Brandes give an efficient algorithm with a running time of O(m) where m
is the number of edges [5]. This algorithm maintains a list of vertices such that each vertex i appears in this
list exactly di times. The list can easily be updated dynamically by simply appending u and v to the list
whenever a new edge (u, v) is added to the network. Now, to find F(t), a vertex is chosen from the list
uniformly at random. Since each vertex i occurs exactly di times in the list, we have the probability
Pr [F(t) = i] =

di∑
j d j

.

2.4 Sequential Algorithm: Copy Model

As it turns out, the BA model does not easily lend itself to an efficient parallelization [2]. Another
algorithm, called the copy model [9, 10] preserves preferential attachment and power-law degree
distribution. The algorithm works as follows. In each phase t, the following steps are executed (assuming
d = 1).

Step 1: First a random vertex k ∈ [1, t − 1] is chosen with uniform probability.

Step 2: Then F(t) is determined as follows:

F(t) = k with probability p (Direct Edge) (1)

= F(k) with probability (1 − p) (Copy Edge) (2)

It can be easily shown that Pr [F(t) = i] =
di∑
j d j

when p = 1
2 . Thus, when p = 1

2 , this algorithm follows the
Barabási-Albert model as shown in Theorem 1 [1, 2].
Theorem 1. The Barabási-Albert model is a special case of the copy model when p = 1

2 .

Proof. It can be easily shown that Pr [F(t) = i] =
di∑
j d j

when p = 1
2 . F(t) can be equal to i in two mutually

exclusive ways: i) i is chosen in the first step and assigned to F(t) in the second step (Equation 1); this
event occurs with probability 1

t−1 · p; or ii) a neighbor of i, v ∈ {u|F(u) = i}, is chosen in the first step, and
F(v) is assigned to F(t) in the second step (Equation 2); this event occurs with probability di−1

t−1 · (1 − p).

3

Thus, we have the following equation.

Pr [F(t) = i] =
1

t − 1
· p +

di − 1
t − 1

· (1 − p)

=
p + (di − 1)(1 − p)

1
2
∑

j d j
(3)

When p = 1
2 , Pr [F(t) = i] =

di∑
j d j

. �

Thus, the copy model is more general than the BA model. It has been previously shown [10] that the copy
model produces networks with degree distribution that follows a power-law d−γ, where the value of the
exponent γ depends on the choice of p. Further, it is easy to see the running time of the copy model is O(m).
Copy model has been used to develop efficient parallel algorithms for generating preferential attachment
networks in distributed and shared-memory machines [2, 3]. In our work presented in this report, we adopt
the copy model as a starting point to design and develop our GPU-based parallel algorithm.

3. GPU–BASED PARALLEL ALGORITHM: CUPPA

The PA model imposes a critical dependency that every new vertex needs to have the state of the previous
network to compute its edges. This poses a major challenge in parallelizing preferential attachment
algorithms. In phase v, to determine F(v), it requires that Fi is known for each i < v. As a result, any
algorithm for preferential attachment apparently seems to be highly sequential in nature: phase v cannot be
executed until all previous phases are completed.

In [2], a distributed–memory based algorithm was proposed that exploits the copy model to relieve this
sequentiality and run in parallel. We reexamined that exploitation and designed cuPPA, an efficient parallel
algorithm for generating preferential attachment based networks on the GPU as described next. Let T be
the number of threads in the GPU. The set of vertices V is partitioned into T disjoint subsets of vertices
V0,V1, . . . ,VT−1; that is, Vi ⊂ V , such that for any i and j, Vi ∩ V j = ∅ and

⋃
i Vi = V . The graph is stored

entirely in the GPU memory. Thread Ti is responsible for computing and updating F(v) for all v ∈ Vi. The
algorithm starts with an initial network, which is a clique of the first d vertices labeled 0, 1, 2, . . . , d − 1.
For each vertex v, the algorithm computes d edges (t, F1(v)), (t, F2(v)), . . . , (t, Fd(v)) and ensure that such
edges are distinct without any parallel edges. We denote the set of vertices {F1(v), F2(v), . . . , Fd(v)} by
F(v). The algorithm works in two phases. In the first phase of the algorithm (called Execute Copy Model),
we execute the copy model for all vertices in parallel (using all threads). This phase creates all the direct
edges and some of the “copy” edges (Equation 2). However, many copy edges might not be fully processed
due to the dependencies. The incomplete copy edges are put in a waiting queue called Q. In the second
phase of the algorithm (called Resolve Implete Edges), we resolve the incomplete edges from the waiting
queue Q and finalize the copy edges. The pseudocode of cuPPA is given in Algorithm 1.

In the first phase (Line 3–21) the algorithm executes the copy model for all of its vertices. The edges that
could not be completed are stored in a queue Q′ to be processed later. We call the queue a waiting queue.
Each of the other vertices from d to n − 1 generates d new edges. There are fundamentally two important
issues that need to be handled: i) how we select F`(t) for vertex v where 1 ≤ ` ≤ d, and ii) how we avoid
duplicate edge creation. Multiple edges for a vertex v are created by repeating the same procedure d times

4

ALGORITHM 1: cuPPA

1

n Number of vertices d Number of outgoing edges from each vertex
p Probability of creating a direct edge Vi The set of vertices processed by thread Ti

F(u) The set of outgoing edges from vertex u Fi(u) The i-th outgoing edge from vertex u
Q A queue for the current set of unfinished edges Q′ A queue for the next set of unfinished edges

2 with T threads do in parallel /* Each thread Ti executes the following in parallel: */

// Phase 1: Execute Copy Model
3 foreach v ∈ Vi do
4 for ` = 1 to d do
5 u← a uniform random vertex in [1, v − 1]
6 c← a uniform random number in [0, 1]
7 if c < p then // i.e., with probability p
8 if u < F(v) then
9 F`(t)← u

10 else
11 go to line 5

12 else
13 l← a uniform random integer in [1, d]
14 if Fl(u) , NULL then // Finalize known copy edge
15 if Fl(u) < F(v) then
16 F`(v)← Fl(u)

17 else
18 go to line 5

19 else // Put unresolved copy edge into the waiting queue
20 F`(v)← NULL
21 Add 〈u, l〉 to Q′

// Phase 2: Resolve Incomplete Edges
22 while Q′ , ∅ do
23 foreach 〈u, l〉 ∈ Q′ do
24 if Fl(u) , NULL then
25 F`(v) = Fl(u)

26 else
27 Append 〈u, l〉 to Q

28 Swap Q and Q′

29 Q ← ∅

(Line 4), and duplicate edges are avoided by simply checking if such an edge already exists – such a check
is done whenever a new edge is created.

For the `-th edge of a vertex v, another vertex u is chosen from [1, v − 1] uniformly at random (Line 5, 6).
Edge (v, u) is created with probability p (Line 7). However, before creating such an edge (v, u) in Line 8,
the existence of such an edge is checked immediately before creating them in Line 9. If the edge already

5

exists at that time, the edge is discarded and the process is repeated again (Line 5). With the remaining
1 − p probability, v is connected to some vertex in F(u); that is, we make an edge (v, F`(u)), such that ` is
chosen from [1, d] uniformly at random.

After the first phase is completed, the algorithm starts to resolve all incomplete edges by processing the
waiting queue (Lines 22–29). If an item in the current queue Q′ could not be resolved during this step, it is
subsequently placed in another queue Q. After all incomplete edges on the queue Q′ are processed, the
queues Q and Q′ are swapped and Q is cleared. We repeat this process until both the queues are empty.

3.1 Graph Representation

We use one array G of nd elements to represent and store the entire graph. Each vertex u connects to d
existing vertices. The neighbors of u are stored between the indices inclusive from ud to (u + 1)d − 1 that
represents the other end-point vertices. We call these indices the outgoing vertex list for vertex u. The
initial network consists of the d2 vertices from the start of the array. For any edge u, v where u > v and
u, v > d, the edge is represented by storing v in one of the d items in the outgoing vertex list of u. Note that
the graph G contains exactly nd edges as defined by the Barabási–Albert or the copy model. Any vertex
with the index 0 ≤ i < nd of the array G denotes the (t mod d)-th end-point of the vertex i

d .

3.2 Partitioning and Load Balancing

Recall that we distribute the computation among the threads by partitioning the set of vertices
V = {0, 1, . . . , n − 1} into T subsets V0,V1, . . . ,VT−1 as described at the beginning of Section 3., where T is
the number of available threads. Although several partitioning schemes are possible, our study suggests
that the Round Robin Partitioning (RRP) scheme best suits our algorithm. In this scheme, vertices are
distributed in a round robin fashion among all threads. Partition Vi contains the vertices
〈i, i + T, i + 2T, . . . , i + kT 〉 such that i + kT ≤ n < i + (k + 1)T ; that is, Vi = { j| j mod T = i}. In other
words, vertex i is assigned to set Vi mod T . Therefore, the number of vertices in the sets are almost equal.,
i.e., the number of vertices in a set is either

⌈
n
T

⌉
or

⌊
n
T

⌋
. The round robin partitioning scheme is illustrated

in Figure 1.

0 1 2 3 4 5 6 7 8 9 10 1711 12 13 14 15 16 18 19 20 21

Thread 0 Thread 1 Thread 2
0 3 6 9 12 15 18 21 1 4 7 10 513 16 19 2 8 11 14 17 20

Figure 1. Distributing 21 vertices among 3 threads using round robin partitioning.

3.3 Segmented Round Robin Partitioning

However, the naïve round robin scheme discussed above also has some technical issues. As described in
Section 3., the first phase of the Algorithm 1 executes the copy model for every vertex assigned to it and

6

stores any unresolved copy edge in the waiting queue. In the second phase, the algorithm takes out each
unresolved edge from the waiting queue and tries to resolve them. To reduce the memory latency accessing
the waiting queue, we store the waiting queue Q in the GPU shared memory that offers many fold faster
memory access than the global GPU memory. Note that this memory is limited in capacity and is shared
among all threads running within the same block. Modern GPUs such as NVidia GeForce 1080 have 48
KB of ultra-fast shared memory per block. Since the amount of the shared memory is very limited, it can
only store a limited number of unresolved items in the queue. Let C denotes the total capacity of the
waiting queue. For example, with a 48 KB of shared memory we have a total capacity to store
C = 48×1024

8 = 6144 items in the waiting queue where each item takes 8 bytes of memory. If we use τ
threads per block, each thread will have a capacity of Cτ items to be placed in the waiting queue. Therefore,
if the number of vertices assigned to a thread is too large, it may generate a large number of unresolved
copy edges to be placed in the waiting queue, essentially forcing the algorithm to use large amount of GPU
memory instead of the available shared memory.

0 1 2 3 4 5 6 7 8 9 10 1711 12 13 14 15 16 18 19 20 21

Thread 0 Thread 1 Thread 2

Round 1

Round 2

Segment 1 Segment 2

0 3 6 9

12 15 18 21

1 4 7 10 5

13 16 19

2 8 11

14 17 20

Figure 2. Distributing 21 vertices among 3 threads using segmented round robin partitioning with 2
rounds.

In order to exploit the faster shared memory without overflowing the waiting queue capacity, we use a
modified round robin partitioning scheme called, Segmented Round Robin Partitioning (SRRP). In this
scheme, the entire set of vertices V is first partitioned into some k consecutive subsets S 1, S 2, S 3 . . . S k

called segments. From the definition of the copy model, it is clear that vertices on a segment S i may only
depend on vertices on segment S j where i ≥ j but not vice versa. Therefore, the segments have to be
processed in a consecutive fashion. Let Bi = |S i| denotes the number of elements (also called the segment
size) in segment S i where 1 ≤ i ≤ k. Next, the parallel algorithm is executed in k rounds. Round i executes
the parallel algorithm for all the vertices in segment S i. In round i, the Bi vertices in segment S i are further
partitioned into T subsets V0(S i),V1(S i), . . .VT−1(S i), using the round robin scheme discussed above and
executed in parallel using the T threads. The technique is illustrated in Figure 2.

Next, we need to determine the best segment size to avoid overflow while using the shared memory. From
the copy model it is easy to see that the lower the probability p is, the more likely it is to be in the waiting
queue. In the worst case, when p = 0, all generated edges consist of copy edges. Therefore, at most d
unresolved copy edges could be placed in the waiting queue per vertex. Additionally, as the value of d gets
bigger, the number of copy edges increases and hence, the waiting queue size increases. Therefore, p and d
both have significant impact on the required size of the waiting queue. Having that in mind, we use two
approaches for the segment size:

• Fixed Segment Size: The simplest way is to use a fixed sized segments in each round. From the
previous discussion it is clear that in the worst case we need d items per vertex to be placed on the
waiting queue. Therefore, we can use up to τ = min

(
C
d , θ

)
threads per block where C is the total

queue capacity and θ is the maximum number of threads per block. Then the segment size is Cdτ

7

vertices per segment. Note that we can exploit the shared memory for d ≤ C, otherwise we need to
use the global memory. However, in almost all practical scenarios we have d � C, hence, we can
take advantages of the shared memory.

• Dynamic Segment Size: Although the fixed segment size scheme ensures that the queue will not
overflow in any round, it may not be the most efficient implementation. We use another scheme
where the segment size is determined dynamically between two rounds based on the current state of
the algorithm. In this scheme, we start with the number of threads per block τ and the segment size
C
dτ vertices per segment as was done in the Fixed Segment Size scheme. However, at the end of each
round, we determine the maximum number of items that were placed in the waiting queue per thread.
If the number of items placed in the waiting queue in the round is less than some f factor of the
waiting queue capacity per thread Cτ , we increase the total capacity C by a factor of f (typically, we
set f = 2). Before the next round, we recompute the required number of threads per block and
update the segment size accordingly.

3.4 CUDA-Specific Deadlock Scenario

In the round robin scheme, completion of a copy edge of a vertex in a thread Ti may depend on some other
thread T j where i , j. Due to the nature of dependency, T j also may have a copy edge that depends on
another vertex that belongs to Ti. Therefore, if any of these threads are not running simultaneously on the
GPU, the other thread will not be able to complete and a deadlock situation may arise. To avoid such a
situation, we must ensure that either all the GPU threads are running concurrently or the dependent threads
are put to sleep for a while. In the current CUDA framework, the runtime engine schedules each kernel
block to a streaming multiprocessor, and the blocks of running threads are non-preemptible. Therefore, to
ensure that threads are running concurrently to avoid deadlock situation, we cannot use more blocks than
the number of available streaming multiprocessors. Note that the upcoming CUDA runtime supports
cooperative groups. On such future systems, the deadlock situation could be avoided using block sizes
larger than the number of shared multiprocessors ∗.

4. EXPERIMENTAL RESULTS

In this section, we evaluate our algorithm and its performance by experimental analysis. We demonstrate
the accuracy of our algorithm by showing that our algorithm produces networks with power law degree
distribution as desired. We also compare the runtime of our algorithm using several sequential and parallel
algorithms.

4.1 Hardware and Software

We used a computer consisting of 24 AMD Opteron(tm) 6174 processor with an 800 MHz clock speed.
The server also incorporates a NVidia 1080 GPU. The operating system is Ubuntu 16.04 LTS, and all
software on this machine was compiled with GNU gcc 4.6.3 with optimization flags -O3. The CUDA
compilation tools V8 were used for the GPU code along with nvcc compiler.

∗https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

8

https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

4.2 Degree Distribution

Our algorithm is compared to efficient implementations of Sequential Barabási–Albert algorithm (SBA)
[5], Sequential Copy Model (SCM), and distributed–memory based Parallel Preferential Attachment (PPA)
[2] algorithms.

The degree distributions of the network generated by SBA, SCM, and cuPPA are shown in Figure 3 in a
log-log scale. We used n = 250M vertices, each generating d = 4 new edges with a total of one billion
(109) edges. The distribution is heavy tailed, which is a distinct feature of the power-law networks. The
exponent γ of the power-law degree distribution is measured to be 2.7. This supports the fact that for the
finite average degree of a scale-free network, the exponent should be 2 < γ < ∞ [6]. Also notice that the
degree distributions of SBA and SCM are quite identical, experimentally verifying Theorem 1. The degree
distribution of cuPPA is also similar to both SBA and SCM.

100

102

104

106

108

101 102 103 104 10
Degree

of

 V
er

tic
es

SBA SCM cuPPA

Figure 3. The degree distributions of the PA Networks (n = 250M, d = 4). In log-log scale the degree
distribution is a straight line validating the scale-free property. Further, all three models produce
almost identical degree distributions showing that cuPPA produces networks with accurate degree
distributions.

4.3 Visualization of Generated Graphs

In order to gain an idea of the structure and degree distributions, we obtained a visualization of some of the
networks generated by our algorithm. We generated the visualizations using a popular network
visualization tool called Gephi. Bearing aesthetics in mind and to minimize undue clutter, we focused on a
few small networks by choosing n = 10000, p = 0.5, and d = 1, 2, 4. The visualizations are shown in
Figures 4 to 6.

4.4 Effect of Edge Probability on Degree Distribution

As mentioned earlier, the strength of the copy model is the capability of generating other preferential
attachment networks by simply varying one parameter, namely, the probability p. In Figure 7 we display

9

Figure 4. Visualization of networks generated by cuPPA using n = 10000, p = 0.5 and d = 1.

Figure 5. Visualization of networks generated by cuPPA using n = 10000, p = 0.5 and d = 2.

10

Figure 6. Visualization of networks generated by cuPPA using n = 10000, p = 0.5 and d = 4.

the degree distribution of the generated networks by varying p. When p = 0, all edges are produced by
copy edges, and thus the network becomes a star network where all additional vertices connect to the d
initial vertices. With a small value of p (p = 0.01), we can generate a network with a very long tail. When
we set p = 0.5, we get the Barabási–Albert network that exhibits a straight line in log–log scale. When we
increase p to 1, we get a network consists entirely on direct edges that does not form any tail.

Figure 7. The degree distributions of the networks by cuPPA (n = 250M, d = 4) with varying p.

11

4.5 Waiting Queue Size

As mentioned in Section 3.3, the waiting queue size depends of p and d. To evaluate the impact of p and d,
we ran simulations using 1280 CUDA threads (20 blocks and 64 threads per block) where each thread only
executed one vertex. The value of p is varied from 0 to 1 with different probability values. We also varied
the value of d from 1 to 4096 as increasing powers of 2. In Figure 8, we show the number of items placed
in the waiting queue per vertex for different combinations of p and d. We also added the worst case value
as a line in the plot. As seen from the figure, in the worst case with p = 0, the maximum size of the waiting
queue increases linearly with d for smaller values of d (up to 64) and afterward it does not increase much
compared to d. Therefore, for smaller values of d we need to have provisions for at least d items per vertex
in the waiting queue.

Worst C
ase

10

1,000

1 2 4 8 16 32 64 128 256 512 1,024 2,048 4,096
d

W
ai

tin
g

Q
ue

ue
 S

iz
e

p=0 p=0.25 p=0.5 p=0.75 p=0.9 p=0.95 p=1

Figure 8. The maximum size of the waiting queue per thread for different values of p and d (both axes
in log scale). In the worst case (p = 0) the maximum size increases linearly with d for smaller values
(d ≤ 64). For larger d, the actual maximum size of the waiting queue is comparatively smaller than
the worst case.

However, as the round progresses, the maximum size of the waiting queue decreases significantly as shown
in Figure 9. In this figure, we use 512 CUDA thread to generate networks with d = 512 and p = 0. Each
CUDA thread only processes one vertex per round. Only the first 100 rounds are shown for brevity. From
Figure 9, we can see that as the round progresses, the size of the waiting queue decreases dramatically.
That means we could process more vertices using the same amount of queue memory. Therefore, we can
dynamically change the size of the segments between two consecutive rounds to increase parallelization.
Based on these observations regarding the size of the waiting queue, we designed an adaptive version of
cuPPA that monitors the maximum size of the waiting queue and manages the segment size accordingly.
We call this version cuPPA-Dynamic and use it for all other experiments.

4.6 Runtime Performance

In this section, we analyze the runtime and performance of cuPPA relative to other algorithms and show the
variation of performances against various parameters.

12

0

100

200

0 25 50 75 100
Round

W
ai

tin
g

Q
ue

ue
 S

iz
e

Figure 9. Size of the waiting queue decreases significantly with rounds in SRRP scheme.

342.5

283.03

58.28

1.48
0

60

120

180

240

300

360

SBA SCM PPA cuPPA

Ru
nt

im
e

(s
ec

on
ds

)

Figure 10. Runtimes of SBA, SCM, PPA, and cuPPA for generating a billion of edges. cuPPA is able
to generate a billion edge network in just a couple of seconds

4.6.1 Runtime Comparison with Existing Algorithms

To the best of our knowledge, our algorithm is the first GPU–based parallel algorithm to generate
preferential attachment networks. Therefore, it is not possible to compare the performance of other
GPU–based algorithms. Instead, we compare the performance of our algorithms against the efficient
implementation of some sequential algorithms (SBA, SCM) and with distributed memory parallel
algorithm (PPA). The runtimes of SBA, SCM, PPA, and cuPPA algorithms for generating a billion edges
(n = 250M, d = 4) are shown in Figure 10. As shown in the Figure, cuPPA can generate the network in just
1.48 seconds in the 1080 GPU. Therefore, cuPPA is significantly faster than the CPU and other parallel
implementation. However, the number of edges cuPPA could generate is bound by the GPU memory,

13

whereas other algorithms can generate very large networks due to the greater amount of memory available
to them.

4.6.2 Runtime vs. Number of Vertices

First we examine the runtime performance of cuPPA with increasing number of vertices n. Here we
examine two cases. In the first case we set d = 4, vary p = {0, 0.001, 0.25, 0.5, 0.75, 1}, and vary
n = {1953125, 3906250, 7812500, 15625000, 31250000, 62500000, 125000000, 250000000} to see how the
runtime changes with increasing number of vertices for different p. The corresponding runtime is shown in
Figure 11. In the second case, we set p = 0.5, vary d = {1, 2, 4, 8, 16, 32, 64, 128}, and vary
n = {60000, 120000, 240000, 480000, 960000, 1920000, 3840000, 7680000} to see how the runtime
changes with increasing number of vertices for different d. The corresponding runtime is shown in
Figure 12.

0

1

2

3

0 250,000,000 500,000,000 750,000,000 1,000,000,000
E

Ru
nt

im
e

(s
ec

on
ds

)

p=0 p=0.001 p=0.25 p=0.5 p=0.75 p=1

Figure 11. Runtime vs. number of edges suggests that cuPPA is very scalable with increasing n for
different values of p with a fixed value of d = 4.

From Figures 11 and 12, we can observe that for any fixed set of values for p and d, with increasing n, the
runtime increases linearly, indicating that the algorithm scales very well with increasing value of n.

4.6.3 Runtime vs. Degree of Preferential Attachment

Next, we examine the runtime performance of cuPPA with increasing d. The runtime is shown in
Figure 13. Here, we set n = 7812500, vary p = {0, 0.00001, 0.001, 0.25, 0.5, 0.75, 1}, and vary
d = {1, 2, 4, 8, 16, 32, 64, 128} to see how the runtime changes for increasing value of d for different p. As
seen from the figure, with increasing d, the runtime increases almost linearly. Therefore the algorithm is
observed to scale well for increasing value of d. Note that higher values of d are typically unlikely.
However, we included higher values of d for performance measurement purpose. Also notice that the
runtime is the largest for p = 0. With a small value of p = 0.00001 the runtime drops significantly and does
not change much for higher values of p. Since the typical values of p are much larger than 0, this
observation suggests that cuPPA performs well for real world scenarios.

14

0

5

10

15

0 2,000,000 4,000,000 6,000,000 8,000,000
n

Ru
nt

im
e

(s
ec

on
ds

)

d=1 d=2 d=4 d=8 d=16 d=32 d=64 d=128

Figure 12. Runtime vs. number of vertices suggests that cuPPA is very scalable with increasing n for
different values of d with a fixed value of p = 0.5.

4.6.4 Runtime vs. Probability of Copy-Edge

Next we examine the runtime performance of cuPPA with increasing p. The runtime is shown in Figure 14.
Here, we used three different set of values for n and d (〈n = 250000000, d = 4〉, 〈n = 62500000, d = 16〉,
and 〈n = 31250000, d = 32〉), and vary
p = {0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1.00}. As seen from the
figure, the runtime reduces dramatically with a slight increase of p = 0 to p = 0.00001 up to p = 0.1 in all
of the three cases. Then the runtime reduces almost linearly up to p = 0.9 and then reduces sharply when
p = 1. With lower values of p, most of the edges are produced by copy edges. Therefore, the size of the
waiting queue increases, thereby increasing the runtime. As the value of p increases towards 1, most of the
edges are created using direct edges and, therefore, fewer iterms are being stored in the waiting queue.

4.6.5 Runtime varied with the number of Threads

To observe the performance of cuPPA as it depends of the number of threads, we set n = 250000000,
d = 4, p = 0.5 and varied the number of CUDA threads per block from 32, 64, 128, 256, 512, to 1024. The
result of the experiment is shown in Figure 15. The best performance from the GPU is found with 512
threads per block. Therefore, in our final algorithm, we use up to 512 threads per block.

5. CONCLUSION

A novel GPU-based algorithm, named cuPPA, has been presented, with a detailed performance study, and
its combination of its scale and speed has been tested by achieving the ability to generate networks with up
to 1 billion edges in under two seconds of wall clock time. The algorithm is customizable with respect to
the structure of the network by varying a single parameter, namely, a probability measure that captures the
preference style of new edges in the preferential attachment model. Also, a high amount of concurrency in

15

0

20

40

60

0 50 100
d

Ru
nt

im
e

(s
ec

on
ds

)

p=0 p=0.00001 p=0.001 p=0.25 p=0.5 p=0.75 p=1

Figure 13. Runtime vs. d for generating networks with n = 7812500 with varying d =

1, 2, 4, 8, 16, 32, 64, 128 for different values of p. The runtime almost increases linearly.

the generator’s workload per thread or processor is observed when that probability is at very small fractions
greater than zero. In future work, we intend to exploit code profiling tools for further optimization of the
runtime and memory usage on the GPU. Also, the algorithm needs to be extended to exploit multiple GPUs
that may be co-located within the same node. This would require periodic data synchronization across
GPUs, which can be efficiently achieved using the NVidia Collective Communication Library (NCCL).
Additional future work involves porting to GPUs spanning multiple nodes, and also hybrid CPU-GPU
scenarios in order to utilize unused cores of multi-core CPUs. Methods to incorporate other network
generator models can also be explored with our cuPPA as a starting point. Finally, future work is needed in
converting our internal, GPU-based graph representation to other popular network formats for usability.

16

0

5

10

15

20

0 10−5 10−4 10−3 10−2 0.1 0.5 1

p

Ru
nt

im
e

(s
ec

on
ds

)
n=250000000, d=4 n=62500000, d=16 n=31250000, d=32

Figure 14. Runtime vs. p for three sets of values for n and d (x-axis in log scale). At p = 0 the runtime
is the largest which reduces significantly with a slight increase. As p increases the runtime reduces.

5

10

100 1,000
Number of Threads (per Block)

Ru
nt

im
e

(s
ec

on
ds

)

Figure 15. Runtime vs. Number of Threads. Best performance is observed with 512 threads per block.

6. REFERENCES

[1] Maksudul Alam. HPC-based Parallel Algorithms for Generating Random Networks and Some Other
Network Analysis Problems. PhD thesis, Virginia Tech, 2016.

[2] Maksudul Alam, Maleq Khan, and Madhav V. Marathe. Distributed-memory parallel algorithms for
generating massive scale-free networks using preferential attachment model. In International
Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–12. ACM
Press, 2013. ISBN 9781450323789. doi: 10.1145/2503210.2503291. URL
http://doi.acm.org/10.1145/2503210.2503291.

[3] Keyvan Azadbakht, Nikolaos Bezirgiannis, Frank S de Boer, and Sadegh Aliakbary. A high-level and
scalable approach for generating scale-free graphs using active objects. In Proceedings of the 31st
Annual ACM Symposium on Applied Computing, pages 1244–1250. ACM, 2016.

[4] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286
(5439):509–12, 1999. ISSN 1095-9203. doi: 10.1126/science.286.5439.509. URL
http://www.sciencemag.org/cgi/doi/10.1126/science.286.5439.509.

[5] Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random networks. Physical
Review E, 71(3 Pt 2A):036113, 2005. ISSN 1539-3755. doi: 10.1103/PhysRevE.71.036113. URL
http://www.ncbi.nlm.nih.gov/pubmed/15903499.

[6] Sergey N. Dorogovtsev and José Fernando Ferreira Mendes. Evolution of networks. In Advances in
Physics, volume 51, pages 1079–1187, 2002. doi: 10.1080/00018730110112519. URL
http://www.tandfonline.com/doi/abs/10.1080/00018730110112519.

[7] Sergey N. Dorogovtsev, José Fernando Ferreira Mendes, and Alexander N. Samukhin. Principles of
statistical mechanics of uncorrelated random networks. Nuclear Physics B, 666(3):396–416, 2003.
ISSN 05503213. doi: 10.1016/S0550-3213(03)00504-2. URL
http://linkinghub.elsevier.com/retrieve/pii/S0550321303005042.

[8] Ali Hadian, Sadegh Nobari, Behrooz Minaei-Bidgoli, and Qiang Qu. Roll: Fast in-memory
generation of gigantic scale-free networks. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, pages 1829–1842, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-3531-7. doi: 10.1145/2882903.2882964. URL
http://doi.acm.org/10.1145/2882903.2882964.

[9] Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew S. Tomkins.
The web as a graph: Measurements, models, and methods. In Annual International Conference on
Computing and Combinatorics, pages 1–17, Berlin, Heidelberg, 1999. Springer-Verlag. ISBN
3-540-66200-6. URL http://dl.acm.org/citation.cfm?id=1765751.1765753.

[10] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivakumar, Andrew Tomkins, and Eli
Upfal. Stochastic models for the web graph. In Annual Symposium on Foundations of Computer
Science, pages 57–65. IEEE Comput. Soc, 2000. ISBN 0-7695-0850-2. doi:
10.1109/SFCS.2000.892065. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=892065.

19

http://doi.acm.org/10.1145/2503210.2503291
http://www.sciencemag.org/cgi/doi/10.1126/science.286.5439.509
http://www.ncbi.nlm.nih.gov/pubmed/15903499
http://www.tandfonline.com/doi/abs/10.1080/00018730110112519
http://linkinghub.elsevier.com/retrieve/pii/S0550321303005042
http://doi.acm.org/10.1145/2882903.2882964
http://dl.acm.org/citation.cfm?id=1765751.1765753
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=892065

[11] Benjamin Machta and Jonathan Machta. Parallel dynamics and computational complexity of network
growth models. Physical Review E, 71(2):26704, 2005. ISSN 15393755. doi:
10.1103/PhysRevE.71.026704. URL
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.026704.

[12] Ulrich Meyer and Manuel Penschuck. Generating massive scale-free networks under resource
constraints. In 2016 Proceedings of the Eighteenth Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 39–52. SIAM, 2016.

[13] Peter Sanders and Christian Schulz. Scalable generation of scale-free graphs. Information Processing
Letters, 116(7):489–491, 2016.

[14] Andy Yoo and Keith Henderson. Parallel generation of massive scale-free graphs. Computing
Research Repository, abs/1003.3:1–13, 2010. URL http://arxiv.org/abs/1003.3684.

20

http://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.026704
http://arxiv.org/abs/1003.3684

	LIST OF FIGURES
	ACRONYMS
	ABSTRACT
	INTRODUCTION
	BACKGROUND
	Preliminaries and Notations
	Preferential Attachment–Based Models
	Sequential Algorithm: Barabási-Albert Model
	Sequential Algorithm: Copy Model

	GPU–BASED PARALLEL ALGORITHM: CUPPA
	Graph Representation
	Partitioning and Load Balancing
	Segmented Round Robin Partitioning
	CUDA-Specific Deadlock Scenario

	EXPERIMENTAL RESULTS
	Hardware and Software
	Degree Distribution
	Visualization of Generated Graphs
	Effect of Edge Probability on Degree Distribution
	Waiting Queue Size
	Runtime Performance
	Runtime Comparison with Existing Algorithms
	Runtime vs. Number of Vertices
	Runtime vs. Degree of Preferential Attachment
	Runtime vs. Probability of Copy-Edge
	Runtime varied with the number of Threads

	CONCLUSION
	REFERENCES

