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ABSTRACT 

Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux 

presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in 

the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal 

conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the 

cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiC-

based cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) 

Program within the US Department of Energy Office of Nuclear Energy is supporting research efforts to 

improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the 

results of this project will provide experimental validation of multi-physics models for SiC-based fuel 

cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a 

previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected 

to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the 

High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A 

compressible aluminum foil allows for a constant thermal contact conductance between the cladding 

tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of 

irradiation from those due to differential swelling under a high heat flux, a new design was developed 

under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens 

without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, 

summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the 

HFIR. Rabbits of both low and high heat flux configurations have been assembled, welded, evaluated, 

and delivered to the HFIR along with a complete quality assurance fabrication package. These rabbits 

contain a wide variety of specimens including monolith tubes, SiC fiber SiC matrix (SiC/SiC) 

composites, duplex specimens (inner composite, outer monolith), and specimens with a variety of metallic 

or ceramic coatings on the outer surface. The rabbits are targeted for insertion during HFIR cycle 475, 

which is scheduled for September 2017. 
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1. INTRODUCTION 

Silicon carbide (SiC) is a candidate material for a variety of nuclear applications because of its 

high-temperature strength, oxidation resistance, and stability under irradiation [1-6]. Although SiC has 

been under consideration for various nuclear applications since the 1960s, the more recent focus has been 

on using SiC as a fuel cladding for light water reactors (LWRs) to increase the accident tolerance of the 

fuel [7-13]. One of the major technical feasibility issues for SiC-based cladding is whether the cladding 

can survive the evolving stress state over the lifetime of the fuel [14-16]. A large amount of heat is 

generated as a result of fission occurring in the fuel, and that heat passes through the cladding before 

ultimately being rejected to the reactor coolant. As the cladding thermal conductivity degrades under 

irradiation, the high heat flux passing through the cladding results in significant temperature gradients 

through the cladding thickness. Because of the strong temperature dependence of swelling in SiC, the 

radial temperature gradients result in differential swelling, which creates a complex stress state in the 

cladding. This stress, combined with internal pressurization due to gaseous fission product accumulation 

inside the fuel rod, could result in cracking and fission product release. 

The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy (DOE) 

Office of Nuclear Energy (DOE-NE) is funding Oak Ridge National Laboratory (ORNL) to 

experimentally investigate irradiation effects on the stress state in SiC cladding subjected to LWR 

conditions. The results obtained from this irradiation testing will provide experimental validation of 

thermomechanical models that are used to predict cladding performance during LWR operation. “Rabbit” 

capsules have been designed to allow miniature SiC tube specimens to be irradiated in the core of the 

High Flux Isotope Reactor (HFIR) at ORNL. Post-irradiation examination of the irradiated cladding tubes 

will include optical microscopy (to check for cracking), Raman temperature mapping, resonant ultrasound 

spectroscopy (for determining changes in elastic modulus), gas permeability measurements, and 

destructive c-ring testing (to determine residual stresses) [17]. This work summarizes the assembly and 

delivery of six rabbits containing a variety of SiC cladding tube specimens to the HFIR. The specimens 

include chemical vapor deposition (CVD) monolith tubes, SiC fiber SiC matrix (SiC/SiC) composite 

tubes, and duplex specimens (inner composite, outer monolith). In addition, some specimens were coated 

with a metallic or ceramic layer with the intention of improving hermeticity and/or hydrothermal 

corrosion resistance. Some of the rabbits that are to be irradiated use a previous design that allows for the 

cladding tubes to be tested under a representative high heat flux. Others use a new design developed 

under the NSUF program that allows for irradiation of tube specimens at representative LWR 

temperatures without a high heat flux so that the effects of differential swelling can be separated from 

other irradiation effects. This report provides a brief overview of the irradiation test matrix, the capsule 

design concepts, and the successful delivery of all irradiation capsules to the HFIR. 
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2. EXPERIMENT DESIGNS AND TEST MATRIX  

2.1 HIGH–HEAT FLUX DESIGN 

The high–heat flux irradiation capsule designed previously is shown in Figure 1 [18]. This design 

places the specimens around a molybdenum heater (dense gamma absorbing cylinder) at the center of the 

rabbit housing. The heater generates significant gamma heating, which passes through the cladding tube, 

resulting in a heat flux of approximately 0.6 MW/m2 at the outer surface of the cladding. The outside of 

the specimen is surrounded by an aluminum sleeve, an embossed aluminum foil, and an aluminum 

housing, which is directly cooled by the reactor primary coolant. The embossed foil allows the specimen 

to swell under irradiation while maintaining good thermal contact between the sleeve and the housing. 

The sleeve prevents large circumferential temperature variations on the outer surface of the cladding due 

to the periodic contact that would otherwise exist between the cladding and the foil. The cladding surface 

was estimated to be 300–350C, based on finite element analysis (FEA) [18]. The FEA results were 

validated using passive SiC temperature monitors located inside the molybdenum heaters. 

 

 
Figure 1. Previously developed design concept for irradiating SiC cladding tubes under a high 

radial heat flux. 

 

2.2 LOW–HEAT FLUX DESIGN 

As mentioned previously, the low–heat flux design was developed under the NSUF program to 

provide SiC cladding tube specimens that have been irradiated without differential swelling stresses 

resulting from the high radial heat flux and associated temperature gradients [19]. This allows for the 

separation of differential swelling effects from effects related to radiation damage. Figure 2 shows the 

concept for the low (~0.08 MW/m2) heat flux design. Three cladding tubes are stacked in the vertical 

direction inside the rabbit housing. Each tube specimen has centering thimbles inserted on either end to 
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keep the specimens centered within the housing. A compression spring is placed at the top of the rabbit to 

prevent the centering thimbles from dislodging from the cladding specimens. All centering thimbles are 

made of aluminum, except for the bottom thimble, which is made of a titanium alloy. The low density and 

high thermal conductivity of aluminum minimizes temperature extremes on the ends of the specimens due 

to increased gamma heating in the thimbles. To further reduce axial temperature gradients along the 

length of the specimens, graphite inserts are placed inside the cladding between the two centering 

thimbles to provide a more uniform heat loading along the length of the cladding tubes. The bottom 

thimble is made of titanium because of its low thermal conductivity, which reduces axial heat losses from 

the bottom cladding specimen to the cool bottom surface of the capsule housing. Figure 3 shows predicted 

temperatures for a SiC/SiC composite specimen during irradiation in both the high– and low–heat flux 

design configurations. Temperatures for the high–heat flux configuration were replotted from the data in 

Petrie et al. [18]. Clearly the low–heat flux design allows for much lower temperature gradients within the 

specimens. 

 

 
Figure 2. Section view showing low–heat flux design concept developed under the NSUF project. 
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Figure 3. SiC/SiC composite cladding specimen temperature (°C) contours during irradiation in the 

high (left) and low (right) heat flux design configurations.  

 

2.3 IRRADIATION TEST MATRIX 

Table 1 and Table 2 summarize the irradiation test matrix. The specimens come from a variety of 

manufacturers, including The Dow Chemical Company (Dow), General Atomics (GA), the Korean 

Atomic Energy Research Institute (KAERI) in South Korea, and the Commissariat à l'Energie Atomique 

(CEA) in France. Coating was performed by two companies: Richter Precision Inc. (RP) and Techmetals 

Inc. (TM). Coatings included Cr, CrN, and TiN. Table 1 shows the loading of specimens in each rabbit 

along with the irradiation positions and fill gases. Each rabbit contains three specimens. Table 2 

summarizes all specimens by specimen manufacturer, type, coating, and heat flux (high– or low–heat flux 

design). All specimens will be irradiated for one cycle (cycle 475) in the HFIR, which will result in a 

radiation dose of approximately 2.3 dpa [18]. The targeted cladding surface temperature is approximately 

300–350°C for all rabbits. Temperature gradients through the thickness depend on the heat flux and the 

specimen thermal conductivity, which varies with specimen type and neutron fluence. The nominal 

specimen dimensions are 8.5 mm outer diameter, 7.1 mm inner diameter, and 16 mm length. 

 

Table 1. Rabbit irradiation test matrix showing the loading of specimens within each rabbit, the 

irradiation positions, and fill gases 

Rabbit Heat flux Cladding 1 Cladding 2 Cladding 3 
Irradiation 

position 
Fill gas 

ATFSC06 High CVD-E GA-TGI-C-1 N1N3(8) G4-4 He 

ATFSC07 High CVD-H TYPE S-1 SA3-2 A1-4 He 

ATFSC09 High CVD-G 1-TM-CrN 4-RP-CrN A4-4 He 

SCL01 Low CVD-L SA3-1 N1N3(1) A1-5 85% He, Ar bal. 

SCL05 Low CVD-Q 6-RP-Cr 2-TM-CrN D1-5 85% He, Ar bal. 

SCL06 Low CVD-R 3-RP-CrN 7-TM-TiN G7-4 85% He, Ar bal. 
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Table 2. Specimen irradiation test matrix showing number of specimens to be irradiated according 

to specimen manufacturer, type, coating, and heat flux (high or low heat flux design). 

Manufacturer Type Coating Specimen ID 
Heat flux 

High Low 

Dow Monolith None CVD-X (X=E, G, H, L, Q, R) 3 3 

GA SiC/SiC composite None GA-TGI-C-1 1 0 

GA 
Duplex: inner composite, outer 

monolith 
CrN 1-TM-CrN, 3-RP-CrN 1 1 

GA 
Duplex: inner composite, outer 

monolith 
Cr 6-RP-Cr 0 1 

KAERI 
Duplex: inner composite, outer 

monolith 
None TYPE S-1, SA3-1, SA3-2 2 1 

CEA SiC/SiC composite None N1N3(1), N1N3(8) 1 1 

CEA SiC/SiC composite CrN 2-TM-CrN, 4-RP-CrN 1 1 

CEA SiC/SiC composite TiN 7-TM-TiN 0 1 
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3. RABBIT CAPSULE ASSEMBLY AND DELIVERY TO THE HFIR 

3.1 HIGH–HEAT FLUX RABBITS ASSEMBLY 

The three high–heat flux rabbits (ATFSC06, ATFSC07, and ATFSC09) were assembled. Pictures 

of the parts layout and specimen sub-assemblies for rabbit ATFSC06 are shown in Figure 4. Figure 5 

shows the parts layout for rabbits ATFSC07 and ATFSC09. Figure 6 shows a top-down view of CEA 

SiC/SiC composite specimen N1N3(8) assembled inside the rabbit housing ATFSC06 with the heater, 

sleeve, foil, and thermometry surrounded by quartz wool. The signed capsule fabrication request forms 

are provided in APPENDIX A. Figure 7 shows an example of the pre-irradiation optical microscopy that 

is performed on each specimen (SA3-2 in this case) so that defects that exist in the specimen before 

irradiation are not attributed to radiation damage. The top of the specimen shows engraving marks for 

identifying the specimen. A surface defect is clearly visible in the bottom right picture. 

 

  
Figure 4. Parts (left) and assembly (right) of rabbit ATFSC06. 
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Figure 5. Parts for assembly of rabbits ATFSC07 (left) and ATFSC09 (right). 

 

 
Figure 6. Top-down view of CEA SiC/SiC composite specimen N1N3(8) assembled inside rabbit 

housing ATFSC06 with the heater, sleeve, foil, and thermometry surrounded by quartz wool. 
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Figure 7. Example of optical microscopy performed on each specimen (SA3-2 in this case) before 

irradiation. 

All capsule components were dimensionally inspected and cleaned according to HFIR-approved 

procedures, drawings, and sketches. After assembly of the internal components, all rabbit housing end 

caps were welded to the housings using an electron beam weld. The capsules were then placed inside 

sealed chambers that were evacuated and backfilled with ultra-high-purity helium gas three times to 

ensure a pure helium environment. The chambers were placed inside a glove box, which was also 

evacuated and backfilled with helium. Each rabbit had a small hole in the bottom of the housing that was 

sealed using a gas tungsten arc welding procedure. All welds passed visual examination. Each capsule 

was then sent for nondestructive examination, which included a helium leak test, hydrostatic compression 

at a pressure of 1,035 psi, mass comparisons before and after hydrostatic compression to ensure no water 

penetrated the capsule housing, and a final post-compression helium leak test. All rabbits passed helium 

leak testing and hydrostatic compression. 

3.2 LOW–HEAT FLUX RABBITS ASSEMBLY 

Three low–heat flux rabbits (SCL01, SCL05, and SCL06) were assembled. Pictures of the layout 

for each rabbit before irradiation are shown for these three rabbits in Figure 8. Figure 9 shows an example 

of cladding specimens assembled with centering thimbles. Figure 10 shows an example of optical 

microscopy performed on a coated specimen (7-TM-TiN) that was included in low–heat flux irradiation 

capsule SCL06. The low–heat flux rabbits and rabbit components were inspected, cleaned, assembled, 

and tested using the same processes and procedures as the high–heat flux rabbits, except that the backfill 

gas was an 85% He–Ar balance mixture instead of pure helium. All rabbits passed weld examination, 

helium leak testing, and hydrostatic compression. 
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Figure 8. Capsule parts for low–heat flux rabbits SCL01, SCL05, and SCL06. 

 

 
Figure 9. Cladding specimens assembled with centering thimbles for the low–heat flux design 

configuration. 
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Figure 10. Example of optical microscopy performed on coated specimen 7-TM-TiN before 

irradiation in low–heat flux rabbit SCL06. 

3.3 QUALITY ASSURANCE, FABRICATION PACKAGE, AND DELIVERY TO THE HFIR 

Each rabbit irradiation experiment requires a fabrication package that is reviewed by an 

independent design engineer, a lead quality assurance (QA) representative, and a HFIR QA representative 

before acceptance for insertion into the HFIR. The fabrication package must satisfy the requirements of 

the Experiment Authorization Basis Document (EABD). Rabbit capsules fall under document EABD-

HFIR-2009-004. This document specifies a number of requirements that the rabbits must satisfy in the 

areas of 

• thermal safety analyses, 

• material certification, 

• dimensional inspection, 

• cleaning, 

• assembly procedure, 

• sample loading, 

• fill gas, 

• welding, and 

• nondestructive evaluation. 

A separate fabrication package was prepared for the low– and high–heat flux rabbit capsules. These 

packages were reviewed and approved by an independent design engineer, lead QA representative, and 

HFIR QA representative and accepted by HFIR on August 14, 2017. The final signed acceptance page of 

the EABD is provided in APPENDIX A. All six rabbits are scheduled for insertion during HFIR cycle 

475 (September 2017).  
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4. SUMMARY AND CONCLUSIONS 

This work summarizes the capsule design concepts and the irradiation test matrix for six rabbit 

capsules, which were successfully assembled and delivered to the HFIR for insertion during cycle 475 

(September 2017). Each rabbit contains three SiC cladding tube specimens, which will be evaluated post-

irradiation as part of an NSUF-funded project investigating the effects of irradiation with a high radial 

heat flux on the stress state in SiC-based fuel cladding. Three rabbits use a previous design that provides 

the required radial heat flux through the specimens during irradiation. A new design was developed under 

the NSUF program to allow for irradiation at LWR temperatures without a significant radial heat flux to 

allow the separation of effects related to differential swelling from other irradiation effects. A wide 

variety of specimens were included in the test matrix, including monolith tubes, SiC/SiC composites, 

duplex specimens (inner composite, outer monolith), and specimens with a variety of metallic or ceramic 

coatings on the outer surfaces. The rabbits were successfully assembled, welded, evaluated, and delivered 

to the HFIR along with a complete QA fabrication package. Pictures of the rabbit assembly process and 

optical microscopy of select specimens are included in this report. Documentation of the capsule 

fabrication and final acceptance by HFIR is provided in an appendix. Ultimately, the results of this project 

will provide experimental validation of multi-physics models of the stress state of SiC-based fuel 

cladding during LWR operation. 
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