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EXECUTIVE SUMMARY

Concrete in Nuclear Power Plants (NPPs) can be exposed to a wide range of degradation phenomena. In the

past years, the Light Water Reactor Sustainability (LWRS) program has investigated Radiation-Induced

Volumetric Expansion (RIVE) as a potential degradation mechanism for concrete biological shields [Graves

et al., 2014, Rosseel et al., 2016]. RIVE causes swelling and micro-mechanical damage in concrete due to the

amorphization of mineral phases contained in the aggregates under neutron irradiation [Hilsdorf et al., 1978,

Rosseel et al., 2016]. For long-term operations, it is critical to assess the durability of concrete after 60 or 80

years of exposure to NPP operating conditions against this phenomenon.

RIVE is dependent on the composition of the aggregates used in concrete. Quartz-bearing aggregates are

more sensitive to RIVE than calcite-bearing aggregates, for example. However, the aggregate composition of

a specific plant is generally not explicitly given in the concrete formulation, which makes it nearly impossible

to predict the resistance of that concrete to RIVE. Additional characterization is needed to identify the

radiation-sensitive mineral phases contained in the aggregates.

Therefore, in order to assess the sensitivity of a specific concrete to neutron irradiation, one must rely on

a rigorous combination of:

• An analysis of the phases present in the concrete. The LWRS program acquired a micro-X-Ray

Fluorescence (μ-XRF) unit for that purpose (LWRS reports M3LW-17OR0403013 and

M2LW-17OR0403014).

• Appropriate models and material parameters for each of the phases identified. The IMAC database was

established to compile data for minerals, aggregates and concrete exposed to irradiation and validate

models using that data (LWRS reports M2LW-17OR403044 and M3LW-17OR0403045).

• Physics-based upscaling methods able to account for the complex behavior of the concrete (LWRS

report M3LW-15OR0403044).

This report specifically addresses the third point, and demonstrates new capabilities. In previous work,

upscaling was done using a Finite Element Method (FEM) model validated against data from the literature.

However, that model suffered from two strong limitations:

• It cannot handle complex geometrical shapes, as it was developped with spheres and simple polygons.

• It is highly computationally intensive, making it impossible to use on high-resolution microstructures

such as those extracted from μ-XRF spectra.

For these reasons, different upscaling methods are being investigated.

In recent years, Fast Fourier Transform (FFT) methods have been developped as an alternative to FEM.

They have notably been applied to thermo-elastic properties, plasticity of polycrystalline alloys, and concrete

creep [Moulinec and Suquet, 1998, Liu et al., 2010, Lavergne et al., 2015]. It is able to handle much larger

problems than FEM, and thus can be applied to simulate microstructures obtained from μ-XRF or similar

microstructural characterization techniques (see Figure 1).

In the present work, FFT solvers from the literature are implemented and validated for 2-dimensional

concrete microstructures. The solvers are able to characterize elastic strain and stress fields in a material

subject to an imposed strain or stress, as well as internal strains such as thermal expansion or RIVE. An

example of simulation using a microstructure characterized with μ-XRF is provided to demonstrate the

capabilities of the solver to simulate large concrete microstructures.
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FEM FFT

Figure 1. Example of concrete microstructures simulated with FEM (left, figure from [Giorla
et al., 2015], ≈12,000 elements, 2 phases: cement, aggregates) and with FFT (present report,
640,000 pixels, 4 phases: porosity, cement, calcite, ankerite).
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INTRODUCTION

In the United States, NPPs are being evaluated for a second license renewal, extending their service life

from 60 to 80 years. Doing so requires the assessment of the durability of all components under long-term

operating conditions. This includes the concrete used for the NPP structure, notably the Concrete Biological

Shield (CBS), which is exposed to a particularly high neutron and gamma dose, and which may, for some

LWRS, exceed the threshold at which degradation has been reported in the literature [Esselman and Bruck,

2013, Graves et al., 2014, Rosseel et al., 2016].

Concrete exposed to neutron irradiation is subject to a very high volumetric expansion and a loss of

engineering properties (notably elastic stiffness, strength) [Hilsdorf et al., 1978, Field et al., 2015]. This is

predominantly driven by the Radiation-Induced Volumetric Expansion (RIVE) of the minerals that compose

the concrete aggregates [Rosseel et al., 2016]. The swelling of these minerals under neutron irradiation places

the cement paste under very high stresses. This ultimately leads to micro-cracking in the cement paste

[Le Pape et al., 2015, Giorla, 2015, Giorla et al., 2015], which manifests as a loss of mechanical properties of

the concrete.

This process is highly dependent on the nature of the minerals contained in the aggregates. For example,

quartz (a silicate) is highly sensitive to RIVE, while the effects on calcite (a carbonate) are comparatively

much lower. Furthermore, most aggregates are heterogeneous, with varied and complex microstructures. This

may lead to internal cracking inside the aggregates before cracking propagates through the cement paste.

This effect depends on the microstructure of the aggregates themselves, and the geometrical arrangement of

mineral phases with respect to one another.

Therefore, it is not possible to estimate sensitivity of a given concrete to RIVE without the

characterization of its mineral composition and microstructure. It is also generally not possible to perform

accelerated irradiation tests due to the very high cost associated with radiation experiments. The sensitivity of

a given material to RIVE must then be evaluated through the rigorous combination of:

• An analysis of the phases present in the concrete, including their nature and their geometrical

arrangement. Last year, the LWRS program acquired a μ-XRF instrument to analyze the phases

contained in a specimen [Tajuelo Rodriguez, 2017]. The instrument provides two-dimensional

elemental concentration maps of materials, with a maximum area of 4 × 4 cm, and a resolution of 10

μm. In a previous work, a methodology to identify mineral phases from μ-XRF maps was developped

[Giorla, 2017].

• Appropriate models and material parameters for each of the phases identified when exposed to neutron

irradiation. The LWRS program has compiled a set of data on the irradiation properties of minerals

and aggregates in the IMAC database [Le Pape, 2016, 2017]. In the present work, the data on minerals

is of interest. It contains information on the non-irradiated properties of each mineral (notably, the

elastic constants), as well as irradiated properties experimentally determined by other researchers

(notably, the volumetric expansion). The database is associated with semi-empirical models allowing

researchers the ability to derive the RIVE of a specific mineral as a function of both the neutron

fluence and the temperature.

• Physics-based upscaling methods able to account for the complex behavior of the concrete. In a

previous work, a FEM-based model was developped to upscale the RIVE of aggregates to the concrete

scale, accounting for the creep-damage interaction inside the cement paste [Giorla, 2015]. The model

was validated against experimental data from the literature [Giorla et al., 2015], and used to assess

coupled temperature-irradiation effects [Le Pape et al., 2016].
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However, the FEM model has two strong limitations which makes it not applicable for the analysis of

microstructures obtained through μ-XRF.

• It is not able to handle the complex geometries acquired by the μ-XRF. Indeed, the FEM model was

designed to incorporate simple shapes of inclusions (such as circles and polygons), and was not

developped to handle high-resolution images.

• The computational time to simulate large-scale microstructures would be prohibitive to use in practice

due to the complexity of the creep-damage algorithm.

For these reasons, other upscaling approaches need to be investigated.

Fast Fourier Transform (FFT) is a numerical technique that has emerged at the mid 90’s to evaluate

homogeneous properties of periodic microstructures [Moulinec and Suquet, 1994]. Since its initial

formulation for elastic materials, it has been extended to account for plasticity [Moulinec and Suquet, 1998],

linear visco-elasticity [Lavergne et al., 2015] and finite strains [Kabel et al., 2014]. Furthermore, new solvers

have been formulated to improve their convergence properties, notably for the case of materials with high

contrast [Eyre and Milton, 1999, Brisard and Dormieux, 2010, Zeman et al., 2010, Moulinec and Silva,

2014]. The main strength of FFT solvers is their ability to handle very large microstructures thanks to their

low memory cost, which makes this method ideal for the analysis of μ-XRF maps, and therefore, the analysis

of RIVE in concrete.

In this report, the FFT method is presented first. Two different algorithms from the literature are shown.

Both algorithms can compute the properties of elastic materials with imposed eigenstrains (such as the

thermal expansion or RIVE).

Second, applications are presented. Analytical results are reproduced to demonstrate the correct

implementation of the method. Then, an example using a microstructure analyzed by μ-XRF is presented,

using data from the IMAC database.

The conclusion discusses the avenues these FFT solvers open, and the future developments required to

simulate RIVE-induced damage.
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FAST FOURIER TRANSFORM

The Fast Fourier Transform method is a numerical method to compute the stresses and strains in periodic

heterogeneous materials. It has been developped since the mid 90’s [Moulinec and Suquet, 1994, 1998] in

order to alleviate the limitations of the FEM for the simulation of complex microstructures.

The FFT computes the strains and stresses in a periodic, heterogeneous material subject to a uniform

macroscopic stress or strain. It applies to a unit cell of the material microstructure, and is valid in both 2- and

3-dimensions.

THEORY - ELASTICITY

We consider a 2- or 3-dimensional spatial domain representing the unit cell of a periodic heterogeneous

material. x denotes the vector of coordinates in that domain, and Li the dimension of the unit cell in the ith

direction. At each point, the material constitutive behavior is governed by linear elasticity:

σ(x) = C(x) :
�
�(x) − �imp(x)

�
(1)

With σ the stress, � the strain, �imp the eigenstrain (self-induced strains which cause no stress, such as

thermal expansion), and C the stiffness tensor of the material at that point.

FFT methods require C(x) � 0∀x. Therefore, porosity or cracks need to be attributed a small (non-zero)

stiffness to be simulated.

The material is subject to a macroscopic strain E (the case of an imposed macroscopic stress is discussed

in a later section). Under these conditions, the resulting displacement field is also periodic with the same

periodicity as the material property. It is sufficient to calculate its fluctuations on the unit cell to obtain the

overall properties of the material.

The FFT method considers these fluctuations using a so-called reference material, with an homogeneous

stiffness of C0 [Moulinec and Suquet, 1998]. The stress polarization field τ is introduced as a measure of the

stress fluctuations in the material:

τ (x) = (C(x) − C0) : �(x) (2)

The solution of the micro-mechanical problem then obeys [Kröner, 1977]:

�(x) = E − (Γ0 ∗ τ ) (x) (3)

With Γ0 the fourth-order Green tensor associated with the reference material, and ∗ the convolution

product operator. This convolution product is conveniently evaluated in the Fourier space:

�̂(ξ) =

� −Γ̂0(ξ) : τ̂ (ξ) (ξ � 0)

E (ξ = 0)
(4)

With .̂ the Fourier transform of a given variable, and ξ the frequencies in the Fourier space. The Fourier

transform of an integrable (real) function f is an integrable (complex) function f̂ given by:

3



f̂ (ξ) =

∞�
−∞

f (x) e−2πixξdx (5)

(5) can be evaluated numerically by assuming that f is step-wise constant with the Fast Fourier

Transform method.

The numerical advantage of the formulation (4) is that the convolution can be evaluated localy in the

Fourier space (it only depends on the variables at a given frequency) as opposed to globally in the real space.

The numerical difficulty becomes the Fourier transform of the strain and polarization fields, and its inverse.

In the present work, this is carried out using the FFTW library [Frigo and Johnson, 2005], which is

commonly used in FFT packages for micromechanics.

Assuming the reference material is isotropic, the transformed Green operator Γ̂0 is given by [Moulinec

and Suquet, 1998]:

Γ̂0,i jkl(ξ) =
1

4μ0 �ξ�2
�
δkiξlξ j + δl jξkξi + δliξkξ j + δk jξlξi

�
− λ0 + μ0

μ0 (λ0 + 2μ0)

ξiξ jξkξl

�ξ�4 (6)

With λ0 and μ0 the first Lamé parameter and the shear modulus of the reference material, and �.� the

Euclidian norm. One can verify that this formulation has the same symmetries as a fourth-order stiffness

tensor. However, it is not isotropic.

Γ̂ is not defined for ξ = 0, which is why �̂(0) is set to E.

Furthermore, transforming �̂ back to the real space � requires �̂(−ξ) to be equal to the conjugate of �̂(ξ).

The implementation of the FFTW library naturally enforces this condition, except for some of the highest

frequencies. 1 In this case, the approach recommended in [Moulinec and Suquet, 1998] is to force the stress

at these frequencies to be equal to the macroscopic stress. This can be achieved by replacing Γ̂0 with C−1
0

for

these frequencies.

BASIC ALGORITHM

The basic algorithm presented in [Moulinec and Suquet, 1994, 1998] solves (3) using a fixed-point

iterative procedure. The strength of the algorithm is that the convolution product is evaluated in the Fourier

space, while the polarization field is evaluated in the real space, allowing both operations to be executed

locally instead of globally.

The algorithm can be written as follow:

1For a 2-dimensional domain, this happens when the number of pixels in the first direction is even. For a 3-dimensional domain,

this happens when the number of pixels in the first or second directions are even.
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Algorithm 1 Basic FFT scheme

Material properties C(x), �imp(x), and Γ̂0(ξ) are provided

Initial strain field �0(x) is provided

�̂0 = FFT(�0)

while not converged do
for each x do
σn(x) = C(x) :

�
�n(x) − �imp(x)

�
end for
σ̂n = FFT(σn)

for each ξ � 0 do
�̂n+1(ξ) = �̂n(ξ) − Γ̂0(ξ) : σ̂n(ξ)

end for
�̂n+1(0) = En+1

�n+1 = FFT−1(�̂n+1)

end while

En+1 is the prescribed macroscopic strain at the (n + 1)th iteration. When the material is subject to a

macroscopic strain E, then En+1 = E. For a material subject to a macroscopic stress, En+1 must be adjusted at

each iteration (see below).

Convergence is achieved when the error reaches a user-specified criterion. For FFT schemes, the error E
can be decomposed into three different components: error on equilibrium Eeq, the error on the boundary

conditions Ebc and the strain compatibility error Ecomp:

En = max

⎛⎜⎜⎜⎜⎜⎝E
n
eq

E0
eq
,
En

bc

E0
bc

,
En

comp

E0
comp

⎞⎟⎟⎟⎟⎟⎠ (7)

The equilibrium error is a measure of the divergence of the stress field in the sample. According to

classical solid continuum mechanics, this divergence must be equal to 0. It is evaluated locally in the Fourier

space with:

En
eq =

�

ξ
�ξ.σ̂n(ξ)�2

�σ̂n(0)� (8)

The error on the boundary condition reads, for a prescribed macroscopic strain E:

En
bc =

�< �n(x) > −E�
�E� (9)

Where < . > denotes the spatial average.

The error on the compatibility derives from the kinematic compatibility of the strain field. It can be

computed in the Fourier space using (in 2 dimensions):

En
comp =

max
����2ξ1ξ2�̂n

12
(ξ) − ξ2ξ2�̂n

11
(ξ) − ξ1ξ1�̂n

22
(ξ)
�����


ξ
�̂n

i j(ξ) : conj
�
�̂n

i j(ξ)
� (10)
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Extensions to 3 dimensions can be found in [Moulinec and Silva, 2014].

This scheme converges on the following conditions [Michel et al., 2001]:

μ0 >
μ(x)

2
, λ0 >

λ(x)

2
(11)

This algorithm ensures that, at each step, both Ebc and Ecomp are equal to 0.

ACCELERATED ALGORITHM

The accelerated algorithm represents a class of similar algorithms designed to improve the convergence

properties of the basic algorithm presented above. The first versions of these algorithms were given by Eyre

and Milton [1999] and Michel et al. [2000], before Monchiet and Bonnet [2012] showed the more general

case.

The original algorithm did not account for additional eigenstrain. In the present work, the algorithm of

[Monchiet and Bonnet, 2012] is extended to be able to simulate elastic materials with eigenstrains, following

the work of [Lavergne et al., 2015] for viscoelasticity.

The scheme is controlled by two numerical parameters α and β which can be controlled by the user. As

noted by Moulinec and Silva [2014], the algorithm of Eyre and Milton [1999] corresponds to α = β = 2,

while the algorithm of Michel et al. [2000] corresponds to α = β = 1.

The accelerated algorithm can be written as follow:

Algorithm 2 Accelerated FFT scheme

Parameters α and β are provided

Material properties C(x), �imp(x), and Γ̂0(ξ) are provided

Initial strain field �0(x) is provided

while not converged do
for each x do
τ n
α (x) = C(x) : �n(x) + (1 − β) C0 : �n(x)

τ n
β (x) = α C(x) :

�
�n(x) − �imp(x)

�
− β C0 : �n(x)

end for
τ̂β

n = FFT(τ n
β )

for each ξ � 0 do
�̂β

n+1(ξ) = −Γ̂0(ξ) : τ̂β
n(ξ)

end for
�̂β

n+1(0) = β En+1

�n+1
β = FFT−1(�̂β

n+1)

for each x do
�n+1(x) = (C(x) + C0)−1 :

�
τ n
α (x) + C0 : �n+1

β (x)
�

σn+1(x) = C(x) :
�
�n+1(x) − �imp(x)

�
end for

end while

For performance reasons, (C(x) + C0)−1 should be evaluated before the main iteration loop.
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The convergence criterion are the same as described for the basic algorithm. However, this scheme does

not ensure the compatibility of the strain or the boundary conditions at each step of the algorithm, meaning

that Ebc and Ecomp must be calculated.

As proved by Moulinec and Silva [2014], these schemes are convergent under the following conditions:

0 ≤ α < 2, 0 ≤ β < 2, λ0 > 0, μ0 > 0 (12)

Eyre and Milton [1999] also showed that the scheme is convergent for α = β = 2.

IMPOSING A MACROSCOPIC STRESS

In certain cases, it might be more appropriate to impose a macroscopic stress Σ rather than a

macroscopic strain E (for example, to simulate a creep test or a stress-free expansion test). The algorithms

presented above can still be used for these cases, except that the macroscopic strain applied must be adjusted

at each iteration of the solver. The updated macrostrain En is given by [Lavergne et al., 2015]:

En = C0 :
�
Σ− < σn >

�
+ < �n > (13)

The error on the boundary conditions is calculated as:

En
bc =

�< σn(x) > −Σ�
�Σ� (14)

CHOICE OF REFERENCE MEDIUM

The convergence properties of the FFT algorithms depend on both the contrast between the mechanical

properties of the different phases, and the choice of reference medium (see [Moulinec and Silva, 2014] for a

complete convergence analysis).

For the FFT basic scheme, the reference medium can be chosen as:

μ0 =
μmin + μmax

2
, λ0 =

λmin λmax

2
(15)

Notably, the reference medium that maximizes the convergence rate when of the FFT accelerated scheme

when α = β is given by:

μ0 =
√
μmin μmax , λ0 =

�
λmin λmax (16)

VALIDATION

Each solver is validated on a basic numerical test to check their correct implementation.

The test consists of a 32 × 32 pixel domain representing a layered bi-phasic material. The material

properties of each material and the reference material are presented in Table 1. The microstructure is shown in

Figure 2. For these simulations, the materials have no eigenstrains (�imp(x) = 0), unless specified otherwise.
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Three loading scenarios are investigated:

• An imposed shear strain E = {0, 0, 0.001}. In this case, the resulting stress should be uniform in the

whole material while the resulting strain should be uniform per phase.

• An imposed axial stress Σ =
�
0, 1 × 106, 0

�
. In this case, the resulting strain should be uniform in the

whole material, while the resulting stress should be uniform per phase.

• Both materials have an eigenstrain of �imp(x) = {0.001, 0.001, 0}, and the material is set free (Σ = 0).

In this case, both the resulting strain and stress fields should be uniform in the whole material, and the

stress field should be equal to 0.

Results are gathered in Table 2. The error on the strain E� and on the stress Eσ are calculated as:

E� = maxx

⎛⎜⎜⎜⎜⎜⎝
����(x) − �analytic(x)

���
E

⎞⎟⎟⎟⎟⎟⎠ , Eσ = maxx

⎛⎜⎜⎜⎜⎜⎝
���σ(x) − σanalytic(x)

���
Σ

⎞⎟⎟⎟⎟⎟⎠ (17)

The solvers are set with a convergence criterion of 1 × 10−7.

Table 1. Material properties used for the validation of the FFT solvers.

E [GPa] ν [−] λ [GPa] μ [GPa]

Material 1 10 0.2 2.77777 4.16666

Material 2 20 0.2 5.55555 8.33333

Reference material 15 0.2 4.16666 6.25

Table 2. Solver validation.

Solver Test case Iterations at Errors

convergence E E� Eσ
FFTFixedPointSolver Shear strain 1 1.30104 × 10−11 1.30104 × 10−13 2.12900 × 10−14

Axial stress 16 2.33684 × 10−8 4.03308 × 10−8 1.61323 × 10−8

Eigenstrain 1 1.21385 × 10−10 4.33680 × 10−15 1.14443 × 10−7

FFTPolarizationSolver Shear strain 10 2.14196 × 10−8 1.73472 × 10−15 2.37996 × 10−9

Axial stress 11 3.01226 × 10−8 1.73387 × 10−8 4.50661 × 10−9

Eigenstrain 1 1.08608 × 10−10 4.33680 × 10−15 1.02396 × 10−7

8



Figure 2. Layered microstructure for solver validation (material 1 in black, material 2 in
grey).

IMPLEMENTATION

These algorithms are implemented in the Microstructure-Oriented Scientific Analysis of Irradiated

Concrete (MOSAIC) software package currently in development at ORNL, and which was used in an earlier

work to analyze μ-XRF [Giorla, 2017]. MOSAIC is implemented in C++ and maintained under ORNL

internal Github repository.

MOSAIC stores data and numerical algorithms in the following classes:

• A Field object stores the numerical value of a field on a regular grid.

– It can represent a scalar field (such as temperature, or concentration), a vector field (such as stress

or strain in Voigt notation), a matrix field (such as a stiffness matrix in Voigt notation), a

fourth-order tensor field (such as a full fourth-order stiffness tensor), or any multi-dimensional

array. Methods are provided to extract specific components of a field (for example, to extract the

�11 strain component).

– The values are stored on a regular grid, which itself can be multi-dimensional (an image would

be a 2-dimensional grid, while the output of a X-Ray Computed Tomography (CT) scan would

be a 3-dimensional grid), and of arbitrary dimensions.

– Fields can be pure real, or complex (containing both a real and imaginary parts).

• A series of Operation classes, that represent functions applied to Field objects.

– An Operation takes into input a number of Field objects (including none), and have a single

Field output. From an algorithmic perspective, each statement in the FFT algorithms presented

above is a separate Operation.

– An Operation can be global (for example, the Fast Fourier Transform itself), or pixel-wise (that

is, the same function is applied at each pixel; for example, all the matrix-vector operations in the

9



FFT algorithms). In the later case, the Operation is run in parallel in a thread-safe environment.
2

– A series of checks ensures that an Operation is run on Field objects of appropriate dimensions

and types. If not, or if an error occurs during its execution, then an error message is thrown to the

main program and displayed to the user.

• A series of IterativeSolver classes, that compute a solution to a numerical problem. The FFT

algorithms presented above are each IterativeSolver-type classes.

– An IterativeSolver stores the data necessary for its execution. Mechanical solvers, for

example, store the stress and strain fields, as well as the stiffness and eigenstrain fields. FFT

solvers also store the Fourier transform of the strain and stress fields, and other intermediate

variables required.

– Each IterativeSolver contains a series of Operation that are applied at each iteration.

These Operation objects represent each statement in the FFT algorithms presented above.

– An IterativeSolver also defines the convergence criterion used to stop the algorithm. The

user can also specify a maximum number of iterations to avoid an infinite simulation.

– The basic FFT scheme is implemented as a FFTFixedPointSolver, and the accelerated FFT

scheme is implemented as the FFTPolarizationSolver.

MOSAIC uses XML files to export/import data. This notably allows MOSAIC to read data from the

IMAC database.

While MOSAIC architecture has been designed for both 2- and 3-dimensional simulations, the Green

operator and the FFT solvers have only been implemented and validated in 2D at this stage.

2The system ensures that one thread cannot read the value of a certain pixel while another is modifying it.
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EXAMPLES

The FFT solvers are applied to simulate a piece of concrete analyzed by μ-XRF. The analysis of the

specimen was performed using MOSAIC in [Giorla, 2017].

The simulations in this section are shown as a proof of concept for the application of FFT solvers for the

analysis of concrete exposed to RIVE.

The microstructure is discretized on a grid of 800 × 800 pixels, with a resolution of 10 μm. Four phases

were identified:

• Porosity

• Cement paste

• Calcite (CaCO3)

• Ankerite (Ca(Fe, Mg, Mn)(CO3)2)

The analysis also provided boundaries between particles as a separate phase. Since the FFT method

assumes perfect interface between grains, the pixels identified as boundaries are attributed to the most

prevalent neighboring phase. The result of the phase analysis is shown in Figure 3.

The mechanical properties of each phases are reported in Table 3. Since FFT methods cannot simulate

materials with a zero stiffness, porosity is attributed a small Young’s modulus, arbitrarily taken as 0.1 GPa in

a first approximation. The influence of the choice of this modulus is examined later in this section.

The properties of calcite and ankerite are taken from the IMAC database [Le Pape, 2016]. Both calcite

and ankerite are anisotropic materials (ankerite has a trigonal crystal symmetry, while calcite has a trigonal

crystal symmetry). Given that the simulations are two-dimensional, it is necessary to transform the full

stiffness tensor of these materials (21 independent components) into a two-dimensional tensor (6 independent

components). For these preliminary simulations, the stiffness tensors of ankerite and calcite are transformed

using the following rules, so that they become isotropic:

C
2D
1111 = C

2D
2222 =

1

3

�
C

3D
1111 + C

3D
2222 + C

3D
3333

�
(18)

C
2D
1122 =

1

3

�
C

3D
1122 + C

3D
1133 + C

3D
2233

�
(19)

C
2D
1112 = C

2D
2212 = 0 (20)

C
2D
1212 =

1

2

�
C

2D
1111 − C2D

1122

�
(21)

This is a crude approximation for the purpose of demonstrating the solver’s capabilities. It would be

more accurate to project C according to the orientation of each crystal, but this would require further

characterization on the same sample. An example of anisotropic simulation is provided later in this section to

showcase the ability of the FFT method to simulate anisotropic minerals.
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Figure 3. Phase analysis of the concrete specimen. Figure taken from [Giorla, 2017].
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AXIAL TENSION TESTS

First, two simple elastic tests are performed. The first test is an imposed axial strain test E = {0.001, 0, 0}.
The second test is an imposed axial stress test Σ =

�
1 × 106, 0, 0

�
. The basic (FFTFixedPoint) and

accelerated solver (FFTPolarization, with α = β = 2) are used and their solutions compared, with an error

tolerance of 1 × 10−6.

Tables 4-5 compare the results of both solvers in terms of average, minimum and maximum strains and

stresses. Both solvers provide identical results to the machine precision. Notably, one can verify that in all

cases, the imposed strain (or stress) are accurately calculated.

Figure 4 shows the distribution of stresses and strains in the microstructure. Very high values of strains

can be found at the boundary between the porosity and the cement paste, notably in areas with geometrical

defects. High values of stresses are generally located at the boundary between cement paste and either

aggregates or porosity, notably in places where two aggregates are very close to one another.

Table 6 compares both solvers in term of their convergence properties: number of iterations required to

reach convergence, and computational time (measured on a Linux workstation with 6 threads).

The number of iterations for the accelerated scheme is significantly lower than for the basic scheme, but

the computational time for each iteration is also higher. This is partly due to the fact that the calculation of

Eeq and Ecomp for the accelerated scheme requires the evaluation of FFT(�) and FFT(σ) respectively, which

are not evaluated during the main solver iteration (as opposed to the basic solver). Therefore, and following

the approach used by Lavergne et al. [2015], these are evaluated only every n iterations, where n is a

user-defined parameter (for the following, n = 5). Doing so reduces the computational time for each iteration

from 0.26 s to 0.17 s.

A comparison of the error as a function of the number of iterations is shown in Figure 5.

Table 3. Mechanical properties of all phases

Phase λ [GPa] μ [GPa] Surface fraction [%]

Porosity 0.0277 0.0416 3.55

Cement paste 3.3333 5 34.68

Calcite 53.6571 36.0262 61.44

Ankerite 61.9333 56.4666 0.32

Reference material (FFTFixedPoint) 30.9805 28.2541

Reference material (FFTPolarization) 1.3116 1.5338

13



Figure 4. �11 (top) and σ11 (bottom) components of the strain and stress fields for the concrete
sample subject to an imposed axial strain. High values are in white, low values in black.
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Table 4. Solver comparison (stress and strain) for the imposed strain test

Value Minimum Average Maximum

FixedPoint Polarization FixedPoint Polarization FixedPoint Polarization

�11 [−] -0.0118 -0.0118 0.001 0.001 0.0388 0.0388

�22 [−] -0.0146 -0.0146 −5.9 × 10−23 −2.1 × 10−15 0.0114 0.0114

�12 [−] -0.0269 -0.0269 −2.1 × 10−15 −5.2 × 10−16 0.032 0.032

σ11 [MPa] -25.305 -25.305 24.011 24.011 212.422 212.422

σ22 [MPa] -53.720 -53.720 7.065 7.065 87.757 87.757

σ12 [MPa] -107.557 -107.557 -0.132 -0.132 64.267 64.267

Table 5. Solver comparison (stress and strain) for the imposed stress test

Value Minimum Average Maximum

FixedPoint Polarization FixedPoint Polarization FixedPoint Polarization

�11 [−] −4.592 × 10−4 −4.592 × 10−4 4.556 × 10−5 4.556 × 10−5 0.00179 0.00179

�22 [−] −6.954 × 10−4 −6.954 × 10−4 −1.331 × 10−5 −1.331 × 10−5 3.555 × 10−4 3.555 × 10−4

�12 [−] -0.00115 -0.00115 5.898 × 10−7 5.898 × 10−7 0.00146 0.00146

σ11 [MPa] -0.886 -0.886 1 1 9.507 9.507

σ22 [MPa] -2.682 -2.682 3.0.38 × 10−13 −7.092 × 10−13 3.774 3.774

σ12 [MPa] -4.062 -4.062 −2.926 × 10−12 −3.075 × 10−12 2.740 2.740

Table 6. Solver comparison (error) for the axial tension tests

Test Solver Iterations [-] Time to solve [s] Time / iteration [s]

Imposed strain FFTFixedPoint 5711 755.25 0.1322

FFTPolarization 201 53.04 0.2639

Imposed stress FFTFixedPoint 5971 794.36 0.1330

FFTPolarization 248 63.06 0.2542

SCALABILITY

The nature of the FFT algorithms makes them directly parallelizable. Indeed, all matrix-vector

operations only need to be applied at each pixel individually, and the FFTW library used for the FFT

operations themselves can be run in parallel as well. In MOSAIC, parallelism is achieved with the OpenMP

library [Dagum and Menon, 1998].

Computational times for the imposed strain test and the FFTPolarization solver are reported as a

function of the number of threads on Figure 6. These computations were performed on a Linux workstation

with 12 individual cores. The speed-up reaches a plateau around half the number of cores of the workstation,

which is the expected behavior for this type of analysis.
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Figure 5. Error of the FFT solvers for the axial tension tests.

PHASE CONTRAST

The convergence properties of FFT schemes depend on the contrast in mechanical properties between the

different phases. To test the robustness of these schemes, the imposed strain calculation with the

FFTPolarization solver are repeated with different values of the mechanical properties for the porosity.

The Young’s modulus attributed to pixels in the porosity is varied from 1 GPa to 1 MPa.

The number of iterations at convergence and the average axial stress σ11 are measured and reported in

Figure 7. A value of 0.1 GPa (corresponding to the properties reported in Table 3) provides a good balance

between number of iterations and accuracy.
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COMPARISON WITH HOMOGENIZATION SCHEMES

The FFT solvers allow for a full characterization of the homogenized stiffness tensor of the concrete

material (for example, by making a strain tension test in each direction). In this specific test, the

homogenized stiffness tensor calculated by FFT is found to be (in GPa):

C
FFT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
24.0111 7.0656 −0.1329

7.0656 24.1742 −0.0859

−0.1329 −0.0859 8.3328

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (22)

The homogenized tensor is symmetric and almost isotropic. The corresponding mechanical properties

are:

EFFT = 21.931 [GPa] , νFFT = 0.294 [−] (23)

For reference, the Voigt-Reuss bounds for the material can be calculated as (see for example [Le Pape

et al., 2015] for a refresher on analytical homogenization):

Evoigt = 68.132 [GPa] , νvoigt = 0.4164 [−] (24)

Ereuss = 2.669 [GPa] , νreuss = 0.2528 [−] (25)

The FFT calculations are well within those bounds, which further validates this numerical scheme.

PRELIMINARY ESTIMATION OF CONCRETE RIVE

The FFTPolarization solver is used to characterize the apparent RIVE of that concrete, assuming all

phases are purely elastic. This is a preliminary simulation to show the capability of the method, and not an

accurate prediction of that material sensitivity to RIVE. To do so, one would need a visco-elastic model for

the cement paste, and a damage model for both the paste and the minerals.

The expansion of the ankerite and calcite are taken as the maximum values in the IMAC database. These

specific data points were collected by [Denisov et al., 2012].

�ankerite
imp = {0.011, 0.011, 0} (26)

�calcite
imp = {0.001666, 0.001666, 0} (27)

In order to calculate the average RIVE of that specific concrete, a null macrostress Σ = 0 is imposed.

The solver converged after 300 iterations in 54.44 seconds, which is similar to the previous tests. The average

expansion calculated by FFT is measured as:

�FFT
imp = {0.001068, 0.001050, −0.000023} (28)

Again one can observe that the expansion is almost isotropic.
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Figure 8. �11 (top) and σ11 (bottom) components of the strain and stress fields for the concrete
sample subject to RIVE. High values are in white, low values in black.
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In these conditions, the minimum and maximum stresses in the material reach particularly high values

(up to 800 MPa).

The map of strains and stresses are reported in Figure 8. The highest strains are measured either in the

ankerite grains (which has the highest RIVE), or around the edges of the porosity (similar to what was found

in the axial tests). The highest tensile stresses are measured around the ankerite grains, themselves subject to

very high compressive stresses.

ANISOTROPIC SIMULATION

Calcite and ankerite are both anisotropic materials. As FFT solvers implemented are able to account for

anisotropic mechanical properties, as long as the reference medium itself is isotropic.

The simulations above are repeated with anisotropic properties for both the calcite and the ankerite. Due

to lack of data, each particle in the phase map (Figure 3) is first randomly oriented in the three-dimensional

space. The three-dimensional stiffness tensor is then projected on the two dimensional plane of the

simulation. The resulting material properties are shown in Figure 9

The homogenized mechanical properties of that material are calculated with the FFTPolarization
solver. Number of iterations and computational time are similar (slightly higher) than for the isotropic

material.

C
FFT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
24.1740 7.0337 −0.1403

7.0337 24.3974 −0.0819

−0.1403 −0.0819 8.4435

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (29)

�FFT
imp = {0.001070, 0.001052, −0.000019} (30)

The results are also very close to the isotropic simulations, and the strain and stress maps are similar to

those found in the isotropic case. Notably, there is no differential stress within aggregates of the same

mineralogy (pure calcite, or pure ankerite). This is likely due to the fact that the expansion for each mineral

�imp remains isotropic in this simulation.

This simulation is a proof of concept that validates the use of FFT solvers for the analysis of RIVE in

concrete, notably its ability to account for imposed strains such as RIVE or thermal expansion, or anisotropy

of the different mineral phases.
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Figure 9. C1111 component of the stiffness tensor for the anisotropic simulation.
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CONCLUSION

The present report shows two FFT algorithms applicable for the simulation of RIVE in concrete from

microstructural characterization techniques such as μ-XRF. These algorithms were validated on analytical

examples from the literature, and then applied to concrete microstructures as preliminary simulations. The

method can account for imposed eigenstrain (including thermal expansion, RIVE, drying shrinkage, etc) and

anisotropic mechanical properties (to simulate crystal grain orientation).

The simulations presented in this report are preliminary studies to showcase the capabilities of the

method. For a more realistic depiction of RIVE in concrete, the following developments are required.

• The FFT solvers need to be coupled with a non-linear solver in order to simulate damage in the

material. This is required to provide understanding of the material degradation as a function of the

irradiation. This can be achieved using the sequential approach developed for irradiated concrete in

[Giorla et al., 2017]. A similar approach (coupling of FFT with a non-linear Newton-Raphson solver)

was also presented in [Zeman et al., 2017].

• The failure properties of the mineral themselves need to be investigated. At the mineral level, two

failure modes must be considered: intragranular cracking (propagation of micro-cracks within each

grain) and intergranular cracking (similar debonding between the grains). These two failure modes are

observed in thermal damage of rocks (see for example [Wang et al., 1989]). A literature review is

required to complement the IMAC database with appropriate experimental data, and additional

experiments may be required. Furthermore, the question of the modelling of debonding with FFT

requires additional effort (see for example [Li et al., 2012]).

• The crystal orientation of the minerals in concrete need to be characterized. This can be achieved using

optical microscopy techniques such as ellipsometry. Knowing the crystal orientation and the

amorphization degree of grains in concrete would also help distinguish minerals of the same chemical

composition, but different crystal structures (such as quartz and amorphous silica).

• Finally, the question of the anisotropy of RIVE itself needs to be addressed. In most cases, the

expansion measured in the literature is the volumetric expansion. Some authors (see for example

[Seeberger and Hilsdorf, 1982, Denisov et al., 2012]) also measured changes in lattice parameters as a

function of irradiation. Such information, combined with data already contained in the IMAC database,

could provide insight on the anisotropy of the expansion itself.
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