Measurement and Modeling of an Electron ITB in HSX

Jeremy Lore
FEST Seminar
9/20/2010

Special thanks to: Walter Guttenfelder (PPPL), Don Spong (ORNL), HSX Team
Overview

• Motivation: Quasisymmetric (QS) stellarators have transport properties which lie between 2D and 3D limits
 – Small radial neoclassical transport (similar to a tokamak)
 – Reduced flow damping in the symmetry direction
 – Need models that capture these physics
 – What is the impact on the fluxes, flows, currents, and E_r in HSX?

• Neoclassical transport calculations for HSX
 – Including momentum conservation (MC) modifies parallel transport
 – Better agreement with measured flows, currents when MC included
 – Ambipolar E_r calculations result in very large fields and strong radial shear

• Experimental electron thermal transport
 – T_e profiles strongly centrally peaked in QHS
 – Peaking is caused by turbulence quenching via E_r shear
HSX is Quasi-Helically Symmetric

- QHS: helical direction of symmetry in \(|B|\)
- Effective transform is larger than physical transform
 - Algebraically modifies transport and equilibrium quantities relative to a tokamak

Tokamak: \(\frac{B}{B_0} \approx 1 - \epsilon_t \cos t\phi \)

QHS: \(\frac{B}{B_0} \approx 1 - \epsilon_h \cos (n - mt)\phi \)

\(v_{\text{eff}} \sim 3 \)

HSX Parameters

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(<R>)</td>
<td>1.2 m</td>
</tr>
<tr>
<td>(<a>)</td>
<td>0.12 m</td>
</tr>
<tr>
<td>(t)</td>
<td>1.05 → 1.12</td>
</tr>
<tr>
<td>(B_0)</td>
<td>0.5 - 1.0 T</td>
</tr>
<tr>
<td>ECRH 28 GHz</td>
<td><100 kW</td>
</tr>
</tbody>
</table>
Motivation for Neoclassical Transport Calculations

- The neoclassical transport coefficients relate the fluxes, flows, and currents to the gradients (∇T, ∇n, $\nabla \Phi$)
 - From ambipolarity the particle fluxes give E_r

- Why should we care about neoclassical transport?
 - Gives irreducible minimum level of radial transport
 - Bootstrap current typically shows good agreement in tokamaks and stellarators
 - E_r agrees well with NC predictions in stellarators
 - E_r can reduce transport, drive transport barriers
 - Sheared flow can suppress turbulent transport
 - LHD results suggest that anomalous transport is lowered when NC lowered (possibly due to decreased zonal flow damping)
Kinetic Neoclassical Calculations

- The NC transport coefficients are calculated by the DKES1 code.
- DKES solves the linearized drift kinetic equation (DKE) via a variational method using a pitch angle scattering (PAS) collision operator
 - Kinetic view: Lose interspecies collisions, collisional momentum conservation
 - Fluid view: Lose frictional coupling, implies parallel flows are small or momentum balance violated
- Advantages
 - Allows DKE of each species to be decoupled
 - Conserves speed v, reducing dimensionality of problem
 - Leads to fast computation for arbitrary B, collisionality, E_r
- Disadvantages
 - Parallel flows assumed small, momentum not conserved
 - Intrinsic ambipolarity in (quasi)symmetric limit not recovered
 - Justified in conventional stellarator with strong flow damping

Kinetic + Fluid Approach: Use Fluid Moments to “Correct” Kinetic Coefficients

• The NC transport coefficients can also be calculated using a fluid moment approach1
 – Analytic expressions exist for tokamaks, simplified stellarator fields
• Methods have been developed for general stellarator fields2
 – Momentum conservation is enforced through parallel momentum balance
 – Use coefficients calculated from kinetic methods to define viscosities
• Act as “correction” to kinetic approach (DKES)
 – Calculate parallel flow from parallel momentum balance
 – Add flux driven by parallel flow to radial transport expressions
• These methods have been implemented in the PENTA code
• Want to understand how important this correction is in HSX

2) Taguchi (1992), Sugama and Nishimura (2003, 2008), Maalberg, Beidler, Turkin (2009)
Development of the PENTA Code

• Originally developed by Don Spong (ORNL)
 – Electron-ion only, two terms retained in expansions

• Has been extended to include
 – Multiple ion species of arbitrary mass, charge, temperature (impurity transport)
 – Arbitrary expansion order (improves accuracy, allows for convergence checks)
 – All three existing moment-method momentum correction techniques

• Intrinsic ambipolarity reproduced analytically and numerically in symmetric limit

• In principle, this method can be applied to the full range of configurations:

 tokamaks → rippled tokamaks → quasi-symmetric → conventional stellarators

 Increasing effective ripple

*RFX modeling recently begun.
Determining the Radial Electric Field in a Stellarator

• Fluxes in a stellarator are not intrinsically ambipolar; E_r is determined by enforcing ambipolarity.
 \[\sum_s e_s \Gamma_s (E_r, D(E_r)) = 0 \]

• LMFP with $T_e \approx T_i$ results in three roots
 – Ion root: ion flux reduced from $E_r=0$ level
 – Electron root: both species flux reduced from $E_r=0$ level

• Electron root can be reached by increasing Γ_e

• When $T_e \gg T_i$ the ion root solution may not exist near the core
HSX Can Achieve Electron Root Because $T_e >> T_i$

- In HSX $T_e >> T_i$ over most of the plasma radius, with a strongly peaked T_e profile
- For $T_i \approx 100$ eV, ions experience a resonance at modest E_r near plasma core
- The resonance occurs when poloidal velocity is canceled by the poloidal $E\times B$ drift
- Radial transport is increased near the resonance, and is strongly reduced for $E_r > E_r^{\text{res}}$
Radial Electric Field Roots in HSX

\[P_{\text{inj}} = 100\text{kJ} \]

\[\rho = 0.1 \]

\[T_e = 2\text{keV} \]

\[T_i = 70\text{eV} \]
Radial Electric Field Roots in HSX

\(P_{\text{inj}} = 100kW \)

\(\rho = 0.1 \)

\(T_e = 2keV \)

\(T_i = 70eV \)

\(\rho = 0.3 \)

\(T_e = 750eV \)

\(T_i = 60eV \)
Radial Electric Field Roots in HSX

ρ=0.1
\(T_e=2\text{keV}\)
\(T_i=70\text{eV}\)

ρ=0.3
\(T_e=750\text{eV}\)
\(T_i=60\text{eV}\)

ρ=0.5
\(T_e=300\text{eV}\)
\(T_i=55\text{eV}\)

\(P_{\text{inj}}=100\text{kW}\)
Radial Electric Field Roots in HSX

- Only electron root in core, and only ion root towards edge
 - Somewhere in three root region there is a transition, with strong E_r shear
 - Determining shear layer involves perpendicular viscosity
Kinetic Model Well Describes Radial Transport

- Even in QHS the asymmetric effects are large enough to dominate the radial transport
- Small change to ion root fluxes, E_r
- Effect at large E_r masked by resonance
- Larger effect could occur in HSX with large T_i and gradients (large flows) and small T_e (collisional)
Parallel Transport is Strongly Affected by MC

- Both the electron and ion particle flows are affected by MC.
- Ion flows are strongly increased
 - Without MC the ion flows are almost zero
 - Near the core the ion root solutions even exceed the thermal velocity
- Electron flows are decreased in the ion root, and change sign in the electron root
 - Important when calculating parallel current
CXRS Flow Measurements

- CXRS measurements are the focus of work by Alexis Briesemeister
- Parallel flow measurements show good agreement with predictions including MC
- Indicate a transition to electron root occurs
- Without MC ion flows are much smaller than measured
- Comparisons to measurements for several powers, densities, configurations is an important validation of PENTA
Solving the Diffusion Equation for E_r

- The radial electric field profile can be determined by solving a diffusion equation\(^1\)
 - D_E (related to perpendicular viscosity) is generally not known\(^2\)
 - Solutions for different D_E show a region of strong E_r shear at $r/a \sim 0.25$

\[
\frac{\partial E_r}{\partial t} - \frac{\partial}{\partial V} \left[\langle \nabla V \rangle D_E \left(\frac{\partial E_r}{\partial r} - \frac{E_r}{r} \right) \right] = \frac{e}{\varepsilon_\perp} (\Gamma_e - \Gamma_i)
\]

Strong E_r Shear is Predicted in Region of Peaked T_e

- The radial electric field profile can be determined by solving a diffusion equation\(^1\)
- D_E (related to perpendicular viscosity) is generally not known\(^2\)
 - Solutions for different D_E show a region of strong E_r shear at $r/a \sim 0.25$
- T_e peaking occurs within the strong E_r shear region
 - E_r shear can suppress turbulent transport
 - Similar values of D_E used for W7-AS

Applying a 2D Turbulent Transport Model to QHS

- The 2D quasi-linear Weiland model has been used to model turbulent transport in QHS\(^1\)
 - Like a tokamak, QHS has a single class of trapped particles.
 - With local geometry considerations, good agreement with 3D gyrokinetic GS2 growth rates.
 - Stored energy and confinement times predicted within 10%.
- Predictive transport (NC + Turb.) simulations underestimate \(T_e\) in core
 - Turbulent diffusivity in this region is 10x experimental
 - Transport can be reduced via ExB shear

1) Guttenfelder, (‘07,’ 08), Lore (‘10)
ExB Shearing Rate >> Linear Growth Rate for r/a < 0.3

- ExB shear suppression is modeled using a linear quench rule:\(^1\)
 \[
 D \Rightarrow D \cdot \max\left(1 - \alpha_E \frac{\gamma_E}{\gamma_{\text{max}}}, 0\right)
 \]
 - \(\gamma_E = \) ExB shear rate
 - \(\gamma_{\text{max}} = \) maximum linear growth rate
- Shear suppression expected inside of r/a = 0.3

\[\gamma_E = rt \frac{\partial}{\partial r} \frac{v_{ExB}}{rt}\]

1) Kinsey (2005)
Turbulence Suppression via ExB Shear can Reproduce Experimental Profiles

- ExB shear suppression is modeled using a linear quench rule:\(^1\)
 \[
 D \implies D \cdot \max \left(1 - \alpha_E \frac{\gamma_E}{\gamma_{\text{max}}} , 0 \right)
 \]
 - \(\gamma_E\) = ExB shear rate
 - \(\gamma_{\text{max}}\) = maximum linear growth rate
- \(E_r\) shear required to reproduce peaking of experimental \(T_e\) profile
- Coupled turbulent and NC transport model can self-consistently explain measured \(T_e\) profiles
CERC Transport Barriers

- Core Electron Root Confinement (CERC) transport barriers have been observed in several other stellarators\(^1\)
 - Characterized by peaked \(T_e\) profiles, neoclassical electron root \(E_r\)

CERC Transport Barriers

• Core Electron Root Confinement (CERC) transport barriers have been observed in several other stellarators\(^1\)
 – Characterized by peaked \(T_e\) profiles, neoclassical electron root \(E_r\)

• One common feature is the existence of thresholds for achieving a CERC in \(P_{\text{inj}}\) and \(n_e\)
 – In other stellarators thresholds are attributed to ECRH effects (convective fluxes)
 – W7-AS showed lower threshold when \(\varepsilon_{\text{eff}}\) increased – thought to be difficult to achieve CERC in QS configurations

• Experiments under carbonization indicate a threshold in QHS plasmas
Recent Experiments Suggest a CERC Density Threshold

- For same input power, small increase in density results in less peaked T_e profile
 - $P_{inj} = 45kW$
- At higher density a/L_{Te} is 2x smaller in core

![Graph showing T_e and a/L_{Te} profiles for different densities.](image)
Ion Root is Predicted Across the Plasma Radius at High Density

- The higher density case results in ion root solutions across the entire plasma radius
 - Core ion root is caused by reduced T_e, $\nabla T_e \Rightarrow$ reduced electron flux
 - Without external drive the plasma would remain in the ion root
- Note that this threshold does not appear to require any additional fluxes (e.g. ECRH driven)
- CERC effects in HSX are consistent with NC predictions, unique among stellarators that observe CERCs
Future Directions

• PENTA is a useful tool for future HSX research
 – Predictions of fluxes, E_r, currents, flows consistent with QS geometry
 – Comparisons of impurity and bulk flows

• Moving the shear location
 – Off axis heating (2nd gyrotron online soon)
 – Increase electron flux via symmetry breaking

• Characterization of threshold behavior
 – Investigate effect of impurities (threshold higher in “clean” plasma?)
 – Effect of symmetry breaking (threshold lowered with increasing ε_{eff} in W7-AS)
 – Look for bifurcations in ECE signals
 – GNET can be used to evaluate impact of ECRH fluxes
Conclusions

• Momentum conservation is important for NC calculations in HSX
 – Parallel flows and currents strongly affected
 – Better agreement with measurements when MC included
 – Kinetic analysis appears sufficient for determining radial transport

• Neoclassically driven transport barrier in QHS
 – Ambipolarity results in large E_r with strong shear in same region of T_e peaking
 – Turbulent + NC transport model used to simulate T_e profiles
 – Core T_e profiles only reproduced when ExB shear included
 – Threshold behavior consistent with NC predictions

• Upgraded PENTA code available for future research
Acknowledgments

• W. Guttenfelder for turbulent analysis and predictive simulations.
• D.A. Spong for the original version of PENTA and help with the development.
• A. Briesemeister for CXRS data.
• HSX team
Effect of wall conditioning on the CERC

• “Cleaner” plasma has reduced temperatures, no peaking