
Introducing Bricks
A Java Swing User Interface Builder

Thomas Pelaia II, Ph.D.

Physics / Application Programming

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006 2

Motivation

• Want to accelerate XAL application development
• Allow developers to focus more on business logic and less on GUI

source code
• Encourage Model-View-Controller (MVC) architecture

• Problems with many popular Java GUI Builders
• Not really MVC compliant despite claims
• Generate lots of Java source code that you aren’t supposed to edit
• Restrict how you organize your code
• Tie you to a particular IDE
• Can’t write your code in other languages (e.g. jython)
• Builder doesn’t always reflect what you get

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006 3

Model-View-Controller (MVC)

• Model (business logic) and View code are
independent of each other and are glued
together by controllers

• Models and Views define listener
interfaces and communicate by events

• Controllers directly access models and
views and handle model and view events
as necessary

• Well accepted as a good design pattern

• Allows for applications to scale in
complexity

• Rarely implemented well

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006 4

XAL Applications

•Currently over forty applications written

•Framework provides a common look and
feel with a functioning, familiar menu bar
and a document driven foundation for rapid
development of applications

•Developers still had to write Java code for
the user interface

•Use Jython for quick scripts which typically
don’t have a user interface

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006 5

Jython side note

• Jython is a scripting language compatible with Java

• Conforms to Python syntax and standard libraries

• Ideal for scripting and prototyping
− Un-typed language
− Avoids strict exception handling enforcement
− Interpreted language (no compilation)

• 100% pure Java

• Java bridging
− Morph between Java and Jython classes/objects and allow

direct calls to Java

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006 6

Goals
• Provide an application for rapidly creating user interfaces

• Conform to MVC

• Store the user interface definition in an XML file instead of
generating source code

• Allow developers freedom to organize code as they wish

• IDE independent

• Allow applications to be written entirely in Java or Jython

• Allow extensibility

• Integrate with the application framework

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006 7

Bricks Features

• 100% pure Java XAL application
− Java 1.5 required

• IDE independent

• Conforms to MVC

• Bricks document is saved in XML format
− Can be generated from a server

• Supports common Swing widgets
− Allows for custom widget subclasses

• Supports cut, copy and paste for rapid development

• Java beans aware

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006 8

Bricks Screenshot

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006 9

Jython Example Code

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006

Loading the Window Resource

10

locate the sample folder and get the bricks file within it
sample_folder = File(sys.argv[0]).getParentFile()
url = File(sample_folder, "test.bricks").toURL()

generate a window reference resource and pass the desired
constructor arguments
window_ref = WindowReference(url, "MainWindow", ["Test Title"])

get the main window
window = window_ref.getWindow()

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006

Populating Data

11

get the magnet list and populate it with data
magnet_list = window_ref.getView("MagnetList");
magnets = Vector()
magnets.add("Dipole")
magnets.add("Quadrupole")
magnets.add("Sextupole")
magnets.add("Octupole")
magnets.add("Skew Dipole")
magnets.add("Skew Quadrupole")
magnets.add("Skew Sextupole")
magnet_list.setListData(magnets)

get the plot component and add the data
plot = window_ref.getView("SinePlot")
plot.addGraphData(series);

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006

Defining Actions

12

define the quit button action handler
class QuitAction(ActionListener):

 def actionPerformed(self, event):

 sys.exit(0)

get the run button and configure it with the run action
runButton = window_ref.getView("RunButton")
runButton.addActionListener(RunAction())

get the quit button and configure it with the quit action
quitButton = window_ref.getView("QuitButton")
quitButton.addActionListener(QuitAction())

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006 13

Jython Sample Snapshot

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006 14

XAL Application with Bricks

•Developer provides the following files
− Application adaptor

• Application wide properties, events
− Document(s)

• Read/write documents
• Instantiate main window
• May act as controller

− Bricks resource file defining the user interface
− Optional menu definition file(s)
− Help HTML file and any supporting resources
− About properties file

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006 15

XAL Demo Document Code

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006

Making an XAL Window

16

public void makeMainWindow() {

 final WindowReference windowReference =

 getDefaultWindowReference("MainWindow", this);
 mainWindow = (XalWindow)windowReference.getWindow();

 final JList magnetList = (JList)windowReference.getView("MagnetList");

 poplulateMagnetList(magnetList);

 final JButton runButton = (JButton)windowReference.getView("RunButton");

 runButton.addActionListener(new ActionListener() {

 public void actionPerformed(final ActionEvent event) {

 showHelloDialog();

 }
 });

 final FunctionGraphsJPanel plot =

 (FunctionGraphsJPanel)windowReference.getView("SinePlot");
 makeSinePlot(plot);
}

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006 17

XAL Demo Snapshot

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006 18

Demo Bricks XML File

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bricks Application, July 25, 2006 19

Conclusion

•The Bricks application allows rapid
development of user interfaces without
getting in your way

•Bricks supports development of Java
applications, XAL applications and jython
scripts

•Bricks is built upon an adaptor based model
which allows for extensibility

•Opens the possibility of server generated
user interfaces

