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Mathematical Programming
Introduction: Real World Problem Formulation

Figure-of-Merit (FOM)
Want to make something happen
E.g. minimize orbit deviation

Variables
What you vary to affect the figure-of-merit
E.g. dipole corrector strengths
Usually these have limits (power supply capabilities)

Constraints
E.g. keep the orbit deviation at some point fixed in order to 
go around an obstruction
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Mathematical Programming
Introduction: Constrained Optimization

Constraints versus penalty functions
Some packages include these separately, otherwise you simply 
manually degrade the FOM with a mathematical penalty
E.g. FOM = Cost + Penalty

where penalty = 1 – (bending field/existing magnet capability)2

Most optimization packages minimize the FOM, if not 
just use 1/FOM
Variables 

Usually the user provides a list of the variables and their limits



Mathematical Programming
Introduction: Non-linear Constrained Optimization

Great for solving real world problems
You don’t need to know any math! (well, a little)
In years past with slower processors, many techniques 
involved use advanced mathematical techniques –
appropriate for the particular application
Now-days a sledge hammer general solution works 
fine 



Example of a Non-linear Solver 
Application

RF Phase setting 
application 
(PASTA)
Large variatioins of 
the RF phase result 
in non-linear 
effects on the beam

RF Phase setpoint (vary 10’s of degrees)
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Mathematical Programming
Overview

Most problems involving optimization and/or the 
solution of nonlinear equations can be put into the 
framework of mathematical programming.

Usually we have several free parameters (e.g., magnet 
strengths) - the vector x represents these parameters in the 
vector space where we are looking for solutions (typically n)
We take an initial “guess” for the solution x0

Using an (intelligent?) algorithm we iteratively update the 
current value of xi to xi+1 usually with a policy of the form

xi+1 = xi + αid

where di is the search direction and  αi is the search length at the ith

iteration.
June 16-27, 2008 USPAS 7



Mathematical Programming
Overview (cont.)

The method by which we chose the search direction di
identifies the algorithm.  (Still a topic of current 
research.)  Some of the more popular are…

Newton (Ralphson) – simple technique based on derivatives
Conjugate gradients – the “expanding subspace” theorem
GMRES – Generalized minimal residual (reducing res. error)
Simplex – Inspection of constraint vertices
Genetic Algorithms – Analogous to genetic base pair expression
Dynamic Programming – Hamilton-Jacobi-Bellman equation

For example, when using the Newton method to 
minimize a functional J(x), the search directions are 
picked in the direction opposite to the gradient ∇J(x)
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Mathematical Programming
Overview (cont.)

Many of these algorithms are “canned” in mathematical 
software packages

Consequently they are easy to employ
In order to use one of these canned mathematical programming 
packages (for equation solving, or for optimization), we need to 
formulate our problem as a mathematical programming problem.

For example, nonlinear optimization is a basic 
mathematical programming application

Basic (unconstrained) minimization problem
Given a functional J : n → ,
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Mathematical Programming
A Warning on Algorithms

Some mathematical programming algorithms rely upon the 
smoothness of the objective J(x)

These algorithms tend to use derivative information to compute the {di} 
Taking derivatives of noisy data can lead to problems – the noise 
component is usually amplified

When working with parameters x obtained from experimental data it 
may be wise to avoid the so-called descent algorithms that typically 
employ the gradient  of J(x) (at least approximately).  Instead, try 
algorithms using direct evaluation…

Genetic algorithms
Simplex algorithms
Etc.

Note, however, repeated direct evaluation can be expensive
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Mathematical Programming
Example: Function Minimization via Newton

Newton minimization: Newton minimization is arguably the most simple 
descent-type algorithm where the search directions are picked as −∇J(xi)

For any point xi, the gradient −∇J(xi) gives search direction di

The search length αi is determined through a separate line search 
algorithm which minimizes the scalar function

φi(α) ≡ J(xi + αdi)

Thus we have
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Mathematical Programming
Example (cont.): Function Minimization via Newton

Consider the nonlinear functional on the plane 2

For any point x, the gradient ∇J(x) gives -d
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Mathematical Programming
Example (cont.): Function Minimization via Newton

For example, starting at x0 = (0,0)

For the next iterate we compute
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Mathematical Programming
Example (cont.): Function Minimization via Newton

However, if we start from a different 
initial guess x0 = (0, 1/2)

we end up in a different place.

This is the general nature of nonlinear 
programming.

Existence - Local solutions ?
Uniqueness - Global solution ?
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Plot of J(x) over larger domain

Mathematical Programming
Mathematical Program Eg.: Function Minimization via Newton

Our example problem  

has solutions wherever 

They are ubiquitous.

This is another property
nonlinear programming
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Mathematical Programming
Solution of Nonlinear Equations

Many times we are faced with a problem of the form

which we abbreviate f(x) = y (vector notation )
The functions fi are nonlinear in their arguments xi.

For example, consider the system
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Mathematical Programming
Solution of Nonlinear Equations: Example (continued)

Consider geometric interpretation of 
example problem

The solution of the nonlinear problem 
occurs at points in the plane where both 
equations are satisfied.

Here we have two solutions
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Mathematical Programming
Solution of Nonlinear Equations: Variational Techniques

Rather than trying to solve the nonlinear equation f(x) = y directly 
(there are techniques for this), another approach is to minimize the 
functional J(x) 

That is, 

If we find an x0 such that J(x0) = 0, then clearly f(x0) = y.
However, a minimizer x0 of J(x) does not guarantee that J(x0) = 0
(that is, it is possible that J(x0) > 0 even though J(x0) is a minimum)
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Mathematical Programming
Variational Technique Example

Recall our nonlinear problem example

The variational form is    

It has the same solutions

June 16-27, 2008 USPAS 19

( ) ( )

( ) ( )
122

1

)()()()(

2
2

2
121

2
2

2
1

4
2

4
1

22
2

2
1

2
21

2
22

2
11

2

+−−+++=

−−++=

−+−=−≡

xxxxxxxx

xxxx

fyfyJ xxxfyx

,1)(

,0)(

2
2
2

2
12

1211

yxxf

yxxf

==+=

==+=

x

x

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+=

2/1
2/1,

2/1
2/1x

global 
minima



feasible region

Mathematical Programming
Constraints: A Variational Approach and Penalties

Sometimes we are faced with a constrained problem, 
where the solution must lie in a feasible region 
described by the equation

h(x) = 0

This equality indicates that the solution exists 
on a smooth surface (or “manifold”) in n

A variation approach also works here by 
introducing a “tuning parameter” c > 0

In general, the penalty function “pushes” the 
minimization process into the feasible region.  
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Mathematical Programming
Review

Mathematical 
programming implies 
xi+1 = xi + αid

Every mathematical 
programming problem has 
a weak (or variational) 
form.

Solutions of the weak form 
are not guaranteed to be 
solutions of the original 
problem
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Supplemental Material

More details on mathematical programming
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Mathematical Programming
Problems with Constraints

Many times we are faced with 
problems whose solutions must 
remain within a specific region of 
parameter space

For example, we cannot drive magnet 
strengths beyond their power supply 
ratings.

These constraints are usually 
expressed as inequalities of the 
form

which can be abbreviated g(x) ≤ 0
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Mathematical Programming
Problems with Constraints

The following (linear) constraints 
defined the shaded region in the 
plane:

Most nonlinear programming 
packages accept solution 
constraints if put into this form.
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Mathematical Programming
Solution of Nonlinear Equations with Constraints

Most nonlinear equations with constraints can be put 
into the vector form

f(x) = y
g(x) ≤ 0

In general, problems with constraints 
are much more difficult to solve than those without.

However, by using “canned” software packages and 
expressing the constraints in the form described, this fact is 
hidden from the user.
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Mathematical Programming
Constrained Nonlinear Equations: Penalty Function Approach

Starting with the nonlinear problem
f(x) = y
g(x) ≤ 0

As before, we convert f(x) = y to the weak 
form

min | y – f(x) |2

We then add a term, the “weak” form for 
the constraints g(x) ≤ 0, typically called the 
penalty term
min | y – f(x) |2 + c 2 | g(x) | 2 

c > 0   if g(x) > 0
c = 0   if g(x) < 0
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Note: If g(x) ≤ 0 then we are 
in the feasible region and the 
constraints are not binding; 
thus, c = 0.

unfeasible region c ≠ 0
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