Control Room Accelerator Physics

Day 3
High-Level Application Design

Outline

1. High-Level Software
Introduction
Commonality

1. Application Frameworks
Use Cases
Design

Shallow foundation of a house versus
the deep foundation of a building

2. Applications within the Framework

3. XAL: A Case Study

June 23-27 USPAS 2

Presenter
Presentation Notes
Now we focus on design of accelerator control application
The feature requirements for these types of applications

http://en.wikipedia.org/wiki/Image:Found-House-Apt.png

High-Level Control of Accelerators

Accelerator systems are extremely complex machines. Moreover
o Operation requirements change

. . M -~ Neutron Sc i
Configuration changes ORI " NCUTOR SCaNeTing areg

o Designs change on the fly P nﬂmmnanum
o Constant upgrade projects = N /

Accelerator control systems require a L]
lot of software. Moreover they req. s g b

- Maintenance ; XL LU S e i

- Upgrades] E | e
pg ; \ | BRSO R M. Y. T ;-_.-.-,-h..,.._..h{ | N

, Muon Target Neutron Source >«

\

\ Scrape

It is worthwhile to invest significant e
design time for robust controls /M2 Line Mainerance Are |

software that can adapt gracefully to g’
this changing environment

June 23-27 USPAS 3

. . MIL TE 1 [
3NFT Lme. I__ﬁE_Ii il Ill'ﬂl‘ﬂ!ﬂ- -

High-Level Control Applications

Definition

Software applications needed for the commissioning,
tune-up, diagnosis, operation, automation, and
optimization of accelerator systems

For Example,
o Machine state diagnostic o Orbit Bump
Save/Compare/Restore o Orbit Correction
o PV scans o Transverse matching
o Orbit Display o RF Phase and amplitude
o Orbit Difference matching

June 23-27

o Ring closed orbit

USPAS

High-Level Control Applications

Commonality

June 23-27

Notice there are many qualities/tasks/requirements common to most
high-level control applications

Data-centric operations
o Machine configuration
o Data acquisition and correlation
o Data presentation, analysis, and interpretation

Data analysis

o Signal processing

o Computation
Linear Algebra
Optimization

o Modeling and simulation

High level of user interaction (GUIs)

Rather than letting each application implement each of these features (in a
potentially inconsistent manner), we provide them within a framework.

USPAS

High-Level Application Frameworks
Definition and Objectives

Application Frameworks offer consistent solutions to
problems and tasks common to a set of related
applications

The framework is centralized, any changes in framework are
seen by every application

Consistent interface to hardware
Configures to hardware (on the fly)

If implemented well - framework can provide a Rapid Application
Development environment (RAD)
*Subject matter experts (SME) tend to be physicists and research
engineers
If SMEs can test ideas/algorithms within the framework — they can then
be easily implemented in a robust fashion by software personnel

June 23-27 USPAS 6

Presenter
Presentation Notes
The modern software development process differs very little from the hardware development process. (The cost of manufacture is quite different.)

Software Engineering

High-Level Application Framework
A Control System Design Strategy

A framework for high-level control application is a sound
design strategy for creating a robust control software
system that can respond gracefully to changes in the
accelerator system itself.

Immediately recognizes changes in machine configurations
Trivial scaling to machine upgrades
Centralized management of control applications

The cost of this flexibility is a front-loaded design and
Implementation strategy — That is, there is significant
overhead to this approach.

WARNING: Front-loaded strategies tend to scare (traditional) management since no
code is being written in the initial phase of the project

June 23-27 USPAS 7

Presenter
Presentation Notes
in fact “process” and “life-cycle” are synonyms in software engineering
Satisfying software requirements ASAP is a short-term strategy and tends to neglect design and, therefore, engineering

Architecture Comparison

With and Without a Framework
However... which system would you rather
et Consider a hardware failure at H2
Maintain? onsider a hardware failure a
Back-loaded design Maintain®
*Upgrade?

Front-loaded design

GUI

GUI

@

| C1UL

USPAS

| C1UL |

H config. I

June 23-27

HO

H1l

H2

H3

H4

H5

H6

H7

High-Level Applications Framework
Design

June 23-27

Designing the suite

o Want to provide common set of features, tools, for...

Machine configuration
o Database queries
o Machine connection
Data Analysis
o Plotting
o Linear algebra/mathematical manipulation
o Signal processing
Application implementation
o “GUI Application Framework™ in the traditional software sense

But how to start? Use Cases!!

USPAS

Working out use cases
provides a good method for
visualize potential software
structures to support your
scenarios

We organize our use cases by
extracting common
behaviors — common
behavior implies common
software

The importance of a
common scenario is
demonstrated by the number
of incoming edges —
indicates critical software

10

Commissioner

Save/Compare/Restore
Machine State

b
T wircluden»

Orbit Difference T~ X e
«inl:Lud&» b

mnql\l:le»

Orbit Bump Orbit I:!|5|:ll'=‘13,.r

mnl::/pd&u
wincluden. - — = —

7 ——
p -
Orbit Correction)= — -
- -

- gincludes— .
- s

- -

"
~ -) -
@nclides «include»
Set Phaseand ™. -~ ~ -
Amplitude el :.-.\‘:

f[DﬁQ‘Jde» x\‘k

- ~ . #
Transverse wincludes = Run Model
Matching ./~~~ — >

USPAS

High-Level Application Framework
Design: UML Use Case Diagram

«extegdm
L=

waxtendss

= o
- Plot Data

— i —
- —

e Machine .
Connection J
Object .~

Determine
Current Hardware
onfiguratiop

Important!

June 23-27

Application Framework Use Cases
Observations

o The “Machine Connection” collaboration is a realization of
the low-level hardware connection

We assume this exists and take EPICS our subsystem

o Implementation of high-level hardware connection is critical
Any shortcomings here adversely affect all applications
But, future improvements and upgrades benefit every application

o Implementation for hardware configuration is also critical

It may be called at any time as an extension point of the hardware
connection use case

June 23-27 USPAS 11

Application Framework Use Cases
Observations (Continued)

o Choosing accelerator sectors to work on Is also important
and common
Design for a robust generic technique

o There are common scenarios that can be coalesced
Orbit display
Online model (used less often - less critical - possibly deferred)

Use cases suggest they may be implemented as independent
components

o All applications use a GUI interface
We should provide a consistent framework for rapid creation

June 23-27 USPAS 12

Application Framework Use Cases
NOTE: Sub-dividing Use Cases

Note that it is possible, and Save/Compare/Restore Use Case
wise, to further divide up

) _Q
important use cases. @
/\ «inclu

Engineer

This action helps to elaborate
the user interactions and

anticipate needed software Database

capabilities

Operator

13

Common Scenarios
More Evidence for a Framework

o The use case diagram demonstrates that there are many
common scenarios in our high-level control environment
GUI
Orbit Display
Online Model
Hardware configuration and connection

o Let’s try to provide some example designs for software
components which could realize these scenarios...

June 23-27 USPAS

14

Application Framework Design

Hardware Connection Component

o Software components
p Save/Compare/Restore Siriciu éﬂ_ix_‘grepd&»@
Recall software Machine State /. _| ~include

a.xtends:-:

components implement @

natural design solutions to

~ -——

\

-7 Machlne T
s
shared scenarios m £ ot
AS H r
Orbit Difference T ,_O_beC_t i
«lnc\ude» \\

. «lhﬁ[\de» \\ N
o Consider the hardware commisioner 7‘ '
- - Orbit Displa -~ s ~
connection scenario @ TN
Common scenario “'“ff“"'“ i

<} ———— ——

EXtenSIOHS T «ex@wds»
. «incj!ruﬂ&»’ -
- . “ - e - -
CI‘I'[IC&| ’leﬁd‘é» «includex Determine
Set F’hHISE and ™. - s -7 Current Hardware
Amplitude T~ Py >Configuration

«ipeliden \\-l winclydesy
B

- ~ - -~
Transverse «include»‘ . Run Model
Matching /=~~~ >

June 23-27 USPAS 15

High-Level Application Frame

-

¢ Implementing the Hardware Connection Scenario
components
The hardware connection Frodceachics
. - representing hardware
component is further divided [incument configuration
. . JCA
into subcomponents with -
simple user interface Slandard M3 |, sracpagne
TSE‘Sf 2 CAJ
Accelerator { ouser fad !
getAccelerator() interface i |
} = '
XML B
Interfaces and components | pyare sonte Arb_cﬁ;y

o Allows independent
development of
subcomponents

* Wholesale substitutions of
subcomponents

o Facilities testing of
subcomponents

16

- PV Map (Dev,PV)
- Model parameters

—

USPAS

N

Mechn. provides machine
configuration from central
database but also isolation
from database errors

¥ e
«deh%gate»

Newtowrk \[/

|
wdelagates

Deployment

«epics»
Hardware
Drivers

June 23-27

Application Framework Design
Orbit Display Component

o Consider the orbit
display scenario
Requires callbacks

Requires plotting
display for data

ed
oN

June 23-27

J/@(

Commissioner
Orbit Bump 2

s

< -

Orbit Correction)= — —
Y
= Y
USPAS

.
-~
s
-~

Orbit Difference

.
«include»
halde N
d)
> Orbit Display

. &
mnc:Lude»
'

- ~
. - . -~
inclides ¢includex
Set Phase and ™, ~ ~“4"edider "7
Amplitude = N
“

-t
inaiiide incl
4l udex S “«In
- .

Save/Compare/Restore
Machine State "
-

Save Data

cextends»
~ wextends»

A —_
N "y
N = Plot Data
Y

~ ——— -

N - -

“ -~ ; .
“ r Machln.e "
~ wiricluden \ Connection]
o ~ N Object J
- N - ject -

-
e
«includen

.

7l

wincluden — — = —

wincludes— P
- -

- -

Determine
Current Hardware
anfiguration

A

- = g
Transverse «include»‘ . Run Model
Matching /=~~~ >

17

® High-Level Application Framework
Implementing the Orbit Display Component

«Graphics» BpmBuffer up rate
Plot2D - refreshRate : double
- Hard Accel i — 1 _ . wlists
Have explicit use of {Harduare Acee Srationt Bliesulip it Horle o 4 BpmList
callbacks or “monitors” Responsibilities setR_?fr?JEhRate{dDuble)z addSector()
. - i monitor
signal new BPM value Frovide 2B data format stop() @
then held in a buffer Respansibilites |
Plot(VectorData) --Target for channel monitors
i . R ibiliti -- Buffer changing BPM wvalues
«Display is updated = Quickly plot 2D data N _
according tO user -- Provide buffering for animation monltors
. p- .- 0l.
specified repetition rate / / .
«thread» «thread»
rather than by When) BpmCallback < signals change Absa‘racﬂ?hannel
BPM Change p|0ttlng A updateValue(bpm, val) 1 1 {BPM Signal}
O

2D plotting performed | |

by “Plot2D” class,
y 3] 3] q]

actual_ly a facade for this SRl AWT-Plot SWT-Plot
capability.

2D Plotting arises in several other scenarios, thus, it is a common “sub scenario.”
It may be wise to implement a robust software subcomponent for it.

18 USPAS June 23-27

Application Framework Design

Online Model Component

o Consider the online
model

Must produce
simulation data for the
machine in its current
running state, past
states, and design
configuration

-
S &

June 23-27

J/@(

Save/Compare/Restore
Machine State

.
-~
s
-~

Orbit Difference

Y
hY
hS

A
.
S
.
o
Rt

.
«include»
n-QI\\

cextends»
~ wextends»

Save Data

) o
. = Plot Data
Y

Y .
M ™ .
~ - p .
“ r Machln.e "
wiricluden \ Connection]
“ ;
. ~_ Object .7

-
oy A

«includen ~ |

- S

|
. ~. ~ . |
Commissioner =% = ~ |
- - \\ |
. >(_ Orbit Display)~ RSN [
Orbit Bump 2 - "3 R
imgludes ~_ ~
7 K v
-~ Ve
winc:Lude»
P wincluden. — — ==~ 7
] N = m T ey
Orbit Correction /< ~ =" p
- wex S
e ginclugdes— -7 %
b o -
S - ILI.dE\C" -
_ainclides winc Determine
Set Phase and ™ - i\ e - Current Hardware
Amplitude S e - Configuration
wingluden - wincludesy
- g - -~ -:_h - B
S
Transverse sinclude» —{_ Run Model
Matching .~~~ 7~~~ 7. >
USPAS 19

Application Framework Design

A Note on Implementing the Online Model

There are subtle difference between accelerator design codes and the requirements for
an online model which might make such an implementation brittle

Design Code

o

O O O O O

Used for machine design and data o
analysis

Produce design parameters

Runs off-line

Static input from “deck”

Static configuration is OK (“deck™)
Must predict fine structure

June 23-27

O O O O O

USPAS

Online Model

Used for Model Reference Control
(MRC)

Estimation of actual parameters

Runs in real time —fast!

Dynamic input from running machine
Dynamic configuration a must

Only data that sensors can detect

20

Presenter
Presentation Notes
These differences may be subtle, but they are important.

Implementing the Online Model

Hardware Netwaork

Application Framework Design

errar
outpu

sync1tu > e r[_[:ll:m r1 4
Here is the “Traditional” Approach 0~ 0~
wdevice» wdevice»
OT CA-to-ASCII ASCIl-to-CA
Any comments? AN
'y 0}
Input "Deck"ﬁ Output "Dec@
M
of.* of.*
v . .
wexecution environments
FORTRAN
Madel
Gyn

% Design Code XXX

USPAS

June 23-27

S Modern Design
|:'|> O [CAl ydevi
EMEElement E [-H:I.’Synchrﬂnize E :;;\f::;
(represent hardware)
Hardware component is
built as a sequence of g
modeling elements exposi Probe Trajectory
the IE lement interface (represent beam aspects) (maintains simulation data)
Any object exposing this
interface represents some IElenent IPrpbe :> “Sfﬂcad*?”
cenaro
type of hardware. D
Algorithm | T
IProbe Lattice SynchMgr

Beam component is based 1%
upon the IProbe interface. Tracker ol
ObjeCtS exposing thlS propagate(IProbe IElement) dnterfaces

Responsibilities IElement

interface represent aspects of
the particle beam, e.g.,
centroid, RMS envelopes,
ensembles

22

- Propagate probes through elements

The entire model is encapsulated by the
Scenario class which manages the components

USPAS

June 23-27

Online Model Design

. IElement ()— elem:ElementSeq <interface»
+add(in elem : [Element) >—> IElement
+concatenate(in seq : ElementSeq) 1 = +getlLength() : double

{ordered) |*getld() : String
+energyGain(in probe : IProbe) : double

We can get as detailed as we need in +transferMap(in probe - IProbe) - PhaseMap
out designs to elaborate point of — ?
concern. However, attempting to ol L
. . +propagate(in probe : IProbe «implementation class»
model the code in every detail __clem:Element
. . . +energyGain(in probe : IProbe) : double
usually constitutes over-engineering. +ransferMaplin probe : IProbe) : PhaseMap

AN

The XAL Onllne mOdeI IS bu”t upon Ielem:il\ﬂarkerl |e|em:1d|eaIDrif1 |e|em:1deaI|MagDipoIe| ——=
the Element/Algorithm/Probe design

pattern developed by N. Malitsky cinterface» oo
G5l ’ Fr - +go:’lj-,n§:?(al;;nc:ielglprobe +dynamics gov/sns/xal/model:iAlgorithm
7 | « » etPosition() : double =
|gow’snslxallsmf.AcceleratorNodc| T gov/sns/xalimodel-IElemen +g inGticE e +getType() : String
o getKineticEnergy() : double : : .)

+machine | +model 9 +getAlgorithmy() - IAlgorithm 1 » |+validProbe(in probe : IProbe) : boolean
: it ‘ +propagate(in elem : IElement, in probe : IProbe
| update()

Synchronization A

m_nodeMachine : AcceleratorNode I
m_elemMeodel : IElement |

resync() - I -
«implementation class»
Probe
1 -m_dblPosition : double
— Elect tS | «interface» ys
—{lmpl.E!ectromagne* S omagneLyne elem: iElectromagneq |-M_dblEnergy : double
+resync() -m_ifcAlgorithm : 1Algorithm
impl::RfGap RfGapSync || «interface»
+resync() elem:iIRfGap
ParticleProbe EnvelopeProbe EnsembleProbe
£o -m_vecState : PhaseVectol |-m_matState : PhaseMatri§y [-m_ensState : Ensemblq

XAL: A Case Study In the High-Level
Application Framework

o Discussed and designed from the beginning

Commonality of high-level applications was noted from
previous accelerator projects

Many possible design implementation were discussed, at
length, on paper, before any code was written.

o The following are several early design illustrations
(some in UML, most not)

June 23-27 USPAS 24

Example: Software Engineering a Framework

XAL A Framework for Portable High-Level
Control of Charged Particle Accelerators

Conceptual (Pre-Design) XAL Mechanism Diagram

z=framewaork:=:

XAL
< . _ -_‘H"‘\. f##‘-i- hhh"‘x
Machine Representation “‘} i High-Level "]
and Configuration ; "-\ Connection Management b
L e e ——————— o -~
PEE o e - 'Element T o Py
"""""" _ =TT T Algorithm : SEE
/_f" | Probe i
{ Machine Modeling and]
Xa Simulation -
e ..-"""
_______ .-"..r"'--—#-_____----_-‘-"ﬁ.
S
f.f | "\\
{ High-Level Controls Toolbox)
* 'y
Il.“""\-u.“_h‘l-‘-‘. .,u-""f#

25 USPAS June 23-27

Example: Software Engineering

X AL A Framework for Portable High-Level
Control of Charged Particle Accelerators

Conceptual (Pre-Design) Deployment Diagram

- - - - Applicaticn level

=T = == 2 =

XAL "device"

programming layer \

|

FPICS Channel Access

TCP/IP
network | | |

El llllllll | 100 E T0C Accelerator

M MM hardware

Global

Database

Real Time Data Link
{RTDL}

26 USPAS June 23-27

1. Overview

XAL In the Control System Hierarchy

System Engineering and XAL

ontrol | APP*| | App*| | App*| | App*| | App*| | App'
Applications) \)
Scripting/tools Matlab * Python *
| GUI]
Device : .
Abstraction XAL
v v l l v
Hardware EPICS ! ABeans ! SCiP !
Abstraction

Hardware

June 23-27 USPAS 27

7

XAL Architecture
Subsystem Diagrams

High-Level Control System foﬁ

Model representation

1 SNS Accelerator
«system»
gov:isns
«import» 1 «import» 1
«framework» g | «suite» |y «suite»
xal apps tools
«import» [_]
«subsystem» | |«subsystem» [_________ 3 tools:: «framework» «framework»
xal::model xal::smf tools::ca tools::agent | |tools::application
TX
«facade»
Third Party::JCA

Machine representation

28

«uses»
|

N

«system»
Third Party::EPICS

USPAS

June 23-27

XAL Architecture
Class Diagrams

Modeling Accelerator Hardware — Sector Tree

snsLinac : Accelerator

L.

dtll : AcceleratorSeq

dtl2 : AcceleratorSeq

4

dtl3 : AcceleratorSeq

cedtll : AcceleratorSeq

pmgH1 : impl:HorzPermQuad

smH1 : impl:HDipoleCort

pmaV1 :impl:VertPermQuad

izl : impl:RiGap

29

USPAS

June 23-27

XAL Architecture
Deployment Diagram

«executable» «executable»
apps::High-Level Application SNS Start Map

i Console
Physics Control
Computer
Server P %
Console
***********]
: Console
«library»
xal::xal.jar
‘Local Network Q
—— — 10C l0C

loc loc Ioc || -

30 USPAS June 23-27

31

XAL Architecture
Interaction Diagrams

(Here we are focusing on the online model)

Accelerator

sequences + devices

Database '
gov.sns.xal.smf

Machine data

J

Lattice
External
Generator lattice
gov.sns.xal.slg .
generation
Scenano
gov sns.xal.model.scenario

N\

User tuning
@ Probe. N\ | Online Model

initial conditions gov.sns.xal.model
type (single patrticle, l
envelope, multi-
particle) Trajectory

\ 1/ - Twiss

output
USPAS June 23-27

GUI Component

GUI Application Framework

The GUI Application Framework was based upon the
Document/View/Controller design pattern
Provides a consistent “look and feel for all XAL applications”
Avoid “re-learning” common operations in separate applications

Upgrades available to all applications simultaneously Standard menu

items

BO00 b - ®N jeor
.&lﬁ] 5’(; he P &3 Open... ®0
'

Close ww
Close All

file: /Users /t6p/Projects /xal/documents/Orbit Correction/MEBT.arbror

file: /Users /t6p/Projects /xal/docum. it Correction/bad_accelerator.orbcor

file: [Users /t6p /Projects fxal/documents /Orbit Correction /bump.orbcor

file: /Users/t6p/Projects fxal/documents/Orbit Correction/Test.orbcor

o Mi L&'ﬁ Savm A, file: /Users /t6p/Projects fxal/documents/Orbit Correction/Ring.orbcor

1.00E0" Legend | E]] Skl file:/Users /t6p/Projects/xal/docum.. Orbit Correction/MEBT Bump.arbcor
ave

Trace Filter
™ Harizontal M Vertical W Amplitude

: Clear

E 1
B print... we |
E} Page Setup... |

Quit

E 5.00E-1
§
E 6.00-1
a
L
2 4.00E-1
h-
§
&

| H T

'Y T T -
0.00E0 2.50E-1 5.00E-1 7.50€-1
Position from sequence start (m)

June 23-27

® GUI Component
GUI Application Framework

Additional features
available to all
applications

ann Orbit Correction - (MEBT) - Lny or* “* Capture as PNG)

Show Event Log I I =
) DL‘EIEI J§|fl'_‘1 n e Cascade Windows

_ Orbit_8PMs-] - [l show Memory Console [Orbi_8PMs | | f::grl.:lll”

| Use B Positign (mi X Average (mmi ¥ Ammﬂ- . . - = B |

I 71T S S 1) 03 m | o Postenim X Aveageinm - vAvewrid Oocuments b
" MEBT_Diag BPMO4 0.6 0.7 1.4 0.1 v MEBT _Diag BPMO 1 h’[
[Tl MEBT _Diag BPMOS 1.4 -0.4 0.1 0.7 P MEBT_Diag BPMD4 0.6 0.7 1.4 0.1
& MEBT_Diag BPM10O 2.1 0.1 -0.2 0.7 ™ MEET_Diag:BPMOS 1.4 0.4 0.1 0.7
W MEBT Diag BPMI1 2.9 0.3 0.3 0.2 ™ MEBT_Diag BPMI0 21 0.1 0.2 0.7
4 MEBT_Diag BPM14 1.4 & & o [k MEBT_Diag BPM11 .9 0.3 0.3 0.2

= [+ MEBT _Diag BPM14 14 i s 0

33 USPAS June 23-27

Application Framework
Summary

June 23-27

o Application frameworks are a front-loaded approach to high-level
control application implementation

They require substantial effort to build, but easy to maintain and
upgrade, i.e., they are robust

o A major advantage to application frameworks is their dynamic
configuration capability

Adapt quickly to hardware changes

o Use cases can help you visualize the needs of your high-level
control software to design your framework

Common scenarios warrant implementation by single software
components

The number of incoming edges of a scenario indicates its criticality —
a failure in this scenario could be devastating to your system

USPAS 34

	Control Room Accelerator Physics
	Outline
	High-Level Control of Accelerators
	High-Level Control Applications�Definition
	High-Level Control Applications�Commonality
	High-Level Application Frameworks�Definition and Objectives
	High-Level Application Framework�A Control System Design Strategy
	Architecture Comparison�With and Without a Framework
	High-Level Applications Framework� Design
	High-Level Application Framework�Design: UML Use Case Diagram
	Application Framework Use Cases�Observations
	Application Framework Use Cases�Observations (Continued)
	Application Framework Use Cases�NOTE: Sub-dividing Use Cases
	�Common Scenarios�More Evidence for a Framework
	Application Framework Design�Hardware Connection Component
	High-Level Application Frame�Implementing the Hardware Connection Scenario
	Application Framework Design�Orbit Display Component
	High-Level Application Framework�Implementing the Orbit Display Component
	Application Framework Design�Online Model Component
	Application Framework Design�A Note on Implementing the Online Model
	Application Framework Design�Implementing the Online Model
	Slide Number 22
	Slide Number 23
	XAL: A Case Study in the High-Level Application Framework
	XAL
	XAL
	XAL in the Control System Hierarchy
	XAL Architecture�Subsystem Diagrams
	XAL Architecture�Class Diagrams
	XAL Architecture�Deployment Diagram
	XAL Architecture�Interaction Diagrams
	GUI Component�GUI Application Framework
	GUI Component�GUI Application Framework
	Application Framework�Summary

