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Now we focus on design of accelerator control application
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Linear Systems
Introduction

Linear Systems are dynamical 
systems G where the input u and 
output y are linearly related

If u = u1 + u2 Then 

y = G(u1 + u2)
= G(u1) + G(u2)

Linear systems may be 
Continuous time (ODEs)
Discrete time (delay eq.s)

Typically these are related!
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Linear Systems
Introduction

We cover some basic facts about linear dynamical systems for 
application in both beam physics and in control theory

Beam Physics – mostly discrete “time”
Transfer matrices
Response matrices
Linear beam optics

Control Theory – mostly continuous time
Stability and stabilization
Disturbance rejection
Other classical feedback control
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Linear Systems
Motivation

Most beamlines are designed to be linear systems
At least many can be treated as such

The XAL online model is designed using these principles.

The material on stability and control is important for…
Light sources, where beam positions must be maintained to tight 
tolerances
RF systems where, for example, resonant tuning is essential in a 
highly distruptive environment 
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Classic Feedback System
Motivation: Model the Plant G to better design controler
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Linear Beam Optics
Motivation: We want to model first-order beam behavior
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Linear Systems
Modeling Physics and Engineering Problems

Most linear dynamical systems in physics and engineering are not 
naturally expressed in the form 
G(u) = y  (output as function of input)

The output y is generally a combination of differentials of itself!
For example, consider the 2nd order linear operator L

Then our model appears as

This is a linear equation, but the wrong direction!  By comparing 
equations we find (abstractly)
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General Linear Time-Invariant System
State Space Representation

The general representation of an nth-order Linear Time-Invariant 
(LTI) dynamical system is

A, B, C, D are matrices of the appropriate dimensions (see above)

x is the state vector (plant internal dynamics)
y is the output vector (sensor output)
u is the input vector (actuator input)

Often we drop the matrix D since we can renormalize output y

The above is called the state space representation
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LTI Dynamical System
Block Diagram of State Vector Representation

x&
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Matrix A determines stability (we cover this)
Matrices A and B determine controllability (outputs we can reach)
Matrices A and C determine observability (watching the output says?)



LTI Dynamical System
Discrete Case

For discrete case the state representation looks like

The solution to the state variable equation is

This solutions is analogous to the continuous case, only the natural 
response is dictated directly by matrix Ak rather than etA, as we 
shall see below
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0 0

uqh (ush1,usv1) uqv (ush2,usv2)

(x,y,z)
Qh S1 S2Qh Qv QvD1

D2

Discrete State Space Representation
Example: Modeling Beam Steering

Say we have Beam Position Monitors (BPMs) as our sensors, then 
our observables are the coordinates (x,y,z); that is, we do not have 
access to the full state vector – no momentum components

Set 

Then

where

With {Φn} as the transfer matrices, our modeling equations are
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The State Representation
Putting Linear Differential Equations in State Variable Form

Earlier we questioned the meaning of y = G(u) = L−1(u), well here it is…
Start with our 2nd order linear differential equation 

Define our state variables x1 and x2

Differentiate x2 yielding

Arranging into matrix-vector format
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LTI System Behavior - Stability
Example: Scalar System

Consider the scalar case

The solution to         = ax(t) is x(t) = eatx0 where x0 is a constant 
Differentiate to prove 

Solution to                                   is
Differentiate to prove it (Exercise)
Internal dynamics are the sum of natural response eat x0 at time zero, plus 
the natural response convolved (“folded”) with the driving term bu(t).

Finally, system solution y(t) is proportional to x(t), 

y = cx(t)
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LTI System Behavior (cont.)
Example: Scalar System (cont.)

Scalar LTI system

with state solution

Regardless:  System behavior is 
dominated by natural 
response eat

For natural response [eat term]
a > 0 eat unbounded
a = 0 eat is stable
a < 0 eat decays

For driven response 
Note (t − τ) > 0 so ea(t − τ) acts 
as amplifier/attenuator to u(t) 
according to above
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LTI System Behavior (cont.)
General Case

Solution to state equations                                is

This is completely analogous to the scalar case

Again, internal dynamics are the sum of natural response H(t) = etA

plus the natural response convolved (“folded”) with the driving term 
Bu(t)  (star * indicates convolution)

The state dynamics are dictated by the matrix H(t) = etA

Note that A must be square
The matrix exponential function etA is well-defined
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Behavior of LTI Natural Modes
Continuous Systems

Let λ be an eigenvalue of A
Dynamics of eigenmode for λ are 
determined by etλ

λ on the complex plane

A finite imaginary part of  λ
(ω≠0) implies oscillation
A negative real part of λ (σ<0) 
indicates exponential decay
A positive real part of λ (σ>0) 
indicates exponential growth
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LTI Dynamical System
Behavior in the Discrete Case

Recall that the solution to system

is

The important point is that the natural response is dictated by 
matrix power Ak rather than the matrix exponential etA as before.

The state dynamics are dictated by the matrix Hk = Ak

By diagonalizing we have Ak = TΛkT−1

The dynamics are controlled by eigenvalue powers λk rather than etλ
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Behavior of LTI Natural Modes
Discrete Systems

Let λ be an eigenvalue of A
Dynamics of eigenmode for λ are 
determined by value of λk

λ on the complex plane

|λ| = 1 indicates stable oscillation

|λ| < 1 indicates exponential decay

|λ| > 1 indicates exponential growth

June 23-27 USPAS 19

Re λ

tkitke

e

kkjkkk

j

θρθρρλ

θρρλ

θ

θ

sincos

,Let

+==

∈= 

Im λ

Stable, oscillatory

Unstable:  
exponentially 

increasing

Non-oscillatory

+1
−1

−i

+i

Asymtotically stable: 
exponentially 

decreasing



Classical Control Example
Stabilization:  The Role of Feedback

Typically in classical control we 
pick a feedback control law of the 
form

u(t) = Ky(t)

The matrix K is chosen to move 
the eigenvalues (λ1 and λ2) of A
from the right half-plane to the left 
half-plane

The exact position in the plane 
determines the response with 
feedback
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Linear Systems:
Perturbations: Initial Conditions

What if we perturb our initial condition x0 by a small amount δx0?
That is x0 → x0 + δx0

Denote the perturbed state response as x1(t) and original as x(t)

Thus, the new response is a sum of the original solution x(t) plus the 
perturbation δx0 which either grows or decays according to the 
natural response of the system etA .
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Linear Systems:
Perturbations: Control 

What if we perturb our control signal u(t) by a small amount 
δu(t)?

That is u → u + δu
However, we choose a special perturbation

Then the perturbed response is given by
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Linear Systems
Perturbations: Control and Orbit Difference

The former type of perturbation (of the control signal) is of the 
type used for orbit difference applications 

A magnet value along the beamline is perturbed from its nominal 
value.
The perturbed orbit remain identical to the nominal orbit until it 
reaches the perturbed magnet, from there it diverges according to the 
effects of the magnet
By subtracting the nominal trajectory from the perturbed trajectory 
we can observe the first-order response of the magnet

We may perform the same procedure using a model of the beamline
then compare the two magnet responses.  Such a tool is valuable in 
diagnosing beamline irregularities.  
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Linear Systems
Review

Most LTI system can be put into state variable form
First-order, n-dimension matrix-vector ODE or difference equation

For continuous case stability is determined by the matrix 
exponential etA

For discrete case stability is determined by the matrix power Ak

We will see etA a lot

June 23-27 USPAS 24



Supplemental Material

More detail on Linear System theory
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The State Representation
Putting Linear Differential Equations in State Variable Form

Earlier we questioned the meaning of y = G(u) = L−1(u), well here it is…
Start with our 2nd order linear differential equation 

Define our state variables x1 and x2

Differentiate x2 yielding

Arranging into matrix-vector format
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Eq: Constant Coefficient ODE (cont.)

Thus, 2nd order equation in 
standard form 

has the state representation

where
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The Matrix Exponential
What is etA?

Say square matrix A admits a diagonalization

For example,

Then etA has a very simple form

The explicit form of etΛ is very easy to compute…
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Matrix Exponential
Exponential of a Diagonal Matrix

Let Λ be diagonal with entries {λi}, then

The stability (behavior) of etΛ and, hence, etA = TetΛT−1 is completely 
determined by the eigenvalues of A according to etλ

The matrix T determines coupling between these natural modes
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Matrix Exponential
Notes on the General Case

Say A is not diagonalizable
A Jordon form always exists so that A = TΛT−1 where Λ is the 
Jordan block diagonal matrix (Λ has 1’s to the right of the diagonal)

Once again etA = TetΛT−1

The exponential etΛ is not as easy to compute this time but the 
qualitative results are the same.

(Λ is triangular and we have terms like λketλ floating around)
The eigenvalues {λi} of A (the diagonal of Λ) determine the stability of 
the system according to etλ

The matrix T determines the coupling between the natural modes of the 
system
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Matrix Exponential
Notes on the General Case (continued)

Singular value decomposition does not work for decomposing the 
matrix exponential

Factor A = UDVT where D is the diagonal matrix of singular values 
and now U and V are both in SO(n) since A is square

However, since VTU ≠ I in general, etA ≠ UetDVT

For example, (UDVT)2 = (UDVT) (UDVT)  ≠ UD2VT

However, Jordan decomposition always exist and allow for 
generalized eigenvalues, i.e., eigenvalues with value zero.

The natural modes for zero eigenvalues are called the center 
manifold of the dynamical system
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The Matrix Exponential
Existence
Define exponential of a square matrix A by Taylor series

Note for any A and t < ∞ that 

In fact                                               for induced norm ||⋅||

and
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Linear Systems:
A Note on the Time-Varying Case

The homogeneous solution                     is the generalization of the 
one-dimensional ODE 

If the coefficient a is a function of time, a = a(t), then the solution 
to the scalar ODE is

This does not generalize!
The solution to                                     is given by 

x(t) = Φ(t,0)x0 where Φ(t,0) is given by the Peano-Baker series

(It is possible to define                        and say                              )
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Transfer Function Approach
Relationship of H(t) and Ĥ(s)

Recall that in frequency domain x and u are related by 

where Ĥ(jω) is the Laplace transform of etA evaluated at s = jω.

If A is diagonalizable, i.e., A = TΛT−1, then

Thus, Ĥ(s) has “poles” at s = {λi} = Λ(A)
By the Residue Theorem and Laplace Transform

If the poles are in the right half plane Ĥ(jω) does not exist (is unstable)
If the poles are in the left half plane Ĥ(jω) exists for all ω (is stable)
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