
 1

Title: GPU Acceleration in Weather Research and Forecasting Model

Yael M. Camacho Bonaparte Dr. Greg Newby
Electrical and Computer Engineering and Chief Scientist
Computer Science Department Artic Region Supercomputing Center
Polytechnic University of Puerto Rico Fairbanks, AK 99775
San Juan, PR 00918

Abstract

Supercomputers are being used increasingly by scientists and engineers to process data
intensive applications. Large numerical weather models have always stressed
supercomputers; thankfully computers and supercomputers have enjoyed the benefits of
the increasing processor power for more than 40 years. But we are getting into a point
when just increasing processor power is not enough to get speedups. Also the use of
large-scale parallelism will be ineffective for many scenarios. We need to find another
way to get more efficiency from our computers, that’s when Graphics Processing Unit
(GPU) comes to play.

The latest generations of Graphics Processing Units (GPUs) are very attractive for use in
High Performance Computing (HPC) for many reasons that I will explain later. This is a
fairly new alternative of programming and a very promising one, even a small change of
the code (about 0.4%) can provide as much as 20% speedup.

Introduction

The Weather Research and Forecast (WRF)[1] model has much fine-grained data
parallelism. As of today most compute-cycles for weather modeling come from large
microprocessor-based clusters, which are unable to handle parallelism efficiently because
Central Processing Units (CPUs) lack the memory bandwidth needed to handle it, on the
other hand, Graphics Processors are designed to handle massive fine-grain parallelism.

During this summer internship I looked into GPUs to answer some questions like: What
are GPU’s? Why we want to use them? How can it be used in scientific computing? The
project goals were to get some application running on a GPU machine, and to see how
much GPU acceleration had the new version of WRF (v3.2).

GPUs and their Uses

First we need to know what a GPU is, and what is the difference between CPU and GPU.
The CPU is where all the program instructions are executed. Originally CPUs handle all
of the instructions and computation in the computer but as technology progressed it
became it became too slow to handle everything by itself. GPUs are meant to alleviate the
load of the CPU by handling all the advanced computations necessary to project the final

 2

display on the monitor. They were originally developed to render 2D graphics but as the
graphics technology progressed to 3D and faster graphics acceleration, the GPU became
faster and more specialized. So basically the CPU is the brain of the computer and the
GPU is there to complement it. CPUs can perform the functions of a GPU but at much
slower speed; however the nature of GPUs means that it can do task much faster than
CPU but it’s not able to cover all the capabilities of the CPU. That’s why we are trying to
get them work together and get more speedup teaming them up.

Figure 1 Figure 2
CPU: Intel Core 2 Extreme quad-core GPU: nVidia GeForce 7800 GTX

In terms of hardware the CPU and GPU are similar but not identical (see figure 1 and
figure 2). The GPU devotes more transistors to data processing.

Figure 3 Figure 4
CPU diagram GPU diagram

Why do we want to use GPUs? First they are fast and cheap (Low-cost and Low-power).
For example, nVIDIA’s 480 GTX [2] with a theoretical peak of 1345 GFLOPS and
memory bandwidth of 177GB at a cost of $500. But there are some disadvantages about
GPUs: they are very specialized, very hard and complicated to program and rapidly
changing.

How can it be used in the scientific computing? Weather and climate models have a lot of
fine-grained data parallelism that will take too long to compute with CPUs, do you

 3

imagine trying to get a 24 hours forecast and the job takes the CPU 23 hours to complete
it, then the forecast is useless. We need to get advantage of the GPUs using their
parallelism capabilities to get the job done faster.

Figure 5
CPU vs GPU performance [3]

GPUs are very high compute capacity and recent design made them programmable and
useful for other tasks other than graphics. In 2006 Nvidia announced it’s CUDA
architecture that supports C language to program the programmable GPU. Before that
only games were able to use GPUs. After that other programming languages joined
CUDA, for example PGI, OpenCL, and more. I will focus on PGI only.

Application Porting with GPUs

When porting codes or application to GPU you need to know which part of the code you
want the GPU to run, since some portion of the code just can’t run on the GPU or it will
be run faster by the CPU. Most of the time you will want to look for the most inner loop
that is doing calculation with no dependencies. After finding the portion of the code you
want the GPU to run, you just add “!$acc region” before the code you want the GPU to
run and add “!$acc end region” after the end of the code that you want the GPU to run.
This is for simple codes, and it gets more complex if the application is bigger. Here’s a
simple portion of a code that will be run by the GPU, see figure 6.

 4

Figure 6
Part of code that was ported to run on GPU

As you can see in the figure 6, this code doesn’t have dependencies, making it a good
candidate for the GPU and taking the load out of the CPU. Basically the GPU will create
a lot of grids and each one will run that portion of the code at the same time, but first the
GPU will need to get the data from the CPU, do the calculation, and then write the data
back to the CPU, this is called overhead. In simple applications the overhead usually
takes more time than the calculation time, and even much more time than the time it will
take the CPU to run the entire code. That’s why not everything is good to port to the GPU
because of the overhead time.

As I said before, WRF has a lot of fine-grained data parallelism making it a perfect
candidate for GPU programming, but as it is a very complex program it’s not that easy to
port it to GPU as the example from before. Therefore years will pass until the program
will be fully GPU compatible. But for now a lot of people are working on this project and
they are experimenting a great speedup with little code porting. For example the GPU
WRF Single Moment 5 (WSM5) has about 0.4% of code implementation and provides a
speedup of about 20%.

The new WRF (v3.2) has some GPU acceleration (still in experimental phase) using PGI
compiler and CUDA implementations. There’s not much information about this topic on
the official WRF website or online, and looking into the code it’s not feasible, as the code
is extremely difficult.

Results

Because of the limited information available of the GPU acceleration in WRF v3.2 I
wasn’t able to run and test WRF on a GPU system. But looking forward to do it I learned
a lot about GPU, PGI, Linux, etc. During this learning I was able to run 3 test cases [4] on
a supercomputer called C2050, it has an Nvidia Tesla c2050 GPU card inside. The
results are as expected and explained before, the overhead needed for the GPU will take a
lot of time on small programs but as the program gets larger and larger the GPU will do
way better than the CPU.

 5

Figure 7 Figure 8
GPU vs CPU time in microseconds of GPU vs CPU time in microseconds of
100,000 iterations 1,000,000 iterations

Figure 9
GPU vs CPU time in microseconds of 10,000,000 iterations

In figure 7,8,9 you can see the output of one of the test cases. The first run shows that the
program is doing 100,000 iterations (calculations) and the GPU took way more time to
complete it than the CPU, in fact it was 46 times slower, this is because the overhead.
The second run (see figure 8) of the same program did 1,000,000 iterations, as you can
see the GPU time was way better than the CPU, a 7.92x speedup. There’s overhead in
this run too but it’s not as much as the time that the CPU requires to run the program. The
last run (see Figure 9) shows the output of 10,000,000 iterations and you can expect the
GPU is way time is way better than the CPU time, a 15.05x speedup. As you keep adding
more iteration to the program the speedup gets better and better.

Conclusion and Future Work

I wasn’t able to complete the major goal of reporting and documenting the GPU
acceleration implementations in WRF v3.2 for many reasons out of my hands, but I did
learn a lot. I was able to run a lot of test cases on a supercomputer with a GPU (c2050). I
was able to have a real job experience, research, read, understand, learn and use all that
knowledge to get some interesting results.

This work is not nearly over, we still have a lot to go, but the findings so far are
impressive and promising. I encourage everyone out there to take a look, investigate,
learn, and try all this GPU programming because we can get a lot of benefits from it, not
just for weather purposes but for medical, physics, mathematics, and many more fields.
As this is a fairly new concept there’s still a lot to discover, it’s not easy but it’s not
impossible either.

References

1. Weather Research and Forecasting Model (www.wrf-model.org/)
2. Nvidia (http://www.nvidia.com/object/product_geforce_gtx_480_us.html)
3. Picture from (http://www.hardwareinsight.com/nvidia-cuda/)
4. PGI Accelerator Programming Model

(http://www.pgroup.com/lit/articles/insider/v1n1a1.htm)

