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EXECUTIVE SUMMARY 

 

A novel adsorbent material, “carbon fiber composite molecular sieve” (CFCMS), has been 

developed by the Oak Ridge National Laboratory.  Its features include high surface area, large 

pore volume, and a rigid, permeable carbon structure that exhibits significant electrical 

conductivity.  The unique combination of high adsorptive capacity, permeability, good 

mechanical properties, and electrical conductivity represents an enabling technology for the 

development of novel gas separation and purification systems.  In this context, it is proposed that 

a fast-cycle air separation process that exploits a kinetic separation of oxygen and nitrogen 

should be possible using a CFCMS material coupled with electrical swing adsorption (ESA). 

 

The adsorption of O2, N2, and CO2 on activated carbon fibers was investigated using static and 

dynamic techniques.  Molecular sieving effects in the activated carbon fiber were highlighted by 

the adsorption of CO2, a more sensitive probe molecule for the presence of microporosity in 

adsorbents.  The kinetic studies revealed that O2 was more rapidly adsorbed on the carbon fiber 

than N2, and with higher uptake under equilibrium conditions, providing the fiber contained a 

high proportion of very narrow micropores.  The work indicated that CFCMS is capable of 

separating O2 and N2 from air on the basis of the different diffusion rates of the two molecules in 

the micropore network of the activated carbon fibers comprising the composite material. 

   

In response to recent enquires from several potential users of CFCMS materials, attention has 

been given to the development of a viable continuous process for the commercial production of 

CFCMS material.  As part of this effort, work was implemented on characterizing the 

performance of lignin-based activated carbon fiber, a potentially lower cost fiber than the pitch-

based fibers used for CFCMS production to date.  Similarly, to address engineering issues, 

measurements were made to characterize the pressure drop of CFCMS as a function of carbon 

fiber dimensions and monolith density. 

 

 

1.1  INTRODUCTION 

 

A novel adsorbent material, carbon fiber composite molecular sieve (CFCMS), has been 

developed by the Oak Ridge National Laboratory (ORNL) [1-3].  Upon thermal activation, 

usually in CO2 or steam, the carbon fiber-based material develops a large micropore volume 

(0.5-1.0 cm
3
/g) and high BET surface area (1000-2200 m

2
/g).  As shown in the scanning electron 

microscopy (SEM) image in Figure 1, the structure of CFCMS comprises carbon fibers, ~10 μm 

in diameter, bonded at their contact points to provide a continuous carbon skeleton that is 

electrically conductive.  The structure is open and permeable, which allows fluids to readily flow 
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through the material with minimal pressure drop.  The unique combination of the open structure, 

microporosity, and electrical conductivity allows the material to be used in a regenerative, 

electrical swing adsorption (ESA) system [4-6]. 

 

 

 
 

Figure 1 - SEM images showing the structure of CFCMS material 

 

In essence, ESA is an electrical analog of pressure swing adsorption (PSA), whereby desorption 

of the adsorbate is facilitated by the passage of an electric current through the adsorbent to obtain 

resistive heating [5, 6].  In this context, CFCMS represents an enabling technology for an ESA 

process in which efficient desorption could be achieved in the absence of pressure swings.  The 

bottom line is that significant energy savings could be realized because the adsorption beds do 

not, in principle, require repressurization after each desorption step.  This is consistent with the 

viewpoint of Jasra et al. [7], who in a review of the separation of gases by PSA noted that 

"although there is some room for improvement in the PSA process, the potential gains in process 

economics in the future are likely to come from the development of new and improved 

adsorbents". 

 

CFCMS composites are produced using the process illustrated in Figure 2.  Using a purpose-built 

vacuum slurry molding apparatus at ORNL, isotropic pitch-based carbon fibers are blended with 

a powdered phenolic resin at a typical ratio of four parts fiber to one part resin (by weight) in 

water.  The dilute slurry is molded in a process somewhat similar to the forming of a pulp fiber 

mat in a papermaking process [2, 3].  After molding, the green CFCMS composites are dried at 

~50°C for 24 hours and then heated to about 130°C for a further 24 hours to cure the phenolic 

resin.  If a high bulk density material is required, the dried form is hot-pressed at a temperature 

of about 300°C prior to carbonization.  The dried (or hot-pressed) composites are carbonized in a 

nitrogen atmosphere at 650°C for 4 hours, followed by thermal activation in a CO2 or steam 

atmosphere at 850°C until the desired level of carbon burn-off, i.e., activation, is attained (as 

measured by weight loss).  The activated composite material is then machined to the desired final 

shape and dimensions. 

 

10 30 50 

μm 

10 30 50 

μm 
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Figure 2 - The major processing operations in the fabrication of CFCMS composite [1-3] 

 

Preliminary work demonstrated that CFCMS material has the potential for separating O2 and N2 

in air [8-10].  However, the findings also indicated that a more efficient separation could be 

obtained if the micropore size distribution of the activated carbon fiber component could be 

better tailored for this purpose. Therefore, to provide the foundation for developing a suitable 

CFCMS material, a series of isotropic pitch-based activated carbon fiber products was prepared 

in which the degree of activation of the fiber was varied in the range of 5-30% (carbon burn-off).  

The pore size distributions of these products were characterized, and correlated with the kinetics 

of adsorption of O2 and N2, respectively, on the activated carbon fibers.  The findings are 

summarized here. 

 

 

1.2  EXPERIMENTAL 

 

1.2.1  Materials Preparation 

 

On a Hiden Analytical “Intelligent Gravimetric Analyzer” (IGA) instrument (Figure 3), 140 mg 

samples of isotropic pitch-based carbon fibers (Anshan East Asia Carbon Co.) were activated to 

the desired level of carbon burn-off, as measured by weight loss, at a temperature of 835°C in an 

atmosphere of pure CO2 (at ambient pressure). 

 

1.2.2  Materials Characterization 

 

The surface area and pore size distribution of representative samples of the activated carbon 

fibers were characterized by nitrogen adsorption at 77K (-196°C) and CO2 adsorption at 273K 

(0°C) using a Quantachrome Autosorb-1 instrument.  Apparent surface areas were derived from 

the N2 and CO2 adsorption isotherms using the standard BET method [11, 12].  Pore size 

distributions were calculated from the adsorption data by application of the density functional 

theory (DFT) approach [13, 14].  Similarly, micropore volumes were estimated using the 
Dubinin-Astakov (DA) equation [12]. 
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1.2.3  Kinetic Studies 

 

Using the Hiden IGA instrument (Figure 3), dynamic measurements were made on the activated 

carbon fiber products, in which the adsorption of O2 and N2, respectively, was monitored as a 

function of time to examine the approach to equilibrium, during and after a constant-rate 

pressure rise from 0.001 to 0.1 MPa (0.01 to 1 bar).  This pressure range was selected because 

the isotherms shown in Figure 4 for O2 and N2 adsorption at 294K on a CFCMS material 

(10% burn-off level) are steepest at low pressure, and therefore kinetic effects should be more 

easily observed [8-10].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - Hiden IGA Instrument 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 - High pressure O2 and N2 isotherms on CFCMS at 294K 
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The activated carbon fiber samples were outgassed under high vacuum (< 10
-10

 MPa, or 10
-9 

bar) 

at a temperature of 300°C immediately before the kinetic measurements of O2 and N2 adsorption. 

 

 

1.3  RESULTS AND DISCUSSION 

 

1.3.1  Summary of Preliminary Findings 

 

In the preliminary work reported earlier [8-10], adsorption isotherms of pure O2 and N2, 

respectively, were determined on two CFCMS materials (carbon burn-off levels of 10 and 26%, 

respectively) over a pressure range of 0-2 MPa (0-20 bar), at temperatures of 294K (21°C), 

338K (65°C), and 358K (85°C).  In keeping with the thermodynamics of adsorption, equilibrium 

uptake of each gas decreased with increasing temperature.  Furthermore, on either a mass or 

molar basis, the equilibrium uptake of O2 on the CFCMS materials was greater than that of N2 (at 

each temperature).  This is exemplified in Figure 4 above for O2 and N2 adsorption at 294K on 

the CFCMS material with a carbon burn-off level of 10%.  At a pressure of 2 MPa, the uptakes 

of O2 and N2 on the CFCMS material were ~8 and ~6 wt%, respectively. 

 

The low-pressure hysteresis exhibited by the N2 isotherm in Figure 4 is unusual, and may 

possibly be an artifact of the method of measurement.  That is, even though the measurements 

were continuously made over almost two days, insufficient time was allowed for establishment 

of equilibrium during determination of the desorption isotherm at lower pressures.  As is 

common practice in using computer-controlled instruments for gas adsorption measurements, a 

constant value for the “time-out” function was entered into the operating parameters of the IGA 

instrument; i.e., the elapsed time at which the IGA moves onto the determination of the next 

isotherm point regardless of whether it is still detecting a change in sample mass.  A post-

mortem of the IGA data obtained in the preliminary work revealed that all the low pressure 

desorption points shown in Figure 4 for N2 adsorption on the CFCMS material were, in fact, 

based on mass values recorded when the time-out point at a given pressure was reached:  albeit 

almost imperceptibly, sample mass was still declining at that point.  Had the time-out point been 

set to a higher value, more gas may have desorbed at a given pressure, thereby decreasing, 

possibly eliminating the low-pressure hysteresis in the desorption isotherm. 

 

Having said this, however, it should be noted that all the O2 and N2 isotherms obtained in the 

earlier work were determined using the same set of instrument operating parameters, including 

the value of the time-out point.  Of particular note in this context is the fact that the 

corresponding isotherm in Figure 4 for O2 adsorption on the CFCMS material is almost totally 

reversible, showing only a very small degree of hysteresis at the lowest pressures.  Furthermore, 

all isotherms for N2 and N2 adsorption, respectively, on the CFCMS materials at the higher 

temperatures of 338 and 358K in the earlier work were fully reversible [8-10].  The salient point 

is that these observations indicated that the CFCMS material in question exhibited significant 

molecular sieving behavior between N2 and O2 at 294K.  Because adsorption of N2 on the 

CFCMS material took place in very small pores, possibly of dimensions approaching that of the 

N2 molecule, it is a rate-controlled process with a positive temperature coefficient.  When the 

temperature of the adsorption measurements was increased from 294 to 338K (and subsequently 

to 358K), the rate of diffusion of N2 molecules into and out of the small pores increased 



 6   

substantially and adsorption equilibrium was established within the time-out setting on the 

instrument, leading to fully reversible N2 isotherms at the higher temperatures.  Similar activated 

diffusion effects have been reported much earlier for N2 adsorption on highly microporous 

activated carbons [15, 16]. 

 

Thus, the equilibrium uptake of O2 on the CFCMS materials examined in the preliminary work 

exceeded that of N2, and there were clear indications that the low carbon burn-off (10%) material 

exhibited a strong molecular sieve effect.  However, the differences between the equilibrium 

uptakes of N2 and O2 on the CFCMS material were small, and insufficient to indicate that the 

two molecules could be efficiently separated on the basis of their equilibrium adsorption 

behavior alone.  Therefore, the work on the activated carbon fibers summarized here was carried 

out to provide the foundation for developing a suitable CFCMS material for air separation.  

 

 

1.3.2  N2 and CO2 Adsorption Isotherm and Pore Size Distribution Data 

 

The N2 and CO2 adsorption data obtained on the activated carbon fiber products are summarized 

in Table I.  

 

Table 1 - Surface area and micropore volume data for activated carbon fiber products 

 

Burn-off level (%) 5 10 15 20 30 

N2 BET area (m
2
g

-1
) 15 415 (790) 730 960 

CO2 BET area (m
2
g

-1
) 550 635 795 955 1170 

Micropore volume (< 2 nm, DFT) 0.00 0.16 (0.32) 0.29 0.38 

Micropore volume (< 2 nm, DA) 0.00 0.19 (0.33) 0.34 0.44 

 

 

With the exception of the two values shown in parentheses, the N2 and CO2 adsorption data show 

the expected trends in the development of surface area and micropore volume (as measured by 

N2 adsorption) with progressive increase in the degree of activation.  It was noteworthy, 

however, that at the lowest burn-off level of 5%, a very pronounced molecular sieving effect was 

observed between N2 and CO2.  At 77K, nitrogen was unable to penetrate the ultrafine micropore 

structure developed under low burn-off conditions, resulting in an apparently very low BET 

surface area of 15 m
2
g

-1
 and no measurable micropore volume.  In contrast, carbon dioxide, at 

273K, was able to enter the fine pores, revealing a significant surface area of 550 m
2
g

-1
.  The flat 

molecular shape of CO2 overcomes the slow diffusion or possible exclusion of N2 molecules 

from the smallest pores at 77K, thus revealing details of the smallest micropores [17, 18]. 

 

As pore width increased with carbon burn-off, congruence was obtained between the N2 and CO2 

data.  This is illustrated graphically in Figure 5, in which representative isotherms for N2 

(at 77K) and CO2 (at 273K) adsorption on the activated carbon fiber products are shown as 

composite plots (for the 5, 10, 20, and 30% burn-off levels, respectively).  For the highest burn-
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off level of 30%, the N2 and CO2 adsorption data essentially merge into the continuous type-I 

isotherm [19] shown in Figure 5d. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 - N2 and CO2 adsorption isotherms as a function of carbon burn-off level 

 

 

1.3.3  Dynamic O2 and N2 Adsorption Studies 

 

The rates O2 and N2 adsorption, respectively, on the activated carbon fibers were measured at 

294K.  Each gas was dosed to the sample at two linear rates of pressure increase of 150 and 250 

millibar/minute (0.015 and 0.025 MPa/minute), respectively, over the pressure range of 

0.01-1 bar (0.001-0.1 MPa).  Representative plots are shown in Figure 6 for gas uptake as a 

function of time (at the 150 millibar/minute dosage rate) for carbon burn-off levels of 5, 15, and 

30%, respectively.  The rates of O2 and N2 adsorption are summarized in Figure 7. 
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Figure 6 - Rates of O2 and N2 adsorption on activated carbon fiber products
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Figure 7 - Rates of O2 and N2 adsorption at 294K as a function of carbon burn-off level 

 

 

It is apparent from Figures 6 and 7 that the rate of O2 adsorption was markedly higher than that 

of N2, notably on the carbon fibers of lowest burn-off level of 5% (Figure 6a) which exhibited a 

25% higher rate of O2 adsorption (on a mass basis).  The rate of adsorption of both O2 and N2 fell 

with progressive increase in the degree of activation of the carbon fibers.  The amount of N2 

adsorbed at equilibrium at 1 bar (0.1 MPa) increased at the highest burn-off level of 30% 

(Figure 6b), indicative of the larger pore volume in this material.  However, a consistent trend 

was not observed in the amount of either O2 or N2 adsorbed at equilibrium as a function of burn-

off level, largely because the data for the 15% burn-off material (Figure 6b) indicated a higher 

adsorption capacity than expected.  Coupled with the independent nitrogen adsorption isotherm 

data shown in parentheses in Table 1, this indicates that measured level of burn-off  of the “15%” 

material may have been in error, and that it actually was substantially higher.  Further work is 

necessary to resolve this question. 

 

At both gas dosage rates, a sharp discontinuity was observed in the rate of N2 adsorption on the 

5% burn-off carbon at a pressure of about 0.045 MPa (corresponding to an elapsed time of about 

3 minutes in Figure 6a).  A similar change in rate of N2 adsorption was observed for the 15% 

burn-off carbon, but to a lesser degree, and was not observed for the highest burn-off level of 

30%.  In contrast, a corresponding discontinuity in the rate of O2 adsorption was not observed for 

any of the activated carbon fiber products.  The reason for this (reproducible) discontinuity in the 

rate of adsorption of N2 on the 5 and 15% burn-off carbon fiber products is not clear, but once 

again could be associated with a very pronounced molecular sieving effect in these materials.  

This observation is significant since the separation of O2 and N2 is a kinetic phenomenon, relying 

on the differences in the diffusion rates of the two molecules in narrow pore networks.  The 

closer the pore width is to the molecular dimensions of the gasses the more significant the kinetic 

effects will be.  Lower carbon burn-off level appears to be advantageous in this respect; higher 

levels (> 15%) increased micropore width to the point where molecular sieving effects were 

eliminated, which is counter-productive for air separation. 
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1.4  CONCLUSIONS AND FUTURE WORK 

 

Data for the adsorption of O2, N2, and CO2, respectively, on isotropic pitch-based carbon fibers 

of varying degrees of activation demonstrated that a very low level of carbon burn-off is required 

to impart the molecular sieve properties in the carbon necessary for separation of O2 and N2 in 

air.  O2 was more rapidly adsorbed on the activated carbon fiber than N2, and with higher uptake 

under equilibrium conditions, providing the fiber contained a high proportion of very narrow 

micropores.  The presence of the very narrow micropores in the low burn-off carbon fibers was 

revealed through the adsorption of CO2, a more sensitive probe molecule than N2 for the 

presence of microporosity in adsorbents. 

 

In addition to activation parameters, the adsorptive characteristics of activated carbon fibers are 

dependent on the nature of the precursor.  In this context, lignin is a precursor known to produce 

highly microporous activated carbon products.  In very preliminary work here, an activated 

carbon fiber was produced from a kraft hardwood, melt-spun lignin fiber.  After stabilization and 

carbonization, the fiber was thermally-activated to a carbon burn-off level of 28%.  

Characterization of the pore size distribution properties of the activated carbon fiber is on-going, 

but the CO2 isotherms shown in Figure 8 illustrate the potential of lignin as a precursor for the 

production of a molecular sieving carbon fiber for air separation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 - Comparison of CO2 isotherms on lignin and pitch-based carbon fibers  

 

The significantly higher CO2 adsorption capacity of the lignin-based activated carbon fiber is 

indicative of its more microporous structure compared to the pitch-based fiber of comparable 

burn-off level (30%).  Furthermore, based on the findings reported here for the pitch-based 

fibers, an even more microporous carbon fiber should be obtained from a lignin precursor by 

activating it to a lower level of burn-off; e.g., 5-10%.   Together with the examination of 

alternative activation techniques, this will be the subject of future work on the air separation 

project.      

 

Overall, the findings reported here confirm that CFCMS has the potential for separating O2 and 

N2 from air on the basis of the different diffusion rates of the two molecules in the composite, 
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but the degree of separation is dependent on developing an extensive network of very narrow 

micropores in the activated carbon fiber.  This in turn is dependent on identifying and 

demonstrating alternative techniques to obtain a uniform degree of activation throughout the bulk 

of the composite material, especially if a low level of carbon burn-off is the key to achieving the 

requisite micropore size distribution.  In this context, it is essential to use a combination of 

molecular probes, such as CO2 and N2, to properly characterize micropore size distribution. 

 

To address engineering issues, a better understanding will be obtained of the factors that 

influence the permeability of CFCMS material, with the objective of reducing the pressure drop 

of the material for air separation and other applications.  Similarly, alternative activated carbon 

composite forms will be evaluated, including honeycombs.  Activated carbon honeycombs are 

used commercially for demanding gas phase applications, including capture of trace amounts of 

fugitive gasoline emissions from vehicles.  The incorporation of highly microporous carbon 

fibers into such honeycombs has not been reported, however, and may have the potential of 

producing a very low pressure drop form that exhibits greater capacity and efficiency for air 

separation. 
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