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NOMENCLATURE 

 
 B =  thickness of a fracture specimen (crack front length) 
  constant defining the relationship between the Weibull stress value and the fracture 

parameter, 
C =%

JK , determined for small-scale yielding conditions 
 E =  elastic modulus 
 J =  elastic-plastic energy release rate 
  Jacobian between the global and local coordinate systems JacJ =
  mode I stress intensity factor IK =
  stress intensity factor computed from the domain J-integral (JK = ( )21EJ v= −  for 

plane-strain condition) 
  threshold fracture toughness below which cleavage fracture does not occur minK =
  fracture toughness scale parameter in ASTM E-1921 0K =
  crack-front length L =
 M =  non-dimensional loading parameter ( 0b Jσ= ) 
  cumulative probability of failure fP =
  internal pressure acting on the RPV intP =
  initial internal pressure acting on the RPV at 0P = 0t =  
 R =  radius of the modified boundary layer model 
 0R =  initial root radius of the crack-front finite element mesh 
  elastic T-stress T =
  reference volume in the Weibull stress calculation 0V =
  volume of the fracture process zone fV =
  width of the fracture specimen W =
  crack depth a =
  half crack length c =
  distance from the base metal-cladding interface to the nearest crack front d =
 ijf =  function defining the angular variation of the singular crack-front stresses 
 g =  non-dimensional constraint correction function for Weibull stress computations 
  Weibull stress modulus m =
  number of segments along the crack front n =
  internal radius of the RPV intr =
  external radius of the RPV extr =
  time over a transient t =
  displacement in the x-direction u =
  displacement in the y-direction v =
 ( ), ,x y z =  Cartesian coordinate system with the origin at the crack tip 
  crack mouth opening displacement CMODΔ =

 7 
 
 



   
 

 α =  constant defining the relationship between crack-tip opening displacement and J-
integral 

 β =  non-dimensional biaxiality ratio ( IT a Kπ= ) 
 θ =  counter-clockwise angular measure from the horizontal axis originating at the crack 

tip 
 λ =  stress cutting parameter in the Weibull stress model ( 2=  in this study) 
 Hσ =  hydrostatic stress ( )11 22 33 3σ σ σ⎡= + + ⎤⎣ ⎦  
 effσ =  effective stress in the Weibull stress model ( 1σ=  in this study) 
 rrσ =  radius stress in the wall of an RPV 
 θθσ =  hoop stress in the wall of an RPV 
 uσ =  Weibull stress scaling parameter (= microscale material toughness) 
 wσ =  Weibull stress 
 w minσ − =  threshold Weibull stress below which cleavage fracture does not occur 
 0σ =  uniaxial, tensile yield stress 
 1 2 3, ,σ σ σ =  principle stresses with 3 2 1σ σ σ≤ ≤  
 υ =  Poisson’s ratio 
 η =  dimensionless constant  
 local (parametric) element coordinate system ( 1 2 3, ,η η η =)
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Abstract 

 
The next generation of fracture assessment procedures for nuclear reactor pressure vessels (RPVs) will 

combine nonlinear analyses of crack-front response with stochastic treatments of crack size, shape, 

orientation, location, material properties and thermal-pressure transients. The projected computational 

demands needed to support stochastic approaches with detailed 3-D, nonlinear stress analyses of vessels 

containing defects appear well beyond current and near-term capabilities. In the interim, 2-D models 

become appealing to approximate certain classes of critical flaws in RPVs, and have computational 

demands within reach for stochastic frameworks. The present work focuses on the capability of 2-D 

models to provide values for the Weibull stress fracture parameter with accuracy comparable to those 

from very detailed 3-D models. Weibull stress approaches provide one route to connect nonlinear vessel 

response with fracture toughness values measured using small laboratory specimens. The embedded axial 

flaw located in the RPV wall near the cladding-vessel interface emerges from current linear-elastic, 

stochastic investigations as a critical contributor to the conditional probability of initiation. Three 

different types of 2-D models reflecting this configuration are subjected to a thermal-pressure transient 

characteristic of a critical pressurized thermal shock event. The plane-strain, 2-D models include: the 

modified boundary layer (MBL) model, the middle tension (M(T)) model, and the 2-D RPV model. The 

2-D MBL model provides a high quality estimate for the Weibull stress but only in crack-front regions 

with a positive T-stress. For crack-front locations with low constraint (T-stress < 0), the M(T) specimen 

provides very accurate Weibull stress values but only for pressure load acting alone on the RPV. For 

RPVs under a combined thermal-pressure transient, Weibull stresses computed from the 2-D RPV model 

demonstrate close agreement with those computed from the corresponding crack-front locations in the 3-

D RPV model having large negative T-stresses. Applications of this family of 2-D models provide 

Weibull stress values in excellent agreement with very detailed 3-D models while retaining practical 

levels of computational effort. 
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1 Introduction 

 

Reactor pressure vessels (RPVs) consist of thick-walled, cylindrical steel structures with hemispherical 
heads that enclose the core in a nuclear power plant. RPVs experience a wide range of complex, thermal-
mechanical loading cycles during their service life, now extending past 30 years for increasing numbers 
of plants. Destructive evaluation of newly manufactured RPVs for research purposes [1-3] have revealed 
a distribution of crack-like flaws, with variable size, shape, orientation and location, which can be 
expected for those RPVs in service. The RPVs must function safely under both normal operating 
conditions as well as severe conditions caused by accidents. Pressurized thermal shock (PTS) represents 
one such accident scenario that imposes severe cooling concurrent with or followed by significant 
pressure changes in the vessel. Combined with a reduction of fracture toughness from years of radiation 
embrittlement, the thermal-pressure transients during a PTS event can define critical fracture conditions 
for vessel integrity. Increasingly, assessments of vessel integrity employ conventional linear-elastic 
fracture mechanics (LEFM) combined with a stochastic treatment of crack size, shape, orientation, 
location, material properties, and details of the thermal-pressure transient (e.g., as implemented in the 
ORNL-FAVOR code [4-5]).  Brittle, cleavage fracture represents the failure mechanism of major concern 
in these assessments. However, the critical combination of material flow-toughness properties, crack size-
location-orientation and loading likely leads to inelastic deformations sufficient to impact significantly the 
assumptions inherent in LEFM.  

The probabilistic Weibull stress ( wσ ) framework for cleavage fracture, originally proposed by the 
Beremin group [6, 7], considers material toughness and loading “local” to the immediate crack front 
region and thus applies when IK  or the J-integral no longer describe the crack front displacement-strain-
stress fields under increasing plastic deformation. The fracture process zone represents small, but finite, 
volumes of material which fully embody a population of microscale flaws, whose size and density 
constitute material properties. The statistical distribution of microcracks governs the cumulative 
probability of fracture, which can be modeled using a Griffith-type fracture criterion imposed on the 
critical microcrack size [8]. The Weibull stress framework has become a generally recognized approach 
to quantify the probabilistic driving force for cleavage fracture [9-12], to characterize material toughness 
properties in a probabilistic [13, 14], and to develop and apply constraint corrections [15-17] which 
accommodate differences in crack-front conditions between small laboratory test specimens and RPVs. 
Recent work by Petti and Dodds [18] suggests that coupling of the Weibull stress approach and the 
macroscopic Master Curve concept (as outlined in ASTM E-1921 [19]) can dramatically reduce the 
laboratory testing of fracture specimens required for calibration of material parameters in the Weibull 
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stress model for specific ferritic steel. The outcome is a new modeling process that approaches the 
simplicity of an “engineering” assessment for cleavage fracture integrity of an RPV. 

Computation of Weibull stress values requires elastic-plastic, large deformation analyses of 3-D RPV 
models using very detailed crack-front finite element meshes. Both the mesh preparation effort and the 
computation time for analyses immediately grow to impractical levels for detailed assessments of RPVs 
over a range of flaw geometries, locations, orientations, shapes and configurations subjected to a 
spectrum of thermal-mechanical transients. Moreover, the PTS triggered thermal-pressure transients 
impose both spatial and temporal variations of temperatures over the wall thickness. Consequently, both 
the local crack-front driving force ( wσ ) and the material properties, characterized by the Weibull 
parameters, vary along the curved front of a 3-D flaw. This contrasts to much simpler conditions forming 
the basis of E-1921: high constraint geometries, through-thickness cracks with relatively straight fronts, 
and constant temperature within specimens leading to invariant toughness along the crack fronts. 
Engineering applications of the Weibull stress framework, for example, to elliptical flaws embedded in 
the wall of an RPV near the cladding require both accurate computations of the Weibull stress values and 
detailed calibrations of the temperature dependent/independent Weibull material parameters along the 3-
D crack front over the entire transient history.  

These complexities and the impractical computational expense to conduct nonlinear 3-D, stochastic 
simulations of the type now performed in FAVOR using LEFM drive the consideration and development 
of approximate 2-D computational models to estimate Weibull stress values over the PTS transient. The 
approximation of certain types of 3-D configurations with simpler 2-D models relies on the similitude of 
asymptotic stress fields near the tip of a 2-D crack model with those of a 3-D crack model, both of which 
are subjected to the same linear-elastic IK  and T-stress at the crack-front location of interest. The 
modified boundary layer model (MBL) provides the computational framework for the IK  and T-stress 
approach. In other cases, a 2-D finite-body configuration becomes necessary. Cravero and Ruggieri [20] 
and Silva et al. [21] employ plane-strain, single-edge notched tension (SE(T)) models to represent the 
crack-front stress fields near an axial, surface-breaking crack in the wall of a pipeline. For embedded, 
axially-oriented cracks in the wall of an RPV, the MBL or a plane-strain, M(T) model, would seem 
appropriate 2-D approximate models.  

The current study examines different types of 2-D (plane-strain) models to approximate the stress fields 
along the front of an embedded flaw in the wall of an RPV subjected to a complex thermal-mechanical 
transient characteristic of a PTS event. Elastic-plastic, large deformation analyses of the full 3-D RPV 
model with an axially embedded crack employ very detailed finite element meshes built with 20-node 
brick elements. The Weibull stress values computed from the detailed 3-D RPV model provide the 
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reference cases to benchmark various, simplified 2-D models. The current investigation considers three 2-
D models, namely the modified boundary layer (MBL) model, the M(T) model and the 2-D cylinder  
(RPV) model. The numerical results and discussion focus on the capability of the 2-D models to provide 
Weibull stress values having very close agreement with Weibull stress values obtained from the 3-D 
analyses. Highly accurate Weibull stress values form the prerequisite for realistic estimates of the 
cumulative probability of fracture. Comparisons are made separately for pressure load acting alone and 
for combined thermal-pressure loadings of the PTS event to understand the differences in behavior of 2-D 
vs. 3-D models. 

The report begins with a description of the Weibull stress framework, and introduces the key parameters 
and computational concepts. The following section discusses the 3-D modeling and numerical procedures 
to compute global and point-wise Weibull stress values for an elliptical axial crack embedded in the wall 
of an RPV. The subsequent section examines the applicability of the three 2-D simplified models to 
estimate Weibull stress values. The final section summarizes the main findings in the current study.  

2 Weibull Stress Framework  

2.1 Weibull Stress Model 

The large scatter observed in experimentally measured fracture toughness (e.g., JK ) values for ferritic 
steels over the ductile-to brittle transition (DBT) region has driven the development of probabilistic 
treatments of the data. The widely adopted “weakest link model” assumes that fracture of a material 
volume depends on a single initiator [22-24], or equivalently a single microcrack. Weakest link concepts 
form the technical basis for the first testing standard developed specifically to address the unique 
statistical issues with ferritic steels at temperatures over the DBT region (ASTM E1921 [19]). The 
macroscopic fracture model, as outlined in ASTM E-1921, assumes that the temperature, the local J-
values, and the local stress fields remain essentially uniform along the entire crack front and that small-
scale yielding (SSY) conditions prevail at the cleavage fracture event. SSY conditions insure the unique 
correspondence across specimens (specified by ASTM E-1921) between the crack-front J-value and the 
local crack-front strains-stresses at fracture. The corresponding microscopic fracture model employs 
directly the strains-stresses at each crack-front location. SSY conditions then become unnecessary to 
establish the link between the local crack-front stress fields and the scalar measure (J) of the loading. The 
Beremin group [6] introduced the most widely used microscopic model. In this model, a local fracture 
parameter, the so-called Weibull stress ( wσ ), defines an integrated, scalar measure of the crack-front 
conditions driving cleavage fracture at increasing levels of external loading. Numerical analyses connect 
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values of wσ  with external loading of the specimen-structure and may include complexities from variable 
crack-front geometry, mismatched material properties, large-scale yielding, thermal-mechanical loading, 
etc.  

By correlating an assumed, inverse-power density distribution of critical microcrack sizes with the local 
stress through a simple fracture mechanics model, the Beremin group [6] derived the cumulative failure 
probability for a two-parameter Weibull stress model, 

 ( ) 1 exp
m

w
f w

u
P σσ

σ

⎡ ⎤⎛ ⎞
⎢ ⎥= − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (1) 

where m is the Weibull modulus, the value of which depends on the statistical distribution of microcrack 
sizes in the material, and the scalar Weibull stress, wσ , follows,  

 
1/

0

1
f

m
m

w effV
dV

V
σ σ f

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫  (2) 

The scale parameter, uσ , denotes the Weibull stress value at a cumulative fracture probability of 0.632, or 
0.632.  defines the (normalizing) reference volume and (f w uP σ σ= ) = 0V fV  represents the fracture 

process zone. The practical approach to compute the Weibull stress employs numerical integration of an 
“effective” stress measure, effσ , over the fracture process zone at each loading level imposed on a finite 
element model of the cracked configuration. The effective stress denotes a local “driving force” acting on 
statistically independent (small) volumes of material surrounding the crack front. The effσ selection 
depends on the local fracture criterion, and most often takes the value of the maximum principal stress, 

1σ , or the hydrostatic stress, ( )1 2 3 3Hσ σ σ σ= + + . The current study adopts 1σ  as the effective stress. 

The fracture process zone contains a region of plastically deformed, crack-front material over which the 
effective stress exceeds a characteristic value, 0λσ , with a typical value of 2λ =  (here 0σ  denotes the 
uniaxial, tensile yield stress). The normalizing volume, , cancels in applications of the Weibull stress 
model to compare crack-front conditions for the same material (e.g. between small lab specimens and 
structures) and takes a value of unity here for simplicity. Numerical evaluation of the Weibull stress 
follows, 

0V
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1/

1 1 1

1 2 31 1 10

1

e

m

m
w eff Jac

n

J d d d
V

σ σ η
− − −

⎡ ⎤
= ⎢

⎢ ⎥⎣ ⎦
∑∫ ∫ ∫ η η ⎥  (3) 

where  denotes the number of elements inside the fracture process zone, and en JacJ  defines the 
determinant of Jacobian between the global coordinate system and the element local (parameters) 
coordinate system. 

The computed Weibull stress values reflect both the magnitude of the local crack-front stresses and the 
extent of the fracture process zone ahead of the crack tip. The Weibull stress values, therefore, 
incorporate the effects of local stress changes caused by the varying levels of constraint on local plastic 
flow in the immediate crack front region. Low constraint conditions reduce the stress triaxiality within the 
plastic zone, and therefore decrease the effective stress value within the fracture process zone. 
Consequently, a fracture specimen with low constraint requires a potentially much larger driving force, 
measured in terms of JK , than is needed for a high-constraint fracture specimen, to achieve the same wσ  
and consequently the same probability of fracture (see Eq. 1). The probability of fracture expressed in 
terms of the macroscopic crack driving force, e.g., JK , applies strictly to (typically high) crack-front 
constraint conditions from which the probability function derives in E-1921. Extrapolation of such a 
probability function to a crack-front with low constraint conditions leads to incorrect estimates of failure 
probabilities. In contrast, the probability of fracture, expressed in the local driving force, wσ , predicts the 
same probability for equal -valueswσ  irrespective of the crack-front constraint levels. 

Estimates of the cumulative probability for cleavage fracture must reflect the actual, often complex, 
loading history imposed on crack front material. The Weibull stress framework assumes that a reduction 
in the crack-front stress levels during the loading history does not “heal” the damage to material caused 
by the previous higher levels of stress. Consequently, the decrease in Weibull stress values computed 
from Eq. 3 due to local unloading, and thus a reduced level of crack front stresses, does not decrease the 
cumulative probability of fracture. When local unloading does occur, the numerical procedures simply 
retain the largest, previous value computed for the Weibull stress. The Weibull stress thus becomes a 
stationary or monotonically increasing function of the imposed loading history. 

2.2 Calibration of Weibull Stress Parameters 

The original two-parameter Weibull stress model in Eq. 1 represents a microscale model to compute the 
cumulative probability of fracture with the Weibull stress parameters m and uσ  characterizing 
microscopic material properties. The calibration of m and uσ  through measurements of microscale 
material quantities demands formidable and expensive experimental efforts. On a macroscopic level, 
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however, the cumulative probability of fracture computed from the Weibull stress framework should 
predict the cumulative probability expression adopted in ASTM E-1921 applicable for high constraint 
conditions,   

 ( )
4

0

1 exp J min
f J

min

K KP K
K K

⎡ ⎤⎛ ⎞−⎢ ⎥= − −⎜ − ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (4) 

where  defines a temperature dependent, toughness scale parameter and  denotes the threshold 
fracture toughness value below which the probability of cleavage fracture becomes zero. ASTM E-1921 
suggests a constant value of 

0K minK

20 MPa mminK =  for ferritic steels independent of the geometry of the 
specimen/structure and temperature. Through a coupling the macroscopic three-parameter expression in 
Eq. 4, Petti and Dodds [18] propose a Weibull stress-based, three-parameter cumulative probability of 
fracture model, which requires a minimum threshold Weibull stress to obtain non-zero probabilities of 
fracture, as given in Eq. 5, 

 ( )
4/ 4 / 4

/ 4 / 41 exp
m m
w w min

f w m m
u w min

P σ σσ
σ σ

−

−

⎡ ⎤⎛ ⎞−⎢ ⎥= − −⎜ − ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (5) 

The minimum (threshold) Weibull stress, w minσ − [ ( )w min w J minK Kσ σ− = = ], depends on the crack-front 
length, material flow properties, temperature and Weibull parameters (m, ) [18]. For a fixed exponent 
(m), Petti and Dodds [25] demonstrate that the Weibull scaling parameter, 

0V

uσ , increases with increasing 
temperature, which reflects the increasing microscale toughness of ferritic steels caused by local events 
that include plastic shielding of microcracks, microcrack blunting and microcrack arrest. 

The comparison of Eqs. 4 and 5 implies the following relationship between the Weibull stress and the 
macroscopic crack driving force, JK , 

 ( )4 ,m
w JCBK g M mσ = %  (6) 

where 0M b Jσ=  is a monotonically decreasing measure of loading, and b denotes the remaining 
ligament length of the fracture specimen. The function ( ),g M m 1≤  quantifies the constraint correction 
with respect to a reference small-scale yielding condition without constraint loss (T-stress ). For high 
constraint specimens without any constraint loss, 

0=

( ),g M m 1= . The constant C  derives from the %
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relationship between the Weibull stress and the macroscopic  computed using the reference 
SSY model (with 

-valueJK

( ),g M m =1 ). The parameter B denotes the crack-front length.  

The correlation between the Weibull stress and crack-front  in Eq. 6 provides the engineering 
basis to calibrate the Weibull stress parameters, m, 

-valuesJK

uσ  and w minσ −  (or ). The engineering procedure 
to calibrate the Weibull stress parameters, as originally proposed by Gao et al. [11], employs measured 
fracture toughness values obtained for high constraint (SSY) and low constraint [large scale yielding 
(LSY)] configurations. The calibrated set of Weibull parameters, m and 

minK

w minσ − , scales the Weibull stress 
values computed from the high-constraint specimens and those from the low constraint specimens to the 
same -f JP K  curve corresponding to a standard, small-scale yielding condition. The Weibull scale 
parameter, uσ , equals the Weibull stress value when  replaces 0K JK  in Eq. 6. Petti and Dodds [25] 
utilize the Master Curve characterization of the macroscopic toughness ( ) vs. temperature relation [19] 
obtained by as few as six fracture specimens at one temperature to calibrate the Weibull scale parameter, 

0K

uσ , as a function of temperature over the DBT region. They demonstrate through measured properties of 
two pressure vessel steels (A533B and A508) that the scale parameter, uσ , increases significantly with 
temperature for a fixed Weibull modulus, m, in a three-parameter Weibull stress model. Wasiluk et al. 
[26] present a calibration study of the three parameter Weibull stress model for a 22Ni-MoCr37 pressure 
vessel steel, utilizing the large-scale datasets from a European Union research project – “Fracture 
toughness of steel in the ductile to brittle transition regime” [27, 28]. Wasiluk et al. [26] demonstrate an 
effective, temperature invariance of the Weibull modulus, m, and a temperature dependence of the 
Weibull scale parameter, uσ , through calibrations at two extreme temperatures of the ductile-to-brittle 
transition regime for this common RPV steel. The calibration outcome for this steel also suggests that 

 increases gradually with temperature, in contrast to the simpler assumption of a fixed value of 
 MPa

minK
20minK = m  adopted in E-1921.  

2.3 Application to 3-D Vessel Flaws 

In typical research applications of the Weibull stress framework conducted to date, the laboratory 
specimens have relatively straight, through-thickness cracks with constant temperature at all locations 
along the front. Consequently, the Weibull stress parameters, uσ  and w minσ − , and material flow properties 
remain constant at all crack-front locations. Local JK -values along the crack front remain relatively 
uniform except for much lower values over the thin boundary layer transition at the outside surface of the 
specimens. The 3-D finite element analyses that accompany these tests readily yield a thickness average 

 and the corresponding (single) -valueJK -valuewσ  at each level of applied loading. The  
corresponds to the value found using the measured 

-valueJK
- CMODP Δ  curve and an -valueη  for the specimen 

configuration, or through direct, 3-D finite element analysis of the specific specimens. Experimental and 
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computational studies using the measured  and corresponding -valueJcK -valuewσ  are thus greatly 
simplified by the constant uσ  and w minσ −  values, and flow properties along the crack front. 

The conditions for an embedded crack in the wall of an RPV, as exemplified in Fig. 1(a), under time-
dependent, thermal-mechanical loadings become far more complex. Details of the geometry, loading 
conditions, and computational procedures of this RPV model follow the description presented in the next 
section. Figures 1(b) and 1(c) illustrate significant differences in the evolution of Weibull stresses at two 
different locations, denoted C and D, along the 3-D curved crack front for a realistic thermal-pressure 
transient. The thermal-pressure transient creates variations in the temperature and thus in uσ  and w-minσ  
values along the crack front. Similarly, uσ , w minσ −  and flow properties likely also vary along the crack 
front from differing levels of material damage caused by accumulated radiation exposure over years of 
service life. This potentially strong variation in local fracture and flow properties along the crack front, 
coupled with strong variations in crack-front loading leads to a very complex situation to apply the 
Weibull stress framework (or any other framework). In essence, each segment of material along the front 
of an embedded crack is effectively a small “component” with its own loading history and time varying 
flow and toughness properties ( -σ ε ; ,0K uσ  and w minσ − ), e.g., for points C and D in Fig. 1(a). The 
assumption (now apparently validated) of a temperature invariant exponent, m, does provide some much 
needed simplification, since the Weibull stress values exhibit strong dependence on the m-value as shown 
in Figs. 1(b) and 1(c).  

The potentially significant spatial and temporal changes both in the material properties and in the local 
crack driving force, caused by the thermal transient, require detailed mathematical descriptions for an 
accurate estimation of the cumulative probability of failure. The thermal loading changes the mechanical 
properties of the material along the crack front and impacts the Weibull scaling parameter, uσ , with a 
smaller impact on the threshold Weibull stress, w minσ − . Meanwhile, the local Weibull stress changes 
significantly along the crack front, as demonstrated by the comparison of Figs. 1(b) and 1(c). To include 
the variation of material properties along the crack front, a refined procedure for PTS assessment divides 
material along the entire crack front into n small subregions each with length  ( ). Each 
subregion thus experiences a spatially constant temperature and a spatially constant loading 

iL() 1, 2, ...i = n

( )iwσ . The 
total cumulative failure probability, proposed in a previous study [29], follows as, 
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∑  (7) 

where 
( )iuσ  and 

iw minσ − ( )
 denote the Weibull scaling parameter and the threshold Weibull stress parameter 

of the subregion i. Equation 7 defines the total, cumulative failure probability of the embedded flaw in the 
RPV at a specific time  of the transient. Equation 7 follows the weakest link model which assumes that 
a single initiator within a segment triggers cleavage fracture along the entire crack front. 

kt

Figure 1(d) shows the ratio of ( ) ( )w w min u w minσ σ σ σ−− − −  for different segments along the crack front at 
 min into the thermal-pressure transient, when the Weibull stress along the crack front maintains 

the maximum value achieved at  min and the material toughness, 

50t =

18t = uσ , takes on the lowest values. 
Figure 1(d) indicates that only a small fraction of the entire crack front contributes to the total probability 
of fracture since cleavage fracture does not occur when w w minσ σ − ≤ 1.0. Consequently, only the stress-
strain-displacement results from a small fraction of the curved crack front in the very detailed 3-D RPV 
model contributes to the local fracture driving force that is sufficiently large to cause a nonzero 
probability of fracture. This motivates the development of computationally more efficient 2-D procedures 
to approximate the Weibull stress values in the critical front locations along the 3-D embedded crack 
where w w minσ σ − > 1.0.  

Similitude in the stress-strain fields near two different crack tips under the same crack-front loading (e.g., 

IK  and T stresses) provides the theoretical basis for simplified 2-D finite element models to approximate 
the Weibull stress values along the 3-D crack front. A “correct” 2-D model predicts the stress field near 
the corresponding location along the 3-D crack front to estimate accurately the Weibull stress values. 
However, low constraint near the crack front and combined thermal-pressure transients over the wall 
thickness of an RPV introduce additional challenges for 2-D modeling frameworks when large-scale 
yielding develops. The criterion adopted here to identify an appropriate 2-D model relies on the matching 
of Weibull stress values computed from the detailed 3-D RPV analysis discussed in the following section. 
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Figure 1 (a) An embedded flaw in the wall of an RPV; (b) Weibull stress evolution at point D over a 
thermal-pressure transient; (c) Weibull stress evolution at point C over a thermal-
pressure transient; and (d) (σw- σmin)/( σu-σmin) over the crack front at t = 50 min of the 
thermal-pressure transient. 

3 3-D RPV Models and Results 

This section describes the geometry, material properties, thermal-pressure transients, and finite element 
models for an RPV with an axially embedded flaw. Discussions of the computational results focus on the 
evolution of constraint conditions along the crack front and the Weibull stress values that drive assess-
ment of the cumulative probability of cleavage fracture. 

3.1 Geometry 

Figure 2 shows the schematic configuration of a quarter-symmetric RPV model investigated in the current 
study. The vessel has this geometry: inner radius of the RPV intr = 1994 mm, wall thickness of wallt = 204 
mm, additional cladding thickness of 4 mm, and height of the cylindrical part of the RPV equals 7 m. The 

 19 
 
 



   
 

crack surface of the embedded, planar flaw aligns with the axial direction of the RPV. The elliptical axial 
flaw has an aspect ratio of 0.17a c =  with crack depth 2 17a = mm in the wall thickness direction. The 
inside edge of the axial crack lies a distance 2d = mm from the cladding (see Fig. 2) or 6 mm from the 
inner surface of the RPV. A previous investigation [30] using stochastic simulations demonstrates that 
this flaw size and location contributes significantly to the conditional probability of initiation (CPI). The 
inner surface of the base RPV has a thin, 4 mm layer of austenitic stainless steel to protect the base 
material (made of the ferritic steel) from corrosion. 

 

Figure 2 Geometric configuration of: (a) a quarter symmetric model of a reactor pressure vessel; 
and (b) an embedded flaw in the wall of the RPV. 

3.2 Material Properties 

The properties of the base material for the RPV are representative of an ASTM-A533B ferritic steel, with 
typical values of room temperature yield strength 500yσ = MPa, Young’s modulus GPa, and 
coefficient of thermal expansion (CTE) of 

193E =
614 10−×  o1 C . The austenitic stainless steel cladding has a 

room temperature yield strength 163yσ = MPa, Young’s modulus 157E = GPa, and a larger CTE value  
of  617 10−× o1 C .The severe mismatch in yield strength and the smaller mismatch in CTE between the 
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base material and the cladding steel create differential plastic deformation and thermal expansion near the 
base-cladding interface under combined thermal-mechanical loadings. Figure 3 shows the uniaxial true 
stress – logarithmic strain relationship for the ferritic base steel and the austenitic cladding steel. The 
maximum value of 2.0 for the logarithmic strain in the base steel improves convergence features of the 
solutions near the crack front which experiences large plastic deformations. The present analyses adopt 
temperature invariant material properties for the base and cladding steels. Temperature dependent 
material properties would not alter the conclusions on the applicability of various simplified models to 
compute the Weibull stress values. 

 

Figure 3 Room temperature, uniaxial, true stress-logarithmic strain relationships for: (a) the vessel 
wall (ferritic) steel characteristic of ASTM A533B; and (b) the austenitic stainless steel for 
the cladding. 

3.3 PTS Transient 

The current study considers a critical pressurized thermal shock (PTS) transient characterized by 
significant changes in both internal pressure and temperature of the coolant in contact with the inner 
surface of the RPV. This selected transient derives from a risk assessment program initiated by the Sandia 
National Laboratory to identify critical transients that create potential risks to the operation of RPVs [30]. 
Figure 4 illustrates the variation of internal pressure and coolant temperature with respect to time, 
computed by the RELAP5 code for the analysis of thermal-mechanical transients during accidental events 
[31]. In a previous study [29], this transient generates a more critical crack driving force, JK , than other 
plausible transients. Simple linear interpolation of these cooling temperatures and the internal pressures 
yields the smoothed thermal and mechanical loading histories for application in the fracture mechanics 
models. For the selected transient shown in Fig. 4, the coolant temperature decreases markedly from 
286oC at  to 430t = oC at  min. The internal pressure decreases from 15.9 MPa at  to 0.4 MPa 18t = 0t =
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at  min, and then remains at a constant value of 1 MPa for  min. The computational models 
described here impose a spatially uniform temperature of 286

20t = 21t >
oC and an internal pressure of 15.9 MPa at 

. 0t =

 

Figure 4 The PTS transient condition: (a) coolant temperature; and (b) internal pressure. Linear 
interpolations, indicated by the solid line, smooth these loading histories for input to the 
fracture analysis. 

 

Based on the coolant temperature histories shown in Fig. 4(a), the loading module in the fracture analysis 
code, FAVOR (Fracture Analysis of Vessels – Oak Ridge), computes the temperature variation over the 
wall thickness of the RPV for the entire transient history. The FAVOR code [4, 5], developed and 
maintained by the Oak Ridge National Laboratory, performs both probabilistic and deterministic (linear-
elastic) fracture analysis for reactor pressure vessels subjected to PTS and other thermal-mechanical 
events. FAVOR computes the temperature profile through the wall of an RPV over the time history of an 
event by solving the transient heat conduction equation for a 1-D axisymmetric finite element model of 
the combined cladding and base materials in the vessel wall. Figure 5 shows the variation of temperature 
over the normalized wall thickness, ( )nom int wallt r r t= − , at a time interval of 5 minutes. The thermal 
transient shows pronounced temperature decreases near the inner surface ( ) of the RPV for 

 min. The marked temperature decrease creates significant temperature gradients over material 
surrounding the elliptical crack located very near the inner surface of the RPV (see Fig. 2), and thus 
elevates crack-front stresses.  

0nomt →

10t >

3.4 Finite Element Models 

Preliminary analyses [29] revealed the inability of 8-node isoparametric (brick) elements to capture 
accurately the complex, nonlinear deformations in the crack front region under the combined thermal-
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pressure loading. The 8-node elements also failed to predict the IK variation along the crack front under 
linear-elastic conditions specifically for the thermal gradients imposed in these studies. The adoption of 
20-node isoparametric elements with reduced integration for the entire, quarter model of the RPV, as 
shown in Fig. 6, proved sufficiently accurate in a detailed mesh convergence study.  

 

 

Figure 5 Temperature variations over the wall thickness at time intervals of 5 minutes computed by 
the 1-D axisymmetric analysis in FAVOR. 
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Figure 6 The quarter-symmetric finite element model using 20-node brick elements for an RPV 
with an axially embedded elliptical flaw: (a) global model; (b) close-up view for the 
embedded crack with 30 elements along the semi-elliptical crack front; (c) each crack-
front position has 31 rings of elements; and (d) the initial root diameter of the crack front 
equals 6 µm. 

The presence of two planes of symmetry permits the use of a quarter-symmetric model. The use of an 
advanced, 3-D crack mesh generator, FEA-Crack [32], coupled with the mesh building-manipulation 
capabilities in MSC-Patran greatly streamlined and simplified the mesh construction process.  This 
procedure builds a detailed finite element model having a continuous transition from the crack-front mesh 
to the adjacent global mesh using only 20-node brick elements. The half-perimeter of the elliptical crack 
represented in the mesh contains 30 elements along the curved front, with 31 rings of elements 
surrounding each crack-front node. The first ring of elements defines an initial root radius of 3 μm to 
facilitate numerical convergence for the finite strain solutions early in the loading. The finite element 
model shown in Fig. 6 has 92,240 nodes and 20,800 (20-node) elements, with 4 layers of elements 
defined over the inner cladding steel. The model imposes full continuity on the interface between the 
cladding steel and the base material (i.e., the elements in the base material and those in the cladding share 
the same nodes on the base-cladding interface). The model constrains the out-of-plane displacements on 
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the planes of symmetry. A time-dependent pressure applied on the inner surface of the vessel simulates 
the mechanical transient indicated in Fig. 4(b). A simple code provides the temperature value at each node 
of the 3-D RPV model for a time interval of 1tΔ =  min, based on the variation of temperature over the 
wall thickness of the RPV shown in Fig. 5. Linear interpolations define the temperature values for nodes 
in between the points where temperature values are computed for the 1-D axisymmetric model in 
FAVOR. 

The computation of accurate Weibull stress values requires a significantly higher level of crack-front 
mesh refinement than is needed to compute just the elastic-plastic J-values. The Weibull stress value 
depends very strongly on the computed stresses at the peak stress location ahead of the blunting crack 
front. Computation of elastic-plastic J-values, however, employs domain-energy integrals evaluated 
largely over elements more distant from the crack front. For the RPV described above, a FE mesh with 
65,800 nodes and 14,900, 20-node elements (10 rings of elements surrounding each crack-front location) 
provides identical elastic-plastic J-values to those from the very refined model (with 31 rings of elements 
surrounding each crack-front location) presented in Fig. 6. An even more less-refined model very likely 
yields accurate J-values but was not investigated in this study. 

Finite element analyses of the 3-D models described above and analyses of the 2-D models described in 
subsequent sections are performed using the fracture mechanics research code WARP3D [31]. The Mises 
constitutive model with 2J  flow theory describes the nonlinear material response and element behavior 
follows the finite-strain formulation. An independent post-processing code computes the Weibull stress 
values based on the crack-front stress/strain fields obtained from the WARP3D analyses. The 
computation of Weibull stresses reflects the “history” effect whereby the probability of cleavage fracture 
does not decrease over the loading history, and therefore prohibits reductions in the computed Weibull 
stress in the event of unloading. The numerical procedures integrate the effective stress ( 1σ  in the current 
study) over the deformed volume of the fracture process zone, defined by a stress cutting parameter 2λ =  
(i.e., 1 2 0σ σ≥ ) to yield the Weibull stress values.  

3.5 Crack-Front Constraint 

Figure 7 shows the variation of IK , T and β values along the crack front for three different points in time 
of the PTS transient ( , 10 min and 18 min) computed from a linear-elastic analysis of the very 
refined, 3-D model of 20-node elements. 

0t =

IK , T-values are extracted using an interaction integral 
approach [33, 34] which adopts a superimposed equilibrium state consisting of the actual fields and 
auxiliary fields of displacements, stresses and strains. The auxiliary fields, corresponding to plane-strain 

IK  and T-stress, enable direct calculation of IK  and T-values for the actual, 3-D physical fields. The 
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analyses reveal a maximum IK -value at location B on the crack-front, the point nearest to the inner 
surface of the RPV. Between points B and A, the IK -values decrease and reach a minimum value on the 
crack front at point A. The IK -values increase again between points A and C. The high temperature 
gradient over the wall thickness caused by the thermal transient at 10t =  and 18 min continues to 
increase the  along the crack front, with the maximum   over the entire transient 
achieved at  min.  

-valuesIK -valuesIK
18t =

 

Figure 7 (a) Variation of the linear-elastic stress intensity factor; (b) variation of the linear-elastic 
T-stress; and (c) variation of the non-dimensional β ratio. 

On the basis of a linear-elastic analysis that considers only the effect of IK , the critical crack-front 
location becomes point B, which has the highest IK -value and the relatively lowest temperature, see Fig. 
5. The Weibull stress assessment described in the following section, which includes the effects of stress 
redistribution caused by plastic deformation and the corresponding effects on constraint, reveals that point 
C and adjacent material becomes the critical region on the crack front.  
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The elastic T-stress provides a first-order characterization for the levels of stress triaxiality within well 
contained, localized plastic deformation along the crack front.  Negative T-stress configurations, and 
locations with T < 0 along a 3-D crack front, experience lower crack-front triaxiality leading to often 
significant reductions of the opening-mode stress below the levels experienced in common (high 
constraint) fracture test specimens, e.g., C(T) and deep-notch SE(B)s.  Positive T-stress configurations 
and crack front locations with T > 0 maintain the triaxiality and opening-mode stress levels found in 
high constraint test specimens. The analyses here show a significant variation of T-stress over the crack 
front. For the internal pressure only which acts at 0t = , the entire crack front experiences negative T-
stresses indicating low crack-front constraint conditions. Once the thermal transient imposes a 
pronounced temperature gradient over the wall thickness (e.g. at 10t =  min and 18 min), the negative T-
stresses continue to decrease (more negative) in magnitude near points B and C. For the crack-front point 
A, the differential contraction in the longitudinal direction of the RPV caused by the thermal transient 
creates a relatively high positive T-stress, which maintains high constraint levels at the two ends of the 
elliptical crack, as shown in Fig. 7(b). 

The non-dimensional biaxiality ratio ( IT a Kβ π= ), shown in Fig. 7(c) for 0t = , 10 min and 18 min, 
reflects the first-order evolution of constraint conditions along the crack front under increasing IK  and T-
stress fields caused by the PTS transient. The decrease of internal pressure, coupled with the increase of 
temperature gradient over the wall thickness from 0t =  to 10t =  min, leads to higher levels of crack-
front constraint (less negative and higher positive values of β ).  The further increase in temperature 
gradient beyond  min does not cause a significant change in the 18t = -valueβ  compared to 10t =  min. 
Figure 7(c) demonstrates the very high crack-front constraint around point A and the low constraint near 
both points B and C. Notice that the crack-front region near point B (which the largest IK -value on the 
front) also experiences more constraint loss compared to the crack-front region near point C. 

3.6 Weibull Stress Values for the 3-D RPV model 

Procedures for preliminary engineering assessment adopt simplified approaches to compute the 
cumulative probability of fracture. A simplified Weibull stress approach, as discussed by Wasiluk et al. 
[29], utilizes a single value of the Weibull stress computed over the volume of material along the entire 
crack front as the crack-front loading parameter for each time during the transient. The microscale 
material toughness, uσ , then takes on the lowest value along the crack front, corresponding to the 
location with the lowest temperature (point B for the embedded flaw in Fig. 5). Figure 8(a) shows these 
“total” Weibull stress values computed for the entire crack front in the RPV model using three different 
values of the Weibull modulus m ( , 15 and 20). The sharp reduction of internal pressure at the onset 
of the PTS transient (as shown in Fig. 4(b)) coupled with relatively mild thermal gradient over the wall 

10=
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thickness for  (as shown in Fig. 5) relaxes the stress levels along the crack front. However, the 
Weibull stress value remains at a constant value due to the history effect up to  min (the history 
effect prohibits Weibull stress values from decreasing below a previously maintained maximum value). 
For  min, the more pronounced thermal gradient over the wall thickness elevates Weibull stress 
values in the RPV. Figure 8(a) shows the Weibull stress values up to 

0 t< < 9
9t =

9t >

18t =  min, at which time the 
Weibull stress attains its maximum value for the considered PTS transient and remains constant beyond 

 min.  18t =

 

Figure 8 (a) Evolution of the Weibull stress values computed over the entire perimeter of the crack 
for the transient history; and the variation of local (pointwise) Weibull stresses at t = 0, 10 
min and 18 min over the crack front for (b) m = 10; (c) m  = 15; and (d) m = 20. 

A more refined integrity assessment procedure of the RPV employs Eq. 7, which requires pointwise (or 
over small segments) values of the Weibull stress at locations along the entire crack front. The numerical 
procedure used here divides the half-perimeter of the elliptical crack front represented in the model into 
30 segments and computes the (local) Weibull stress values within each segment following Eq. 3. Figures 
8(b)-(d) compare the Weibull stress variation along the crack front at three times over the transient 
history, , 10 min and 18 min, respectively. The maximum value of Weibull stress occurs at the 0t =
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crack-front location furthest from the inner surface of the RPV, denoted as point C in Fig. 5; this location 
also experiences the highest temperature along the crack front. The Weibull stress at crack-front point B, 
which has the lowest temperature and thus the lowest material toughness, has a lower value compared to 
the wσ -value at point C. The maximum value of the local crack driving force represented by wσ  occurs at 
point C, which does not correspond to the maximum value of macroscopic crack driving force ( IK ) along 
the crack front as indicated in Fig. 7(a). The less negative value of the T-stress at point C, compared to 
that at point B, imposes a higher constraint on the plastic flow and thus maintains higher stress levels near 
point C. As indicated earlier in Fig. 1(d), the lower Weibull stress values at point B fall below the 
threshold Weibull stress value computed from a constant 20 MPa mminK = . Therefore, point B does not 
contribute to the total probability of fracture, even though the local material toughness, uσ , is the lowest 
along the entire crack front. Thermal-pressure transients with other characteristics may cause the 

-valuewσ  at point B to increase above w minσ − , and thus the contribution to the total probability of fracture 
at point B may become more significant than the contribution from point C. 

The Weibull stress near the two ends of the crack-front (point A) has quite small values in the initial stage 
of the transient (  and  min in Figs. 8(b)-(d)), where 0t = 10t = IK  also remains very small. As IK  
increases over the transient history, the strongly positive T-stress (shown in Fig. 7(b)) at point A ensures 
well-contained plasticity and continued high levels of stress triaxiality around the crack front. 
Consequently, the Weibull stress at point A corresponding to 20m =  (Fig. 8(d)) attains a slightly larger 
value than the -valuewσ  at point B, even though the  at point A is significantly smaller than that 
at point B, as indicated in Fig. 7(a). 

-valueIK

Larger m-values (>12-15) promote strongly the relative contribution of material right at the peak stress 
location ahead of the blunting crack front to the Weibull stress value. This minimizes any dependence of 
the -valuewσ  on the stress cutting parameter, λ [18, 29]. Wasiluk et al. [26], for example, calibrate an m-
value of 18-20 for the Euro RPV material (ASTM A508 steel) based on an extensive experimental study 
conducted by laboratories in European countries [27, 28]. The correctness of Weibull stress values 
computed using these larger m-values depends strongly on the accuracy of high stress values predicted in 
the peak stress region just ahead of the blunting front. Meshes of 20-node elements with the refinement 
level employed here seem necessary to achieve converged Weibull stress values in the RPVs for the 
combined pressure-thermal loadings. The Weibull stress values also reveal some sensitivity to details of 
the specified true stress – logarithmic strain curve for the base material given the large plastic strain levels 
that exist immediately behind the peak stress location.  
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4 2-D Modeling Frameworks and Results 

 
The Weibull stress results presented in the above section provide a set of high-quality, reference values to 
benchmark several proposed 2-D analysis procedures. The simplified 2-D models offer far greater 
computational efficiency together with reduced model construction effort. The refined 3-D, nonlinear 
analyses remain impractical for use in Monte Carlo style simulations increasingly employed to examine 
the stochastic effects of crack size, shape, location, material properties and PTS transients on vessel 
integrity.  

This section describes several 2-D frameworks to approximate the crack front conditions at key locations 
(e.g., B and C) for the axially-oriented, embedded flaws considered as critical cases for fracture 
assessment in RPVs. The objective is to identify a suitable 2-D modeling approach that enables accurate 
computation of Weibull stress values for the embedded RPV crack under different crack-front constraint 
conditions and subjected to thermal-mechanical loading transients. 

 

4.1 Modified Boundary Layer Model 

The leading two terms in the classical William’s solution [35], shown here in Eq. 8, demonstrates the 
similitude in the linear-elastic, crack-front stress fields for crack fronts subjected to identical IK  and T-
stress values,  

 ( ) ( ) 1 1,
2

I
ij ij i j

Kr f T
r

σ θ θ
π

= + δ δ  (8) 

where ijδ  represents the Kronecker delta with the subscript i and j range over (1,2). Subscript one defines 
the axis perpendicular to the crack front and parallel to the crack plane. The function ( )ijf θ  defines the 
angular variation of the singular stress field characterized by IK . The second term in Eq. 8, the elastic T-
stress, represents a constant compressive or tensile stress field parallel to the crack plane over the 
asymptotically small region surrounding the crack tip. As discussed previously, the magnitude and sign of 
T-stress affects the stress triaxiality within the plastic zone ahead of the crack tip under small-scale 
yielding conditions and consequently the stress triaxiality near the crack front. 

The conventional modified boundary layer (MBL) model consists of a planar, semicircular region of 
material loaded directly under remote  displacement fields. Under certain conditions, this model -IK T
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provides accurate descriptions displacement-strain-stress fields along 3-D crack fronts. Figure 9(a) shows 
the configuration of the MBL model subjected to a remotely imposed displacement field computed from 
the linear-elastic  values under the assumption of plane-strain behavior, -IK T

 ( ) ( )
21, cos 3 4 cos cos

2 2I
Ru R K T R

E E
υ θ υ1θ υ θ

π
+ ⎛ ⎞= − − +⎜ ⎟

⎝ ⎠
θ−  (9) 
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2 2I
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E E
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π
++ ⎛ ⎞= − − −⎜ ⎟

⎝ ⎠
θ  (10) 

where E denotes the Young’s modulus of the material and υ  refers to the Poisson’s ratio. The geometric 
parameter R measures the distance from the crack tip to the edge of the boundary layer model and θ 

defines the counter-clockwise angle from the horizontal x-axis as shown in Fig. 9(a). The radius R of the 
MBL model here equals 2.5 m, with the thickness of the model defined as 25 mm. The model shown in 
Fig. 9(a) has an initial root radius of 3 μm to facilitate numerical convergence of the finite-strain solutions 
early in the loading. The crack-front mesh in the MBL model has the same number of elements in the 
circumferential (θ ) direction and similar crack-front element sizes as those in the refined 3-D RPV 
model. The FE model in Fig. 9(a) utilizes 840 20-node brick elements and 6450 nodes, with out-of-plane 
displacements constrained to impose plane-strain conditions. The material properties follow the uniaxial 
stress-strain relationship shown in Fig 3(a) for the base material. 

Figures 9(b)-(d) compare the (opening mode) crack-front stress, yyσ , computed on  from the plane-
strain MBL model with stress fields at locations A, B and C of the 3-D crack front for two internal 
pressure ( ) levels. The remote displacement loadings imposed on the MBL models derive from Eqs. 9 
and 10 using 

0y =

intP

IK  and T-values at points A, B and C computed from the linear-elastic analysis of the 3-D 
RPV model. The horizontal axis in Figs. 9(b)-(d) measures the distance from the crack tip with respect to 

0J σ , where the opening displacement of the blunted crack tip is ( )01.5J σ≈  [36]. The pressure  in 
Fig. 9 denotes the initial pressure level at 

0P
0t =  of the transient as shown in Fig. 4(b), which generates 

relatively low stress fields near the crack front. To assess the MBL model for higher pressures and thus 
more extensive plasticity in the RPV, the analyses also impose 02intP P= . At the smaller load level of 

, the stress field near point A, with 0intP P= 10.7 MPa mIK =  and 0 0.06T σ = − , has not yet reached a 
self-similar solution as indicated by the peak stress location at a distance ( )0 10x J σ ≈  ahead of the 
crack tip (i.e., the 3 μm initial root radius in the model continues to influence the stress fields). As the 
internal pressure increases to , point A experiences a higher stress field with the linear-elastic 02P IK  and 
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T-stress values doubled. The 3-D RPV model and the plane-strain, MBL model now show closer 
agreement in yyσ -values computed near location A and with the peak stress at ( )0 2x J σ ≈ .  

 

Figure 9 (a) Configuration of the modified boundary layer (MBL) model; and crack-front stresses 
at Pint = P0 and Pint = 2P0 for (b) point A; (c) point B; and (d) point C; along the 3-D curved 
crack front. 

The crack-front locations B and C experience significant constraint loss compared to location A, as shown 
by the more negative 0T σ  values listed in Figs. 9(c) and 9(d). At the smaller internal pressure, 0intP P= , 
crack-front stresses in the MBL model agree very well with stresses from the 3-D RPV model. As the 
internal pressure increases to , the T-stress at location C approaches the yield stress of the base 
metal while at B the (linear-elastic) estimate of the T-stress exceeds the yield stress of the base metal — 
both values indicating the potential development of large-scale yielding. The peak stress location moves 
characteristically nearer to the blunted tip for reduced constraint, and the crack-front stress fields obtained 
from the MBL model now fall much lower than 3-D RPV stresses ahead of the peak stress location at 
both B and C. The large negative T-stress near locations B and C effectively invalidates adoption of the 
MBL to compute Weibull stress values for all but relatively low internal pressures (and 

02intP = P

IK -values).  
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The internal pressure acting on the cylindrical shape of the RPV creates a stress gradient over the wall 
thickness. The radial and circumferential stresses for a very long (or approximately plane-strain) 
cylindrical model subjected to internal pressures derive from plane elasticity as, 

 
2 2

2 2 21int ext
rr int

int ext

r rP
r r r

σ
⎛

= ⎜− ⎝ ⎠

⎞
− ⎟  (11) 

 
2 2

2 2 21int ext
int

int ext

r rP
r r rθθσ

⎛
= ⎜− ⎝ ⎠

⎞
+ ⎟  (12) 

where rrσ  denotes the radial stress and θθσ  defines the circumferential stress. The parameters  and  
refer to the internal and external radius of the RPV. The circumferential stress, 

intr extr

θθσ , acts as the opening 
stress on the embedded axial crack shown in Fig. 2(a), while the radial stress contributes to the 
compressive T-stress near the crack-front points B and C. For 02 31.8 MPaintP P= = , θθσ  varies from 

00.76σ  at the inner surface of the RPV to 00.68σ  at the outer surface of the RPV based on Eq. 12. These 
values of local stresses, together with the low plasticity constraint near the embedded crack front, cause 
significant redistribution of the crack-front stresses to the adjacent material and large-scale yielding. 

The “embedded” configuration of the elliptical flaw in the wall of a cylindrical RPV imposes significantly 
different conditions on the plasticity driven stress redistribution than exist in the MBL model. The 
idealized geometric configuration of a MBL model, subjected to  loadings, represents a single-
ended crack of infinite length contained in an infinite, plane-strain plate. As the plastic zone in the MBL 
model increases in size, the crack-front stress field never interacts with the geometric boundary of the 
model.  The (very) close by inner surface of the RPV and the low yield-strength cladding affect the stress 
re-distribution near the crack-front point B as the plastic zone at point B becomes comparable in size with 
the distance between point B and the inner surface of the RPV. Similarly, the MBL model does not reflect 
the interaction between the two crack-front stress fields as the plastic zones near points B and C of the 
RPV model grow larger, e.g., at a load level of 

-IK T

02intP P= . For an “embedded” flaw in a 2-D 
configuration, represented, for example, by the plane-strain M(T) model, Wang and Parks [37] found that 
this difference in stress redistribution near the crack fronts causes significant deviations in the crack-front 
stress fields of the M(T)  [embedded crack] model from that of the idealized MBL model subjected to the 
same IK  and T-stress. Other configurations with only one crack tip, including those with negative T-
stress, did not reveal this deviation, even to surprisingly high load levels [37].  
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4.2 Plane-Strain M(T) Model 

An M(T) model likely better represents the plasticity driven stress redistribution of the “embedded” flaw 
in the RPV based on results of the previous section. Figure 10(a) shows the schematic configuration of an 
M(T) model subjected to a remote, uniform axial stress. The M(T) specimen has a width 2W equal to the 
wall thickness of the RPV and a height 2H= 8W. The presence of two planes of symmetry permits the use 
of a quarter-symmetric model, as shown in Fig. 10(b), which has 1000, 20-node brick elements with 8000 
nodes. The crack-front mesh of the M(T) specimen closely matches the mesh of the 3-D RPV model and 
also has an initial root radius of 3 μm. The material properties follow the uniaxial stress-strain 
relationship shown in Fig 3(a) for the base material. Loading of the model occurs through uniform 
pressure applied on the far end as shown in Fig. 10(a).  Constraints on the out-of-plane displacements 
impose the plane-strain condition. 

For internal pressure acting alone on the RPV, the 3-D analyses determine a biaxiality ratio of β =  −1.01 
for location C on the crack front, see Fig. 7(c).  Handbook solutions for T-stress in standard specimens 
and several scoping analyses show that an 0 092a W .=  for this M(T) specimen provides the same value 
of β = −1.01. Figure 10(c) shows excellent agreement of the crack-front stresses, yyσ , obtained from this 
M(T) specimen and those from location C in the RPV model under the high level of internal pressure, 

02intP P= . This demonstrates the applicability of the M(T) model to approximate very accurately the 
stress redistribution for the embedded flaw in the RPV for a pressure transient.   

During the combined pressure-thermal transient, the spatial variation in temperature gradients over the 
wall thickness of the RPV, shown in Fig. 5, lead to a continuous variation in the β -value at locations 
along the crack front, including point C. The a W selected for the M(T) specimen must thus change 
accordingly to maintain the RPV value of β  in the presence of changing spatial variation of temperature 
gradient. Consider the PTS transient at 18t =  min. To match the RPV β -value at location C at 18t =  
min, the M(T) specimen must now have 0.123a W = . This M(T) model is loaded with the uniform, 
remote axial stress until IK  and the T-stress reach the RPV levels at location C, also at  min. Figure 
10(d) compares the opening-mode stress fields for the M(T) model with those for the RPV model. The 
comparison clearly is quite poor. 

18t =
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Figure 10 (a) Configuration of the M(T) model; (b) FE mesh for the M(T) model; comparison of the 
crack-front stress, σyy, from the plane-strain M(T) model and from the embedded crack 
in the 3-D RPV under: (c) internal pressure only; and (d) combined thermal-pressure 
transient. 

The discrepancy evident in Fig. 10(d) arises from the cumulative effects of plastic deformation and stress 
redistribution along the crack front in the RPV that occurs under continuously varying constraint levels 
caused by the changing spatial variation of temperature gradients during the PTS transient. The β-values 
provide the first-order characterization of this effect. Figure 11 compares the evolution of β-values at five 
locations along the RPV crack front over the transient history. Points B and C correspond to the 
maximum crack width and where the crack front remains relatively straight (or “flat”) in the φ  direction. 
The crack front locations near points D and E are relatively more “curved” in the φ  direction compared 
to points B and C, as shown in Fig. 11(c). For crack-front points between B and E with low constraint at 

 (pressure only), the thermal transient increases slightly the crack-front constraint over the time from 
 to  min. For point A, with initially higher crack-front constraint at 

0t =

0t = 18t = 0t = , the thermal transient 
increases significantly the crack-front constraint from a small negative T-stress at  to a large positive 
T-stress at  min (recall that 

0t =

18t = IK -values are also much lower in this region). As Fig. 10(c) shows 
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clearly, the M(T) model with a fixed β -value overestimates the constraint loss near point C of the 3-D 
curved crack front in the RPV subjected to a thermal-pressure transient.  

 

Figure 11 Evolution of the T-stress biaxiality ratio, β, over the PTS transient history at: (a) points B, 
C, D, and E with low constraints; (b) point A with high constraints; and (c) locations of 
the different crack-front points. 

The plane-strain, M(T) configuration provides an excellent 2-D model to approximate the crack-front 
stress fields of the embedded RPV flaw but only for an internal pressure transient. Under this restriction, 
the RPV β -values remain invariant of the applied loading history. For the more practical case of 
combined pressure-thermal transients, the results here show that the M(T) configuration does provide a 
suitable 2-D, simplified model. 

 

4.3 2-D RPV Model 

The detailed 3-D analyses demonstrate that the elongated shape of the axially-oriented, embedded flaw in 
the RPV ( a c =0.17) have minimal effect at the mid-height of the crack (points B and C). This leads to 
consideration of a 2-D, axial cross-section for the cylindrical vessel taken through the center of the RPV 
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crack, see Fig. 12(a). The model includes the cladding layer and has an embedded crack of length 2a 
located at the same through-wall position as the 3-D RPV crack across points B and C. The plane-strain, 
finite element mesh shown in Fig. 12(a), has one-layer of brick elements extracted from the 3-D RPV 
model and therefore has exactly the same mesh as the 3-D model for the crack-front locations considered. 
The equivalent 2-D RPV model shown in Fig. 12(a) has 1110, 20-node elements with 8390 nodes. 
Constraints on the out-of-plane displacements again impose plane-strain conditions. The material 
properties follow the two uniaxial, stress-strain curves in Figs. 3(a) and 3(b) for the base material and for 
the cladding austenitic steel, respectively. The loading consists of the thermal-pressure transient described 
in Fig. 4. The model requires only a few minutes to compute the full nonlinear solution for the PTS 
transient and thus becomes feasible for use in the stochastic studies. 

 

Figure 12 (a) Finite element meshes for a plane-strain, RPV model (actually a 3-D model with one-
layer of elements and plane-strain constraints); and comparison of the crack-front stress, 
σyy, computed from the plane-strain RPV model and from the 3-D RPV model: (b) at the 
crack-front point B; and (c) at the crack-front point C. 

Figures 12(b) and 12(c) compare the crack-front stresses, yyσ , near points B and C obtained from the 
simplified, plane-strain RPV model and those from the 3-D RPV model at t = 18 min in the thermal-
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pressure transient. The crack-front stresses, yyσ , from the plane strain model for the RPV exhibit very 
close agreement with those from the 3-D analyses. This plane-strain RPV model thus reproduces (both the 
in-plane and the out-of-plane) constraint levels near the embedded, elliptical crack in the 3-D RPV model 
subjected to a thermal-pressure transient. The ( )g M  function in Eq. 6, calculated from stress fields for 
this simplified RPV model, then quantifies the effects of constraint loss experienced along the 
corresponding crack-front in the 3-D RPV model. This plane-strain RPV model proves to be an 
appropriate and computationally inexpensive, 2-D alternative model to compute the Weibull stress at 
locations with low constraint along the 3-D embedded crack front. 

4.4 Weibull Stress Approximation Using 2-D Models 

For crack-front locations with low constraint ( 0β < ) in an RPV subjected to combined thermal-pressure 
transients, the Weibull stress values derived from the elastic-plastic analysis of a 2-D (plane-strain) RPV 
model appear quite accurate. The very similar boundary constraints and the identical loading conditions 
imposed on the 2-D and 3-D RPV model lead to a quite similar level of constraint loss experienced by 
locations away from ends of the elliptical crack. The crack-front stress fields near points B and C 
therefore maintain a similar relationship between the (non-dimensional) opening stress, 0yyσ σ , and the 
(non-dimensional) crack-tip distance, ( )0x J σ , as shown in Fig. 12. However, adjacent layers of 
elements in the 3-D RPV model provide additional material to resist the crack-front loading, and therefore 
reduce the pointwise JK -values computed from the 3-D RPV model compared to those from the 2-D 
RPV model, as demonstrated in Fig. 13. The higher JK -values in the 2-D RPV model (20% higher at 
points B and C of the 3-D RPV model at 18t =  min) increases the Weibull stress value, and leads 
consequently to a conservative estimate of the cumulative probability of fracture. A 20% overestimation 
of JK -values in this case leads to a 4% overestimation of the wσ -value for an m of 20.  

With elastic-plastic JK -values computed from the 2-D and 3-D RPV models, the following steps detail 
the procedure to approximate the Weibull stress values near the front in the 3-D RPV model: 

1)  Compute the constant  from the standard, plane-strain boundary layer model (BLM) with the 
base metal material properties for 

( )C m%

IK (T = 0) loading with the expression, 

 4

m
w

BLM BLM

C
L K

σ
=%  (13) 
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  reaches a constant value as crack-front stresses attain a self-similar state with increased loading of 
the model. Here, 
C%

BLM IK K= , and BLML denotes the length of the crack front in the finite element mesh 
for the boundary layer model (often 1BLML = in FE models using 2-D elements rather than the 1 layer 
of 3-D elements adopted here) 

 

Figure 13 Evolution of the elastic-plastic JK  -values over the transient history computed from the 
plane-strain RPV model and from the 3-D RPV model for: (a) point B; and (b) point C; 
along the curved crack front. 

2)  Post-process stress fields computed for the 2-D RPV model at each time increment over the loading 
history. Compute the Weibull stress values for each tip of the embedded crack and then calculate the 
constraint correction function g(M, t, m) for each crack tip over the transient history (t) using, 

 ( ) ,2
4

2 , , 2

, ,
m
w D RPV

D RPV J D RPV

g M t m
CL K

σ −

− −

= %  (14) 

 Here, the nonlinear  are those computed at crack tips in the 2-D RPV model under the 
pressure-thermal transient. 

-valuesJK

2 ,D RPVL −  denotes the length of the crack front in the finite element mesh 
for the 2-D, RPV model (often 2 ,D RPVL − =1 in FE models using 2-D elements). 

3)  The “local” Weibull stress values at the corresponding crack-front location of the 3-D RPV model 
over the transient history, therefore has the form, 

 ( )4
, 3 3 , , 3 , ,m

w D RPV D RPV J D RPVCL K g M t mσ − − −= %  (15) 
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Here, 3 ,D RPVL −  denotes the length of the crack segment of interest located at some position on the 3-D 
crack front. 

4)  Repeat the above steps to compute Weibull stress values at other locations along the 3-D crack front 
that also have negative β -values. 

Figure 14 compares the Weibull stress values estimated via Eqs. 13-15 using (a) the constraint function, 

( )g m , derived as described here from the 2-D RPV model and (b) 3-D JK -values with the Weibull 
stress values computed from the full 3-D RPV model for four crack-front locations B, C, D and E. Two 
different plane-strain RPV models are used corresponding to the slightly different crack lengths from 
locations B to C and from D to E. To construct these comparisons, the thicknesses specified for the two 2-
D RPV models equal the length of the crack-front segment at points B and C, and D and E (i.e., 

2 , 3 ,D RPV D RPVL L− = ), respectively. The Weibull stresses calculated from the constraint correction function 
obtained from the 2-D RPV model provide highly accurate estimates for the -valueswσ  both for relatively 
straight crack-front locations (B and C) and for more strongly curved crack-front locations (D and E).  

 

Figure 14 Evolution of the Weibull stress over the transient history computed from the plane-strain 
RPV model and from the 3-D RPV model for: (a) point B; (b) point C; (c) point D; and 
(d) point E; along the curved crack front. 
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For locations with high constraint ( β ≥ 0) along the 3-D crack front, the conventional MBL model 
proves accurate for computation of Weibull stress values. The MBL model is subjected to the 
combination of IK  and T-stress loading generated by the β -value at the location of interest on the 3-D 
crack front. Using C  defined in Eq. 13 obtained from the boundary layer analysis, the Weibull stress at a 
crack front location in the 3-D RPV model follows as,  

%

  (16) 4
,3 3 , , 3

m
w D RPV D RPV J D RPVCL Kσ − − −= %

where 3 ,D RPVL −  denotes the length of the crack-front segment of interest at the high-constraint location. 
Here also, JK  defines the local value of the elastic-plastic, crack-front driving force. Figure 15 
demonstrates the excellent agreement between the Weibull stress value obtained from the plane-strain 
MBL model and that near point A in the 3-D RPV model.  

 

Figure 15 Evolution of the Weibull stress over the transient history computed from the plane-strain 
2-D RPV model and from the 3-D RPV model for point A along the curved crack front.   
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For crack-front locations (points B, C, D and E) with low constraint in the 3-D RPV model, the Weibull 
stress computed from the 2-D RPV model at 18t =  min achieves greater than 99% accuracy compared to 
the Weibull stress values computed from the 3-D RPV model. For crack-front locations (point A) with 
relatively high constraint, the difference in the Weibull stress values at 18t =  min computed from Eq. 16 
and from the 3-D RPV model is less than 1%. 

The computation of Weibull stress values for the 3-D crack-front locations with very low constraint 
utilizes the ( )g m function derived from 2-D RPV models, see Eq. 14. This procedure requires 
specification of the elastic-plastic JK -value and a crack-front length for the actual 3-D crack-front 
geometry. The m

wσ -value in Eq. 15 has a linear relationship with the crack-front length, which affects the 
volume of the fracture process zone. The accuracy of the pointwise Weibull stress values for the 3-D RPV 
crack front increases with the number of crack-front segments that are approximated using the 2-D RPV 
model. Approximate procedures may divide the entire elliptical crack front (half of the elliptical crack 
front is shown in Fig. 2) into four segments: two segments centered over points B and C with low 
constraint (negative T-stresses) and two segments centered over the two ends of the ellipse, e.g., point A, 
with high constraint (positive T-stresses). Consequently, the assessment procedure computes the 
cumulative probability of fracture using four values of the local Weibull stress along the entire crack 
front, following Eq. 7. The Weibull stress value (Eq. 15) for the low-constraint, crack-front region adopts 
a value of 3 ,D RPVL −  equal to the length for the relatively straight crack front, e.g., 0.8(2c), with c shown in 
Fig. 2. With a selected (or unit) thickness of the 2-D RPV model, the 3-D Weibull stress for the relatively 
straight crack front becomes, 

 
4

3 ,3
,3 ,2

2 ,2

D RPV J D RPVm m
w D RPV w D RPV

D RPV J D RPV

L K
L K

σ σ − −
− −

− −

⎛ ⎞
= ⎜⎜

⎝ ⎠
⎟⎟  (17) 

The elastic-plastic JK -values have the maximum value in each crack-front segment corresponding to the 
largest crack depth, e.g., point B for the crack-front segment near the inner surface of the RPV and point 
C for the crack-front segment near the outer surface. These JK -values yield an estimated Weibull stress 
value larger than the local Weibull stresses computed from a detailed 3-D RPV model, and leads to a 
conservative prediction of the cumulative probability of fracture. The Weibull stress value for the two 
(more curved) crack-front segments with a positive T-stress derives from the boundary layer model 
subjected to IK  only (zero T-stress) and a 3 ,D RPVL −  value equal to the length of the curved crack front, 
using Eq. 16. 
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The Weibull scaling parameter, uσ , in each crack-front segment follows from ( )0u w JK Kσ σ= = , where 
 in each segment follows the Master Curve using temperature variations at points B, C and A [25]. The 

time-dependent temperature, defined by the thermal transient as a function of the radius of the RPV, does 
not vary significantly within the crack-front segment around point B or within that around point C. The 
temperature at point A represents an average (temperature and therefore 

0K

uσ ) value in the corresponding 
crack-front segment. The threshold Weibull stress value may take a temperature independent value 
derived from a constant  of 20 minK MPa m  as specified in E-1921. 

 

5 Summary and Conclusions 

 
This study investigates 2-D and 3-D, nonlinear modeling procedures for a planar, embedded flaw located 
in the wall of a reactor pressure vessel (RPV). The analyses provide mechanical response data 
(displacement, strain, stress) to support computation of the Weibull stress ( wσ ) values along the curved 
crack front for structural integrity assessments against cleavage fracture failure. The RPV considered here 
contains a credible, maximum size flaw idealized as an embedded ellipse having dimensions 2 1a 7=  mm 
and 0.17a c = , with the crack surface remaining parallel to the longitudinal axis of the RPV. The crack 
is located near the inside wall of the vessel adjacent to the austenitic steel cladding. The imposed 
pressure-thermal transient derives from simulations of a critical pressurized thermal shock event (PTS) 
triggered by a loss of coolant accident. The PTS transient causes significant overcooling initiated from the 
internal surface of the RPV, coupled with a pronounced reduction in the internal pressure at the initial 
stage of the transient. The exceptionally detailed, 3-D nonlinear analyses of the RPV provide benchmark 
values of the Weibull stress for assessment of three, simplified plane-strain models which include: the 
modified boundary layer model (MBL), the M(T) model and the 2-D RPV model. The simplified models 
will prove critical for computational practicality in expanded studies to consider the stochastic variability 
of flaw sizes, flaw location, material properties and thermo-mechanical loading.  

The present study supports the following observations and conclusions: 

(1)  The thermal-mechanical transient imposed on the RPV generates significant variations in both the 
macroscopic crack driving force, JK , and the microscopic crack driving force, wσ , along the 3-D 
curved crack front. The location of the maximum wσ -value does not correspond to the location of 
the maximum JK -value due to significant variability in the plasticity driven constraint conditions 
along the crack front. Further complications will arise in applications from the temperature gradient 
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over the wall thickness, which requires corresponding variations in the Weibull material parameters, 

uσ  and w minσ − , along the crack front. 

(2)  The very detailed 3-D analyses to obtain Weibull stress values over the complete crack front reveal 
that only a few, critical segments along the crack front (away from the ends) actually contribute to 
the cumulative probability of cleavage fracture. Weibull stress (and JK ) values elsewhere fall near 
or below threshold levels or are small relative to peak values that act over larger volumes of material. 
These observations motivate the development of simplified 2-D models to compute the Weibull 
stress values that predict the same cumulative failure probabilities obtained from the full, 3-D 
analyses. 

(3)  For the crack size, shape, location and thermal-mechanical loading considered here, the T-stress 
remains quite negative ( 0.5β < − ) over the crack front except for very small portions at the two ends 
of the crack. For this embedded flaw, the modified boundary layer model (MBL) fails to correctly 
predict the effects of stress redistribution under increased plastic deformation in the same manner 
that it also fails to model a simple M(T) specimen. For far-field loading caused by internal pressure 
acting alone on the vessel, the crack-front opening mode stresses, yyσ , computed from the MBL 
model fall increasingly below the values from the 3-D RPV model for increased loading levels above 
a normal operating pressure. 

(4)   A plane-strain model of an M(T) specimen, with a crack length 2a that yields β  matching the RPV 
crack-front location and remote (uniform) tensile stress that matches the axial stress in the RPV from 
internal pressure, predicts very closely the crack-front stress, yyσ , obtained in the 3-D detailed 
analyses. The agreement holds to internal pressures at least twice the normal operating pressure and 
applies at the most critical locations along the 3-D crack front. The M(T) model applies quite well 
since the β -value for the RPV and M(T) both remain equal and constant for no thermal transients. 
Addition of the thermal transient causes the RPV β -value to vary significantly over the loading 
history and invalidates the M(T) approximation for the combined thermal-mechanical loading. 

(5)  The plane-strain RPV model represents very accurately the evolution of plasticity-driven constraint 
conditions predicted by the 3-D RPV model over the combined thermal-pressure transient. The 
crack-front opening stress, yyσ , shows excellent agreement with values computed near the 
corresponding crack-front locations in a 3-D RPV model. This model represents only a marginal 
increase in complexity and computational effort compared to the M(T) approximation. 
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(6)  For an RPV subjected only to internal pressure loading, highly accurate Weibull stress values are 
obtained from the M(T) approximation via Eq. 6. The constraint correction function, g(M), follows 
from the M(T) model subjected to same JK  and T-stress as the corresponding crack front location in 
the 3-D RPV. For an RPV subjected to a thermal-pressure transient, highly accurate Weibull stress 
values are  obtained using the g(M) function derived from the 2-D RPV model and the elastic-plastic 

JK -value obtained from the 3-D RPV model. 

(7)  For pressure-thermal loading, the conventional MBL model proves very applicable to compute 
Weibull stress values at 3-D crack front locations having a positive T-stress. 
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