
Protected under CASL Multi-Party NDAv

Plan of Record
Period 2: January–June 2011

Volume 1

MOC Efficiency
Improvements Using a Jacobi

Inscatter Approximation

Shane Stimpson, Oak Ridge National Laboratory
Benjamin Collins, Oak Ridge National Laboratory
Brendan Kochunas, University of Michigan

August 31, 2016

CASL-U-2016-1056-002

This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department
of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for the United States Government purposes. The Department
of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public

Access Plan (http://energy.gov/downloads/doe-public-access-plan).

http://energy.gov/downloads/doe-public-access-plan

MOC Efficiency Improvements Using a Jacobi Inscatter Approximation

CASL-U-2016-1056-002 iii Consortium for Advanced Simulation of LWRs

REVISION LOG

Revision Date Affected Pages Revision Description

0 03/23/2016 All Original Report

1 03/30/2016 5 Updated Memory Profiling Table

2 08/31/2016 All Cleared PTS

Document pages that are:

Export Controlled NO

IP/Proprietary/NDA Controlled NO

Sensitive Controlled NO

Approved for Public Release YES

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or any agency
thereof.

MOC Efficiency Improvements Using a Jacobi Inscatter Approximation

Consortium for Advanced Simulation of LWRs iv CASL-U-2016-1056-002

ACRONYMS

GS Gauss-Seidel

J Jacobi

MOC Method of Characteristics

ORNL Oak Ridge National Laboratory

TCP0 Transport-Corrected P0

VERA Virtual Environment for Reactor Applications

MOC Efficiency Improvements Using a Jacobi Inscatter Approximation

CASL-U-2016-1056-002 1 Consortium for Advanced Simulation of LWRs

DESCRIPTION

In recent weeks, attention has been given to resolving the convergence issues encountered with TCP0

by trying a Jacobi (J) inscatter approach when group sweeping, where the inscatter source is

constructed using the previous iteration flux. This is in contrast to a Gauss-Seidel (GS) approach,

which has been the default to-date, where the scattering source uses the most up-to-date flux values.

The former is consistent with CASMO, which has no issues with TCP0 convergence [1]. Testing

this out on a variety of problems has demonstrated that the Jacobi approach does indeed provide

substantially more stability, though can take more outer iterations to converge. While this is not

surprising, there are improvements that can be made to the MOC sweeper to capitalize on the Jacobi

approximation and provide substantial speedup. For example, the loop over groups, which has

traditionally been the outermost loop in MPACT, can be moved to the interior, avoiding duplicate

modular ray trace and coarse ray trace setup (mapping coarse mesh surface indexes), which needs to

be performed repeatedly when group is outermost. Figure 1 shows the pseudocode for Gauss-Seidel

sweeping with group being the outermost loop (as implemented in MPACT):

Figure 1. Pseudocode for Gauss-Seidel Sweeping with Group on Outermost Loop

As can be seen, the work to setup the modular rays and determine the coarse mesh surfaces (all of

which are group-independent) is duplicated for each group (line 3). This layout is necessary for the

Gauss-Seidel approach since each group must be completely solved so the inscatter source for the

next group can be updated. A Jacobi inscatter approach can also use group as the outermost loop,

but in this memo, Gauss-Seidel will be the only one with group as outermost.

Figure 2 similarly shows the Jacobi approach with the group on the innermost:

MOC Efficiency Improvements Using a Jacobi Inscatter Approximation

Consortium for Advanced Simulation of LWRs 2 CASL-U-2016-1056-002

Figure 2. Pseudocode for Jacobi Sweeping with Group on Innermost Loop

Now, the modular ray connections and coarse mesh surfaces are only calculated once per kernel call

and avoids the duplication over groups. However, this restricts the ability to update inscatter sources

since all groups are being solved at once, and when the sources are setup, they are all using the

multigroup flux solution from the previous iteration.

It is also important to note that the variables for storing the angular fluxes were refactored to provide

better access efficiency by moving the group index to the innermost index. This subsequently

required an extension of the boundary parallel communication routines to pass multiple groups of

data at once, instead of only one group at a time, leading to larger buffers and likely less

communication overhead.

The performance of these two approaches has been tested on three cases, all from the VERA

progression problem suite [2]: 1) a single quarter assembly lattice [VERA Problem 2a, Figure 3] and

2) a 2D slice of the 3x3 assembly cluster [VERA Problem 4a-2D, Figure 4], and 3) a 2D quarter core

model [VERA Problem 5a-2D core layout in Figure 5]. It is worth noting that the 5a-2D case also

includes baffle and reflector regions that are not included in the figure. All cases used a 0.05 cm ray

spacing, 16 azimuthal angles per octant, and 2 polar angles in a Tabuchi-Yamamoto [3] quadrature

with 3 radial rings in the fuel and 8 azimuthal divisions. Additionally, all cases used a 47-group

cross section library generated by ORNL [4].

MOC Efficiency Improvements Using a Jacobi Inscatter Approximation

CASL-U-2016-1056-002 3 Consortium for Advanced Simulation of LWRs

Figure 3. Geometry Visualization of VERA Problem 2a [2]

Figure 4. Geometry Visualization of VERA Problem 4a-2D [2]

In Figures 3 and 4, the red pins denote 2.1% enriched fuel pins and green denotes 2.6%. It can also

be seen that there are several pyrex rods (red annular regions with white center) in the 2.6% enriched

assemblies.

MOC Efficiency Improvements Using a Jacobi Inscatter Approximation

Consortium for Advanced Simulation of LWRs 4 CASL-U-2016-1056-002

Figure 5. Geometry Visualization of VERA Problem 5a-2D [2]

Two different machines were used to analyze the first two problems, one with AMD processors

(Opteron
TM

 Processor 6376, 2.3 GHz) and the other with Intel® processors (Xeon® CPU E5-

1650v3, 3.2 GHz). Below are the results for Problem 2a (Table 1), showing the timing (in

nanoseconds per integration) for two kernels (one with and the other without current tallies). The

number of integrations is determined by tallying the number of ray segments (across all angles and

longrays), multiplying by the number of groups and polar angles. There is also an additional 2x

multiplier to account for the fact that forward and backward directions are swept simultaneously.

For example, this case had 715,675 ray tracing segments or a total of ~134.5 million integrations).

The timing values that are reported were averaged over all kernel instantiations over 10 iterations.

Both 2a and 4a-2D were run on only one process.

On the AMD machine, modest performance improvements are observed in the kernel without

currents (1.4x speedup), but the kernel with currents yields a speedup of over 2.7x. On the Intel

machine, the speed ups are a bit lower, though still substantial.

Table 1. Timing Results for Problem 2a

AMD (2.3 GHz) Intel (3.2 GHz)

ns/integration

Ratio

ns/integration

Ratio GS J GS J

Kernel w/o Currents: 7.39 5.38 1.37 3.52 2.92 1.21
Kernel w/ Currents: 15.65 5.78 2.71 6.58 3.25 2.03

MOC Efficiency Improvements Using a Jacobi Inscatter Approximation

CASL-U-2016-1056-002 5 Consortium for Advanced Simulation of LWRs

Similar results are observed on Problem 4a-2D, which is not very surprising (Table 2). The case had

6.54 million ray tracing segments (1.23 billion integrations), which is slightly more than 9x the

segments in Problem 2a because of the pyrex inserts in the 2.6% enriched assemblies.

Table 2. Timing Results for Problem 4a-2D

AMD (2.3 GHz) Intel (3.2 GHz)

ns/integration

Ratio

ns/integration

Ratio GS J GS J

Kernel w/o Currents: 7.60 5.33 1.42 3.95 3.36 1.18
Kernel w/ Currents: 14.80 5.90 2.51 7.02 3.71 1.89

5a-2D was run on the Titan supercomputer [5], on which each 16-core node contains 2.2 GHz AMD

Opteron
TM

 6274 (Interlagos) processors, using 73 and 257 spatial parallelization processors. Table 3

shows the sweeping results (excluding communication) in terms of core-min/iteration. Since the

goal with the Jacobi sweeper is to use only 1 inner iteration, the results here are basically a

comparison of the sweep times for the kernel with currents. Additionally, because the GS sweeper

demonstrates issues with TCP0 when using only 1 inner iteration, P0 scattering was used to ensure

stability, while still enabling an equal comparison. It is also important to note that the J iteration

strategy generally requires a few more iterations to achieve the same level of convergence as the GS

solver. Using Problems 2a and 4a as a guide, we can roughly estimate that 5a-2D has roughly 187

million segments (35 billion integrations).

Table 3. Timing Results for Problem 5a-2D

73 Spatial Domains 257 Spatial Domains

GS J Ratio GS J Ratio

MOC Solver Time
(core-min/iteration):

14.61 5.94 2.45 11.87 5.02 2.36

However, these notable speedups do incur some cost in terms of the memory burden. Table 4 shows

the total memory required for each of the problems presented (in gigabytes, GB). With the GS

sweeper, only one group of source data is necessary at a time and only the incoming angular flux

needs to be stored for all groups. For the J sweeper, though, the source data for all groups needs to

be set up at once and both the incoming and outgoing angular flux variables need to be stored for all

groups. As a result, the J sweeper requires between 15-20% more overall storage than the GS

sweeper. For our target applications, this is likely acceptable, but something to consider when

deploying to new machines, or as spatial domain sizes increase in some applications. It is also worth

noting that these memory requirements were collected where the transport solvers used to

performance the self-shielding and eigenvalue calculation are completely separate, so two sweepers

are initialized.

Table 4. Total Memory Requirements (GB) for Test Problems

GS J Ratio

Problem 2a 0.20 0.23 1.15

Problem 4a-2D 0.88 1.02 1.15

Problem 5a-2D (73 Spatial) 23.74 28.40 1.20

Problem 5a-2D (257 Spatial) 37.42 44.67 1.19

MOC Efficiency Improvements Using a Jacobi Inscatter Approximation

Consortium for Advanced Simulation of LWRs 6 CASL-U-2016-1056-002

Additional work is investigating how to fully incorporate these new kernels into the self-shielding

calculation, which presently is still sweeping over one group at a time.

REFERENCES

[1] Kord Smith, personal communication (2015).

[2] A. Godfrey, “VERA Core Physics Benchmark Progression Problem Specifications”, Revision

4, CASL-U-2012-0131-004, Revision 4, CASL, August 29, 2014.

http://www.casl.gov/docs/CASL-U-2012-0131-004.pdf

[3] A. Yamamoto et al., “Derivation of Optimum Polar Angle Quadrature Set for the Method of

Characteristics Based On Approximation Error for the Bickley Function,” Journal of Nuclear

Science and Technology, Vol. 4, No. 2, p. 129-136 (2007).

[4] K. S. Kim et al., “Development of a New 47-Group Library for the CASL Neutronics

Simulators,” Proc. M&C 2015, Nashville, Tennessee, April 19–23 (2015).

[5] Oak Ridge Leadership Computing Facility. “Introducing Titan - The World's #1 Open Science

Supercomputer” (2014), http://www.olcf.ornl.gov/titan/.

http://www.casl.gov/docs/CASL-U-2012-0131-004.pdf

