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ACRONYMS  

GS                         Gauss-Seidel 

J                             Jacobi 

MOC                     Method of Characteristics 

ORNL Oak Ridge National Laboratory 

TCP0                      Transport-Corrected P0 

VERA Virtual Environment for Reactor Applications 
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DESCRIPTION 

In recent weeks, attention has been given to resolving the convergence issues encountered with TCP0 

by trying a Jacobi (J) inscatter approach when group sweeping, where the inscatter source is 

constructed using the previous iteration flux.  This is in contrast to a Gauss-Seidel (GS) approach, 

which has been the default to-date, where the scattering source uses the most up-to-date flux values.  

The former is consistent with CASMO, which has no issues with TCP0 convergence [1].  Testing 

this out on a variety of problems has demonstrated that the Jacobi approach does indeed provide 

substantially more stability, though can take more outer iterations to converge.  While this is not 

surprising, there are improvements that can be made to the MOC sweeper to capitalize on the Jacobi 

approximation and provide substantial speedup.  For example, the loop over groups, which has 

traditionally been the outermost loop in MPACT, can be moved to the interior, avoiding duplicate 

modular ray trace and coarse ray trace setup (mapping coarse mesh surface indexes), which needs to 

be performed repeatedly when group is outermost.   Figure 1 shows the pseudocode for Gauss-Seidel 

sweeping with group being the outermost loop (as implemented in MPACT): 

 

Figure 1. Pseudocode for Gauss-Seidel Sweeping with Group on Outermost Loop 

 

As can be seen, the work to setup the modular rays and determine the coarse mesh surfaces (all of 

which are group-independent) is duplicated for each group (line 3).  This layout is necessary for the 

Gauss-Seidel approach since each group must be completely solved so the inscatter source for the 

next group can be updated.  A Jacobi inscatter approach can also use group as the outermost loop, 

but in this memo, Gauss-Seidel will be the only one with group as outermost. 

 

Figure 2 similarly shows the Jacobi approach with the group on the innermost: 

 

 



MOC Efficiency Improvements Using a Jacobi Inscatter Approximation  

 
 

Consortium for Advanced Simulation of LWRs 2 CASL-U-2016-1056-002 

Figure 2. Pseudocode for Jacobi Sweeping with Group on Innermost Loop 
 

Now, the modular ray connections and coarse mesh surfaces are only calculated once per kernel call 

and avoids the duplication over groups.  However, this restricts the ability to update inscatter sources 

since all groups are being solved at once, and when the sources are setup, they are all using the 

multigroup flux solution from the previous iteration. 

 

It is also important to note that the variables for storing the angular fluxes were refactored to provide 

better access efficiency by moving the group index to the innermost index.  This subsequently 

required an extension of the boundary parallel communication routines to pass multiple groups of 

data at once, instead of only one group at a time, leading to larger buffers and likely less 

communication overhead. 

 

The performance of these two approaches has been tested on three cases, all from the VERA 

progression problem suite [2]: 1) a single quarter assembly lattice [VERA Problem 2a, Figure 3] and 

2) a 2D slice of the 3x3 assembly cluster [VERA Problem 4a-2D, Figure 4], and 3) a 2D quarter core 

model [VERA Problem 5a-2D core layout in Figure 5].  It is worth noting that the 5a-2D case also 

includes baffle and reflector regions that are not included in the figure.  All cases used a 0.05 cm ray 

spacing, 16 azimuthal angles per octant, and 2 polar angles in a Tabuchi-Yamamoto [3] quadrature 

with 3 radial rings in the fuel and 8 azimuthal divisions.  Additionally, all cases used a 47-group 

cross section library generated by ORNL [4]. 
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Figure 3. Geometry Visualization of VERA Problem 2a [2] 

 

 
Figure 4. Geometry Visualization of VERA Problem 4a-2D [2] 

 

In Figures 3 and 4, the red pins denote 2.1% enriched fuel pins and green denotes 2.6%.  It can also 

be seen that there are several pyrex rods (red annular regions with white center) in the 2.6% enriched 

assemblies. 
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Figure 5. Geometry Visualization of VERA Problem 5a-2D [2] 

 

Two different machines were used to analyze the first two problems, one with AMD processors 

(Opteron
TM

 Processor 6376, 2.3 GHz) and the other with Intel® processors (Xeon® CPU E5-

1650v3, 3.2 GHz).  Below are the results for Problem 2a (Table 1), showing the timing (in 

nanoseconds per integration) for two kernels (one with and the other without current tallies).  The 

number of integrations is determined by tallying the number of ray segments (across all angles and 

longrays), multiplying by the number of groups and polar angles.  There is also an additional 2x 

multiplier to account for the fact that forward and backward directions are swept simultaneously.  

For example, this case had 715,675 ray tracing segments or a total of ~134.5 million integrations).  

The timing values that are reported were averaged over all kernel instantiations over 10 iterations.  

Both 2a and 4a-2D were run on only one process. 

 

On the AMD machine, modest performance improvements are observed in the kernel without 

currents (1.4x speedup), but the kernel with currents yields a speedup of over 2.7x.  On the Intel 

machine, the speed ups are a bit lower, though still substantial. 

 

Table 1. Timing Results for Problem 2a 

  

AMD (2.3 GHz) Intel (3.2 GHz) 

ns/integration 

Ratio 

ns/integration 

Ratio GS J GS J 

Kernel w/o Currents: 7.39 5.38 1.37 3.52 2.92 1.21 
Kernel w/ Currents: 15.65 5.78 2.71 6.58 3.25 2.03 
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Similar results are observed on Problem 4a-2D, which is not very surprising (Table 2).  The case had 

6.54 million ray tracing segments (1.23 billion integrations), which is slightly more than 9x the 

segments in Problem 2a because of the pyrex inserts in the 2.6% enriched assemblies. 

 

Table 2. Timing Results for Problem 4a-2D 

  

AMD (2.3 GHz) Intel (3.2 GHz) 

ns/integration 

Ratio 

ns/integration 

Ratio GS J GS J 

Kernel w/o Currents: 7.60 5.33 1.42 3.95 3.36 1.18 
Kernel w/ Currents: 14.80 5.90 2.51 7.02 3.71 1.89 

  

5a-2D was run on the Titan supercomputer [5], on which each 16-core node contains 2.2 GHz AMD 

Opteron
TM

 6274 (Interlagos) processors, using 73 and 257 spatial parallelization processors.  Table 3 

shows the sweeping results (excluding communication) in terms of core-min/iteration.  Since the 

goal with the Jacobi sweeper is to use only 1 inner iteration, the results here are basically a 

comparison of the sweep times for the kernel with currents.  Additionally, because the GS sweeper 

demonstrates issues with TCP0 when using only 1 inner iteration, P0 scattering was used to ensure 

stability, while still enabling an equal comparison.  It is also important to note that the J iteration 

strategy generally requires a few more iterations to achieve the same level of convergence as the GS 

solver.  Using Problems 2a and 4a as a guide, we can roughly estimate that 5a-2D has roughly 187 

million segments (35 billion integrations). 

 

Table 3. Timing Results for Problem 5a-2D 

  

73 Spatial Domains 257 Spatial Domains 

GS J Ratio GS J Ratio 

MOC Solver Time  
(core-min/iteration): 

14.61 5.94 2.45 11.87 5.02 2.36 

 

However, these notable speedups do incur some cost in terms of the memory burden.  Table 4 shows 

the total memory required for each of the problems presented (in gigabytes, GB).  With the GS 

sweeper, only one group of source data is necessary at a time and only the incoming angular flux 

needs to be stored for all groups.  For the J sweeper, though, the source data for all groups needs to 

be set up at once and both the incoming and outgoing angular flux variables need to be stored for all 

groups.  As a result, the J sweeper requires between 15-20% more overall storage than the GS 

sweeper.  For our target applications, this is likely acceptable, but something to consider when 

deploying to new machines, or as spatial domain sizes increase in some applications.  It is also worth 

noting that these memory requirements were collected where the transport solvers used to 

performance the self-shielding and eigenvalue calculation are completely separate, so two sweepers 

are initialized. 

 

Table 4. Total Memory Requirements (GB) for Test Problems 

 
GS J Ratio 

Problem 2a 0.20 0.23 1.15 

Problem 4a-2D 0.88 1.02 1.15 

Problem 5a-2D (73 Spatial) 23.74 28.40 1.20 

Problem 5a-2D (257 Spatial) 37.42 44.67 1.19 
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Additional work is investigating how to fully incorporate these new kernels into the self-shielding 

calculation, which presently is still sweeping over one group at a time. 
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